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Abstract

On a high-frequency scale, financial time series are not homogeneous, therefore standard
correlation measures can not be directly applied to the raw data. To deal with this problem
the time series have to be either homogenized through interpolation or methods that can
handle raw non-synchronous time series need to be employed. This paper compares two
traditional methods that use interpolation with an alternative method applied directly to
the actual time series. The three methods are tested on simulated data and actual trades
time series. The temporal evolution of the correlation matrix is revealed through the
analysis of the full correlation matrix and of the Minimum Spanning Tree representation.
To perform the analysis we implement several measures from the theory of random weighted
networks.

Keywords: High-Frequency Correlation, Fourier method, Epps Effect, Minimum Spanning
Tree, random networks.

1 Introduction

A robust correlation measure for high-frequency data has direct applications in derivatives
pricing, risk management, portfolio optimization and is necessary in the study of market mi-
crostructure effects (information aggregation, ”Epps effect“ 1).

The conventional method of computing correlations from high-frequency data is the Pear-
son coefficient after the time series have been synchronized through an interpolation scheme.
Recently, Dacorogna et al(2001) proposed a method similar to the Pearson coefficient with a
weight factor that depends on the joint volatility of the time series. This method also requires
synchronous time series.

Barucci and Renò(2002), Renò(2003) have adapted a Fourier method developed by Malli-
avin and Mancino(2002) to the computation of FX rates correlations. The Fourier method

∗Corresponding author
1The correlation between stocks falls when decreasing the time scale, Epps(1979)
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can be directly applied to the actual time series to obtain correlation statistics. An alterna-
tive method that uses the raw time series is by de Jong and Nijman(1997). It is based on a
regression type estimator but it relies on a rather strong assumption of independence between
prices and transaction times.

In this paper we compare the two interpolation based methods (Pearson and Co-volatility
Weighted) with the Fourier. We show that the Fourier method generates more accurate results
than the other two. We use one month (September 2002) of high frequency trades in the mem-
ber stocks of the S&P100 2 index to compute the cross-correlation matrix of returns. In the
context of this paper, high-frequency data is defined as the raw time series of trades. The time
interval between transactions ranges from 0 seconds (several distinct trades recorded at the
same time) to 40 minutes. In our opinion one month worth of trades is a sufficient data set in
terms of statistical power. We select only a month of data on purpose because this is of higher
practical use to a market agent who is interested in the short time evolution of correlation.

The three correlation measures are first introduced and then compared on simulated and
actual trades data in section 2. The ”Epps effect“ becomes apparent during this analysis. The
time scale evolution of correlation matrices is investigated trough the network analysis of the
full correlation matrix and of its minimum spanning tree (MST) representation in section 3.
Section 4 concludes.

2 Correlation Measures

An extension of the standard Pearson correlation measure is proposed in Dacorogna et al(2001)
by incorporating a ”co-volatility weighting“ for the time series. The weight has the role of em-
phasizing periods where trading has a noticeable effect on asset prices.

The method works as follows. Let X,Y be two asset price time series which have been
homogenized and synchronized to a time step ∆t, co-volatility weights are given by ωi and the
time length of the trading period is T . We define ∆x, ∆y as the corresponding log returns
series on a time scale ∆t and ∆X, ∆Y as the log returns on a larger time scale m∆t. The
co-volatility adjusted correlation measure is defined as:

ρ(∆X,∆Y ) =
∑T/m∆t

i=1 (∆Xi − ∆X)(∆Yi − ∆Y )ωi√∑T/m∆t
i=1 (∆Xi − ∆X)2ωi

∑T/m∆t
i=1 (∆Yi − ∆Y )2ωi

(1)

where ωi =
m∑

j=1

(|∆xi·m−j − ∆xi·m| · |∆yi·m−j − ∆yi·m|)α, (2)

∆xi·m =
m∑

j=1

∆xi·m−j

m
, ∆Xi =

m∑
j=1

∆xi·m−j, ∆X =
∑T/m∆t

i=1 ∆Xi · ωi∑T/m∆t
i=1 ωi

(3)

Setting ωi = 1 reduces (1) to the standard Pearson coefficient. In this paper as in Da-
corogna et al(2001) α = 0.5 but this can be varied so that more weight is given to periods
where the returns volatility is above average. In Dacorogna et al(2001) m = 6, in our analysis it
varies from 3 to 480 (the number of time units of ∆t in the trading day). This was determined
by the choice of ∆t = 60 seconds which was taken as a tradeoff value for the average trading
interval pattern. The intention is to avoid extensive imputation towards the end of the trading

2data source: NYSE Trades and Quotes (TAQ) database
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day when there are few transactions occurring.

The Fourier method is model independent, it produces very accurate, smooth estimates
and handles the time series in their original form without imputation or discarding of data. A
rigorous proof of the method is given in the original paper by Malliavin and Mancino(2002) so
only the main results are given below.

The method works as follows. Let Si(t) be the price of asset i at time t and pi(t) =
ln Si(t). The physical time interval of the asset price series is re-scaled to [0, 2π]. The vari-
ance/covariance matrix Σij of log returns is derived from its Fourier coefficient a0(Σij) which
is obtained from the Fourier coefficients of dpi:

ak(dpi) =
1
π

∫ 2π

0
cos(kt)dpi(t), bk(dpi) =

1
π

∫ 2π

0
sin(kt)dpi(t), k≥1. (4)

In practice, the coefficients are computed through integration by parts. As pi(t) is not
observed continuously but given by unevenly spaced tick-by-tick observations of trades prices,
the actual implementation requires the integrals in (4) to be in discrete form:

ak(dpi) =
1
π

N∑
n=1

(
[pi(tn) cos(ktn) − pi(t′n) cos(kt′n)] − pi(t′n)[cos(ktn) − cos(kt′n)]

)
,

bk(dpi) =
1
π

N∑
n=1

(
[pi(tn) sin(ktn) − pi(t′n) sin(kt′n)] − pi(t′n)[sin(ktn) − sin(kt′n)]

)
. (5)

where t′n = tn−1

In (5), N corresponds to the number of trades in the re-scaled interval and we set the price
pi(t) = pi(tn−1) to compute the integrals between two consecutive trading times [tn−1, tn].

The Fourier coefficient of the pointwise variance/covariance matrix Σij is :

a0(Σij) = lim
τ→0

πτ

T

T/2τ∑
k=1

[ak(dpi)ak(dpj) + bk(dpi)bk(dpj)]. (6)

The highest wave harmonic (T/2τ) that can be analysed is determined by the lower bound
of τ (time gap between two consecutive trades) which is 1 second for all S&P100 price series.
The integrated value of Σij over the time window is defined as σ̂2

ij = 2πa0(Σij) which leads to
the Fourier correlation matrix ρij = σ̂2

ij/(σ̂ii· σ̂jj).

2.1 Methods Compared

We tested the Fourier method on simulated bivariate GARCH(1,1) processes in a similar setting
to that in Renò(2003). The GARCH(1,1) model is the following:

p1(t + 1) = p1(t) + σ1(t)ε1

√
∆t,

p2(t + 1) = p2(t) + σ2(t)(ρε1 + ε2

√
1 − ρ2)

√
∆t

σ2
1(t + 1) = σ2

1(t) + λ1[ω1 − σ2
1(t)]∆t + σ2

1(t)ε3

√
2λ1ω1∆t

σ2
2(t + 1) = σ2

2(t) + λ2[ω2 − σ2
2(t)]∆t + σ2

2(t)ε4

√
2λ2ω2∆t. (7)
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The GARCH parameters are:
θ1 = 0.035, ω1 = 0.636, λ1 = 0.296, θ2 = 0.054, ω2 = 0.476, λ2 = 0.480 ε1..4 ∼ i.i.d. N(0, 1), ρ =
Corr(log ret p1, log ret p2), ∆t = 1/86400.

The model was run 1000 times for a 1 day trading period length (86400 seconds) with a
time step of 1 second. The time interval between trades in S&P100 equities approximately
follows an exponential distribution with rate parameter β (mean) in the range 1 (very liquid
stock) to 67 (least liquid stock) seconds. In Figure 1 the histogram of inter-transaction times
for a low liquidity stock (Black & Decker) is plotted. The near straight slope (on a log-linear
scale) of the plot indicates that the underlying distribution of transaction times is exponential.
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Figure 2 plots the probability density function (PDF) of intertrade times of all stocks in
the S&P100 for September 2002. Half the values are below 9.2 seconds and three quarters are
below 14 seconds. This indicates that most of the stocks have medium or high liquidity. The
most and the least liquid stocks are Microsoft Corp. and Allegheny Technologies respectively.

We sampled the generated GARCH process using the exponential distribution and varied
β so as to resemble actual trading patterns. Figure 3 is a plot of the simulation results with
an induced correlation ρ = −0.70.

The mean exponential rates (β) for the generated series are indicated by the numbers
in the plot legend. For example ”Synch 20“ are two synchronous time series with β = 20.
P1 − 5, P2 − 15 are asynchronous series with β1 = 5 and β2 = 15 respectively. A β < 5
corresponds to a high liquidity stock whilst a β > 15 is associated with a low liquidity one.
The Full GARCH line represents the actual simulation data without exponential sampling and
is to be taken as a benchmark. When the time series are synchronously sampled (”Synch
20“), the correlation structure mimics the benchmark perfectly. This means that the Fourier
method works very well on synchronous series with random gaps. For non-synchronous series,
the correlation spectra on very short time scales (less than 10 minutes) are dependent on the
exponential rates. The higher the mean rate of a series, the faster it deviates from the induced
correlation level at short time scales. This is irrespective of how low the exponential rate of the
corresponding series happens to be. P1−3, P2−5 are series with low rates and their correlation
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Figure 3: Simulated bivariate GARCH(1,1) - Fourier method

spectrum closely follows the benchmark on all time scales. The series P1 − 5, P2 − 15 and
P1 − 5, P2 − 20 display noticeable deviations from the benchmark on time scales under 10
minutes. An explanation for the fast decay is that for exponentially distributed intertrade
times the proportion and magnitude of large positive deviations from the mean increase with
the mean itself. Therefore series with larger mean intertrade times will be further out of synch
with each other, thus reducing their correlations at high frequencies. On time scales greater
than 10 minutes all the series converge very fast towards the benchmark. The simultaneous
decay of all the correlation spectra from the induced level (-0.7) on time scales above 50 minutes
is due to fewer data points available for estimation.
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Figure 4: Simulated bivariate GARCH(1,1) - Fourier and Pearson methods

Besides successfully testing the Fourier method, the simulated model also provides an in-
sight into how non-synchronicity in transactions affects the correlation spectra on very short
time scales.

In Figure 4 we compare the results given by the Fourier and Pearson methods applied to
the simulated GARCH series. The co-volatility weighted method generates correlation spectra
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very similar to those of the Pearson method and have not been plotted in order to improve the
clarity of Figure 4. Both parts of Figure 4 show the Pearson method generating correlation
estimates inferior to the Fourier method in terms of magnitude and smoothness. On time
scales under 10 minutes the Pearson correlation estimates are significantly less volatile than
those on higher time scales. In Figure 4.b where the second series has a large (20 seconds)
mean exponential rate, the Pearson method displays a decay in the correlation estimates on a
very short time scale similar to that produced by the Fourier method.
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Figure 5: Example correlation spectra of stocks

Figure 5 is an example of correlation spectra for four pairs of stocks. In the first two plots
all three methods of computing the correlation are shown whilst in the following two only
the results of the Fourier and Pearson methods are presented. The Co-volatility Adjusted
method produces results very similar to the Pearson method for the latter two plots. In all
cases the Fourier correlation method provides a much smoother spectrum than the other two
methods which use interpolation. The Fourier correlation trails a moving average of either
the Co-volatility Adjusted or Pearson coefficient depending on stock and time scale. The
variation in the correlation coefficient computed with interpolation based methods can be
very large (from 0.5 to 0.1 for Boeing-Xerox) between consecutive time scales. The rise in
the Pearson/Co-volatility Adjusted correlation coefficient variation with time scale could be
attributed to loss of statistical power. A one month data set contains on average 22 trading
days with approximately 8 hours of market activity 3. Analysis with interpolation methods on
time scales larger than 4 hours will therefore employ fewer than 44 data points and fewer than

3The NYSE trading hours are 09:30 - 16:00 but the TAQ database records trades outside these times as well
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22 wave harmonics for computing the Fourier correlation. By comparison, on a 3 minutes time
scale there are 3520 data points available for the Pearson/Co-volatility Adjusted methods and
1760 wave harmonics for the Fourier. Our interest is in the very high frequency regime though
(under 3 hours) and the selected data sets provide sufficient statistics on this time scale. The
lower frequency results have been used for comparison with the high frequency domain.

P
D

F

0
1
2
3
4

3 min

P
D

F

0
1
2
3
4

5 min

P
D

F

0

1

2

3
10 min

P
D

F

0

1

2

3
15 min

Correlation − Fourier Method

P
D

F

0
1
2
3

−0.25 0.00 0.25 0.50 0.75 1.00

20 min

P
D

F

0
1
2
3
4

3 min

P
D

F

0
1
2
3
4

5 min

P
D

F

0
1
2
3 10 min

P
D

F

0
1
2
3 15 min

Correlation − Pearson Method

P
D

F

0
1
2
3

−0.25 0.00 0.25 0.50 0.75 1.00

20 min

Figure 6: Correlation probability density functions at short time scales

The Fourier method results resemble a step function on time scales greater than 2 hours
due to conversion from the frequency to the time domain. The wave harmonics (k in equations
(5) and (6)) are integers which determine the magnitude of T/2τ , where T is the total time
length of the series and τ is the time scale of analysis. When k is large the difference in time
scale for consecutive k values is well under a minute. As k decreases, the time scale difference
increases to over a minute which leads to the step function.

The plots in Figure 5 exemplify four different types of correlation evolution with time scale.
Plots a) and b) show the correlation structure of two intra-sector pairs of stocks. The corre-
lation between Intel and Cisco (highly liquid, βintc=1, βcsco=1.2) reaches a stable level after
approximately 15 minutes whilst for Heinz and Campbell (lower liquidity, βhnz=14, βcpb=23)
it takes about 2 hours to stabilize. Plots c) and d) are inter-sector examples. In Figure 5.c, on
a time scale smaller than an hour Lucent (high liquidity, βlu=3.7) and Halliburton (average
liquidity, βhal=11.3) have little correlation and this turns into anti-correlation when the time
scale increases. Boeing (βba=8.4) and Xerox (βxrx=15.9) in Figure 5.d start as poorly corre-
lated on a 3 minutes time scale, the correlation coefficient then rises steadily to 0.55 on a 2
hour time scale and falls back to a less significant level (0.2) at 4 hours.

The Epps effect can also be detected in the Figure 5 plots and displays one of the properties
described in Lundin and Dacorogna(1999), namely that the time scale at which it can be ob-
served is shorter for highly traded assets. The correlation decay observed in Figure 3 at short
time scales due to non-synchronicity in trades can not account for the correlation structure that
develops over 2 hours in Figures 5. b) and d). Thus, the Epps effect present in the correlation
structure of illiquid stocks can not be explained by non-synchronicity in transactions but is an
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actual market microstructure phenomenon related to the information aggregation and price
formation processes. Further studies are required to understand the contributing factors of the
Epps effect and the role of synchronicity in transactions.

The results of the two methods are also compared in Figure 6 and Table 1 provides the
corresponding summary statistics. The source data are correlation matrices of S&P100 (Sept.
2002) stock returns computed at time scales ranging from 3 to 20 minutes. It is expected that
the average correlation level increases with the time scale as predicted by the ”Epps effect“.

The Fourier correlation measure generates probability density functions (PDF) with char-
acteristics distinguishable from those of the Pearson. The mean and standard deviation of
correlation are unambiguously increasing with the time scale for both methods with one ex-
ception. On a 20 minutes time scale, the PDF for the Pearson method is left shifted relative
to the 15 minutes case whilst the Fourier one does not display this anomalous behaviour. The
reason for the left shift is the high level of noise captured in the Pearson correlation estimates
as already shown in Figure 5. The left tails are generally heavier (negative skewness) for the
Fourier method. The tails of the PDFs grow asymmetrically with the time scale. The positive
correlation values develop faster relative to the negative ones.

Method Time Min Max Mean Std Skew Excess
Scale Dev Kurtosis

3 -0.030 0.588 0.204 0.085 0.121 0.044
5 -0.075 0.656 0.245 0.095 -0.043 -0.033

Fourier 10 -0.182 0.720 0.296 0.111 -0.175 0.145
15 -0.204 0.760 0.309 0.116 -0.183 0.121
20 -0.148 0.793 0.339 0.124 -0.311 0.209
3 -0.063 0.616 0.273 0.090 -0.061 -0.222
5 0.014 0.730 0.302 0.092 -0.012 -0.131

Pearson 10 -0.045 0.704 0.322 0.102 0.002 -0.234
15 -0.080 0.772 0.350 0.108 -0.126 0.059
20 -0.089 0.800 0.348 0.117 -0.099 -0.039

Table 1: Short time scale correlation statistics - time scale in minutes
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3 Network Analysis

The correlation matrix can be represented as a network of vertices (stocks) and weighted
links (correlations). The degree of a vertex in the network is defined as ki =

∑
j∈V(i) 1ij where

the sum runs over the set V(i) of neighbours of i and 1ij is an indicator function for whether
there is a connection between i and j. The strength of a vertex is defined as si =

∑
j∈V(i) cij

where cij is the correlation between points i and j. We use the degree measure for the analysis
of the MST and the strength for analysis of the overall correlation matrices.

The Minimum Spanning Tree (MST) is a tool borrowed from Graph Analysis that has been
used - Mantegna and Stanley(2000), Bonanno et al(2000,2001), Onnela et al(2003) - to extract
economic information from the network representation of a correlation matrix. Mantegna and
Stanley(2000) provide an extensive account of the properties of MSTs and their applications
to securities correlation matrices. A good algorithm for implementing the MST is that by
Kruskal in Cormen et al(2001). One of the appealing features of the MST is that it enables
a clear and direct visualization of the important links in a network. This also facilitates the
analysis of the underlying structure in time.

In previous studies - Bonanno et al(2000) - on high-frequency data covering 4 years up to
the end of 1998 but on lower frequency resolutions (shortest time scale was 20 minutes) there is
evident clustering of stocks in the MST according to economic sectors. We first want to check
whether this feature is present at a much shorter time scale in a single month. Subsequently
we discuss the robustness of the MST analysis.

Figures 7 are examples of minimum spanning trees with vertices colour coded according
to the different economic sectors of the stocks. The table in the Appendix is an indexed list
of the component stocks of the S&P100 grouped according to sector classification4. The stock
indices from this table have been used to plot the MSTs in Figures 7 and Table 2 provides the
colour legend.

Colour Sector
turquoise Technology
red Financial
yellow Basic Material
grey Capital Good
rose Conglomerates
violet Energy
brown Services
green Transport
orange Utilities
light blue Health Care
darkgreen Non Cyclical Consumer Goods
blue Cyclical Consumer Goods

Table 2: Colour Codes for the MST figures

The MST on 3 minutes time scale are centralized graphs with several vertices that aggregate
a large number of connections. At longer time scales the graph structure is a lot more dispersed
with no obvious central vertex. The variation in MST centralization with time scale has also
been observed by Bonanno et al. (2000).

4The classification is the one provided by http://biz.yahoo.com/p/s conameu.html.
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Figure 7 at 120 minutes shows a number of well defined clusters for the Technology, Finan-
cial, Non Cyclical Consumer Goods and Utilities sectors. The MST derived from the Pearson
correlations at the same time scale does not have the sectors well defined.

Method Index Stock
97 Wal-Mart Stores
13 Boise Cascade Corp

Fourier 66 Microsoft Corp
14 Black & Decker
97 Wal-Mart Stores

Pearson 11 Bank of America
91 US Bancorp
27 Du Pont

Table 3: Vertex with average highest degree in the MST across all time scales

The MST representation of the correlation matrix has a shortcoming. The algorithm
discards a large amount of data in arriving at a solution and this makes it very sensitive to the
structure of the correlation matrix. Table 3 lists the actual stocks corresponding to the four
most frequently most connected vertices of the MST. In previous work by Bonanno et al [3]
General Electric was reported as the most central stock. We do not recover this result for the
month of data we have analyzed.

Figure 8 shows the evolution of the degree of the most connected stock with the time scale.
At time scale above 30 minutes the degree stabilize around 6 while at shorter time scale the
tree structure is more centralized.
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Figure 9 provides a different perspective on the correlation matrix.The CDF plots of the
strenght and normalized strength 5 at different time scales are very similar. This indicates
that while correlation increases (or decreases for the negative ones) the distributions of the
strengths collapse on each other when rescaled and do not reveal any significative change of
structure, as observed in the MST.

Table 4 shows that the variation in the correlation structure is substantially less than that
from the MST. Three of the strongest correlated stocks (Wal-Mart Stores, US Bancorp ad
Bank One Corp) are identified by both methods. Nonetheless figure 10 shows that the The
Fourier correlation is overall more stable than the Pearson, and the most strongly connected
stock are always the same two. The top four most connected vertices are largely different
from the equivalently ranked strongest vertices. This may be due to a property of the MST
algorithm which ignores some strong links (in order to avoid loops in the graph) in favour of
weaker ones.

Method Index Stock
97 Wal-Mart Stores
91 US Bancorp

Fourier 9 American Express
72 Bank One Corp
97 Wal-Mart Stores
91 US Bancorp

Pearson 11 Bank of America
72 Bank One Corp

Table 4: Vertex with highest average strength across all time scales

In Figures 11 we analyze the time evolution of the MST and the overall correlation matrices.
We define the distance between correlation matric as

∑
i,j |cij(t) − cij(t0)|, and plot them as

a function of the time scale. We selected 120 (2 hours) as the time scale t0 against which
to compare matrices. On a 2 hours time scale the correlation levels of stocks have stabilized
so it makes a suitable reference scale. Figure 11 reveals that while the Fourier MSTs and
correlations matrices are closer to the reference matrix at time scale close to the reference one,
Pearson correlations, because of the high level of noise, are almost at a constant distance from
the reference one. This is the strongest indication of the better performance of the Fourier
method in our dataset.

In Figure 12 we analyze the weighted clustering coefficient at different time scales defined
as

Cw
i =

2
N(N − 1)

∑
j,h

c̃ij(τ)c̃ih(τ)c̃jh(τ), (8)

where c̃ij(τ) = cij/c̄(τ) and c̄(τ) = 1
N(N−1)

∑
i,j cij(τ)

The Fourier method clearly shows how that the clustering coefficient increases as time
scales decreases below 20 minutes and then increases again. The high clustering at short time
scale is an indication that correlation initially develop mainly intra-sectors and as time goes
also inter-sector correlation become important.

5The strength of each vertex has been divided by the correlation matrix average at that time scale
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Method Index Stock
97 Wal-Mart Stores
91 US Bancorp

Fourier 9 American Express
72 Bank One Corp
97 Wal-Mart Stores
91 US Bancorp

Pearson 11 Bank of America
72 Bank One Corp

Table 5: Most clustered vertex across all time scales

4 Conclusions

From the analysis carried out it can be inferred that the Fourier method of computing
the correlation matrix from high-frequency data is better than the alternatives in terms of
generating smooth, robust estimates in small sample data.

The MST representation of the correlation matrix exhibits similar characteristics to those
found in previous studies. The graph is centralized on a very short time scale and becomes
more dispersed on longer time scales. There is evident clustering of stocks along their economic
sectors affiliation. However, the MST is structurally unstable between consecutive time scales
due to its sensitivity to the noise in the correlation matrix. The analysis of the entire correlation
matrix provides a more accurate picture of the structural evolution of correlations over time.
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6 Appendix

Table 6: S&P100 - grouped by sector

Index No. Symbol Company Name Sector

6 AOL AOL Time Warner
24 CSC Computer Sciences Corp.
25 CSCO Cisco Systems Inc.
31 EMC EMC Corp.
48 HPQ Hewlett-Packard Co.
49 IBM IBM Technology
50 INTC Intel Corp.
57 LU Lucent Technologies Inc.
66 MSFT Microsoft Corp.
69 NSM National Semiconductor
70 NT Nortel Networks
73 ORCL Oracle Corp.
78 ROK Rockwell Automation
88 TXN Texas Instruments
90 UIS Unisys Corp.
100 XRX Xerox Corp

4 AIG American International Group
9 AXP American Express
11 BAC Bank of America
19 C Citigroup Inc.
21 CI CIGNA Corp.
45 HIG Hartford Financial Services
53 JPM JP Morgan Chase
55 LEH Lehman Brothers Holdings Inc. Financial
62 MER Merrill Lynch
67 MWD Morgan Stanley Dean Witter
72 ONE Bank One Corp.
91 USB US Bancorp
95 WFC Wells Fargo & Co.

1 AA Alcoa Inc.
7 ATI Allegheny Technologies Inc. Basic
13 BCC Boise Cascade Corp. Material
27 DD Du Pont
29 DOW Dow Chemical Co.
51 IP International Paper Co.
98 WY Weyerhaeuser Co.

10 BA Boeing Co. Capital
38 GD General Dynamics Corp. Good
47 HON Honeywell International

39 GE General Electric
63 MMM 3M Company
80 RTN Raytheon Co. Conglomerate
89 TYC Tyco International Ltd.
92 UTX United Technologies

15 BHI Baker Hughes Inc.
41 HAL Halliburton Company
83 SLB Schlumberger Ltd. Energy
99 XOM Exxon Mobil Corp.

15 MCD McDonalds Corp.
20 CCU Clear Channel Communications
28 DIS Walt Disney Co.
43 HD Home Depot Inc.
44 HET Harrah’s Entertainment
56 LTD Limited Brands Service

Continued on next page
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Table 6 – continued from previous page

Index No. Symbol Company Name Sector

58 MAY May Dept. Stores
59 NXTL Nextel Communications Inc.
79 RSH RadioShack Corp.
81 S Sears Roebuck
82 SBC SBC Communications
86 T AT&T Corp.
87 TOY Toys ”R” Us Inc.
93 VIA Viacom Inc.
94 VZ Verizon Communications Inc.
97 WMT Wal-Mart Stores

17 BNI Burlington Northern Santa Fe Corp.
26 DAL Delta Airlines Transport
36 FDX Fedex Corp.
68 NSC Norfolk Southern Corp.

2 AEP American Electric Power
3 AES AES Corp.
32 EP EL Paso Corp.
33 ETR Entergy Corp. Utilities
34 EXC Exelon Corp.
85 SO Southern Co.
96 WMB Williams Companies

5 AMGN Amgen Inc.
12 BAX Baxter International Inc.
16 BMY Bristol-Myers Squib
42 HCA HCA Inc.
52 JNJ Johnson & Johnson Health Care
60 MDT Medtronic Inc.
61 MEDI MedImmune Inc.
65 MRK Merck & Co.
75 PFE Pfizer Inc.
77 PHA Pharmacia Corp.

8 AVP Avon Products Inc.
18 BUD Anheuser-Busch Co.
22 CL Colgate-Palmolive Co.
23 CPB Campbell Soup Co.
37 G Gillette Co.
46 HNZ H.J. Heinz Co. Non-Cyclical
54 KO Coca-Cola Co. Consumer Good
64 MO Philip Morris Co.
74 PEP PepsiCo Inc.
76 PG Procter & Gamble
84 SLE Sara Lee Corp.

14 BDK Black & Decker Co.
30 EK Eastman Kodak Co. Cyclical
35 F Ford Motor Co. Consumer Goods
40 GM General Motors Corp.
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Figure 7: MST - 3,30,120 minutes, left - Fourier, right - Pearson
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Figure 8: Comparison of the degree of the most connected stock in the MST for Fourier (black)
and Pearson (red)
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Figure 9: Strength (left) and normalized strength (right) distribution
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Figure 10: Most strongly correlated stock, left - Fourier, right - Pearson
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Figure 11: Differences from 2 hours time scale
∑

i,j |cij(t) − cij(120)|: left - MST, right -
correlation matrices, Fourier - black, Pearson - red
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Figure 12: Maximum (left) and average (right) weighted clustering coefficient for full network
with Fourier (black) Pearson (red)
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