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1 Introduction

Record linkage is an increasing popular research strategy in medicine, the social sciences,
commercial data mining and official statistics. Most often, the purpose of the linkage
operation is the production of a dataset containing information on individual persons
or organisations. With such microdata, two different kinds of privacy concerns aris
The first problem is, that datasets containing more information on the same unit can
be re-identified more easily. This problem is the central topic of statistical disclosure
control (Hundepool et al. 2012). Since this problem is not specific to record linkage, it
will not be discussed here.

The second problem concerns the attributes that can be used to identify an individual
entity. In most modern societies, protecting such identifiers in administrative databases
is required by law. Furthermore, releasing these identifiers for research is usually limited
to a few, highly regulated special cases. Therefore, linking records of different databases
by identifiers even within the same public administration may be prohibited by law. If
such linkages are allowed, usually special techniques protecting the identifiers have to
be used. The set of techniques for record linkage without revealing identifiers is called
Privacy Preserving Record Linkage or PPRL.

Privacy preserving analysis techniques in general and specifically PPRL have become
active fields of research in Computer Science, Statistics and some application fields as
Epidemiology, Health Service Research and Survey Methodology. As a result of this
intensive research, the list of available privacy preserving techniques is growing fast.1 In
total, the list of available privacy preserving analysis and linkage techniques is impressive.
To limit the scope of chapter, the focus here will be privacy preserving techniques, which
have been used on databases covering national populations to generate general purpose
statistical microdata.

1The keyword ”privacy-preserving” currently (2014) yield about 4.070 citations in CiteSeerX , in Google
Scholar about 31.800, in Pubmed about 90 and ScienceDirect about 1.200 publications.
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2 Chapter outline

The number of PPRL techniques actually used for data production of research micro-
data is small. This chapter will shortly describe the current available techniques which
are suitable for large population databases such as census datasets, social security ad-
ministration data or cancer registries.

Section 3 begins with a description of the most basic and widely used standard scenario
for PPRL: The use of a trusted third party with error-free identification numbers. Some
refinements are described and finally the application scenario for many medical research
settings is introduced: Linking decentralized databases using PPRL by a trustee for
the generation of microdata files (section 3.4). The chapter focuses on methods most
appropriate for such applications.

A short description of most widely discussed PPRL techniques is given in section
4. The remaining chapter concentrates on one of the most frequently used techniques:
Bloom filter based PPRL.

Files beyond about 50,000 records each need special techniques (blocking) since not
all possible pairs in a record linkage process can be computed. The set of available
techniques is described, a new technique introduced and some comparisons to older
techniques reported (section 5).

The central problem of PPRL is privacy protection (section 6). Therefore, currently
known attacks on PPRL protocols are summarized (section 6.3). Based on this research,
counter measures against this attacks are described (section 7). Finally, research needs
in PPRL are delineated (section 8) and policy implementation issues mentioned (section
9).

Although some sections contain standard material covered in reviews previously pub-
lished, some of the techniques and results are presented here for the first time. This new
material is contained in sections 5.2, 6.3, and 7 .

3 Linking with and without Personal identification Numbers

A distinction between (direct) identifiers (for example, personal identification numbers)
and quasi-identifiers (for example, names and date of birth) is useful in practice. If a
one-to-one mapping of individuals and personal identification codes is possible, we call
this code a direct identifier.2

If a unique direct identifier is available, it is most often a national identification number
(or personal identification number, PID). In such settings, record linkage is in principle a
technically a trivial file merge operation.3 However, few countries have universal national

2Of course, the definition is neither clear-cut nor universally accepted. For example, the American
HIPAA/HITECH act defines as direct identifiers of an individual 18 items, such as names, geographic
subdivisions smaller than a state, including zip codes beyond the third digit, all elements of dates
(except year), phone numbers, electronic addresses, social security numbers, account data, finger
prints, face images and more. For details see Trinckes (2013).

3In practice, PIDs do contain errors (Newman & Brown 1997; Grannis et al. 2002). Most but not all
PID systems have checksums, so that most simple data processing errors can be identified easily. The
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PIDs (for example: Denmark, Finland, Norway, Sweden). In most other countries quasi-
identifiers such as names, dates of birth and addresses must be used. These character-
istics are neither unique, nor stable over time and often recorded with errors. Record
linkage only using exact matching quasi-identifiers will therefore miss many matches.
The amount of errors in quasi-identifiers is often remarkable high, if the data quality of
the identifier is not important for the organizational purposes for which the data were
collected. Therefore, identifiers concerning financial transactions such as bank account
numbers usually have lower error rates than quasi-identifiers, where error rates often
exceeds 10-15% per field. In accordance with this, Winkler (2009) reports that 25 per-
cent of matches in a census would have been missed if only exact matching identifiers
had been used. In many applications, the remaining matching subset is not a random
sample of all true matches in the databases. Here the resulting missing information
can not statistically be considered as missing at random.4 An example are neonatal
databases: Children of mothers with changes in their names might be different from
children of mothers with no change in their names, or different from mothers whose
names are missing. In such applications, additional techniques have to be used. Some
of the available options will be discussed later.

3.1 Linking using a trusted third party

The basic model for PPRL is the use of a trusted third party (figure 1). Database
holders A and B submit the personal identifiers and the corresponding identification
codes of the persons in their database to the trustee. The trustee identifies identical
persons in both databases and delivers the list of corresponding identification codes to
the research group, which then links the separate databases A and B, which no longer
contain personal identifiers, based on the linkage list of the trustee. Therefore only the
trustee sees the identification codes and personal identifiers, whereas the research group
sees only the identification code. However, the trustee also learns who is a member of
which database.

3.2 Linking with encrypted PIDs

Knowledge gain of the trustee can be prevented by using encrypted identifiers. Encryp-
tion is usually done with cryptographic hash functions (Hash Message Authentication
Codes, HMACs). These are one-way functions, so that two different inputs will be
mapped to two different outcomes, but there is no way of finding the input given only
the outcome. In practice, HMACs with a password are used (keyed HMACs). Currently,
MD-5 or SHA-1 are most often used as HMAC (Martin 2012; Stallings 2011). In coun-
tries with PID covering the whole population, usually an ID is generated by hashing the
PID with a keyed HMAC: The resulting linkage ID is specific to this linkage project and

main problems in practice are missing identifiers and multiple PIDs for the same person. Despite
this, linking with PIDs is much easier than without.

4Identifiers seem to be missing or erroneous more often for vulnerable populations, therefore mortality
may be underestimated in such linkages (Zingmond et al. 2004; Ford et al. 2006).
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Data A Number A Name A Data BNumber BName B

Number A Name A Number BName B
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Research Group

Database A Database B

Data A Data B

Figure 1: Standard model for linking two databases with a trusted third party. Adopted
from Schnell et al. (2013).
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can not be used for other linkages.

3.3 Linking with encrypted quasi-identifiers

If no universal and unique PID is available, PPRL with a trusted third party uses en-
crypted quasi-identifiers. These are always prone to errors, for example by typing or
optical character recognition errors or by changes in values such as name changes after
marriage or changes of addresses. Slightly different ways of spelling names, for exam-
ple the inclusion or exclusion of academic or generational titles or other name suffixes,
usually do not strongly affect record linkage procedures with unencrypted identifiers
(for an example, see Randall et al. 2013). However, if the identifiers are encrypted
with HMACs, even small variations will result in completely different encodings after
encryption. Therefore, standardization (Christen 2012a) of quasi- identifiers before en-
cryption is highly recommended. The standard technique to make HMAC encrypted
quasi-identifiers resilient to small variations in spelling is the use of phonetic encodings
for names. A phonetic code maps similarly pronounced strings to the same key, so that
very similar variants of a name form a common group. For almost 100 years, the most
popular phonetic function has been Soundex (Christen 2012a), initially developed for
census operations. For example, the names Engel, Engall, Engehl, Ehngel, Ehngehl,
Enngeel, Ehnkiehl and Ehenekiehl all produce the same code (in this example: E524).

For record linkage, phonetic codes are normally additionally encrypted with a crypto-
graphic function such as SHA-1. Using such a combination of standardization, phonetic
encoding and encryption of the phonetic code will result in acceptable linkage results
for many applications. This combination is widely used in medical applications Borst
et al. (2001). However, persons appearing with entirely different names in the two
databases will be lost, therefore in practical applications fall-back strategies for poten-
tial record-pairs with non-matching phonetic-codes are commonly in use. The effect of
these strategies on overall linkage performance is not well studied.

3.4 PPRL in decentralized organisations

Organisations covering nation states are likely to be decentralized. An extreme example
might be the health care system in Germany. There, currently about 2000 hospitals
use diverse hospital information systems without a PID or SSN. Individual financial
transactions between more than 170 health care insurance companies and hospitals are
based on company specific identifiers and names. Information exchange on individual
patients between hospitals is usually based on name, sex, date of birth and insurance
company. Only statistical information exchange is based on encrypted quasi-identifiers.
For such statistical data collection processes, PPRL procedures are legally required. For
example, the cancer registries use encrypted phonetic codes for PPRL.5

In large decentralized organizations as this, legal requirements restrict the number
of usable PPRL approaches severely. Most protocols with strong privacy guarantees

5The actual organisation of German cancer registries is quite complex. For the technical details, see
Hentschel & Katalinic (2008).
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seem to require repeated interactions between database owners (for an example, see
Attallah et al. 2003). Although often technically simple and even in some protocols
requiring only few interactions or little network traffic, such protocols are not suited for
linkage operations across different organizations. For example, medical data, crime or
tax records are distributed among many different agencies for different purposes in most
European countries. It is unlikely that such agencies will allow any external internet
connection for their databases. Protocols requiring repeated access to external servers
are no option for such secure environments.

The standard scenario in settings like these is shown in fig 2. Here, a federal agency
(FA) will set all required parameters for a linkage operation and send them to the data
holding organizations, for example hospitals. The hospitals split their databases in two
sets: {IDs, data} and {IDs, quasi-identifiers}. They send the datasets to a federal data
warehouse (DW ). The hospitals encrypt the identifiers according to the parameters
specified by the federal agency FA. The resulting encrypted identifiers (here denoted as
bf ) and the corresponding IDs are send to a linkage unit which acts as a trustee. The
trustee links all records by using the bf alone. The list of all linked pairs of IDs is send
to the data warehouse which merges all data sets according to the list of matching IDs.

In such setting, the agency FA does not receive any data, therefore it can not gain
knowledge on any sensitive data. The database holders have their own data and do not
receive anything new. Therefore, they don’t learn anything by the execution of such pro-
tocols. The data warehouse DW has access to all non-sensitive data but to no identifiers
at all. Nevertheless, in such settings the non-sensitive data could be linked to external
information containing identifiers. Since this kind of attack is always possible if micro-
data is available, such attacks can only be limited by statistical disclosure protection
measures (Hundepool et al. 2012).

All technical interesting things happen within the linkage unit. In most security
analysis in PPRL, the linkage unit acting as trustee is the attacker. Since the unit
receives only encrypted identifiers, the trustee might try to re-identify the encrypted
keys. Most of the relevant literature in PPRL discusses ways to prevent re-identification
by the trustee. It should be noted that nearly all protocols intended for applications
in PPRL assume semi-honest or honest-but-curious parties. Semi-honest parties act
according to the protocol, but try to learn secret information of the other parties. They
may use additional information or use information they gain during the execution of the
protocol. For the scenario described in figure 2, this is widely regarded as a realistic
assumption.

4 PPRL approaches

The literature on PPRL approaches is widely scattered across academic fields between
Statistics, Computer Science and Cryptography. A number of reviews, tutorials and
taxonomies on available techniques have been published since 2010, for example Hall &
Fienberg (2010); Navarro-Arribas & Torra (2012); Christen et al. (2013); Vatsalan et al.
(2013) and Verykios & Christen (2013). Therefore, only the basic approaches will be
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described shortly. A large part of the recent literature on PPRL consists of combinations
and extensions of these basic approaches.

4.1 Phonetic Codes

The idea of using phonetic codes for PPRL have been described above in section 3.3.
For most real world settings, variations of these techniques are the standard method for
PPRL. After a long neglect in research, recently new developments for linkage techniques
using phonetic codes have been reported. For example, Karakasidis & Verykios (2009)
and Karakasidis et al. (2012) suggested the inclusion of non-existing records to prevent
frequency attacks (see section 6) on encrypted databases with phonetic codes.

For practical applications, many variants of phonetic codes have been used for record
linkage in general. However, very few of them have been tested in comparison to new
techniques. Recent simulations and a test with a regional cancer registry show linkage
qualities which are rarely exceeded by modern techniques (Schnell et al. 2014). However,
this result may be due to extensive preprocessing and needs independent replication.

4.2 High-dimensional embeddings

The idea of distance preserving mapping of strings into a high dimensional euclidean
space has been suggested by Scannapieco et al. (2007). Two database holders build an
embedding space from shared random reference strings and embed their strings within
using a distance preserving embedding method (SparseMap, see Hjaltason & Samet
2003). Then the distances of the embedded strings and the reference strings are sent to
a trusted third party, which computes their similarity. The protocol has been modified
(Bachteler et al. 2011) and extended in many different ways, for example as double-
embedding (Adly 2009) or as secure computation protocol (Yakout et al. 2009). Although
the idea has generated many variants, it seems to be rarely used in practical applications.

4.3 Reference tables

A protocol based on a public list of reference strings was suggested by Pang & Hansen
(2006) and Pang et al. (2009). For a given identifier, both database holders compute a
distance between the identifier string and all reference strings in the set. For distances
lower than a threshold, the reference string is encrypted using a key known to the
database holders. For each identifier string, the resulting set of encrypted reference
strings and the computed distances are sent to a third party. This party computes an
approximation to the distances between the plain text identifiers.

In a simulation study Bachteler et al. (2010) compared the reference string method
(Pang et al. 2009) with the high dimensional embedding (Scannapieco et al. 2007) and the
Bloom filter approach (see section 4.5). The reference string method performs inferior
to the other approaches. However, due to privacy considerations, the reference string
method has generated a series of variants and combinations, for example the protocol
suggested by Vatsalan et al. (2011).
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4.4 Secure Multiparty Computations for PPRL

The field of Secure Multiparty Computation (SMC) protocols is concerned with joint
computations of a function by a set of parties with private inputs. The parties should
learn only the intended output of the protocol. Even if some of the parties collude,
it should be impossible to obtain more information (Lindell & Pinkas 2009). Data
mining is an obvious application for such protocols. Hence, a large number of SMC
protocols to solve specific data mining problems have been suggested, for example, SMC
k-means clustering Vaidya & Clifton (2003).6 Naturally, the idea can be applied to the
secure computation of similarities of quasi-identifiers. Since this is the core of a PPRL
problem, there are suggestions for SMC protocols in PPRL. For example Atallah et al.
(2003) proposed a SMC protocol for the computation of edit distances, the number of edit
operations such as inserting, deleting, substituting characters to transform one string into
another string. Another SMC protocol for the computation of other string distances has
been suggested by Ravikumar et al. (2004). However, all currently known SMC protocols
in PPRL can hardly be applied for large datasets, since the required computing time
is infeasible. Furthermore, SMC protocols require network based interactions between
database holders. In highly secure environments such as Social Security Administrations
or medical registries, this is rarely an acceptable proposal. Therefore, in real world
decentralized PPRL applications, SMC protocols are currently not used.

4.5 Bloom filter based PPRL

The idea of Bloom filter based PPRL was suggested by Schnell et al. (2009). The method
is based on the idea of splitting an identifier into substrings of length 2 (bigrams) and
mapping the bigrams by HMACs to a binary vector. Only these vectors are used for
linkage.

For example, the set of bigrams of the name SMITH is the set7

{ S, SM,MI, IT, TH, H }
This set of bigrams is mapped with a hash function to a binary vector (see figure 3). For
the mapping of each bigram Schnell et al. (2009) proposed the use of several different
HMACs for each bigram. The combination of a bit-vector with hash functions is called
Bloom filters in computer science (Bloom 1970). Hereby, the similarity of two strings
can be computed by using the Bloom filters only.

The procedure is best explained using an example. If we want to compare the simi-
larity of the names ”Smyth” and ”Smith” using bigrams. We can use a standard string
similarity measure like the Dice coefficient

Da,b =
2h

(|a|+ |b|)
6It should be noted, that SMC protocols are not suitable for exploratory work during the initial devel-

opment of a statistical model. Since diagnostics based on residuals are essential for the development
of a statistical model, SMCs are of limited use in such applications.

7The bigrams S and H are due to padding : start and end of a string are marked by adding a blank
on the left respectively on the right end of the string.
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Figure 3: Example of the encoding of SMITH and SMYTH with two different crypto-
graphic functions into 30-bit Bloom filters A and B. Taken from Schnell et al.
(2009).

where h is the number of shared bigrams and |a|, |b| is the number of bigrams in the
strings a, b. For example, the bigram similarity of ”Smith” and ”Smyth” can be com-
puted by splitting the names into 2 sets of 6 bigrams each ({ s, sm,mi, it, th, h } and
{ s, sm,my, yt, th, h }), counting the shared bigrams { s, sm, th, h } and computing the
Dice coefficient as 2×4

(6+6) ≈ 0.67.
If we want to compare the two strings with a Bloom filter encoding, we could for

example use bigrams and Bloom filters with 30 bits and two HMACs only (in practice,
Bloom filters with 500 or 1000 bits and 15 to 50 hash functions are used). Figure 3
shows the encoding for this example. In both Bloom filters 8 identical bits are set to
1. Overall 1 + 10 bits are set to 1. Using the Dice-coefficient, the similarity of the two
Bloom filters is computed as 2 ∗ 8/(11 + 10) ≈ .76. In general, the similarity of two
Bloom filters approximates the similarity of the unencrypted strings. Since numerical
identifiers such as date of birth can be represented as strings, also numerical data be
encoded in Bloom filters. Therefore, all available information on quasi-identifiers can be
used for privacy preserving record linkage with Bloom filters.

In the initial proposal, each quasi-identifier is mapped to one Bloom filter. Therefore,
this approach can be used with little or no modification with most record linkage pro-
grams. However, in some legal environments, record linkage has to be done with exactly
one identifier, for example a PID may be required by law. For such settings Schnell et al.
(2013) suggested the use of the encoding described above, but with one common Bloom
filter (called a cryptographic long term key or CLK for all identifiers. So first name, last
name, addresses, sex, date of birth etc. are all mapped to the same Bloom filter (but
with different hash functions and different passwords for each identifier). The authors
suggested varying the number of hash-functions k between identifiers i, for example to
reflect the assumed discriminating power of identifiers for possible pairs. This can be
approximated by selecting ki proportional to the entropy Hi of the identifier.

Simulations and real world applications consistently showed consistently acceptable
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performance of CLKs. For example, in an application of a German cancer registry
Richter (2013), a CLK based on first name, last name, date of birth, zip-code and place
of residence was used to link two files with 138,142 and 198,475 records. Considering
only exact matches on the CLK, 18 pairs were found which had been not matched before
using the procedures of German cancer registries (for details, see Hentschel & Katalinic
2008) and clerical editing on unencrypted names. In general, record linkage based on
separately encoded Bloom filters should perform slightly better than linkages based on
CLKs of the same identifiers. However, CLKs have an obvious advantage over separate
identifiers: An attack on CLKs seem to be more difficult than an attack on separate
Bloom filters (for details, see section 6.3). Since strings encoded in binary vectors are
a flexible data structure for PPRL string similarity computations, several modifications
of the basic idea have been suggested (see section 7).

Bloom filter-based record linkage has been used in real-world medical applications,
such as in Brazil (Napoleão Rocha 2013), Germany (Schnell 2014) and Switzerland
(Kuehni et al. 2011). The largest application so far has been an Australian study (Ran-
dall et al. 2014). Here, healthcare data with more than 26 million records have been
used. PPRL with Bloom filters showed no difference in linkage quality compared with
traditional probabilistic methods using fully unencrypted personal identifiers.

5 PPRL for very large databases: Blocking

Comparing each record of a file with each record of a second file requires n ∗m compar-
isons. With a national database with millions of records computing the similarity of all
pairs is inconceivable. In practice, record linkage is therefore usually based on compar-
isons within small subsets of all possible pairs. Techniques for selecting these subsets
are called blocking or indexing methods (Christen 2012a;b). In most PPRL projects
blocking also has to be done in a privacy preserving way (privacy preserving blocking).
Privacy preserving blocking has become a field of research on its own. Recent proposals
include Karakasidis & Verykios (2011; 2012a;b); Vatsalan et al. (2013) and Karapiperis
& Verykios (2014). However, only a subset of the proposed blocking methods can be
used with Bloom filter based PPRL.

5.1 Blocking for PPRL with Bloom filters

Linking two databases consisting of Bloom filters implies the search for pairs of similar
binary vectors. This may be seen as a problem of finding nearest neighbors in a high
dimensional binary space. In the case of population databases, a nearest neighbor among
more than 100 million candidates has to be found. With regard to Bloom filter based
PPRL, the number of suitable candidates for blocking is quite limited. Five promising
methods will be described here.

The first obvious method is the use of external blocks. External blocks are formed
by encrypting a quasi-identifier with an HMAC and using the hash value as a block. In
practice, very often regional identifiers or birth cohorts are used as blocks. This kind
of blocking (called standard blocking, Herzog et al. 2007) relies on blocking variables
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without errors. Errors in block identifiers of two records for the same person will usually
result in a missed link for this pair. Therefore, in practice most often different blocking
variables (for example postcodes, sex, date of birth, phonetic codes of names) are used
sequentially.8

The second obvious method is sorting. The approach introduced by Hernández &
Stolfo (1998) as Sorted Neighbourhood Method has become the standard for handling
large files with encrypted identifiers. Both input files are pooled and sorted according
to a blocking key. For binary vectors, this can, for example, be the number of bits set
to one (the Hamming weight). A window of a fixed size is then slid over the records.
Two records from different input files form a candidate pair if they are covered by the
window at the same time.

Canopy Clustering (McCallum et al. 2000) forms candidate pairs from records placed
in the same canopy. All records from both input files are pooled. The first canopy is
created by choosing a record at random from this pool. This randomly chosen record
constitutes the central point of the first canopy. All records within a certain loosely
defined distance l from the central point are added to the canopy. Then, the central
point and any records in the canopy within a certain more closely defined distance t
from the former are removed from the record pool. Additional canopies are built in the
same way as the first until there are no more remaining records. The result is a set
of potentially overlapping canopies. Pairs which can be formed from the records of the
same canopy constitute the set of candidate pairs.

LSH-Blocking is based on Locality Sensitive Hashing, LSH (Indyk & Motwani 1998),
a general technique for the search of approximate nearest neighbors. For the search on
binary data, very often MinHash (Broder 1997) has been used as hash function for LSH
(for details, see Leskovec et al. 2014). However, LSH for Bloom filters simply samples
bits from the binary vectors and uses similar patterns of samples as blocks (Durham
2012). Many variations of the LSH-Blocking have been suggested recently (Karapiperis
& Verykios 2014; Steorts et al. 2014). For the setting described in 3.4, multi party
protocols or protocols requiring many iterations between database owners can not be
used. However, in general the performance of simple LSH-Blocking with very large
datasets seems to be disappointing (Bachteler et al. 2013).

Finally, the use of Multibit trees (Kristensen et al. 2010) for blocking in general record
linkage, without reference to privacy preserving record linkage, was suggested recently
as q-gram blocking by Bachteler et al. (2013). However, the method can also be used for
blocking binary vectors such as Bloom filters in PPRL (Schnell 2013; 2014). With de-
duplicated datasets, after blocking Bloom filters with Multibit trees no further processing
is needed, since the search already yields the nearest neighbor. Since the technique is
new, it will be explained in more detail.

8This practice is common in cancer registries or during census operations. Given the ease of re-
identification by unique combinations of encrypted demographic information, this is a questionable
routine.
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5.2 Blocking Bloom filters with Multbit trees

Multibit trees were introduced to search huge databases of structural information about
chemical molecules (Kristensen et al. 2010). If the query vectors are all binary, a query
A is searched in a database of binary vectors B. All records in the database with a
similarity to A above a certain threshold t should be retrieved. In chemoinformatics, very
often the Tanimoto coefficient A∩B

A∪B is used for measuring similarity of binary vectors.9

The coefficient is simply the ratio of the number of 1’s the vectors have in common to
the number of 1’s where either vector has a 1. The algorithm uses the fact stated by
Swamidass & Baldi (2007) that given the number of 1’s in A and B (denoted by |A| and

|B|), the upper bound of the Tanimoto coefficient is Tmax = min(|A|,|B|)
max(|A|,|B|) . If all vectors

are stored in database indexed by |B|, searching for the vector A can be limited to those
entries for which |B| ≤ t|A| or |B| ≥ |A|/t. The increased speed of the algorithm is
primarily due to those eliminations and the use of some special data structures.10

For the application of Multibit trees on Bloom filters, the tree structure is built for the
first file and the records of the other file are queried sequentially. Therefore, the time
required for querying the records of the second file is more important for the overall
running time than the time needed to build the tree. In general, the average query time
in Multibit trees shows a linear increase with the number of records in the second file.
This is an attractive scaling property of the method.

5.3 Empirical comparison of Blocking techniques for Bloom filters

In the initial publication of q-gram blocking by Bachteler et al. (2013), comparisons inter
alia between Multibit trees, canopy clustering, sorted neighborhood and standard block-
ing were reported. In most situations, Multibit trees outperformed the other methods,
even those that had performed best in other comparison studies Christen (2012b). After
the promising results of the initial simulations, the original Java implementation of the
Multibit tree algorithm was implemented as an R-library using C++. With this version,
computing time was further decreased by a factor of more than five.

The performance of that implementation of Multibit trees was studied in a series of
simulations (Schnell 2014). For the simulation reported here, files were generated with
Febrl (Christen 2008). Files with 1,000, 5,000, 10,000, 50,000, 100,000, 500,000 and 1
million records were prepared. CLKs with 1,000 bits based on name, surname, sex and
day/month/year of birth as identifiers and k = 20 hash functions for each of the 6 fields
were generated with an additional Python script. The second file was a copy of the first
file, but with 0, 5, 10, 15 and 20% records containing errors.

Figure 4 shows the F-measure for Canopy Clustering (CC), Sorted Neighborhood
(SN) and Multibit trees (MBT). The performance of all blocking methods decreases
with increasing error rates, but more sharply for the Sorted Neighborhood technique.
The results for Canopy Clustering and Multibit trees are nearly identical. In general,

9Both Dice and Tanimoto coefficients have a range of 0–1, they are monotone related.
10Details on the Multibit tree algorithm and an implementation in Java can be found in Kristensen et al.

(2010).
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Figure 4: F- measure for Canopy Clustering (CC), Sorted Neighborhood (SN) and Multi-
bit Trees (MBT). Errors in 5%, 10%, 15% and 20% of the records. Results for
CC and MBT are nearly identical. Taken from Schnell (2014).

the precision achieved by MBT is independent of error and independent of file size. The
observed recall for MBT decreases linearly with error but is independent of file size.
Overall, MBT performs as well as the best known traditional technique.

It must be kept in mind that all blocking methods need careful specification of pa-
rameters, for example the window size in Sorted Neighborhood or the thresholds l and
t in Canopy Clustering. For the use of Multibit trees this parameter is the Tanimoto
threshold as described in section 5.2. If this threshold is selected too high, the algo-
rithm will be very fast but will miss many possible pairs. Selecting the threshold too
low will increase the computing time. Hence, the threshold has to be selected carefully.
The optimal threshold depends among other parameters on the number of errors in the
quasi-identifiers.

Therefore, to achieve sufficient recall, the Tanimoto threshold must be lowered with
increasing number of errors. In the simulations reported in Schnell (2014), a threshold
of 0.85 gives a minimum recall of 0.85 even with 20% errors. This threshold shows a
minimum precision of 0.95. For most applications, the 0.85-threshold therefore seems
to be a reasonable start value. If the application has higher demands on precision and
recall, using a threshold of 0.8 with blocks of at most 100,000 records will increase recall
beyond 0.93 despite 20% errors.

For Multibit trees the computing time will increase with decreasing similarity thresh-
olds, since the number of pairwise comparisons will increase. However, even with a low
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Figure 5: Time in minutes for finding best matching pairs (100,000 – 1,000,000 records)
for Canopy Clustering (CC), Sorted Neighborhood (SN) and Multibit Trees
(MBT), 10% errors. Taken from Schnell (2014).

similarity threshold of .85, two files of 500,000 records with 10% errors could be matched
in 5902 seconds. For this combination of parameters, a recall of 0.931 and a precision of
0.977 was observed: exactly the same performance as Canopy Clustering in about 40%
of the time (see figure 5).

5.4 Current recommendations for linking very large datasets with Bloom
filters

Given current hardware and currently available algorithms for very large datasets such
as a population census, very few techniques are suitable for Bloom filter based PPRL.
The simplest option would be external blocking, for example by encrypted year of birth.
This key would form a block and within each block, other techniques could be used.
Sorted neighborhood is a robust option in such settings. Multibit trees would be another
option. Both techniques seem to perform well. Restricting the blocks to about 1 million
records, privacy preserving record linkage based on Bloomfilters could be done with a
small cluster of servers within 24 hours. Given other restrictions of PPRL, this is already
an acceptable time for most research applications.
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6 Privacy considerations

Currently, from a mathematical point of view, it seems impossible to achieve the goal of
a dataset, which can not be re-identified at all. This is attributed by Dwork & Pottenger
(2013) to “. . . the fact that the privacy-preserving database is useful”. Therefore, the
current focus in computer science is the notion of differential privacy, usually targeting
the quasi- identifiers.11 Interestingly, the consequences for lawyers seem to be different.
Ohm (2010) argues (in a chapter called “From Math to Sociology”) that regulators need
to ask questions that help reveal the risk of re- identification and threat of harm: “Be-
cause easy reidentification [sic!, RS] has taken away purely technological solutions that
worked irrespective of these messier, human considerations, it follows that new solutions
must explore, at least in part, the messiness.” Correspondingly, German jurisdiction
defines de facto anonymity as modification of identifiers such as only a disproportionate
investment of time, cost and labor would lead to re-identification. Therefore, the analysis
of a cryptosystem for an epidemiological cancer registry might depend on the assumed
motives of an attacker. Some facts on reported privacy breaches will be summarized,
before the technical details on preventing attacks will be given.

6.1 Probability of attacks

The American ITRC (www.idtheftcenter.org), a non-profit organization, collects in-
formation on privacy breaches in the US. According to their yearly breach report 2013
(IRTC 2014), 614 breaches with 91,982,172 exposed records were reported in the US.
About 269 breaches with about 8.8 million records concerned medical or health care
databases. Hence, more than 40% of all breaches pertain to medical or health care
databases. In 2014, one incident alone concerned 4.5 million records in a hospital infor-
mation system BBC-News (2014). In the US, medical databases seem to be attractive
targets for attacks. However, it must be considered that American medical and health
care databases very often contain financial information, such as credit card information.
Furthermore, there may be a market for social security numbers or health care identifica-
tion numbers with the aim to access medical services. For countries with national health
services or differing health insurance systems, this is not necessarily true. Therefore,
medical or health databases might be of lesser interest to external attacks outside the
US. For example, the reports of the Federal German Data Protection Agencies for 2012
and 2013 do list a couple of incidents concerning medical databases (for example, loss of
backup tapes) but not a single case of an outsider attack. In accordance with that, US
data also shows that most privacy breaches are due to human error. In a study of 1046
total privacy breach incidents in the US between 2005 and 2008, Liginlal et al. (2009)
reported that human error caused 67% of the incidents and malicious acts 33%. Finally,
it must be kept in mind that from the attacker point of view, a social engineering attack
on a human is usually easier than a mathematical attack on an encryption scheme.

Finally, the overall success probability of an attack on a medical database should be

11However, Dwork & Pottenger (2013) clearly states, that “. . . preventing re-identification does not
ensure privacy . . . ”).
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considered. De-anonymization attacks on databases for research purposes have been
rarely reported in the international literature. In a systematic review Emam et al.
(2011) reported that only 14 attacks could be found in the literature. About 26% of
the records could be re-identified in all studies. Only one of the attacks was aimed
at a medical database anonymized according to current standards. In this study, 2 of
15,000 records could be correctly re-identified. Therefore, the overall probability of an
attack on a research database and the success probability of such an attack seem to
be entirely different from the “proof-of-concept”-attacks considered in computer science
and statistics. For actual real implementations, this difference should be kept in mind
(see section 9).

6.2 Kind of attacks

Recently, Vatsalan et al. (2014) classified the attacks most frequently discussed in the
PPRL literature in five groups:

1. Dictionary attack: If the encryption function is known, an attacker can encrypt a
large dictionary of possible quasi-identifiers to find matching encrypted identifiers.

2. Frequency attack: If a suitable population distribution of quasi-identifiers is avail-
able, the frequency distribution of encrypted quasi-identifiers can be used for as-
signing records to quasi-identifiers even if the encryption function is not known.

3. Cryptanalysis: Some encoding techniques, for example Bloom filters, are prone to
cryptanalysis. Using the bit patterns of frequent names or frequent q-grams, some
records might be correctly re-identified.

4. Composition attack: Using auxiliary information on the databases or at least some
records, information might be combined to learn sensitive values of certain records.

5. Collusion: In multi-party protocols, a subset of database owners and the third
party violates the protocol and try to learn the other database owners data.

Since either keyed HMACs or seeded random number generators are used for encryption,
dictionary attacks on PPRL procedures don’t seem promising. It should be noted, that
collusion is not excluded by the honest-but-curious assumption. Most of the PPRL
schemes in practical use today seem to be susceptible to collusion.12 Therefore, in
practice, the implementation of a PPRL protocol has to rely on the enforcement of
the corresponding jurisdiction. Composition attacks have been defined by Ganta et al.
(2008) as attacks, in which an adversary uses independent anonymized releases to breach
privacy (for a textbook example with hospital data, see Chen et al. 2009). These kind
of attacks have received little attention in the PPRL literature, since most protocols
minimize the amount of information available for an attacker. In accordance with this
reasoning, the published attacks on Bloom filter based PPRL approaches concentrate
on frequency attacks and cryptanalysis.

12Dalenius in 1977 cited Hansen as early as 1971: “The U.S. Bureau of the Census accepts the view
that ’(. . . ) it is not feasible to protect against disclosure by collusion”’.
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6.3 Attacks on Bloom filters

So far, three studies by two research groups have been published on attacking PPRL
Bloom filters. Furthermore, there is a recent unpublished report by one of the groups.
All attacks will be described shortly.

Kuzu et al. (2011) sampled 20,000 records from a voter registration list and encrypted
the bigrams of forenames (with k = 15 and l = 500). The authors formulated their attack
as a constraint satisfaction problem (CSP) which defines a set of variables, which have to
satisfy certain constraints. CSP problems can be solved by the application of constraint
programming (Marriott & Stuckey 1999). Usually special programs called CSP solvers
are used for this. To limit the problem size given to the CSP solver, Kuzu et al. (2011)
used a frequency analysis of the identifiers from the voter registration list and of the
Bloom filters encodings. For assigning possible names to the Bloom filters, generated
frequency intervals for the forenames in the voting list and for the Bloom filters were
applied. To restrict the number of alternative names that could correspond to a Bloom
filter, two assumptions were used: The encrypted records are a random sample of a
known resource and the attacker has access to the resource from which the sample is
drawn. Given the described setting the CSP solver assigned the 400 most frequent names
of approximately 3, 500 different forenames correctly.

However, the assumptions used by the authors are rarely found in practical applica-
tions. In their second paper, Kuzu et al. (2013) evaluated the practical use of their
own attack more critically. Personal identifiers in a given application database such as
a medical registry are unlikely to be a random sample of an available population list.
Thus, Kuzu et al. (2013) investigated whether voter registration records could be used
to identify encrypted personal identifiers from a medical center. In this more realistic
scenario, the attacked database is not a random sample of the available population list.
After several modifications of the attack and restricting the problem to a set of just
42 names, the CSP solver failed even after a week of runtime. Restricting the prob-
lem further to the set of only the 20 most frequent names, the CSP assigned four of
those 20 names correctly. Nevertheless, Kuzu et al. (2013) concluded, that the attack
remains feasible in practice. This remains to been demonstrated with an independently
encrypted database. No replication of a CSP attack on Bloom filters from other research
groups have been reported in the literature.

A different and highly successful attack on simple Bloom filters has been published by
Niedermeyer et al. (2014). Very little computational effort is needed and only publicly
available name frequency lists are used for this form of attack. The attack concen-
trates on the frequency of bigrams as the building blocks of Bloom filters instead of the
frequency of entire names.

In the standard Bloom filters used for PPRL (Schnell et al. 2009) the k hash functions
are based on the double hashing scheme

hi = (f + i · g) mod L for i = 0, . . . , k − 1

where L is the length of the Bloom filter and f and g cryptographic hash functions such
as MD-5 or SHA-1. This was originally proposed in Kirsch & Mitzenmacher (2006) as
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a fast and simple hashing method for Bloom filters yielding satisfactory performance
results. Using this scheme, each bigram will set at most k bits to one, since k hash
functions are used. Niedermeyer et al. (2014) denote the Bloom filter generated by one
bigram as an atom. Then, the Bloom filter of a name is the bitwise OR operation of the
atoms corresponding to the bigrams of the name.13

For the demonstration of the attack, the authors used 10,000 bloom filters with stan-
dard settings (m = 1000, k = 15). The Bloom filters were sorted and deduplicated,
yielding 7,580 unique Bloom filters. For analysis, they used only those 934 Bloom fil-
ters, which occurred at least twice. Because they did not know the hash functions used,
they generated every possible atom. The pairwise combination of two vectors with 1,000
bits resulted in 1,000,000 possible atoms. The next step was testing which atoms actu-
ally occurred in the 934 most frequent Bloom filters. They matched the bit positions set
to one in the possible atoms with the bit positions set to one in the given Bloom filters,
which resulted in 3,952 atoms.

By excluding possible atoms that do not encrypt a bigram (these atoms have a high
probability to have less than k bits set to one), they only used atoms with k bits for
further analyses.

After that, they determined which of the remaining 805 possible atoms are contained
in each Bloom filter. Finally they assigned the three most frequent bigrams to the most
frequent atoms by hand. For that, 934 Bloom filters as well as the 805 atoms were sorted
according to their frequencies. By manually assigning further atoms to bigrams, they
deciphered all 934 Bloom filters. In total, they found 338 bigrams (of all possible 729
bigrams) through deciphering the 934 most frequent Bloom filters. With more manual
effort, nearly all bigrams could have been deciphered. Given the knowledge of nearly all
bigrams, every name and even unique names could be deciphered. Therefore, the attack
described in that paper can be used for the deciphering of a whole database instead of
only a small subset of the most frequent names, as in reported previous research. The
authors clearly state that this kind of filtering atoms is only due to the double hashing
scheme used. If other hash functions would have been used, this method is not suitable
for attacking Bloom filters.

Finally, in a yet unpublished paper Steinmetzer & Kroll (2014) present a fully auto-
mated attack on an encrypted database containing Bloom filters, encrypting forenames,
surnames and place of birth. They suppose that the attacker only knows some publicly
available lists of the most common forenames, surnames and locations. The attack is
based on analyzing the frequencies and the combined occurrence of bigrams from the
identifiers of these lists.

The authors generated Bloom filters with quasi-identifiers according to the distribution
in the population. The identifiers were truncated after the tenth letter and padded with
blanks. The bigrams of each record were hashed with k = 20 hash functions into
one Bloom filter of length 1,000. It is important to note, that they used the double
hashing scheme for the generation of k hash functions. They modified an automatic
cryptanalysis of substitution ciphers as described by Jakobsen (1995). In addition to the

13The bitwise OR of two bits gives 1 if either or both bits are 1, otherwise it returns 0.
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general approach of Niedermeyer et al. (2014) to identify atoms, Steinmetzer & Kroll
(2014) used additional information about the joint frequency distribution of bigrams in
the target language. After this modification, the algorithm was able to reconstruct 59.6%
of the forenames, 73.9% of the surnames and 99.7% of the locations correctly. For 44%
of the 10,000 records all identifier values were reconstructed successfully. However, the
authors note that the attack is specific to the use of double hashing scheme. Furthermore,
the attack described avoided encoded numerical data. Although the attack seems to be
highly successful, the authors doubt that this way of attack will still be a viable option
if some of the methods described in the following section are applied.

7 Hardening Bloom filters

To counteract the attacks described above, the construction of Bloom filters for PPRL
can be modified. Most of the currently available options will be described here.

7.1 Randomly selected hash values

The attack described by Niedermeyer et al. (2014) was conceived for the construction
scheme of the hash functions as used by Schnell et al. (2009). Therefore, this vector of
attack can be eliminated by modifying the hash function. This could be done by ran-
domly selecting hash values. If the k hash functions h0, . . . , hk−1 are randomly sampled
from the set of all functions that map the bigram set Σ2 to {0, . . . , 999}, the number
of possible atoms increases. For example, given the parameters l = 1000 and k = 15,
the number of candidate atoms increases from 493,975 (when using the double hash-
ing scheme) to approximately 6.9876 ·1032 when permitting arbitrary hash functions.
Therefore, Niedermeyer et al. (2014) strongly suggested the use of random independent
hash functions for applications. By the use of randomly selected hash values, filtering
phantom atoms by selecting atoms with maximal Hamming weight would result in a
smaller reduction of remaining atoms, making this way of attack unusable in practice.

7.2 Random bits

An attack on a Bloom filter encrypted quasi-identifier might use the fact that the same
q-gram will be mapped to identical positions in all Bloom filters. The frequency distri-
bution of such bit patterns might be used in different ways for an attack. For example,
some patterns frequently occur together. By using information on the joint distribution
of q-grams in unencrypted quasi-identifiers in combination with the joint frequency dis-
tribution of bit patterns, assignments of q-grams to bit patterns can be checked with
an automated procedure. Many different ways of setting up such a system are possi-
ble, obvious candidates are generic algorithms (Haupt & Haipt 2004, for a cryptographic
application, see Morelli & Walde 2003) or constrained satisfaction problems solvers (Mar-
riott & Stuckey 1999, for an application to Bloom filters see Kuzu et al. 2011). If the
constraints or optimization criteria of such automatic assignment systems depend on
deterministic rules, such attacks can be made much harder, if random noise is added to
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Figure 6: The effect of adding random bits to files with 10,000 Bloom filters each on
the F-Score depending on the similarity threshold. Initial identifiers have no
errors.

the bit-patterns. Adding random noise to encrypted information is common in computer
science, see for example Rivest (1998). In PPRL, the idea of adding random bits has
been mentioned by Schnell et al. (2009). The simplest option is adding noise randomly
to a Bloom filter. Here bit positions are sampled randomly and set to one (srs-1 ).
Alternatively, the complement of the bit is used. The random noise can be made depen-
dent on the q-gram, so that for different q-grams different noise is added. For example,
frequent q-grams can be encoded with more bits set randomly. To our knowledge, the
effects of this variations on linkage quality and privacy measures have not been studied
systematically.14 As an illustration, the effect of srs-1 on F- Scores will be described in
the following.

Adding random bits will affect precision and recall of PPRL procedures. Since PPRL
should be resistant to errors, adding small amounts of random bits will affect performance
only slightly. However, very high rates of random error will reduce recall and precision.
The amount of loss will depend on error rates in the identifiers themselves. For example,
given perfect identifiers, adding even 100 random bits to a Bloom filter (l = 1000) shows
small effects on the performance for a CLK using first name, second name, sex, date
of birth and city with k = 20 (see figure 6, n=10,000 records). Choosing a similarity
threshold of .85 would have reduced the F-Score to .95 with 100 random bits.

However, if identifiers with errors have to be used, the amount of random bits which
can be added without loss in precision and recall will be lower. Repeating the experiment
described above with 20% errors per identifier gives the result shown in figure 7. 100
random bits would have reduced the F-Score to about .25 given a similarity threshold
of .85. Therefore, at most 50 random bits should have been used, giving a F-Score of
about .93.

14Note that this is different from differential privacy (for an introduction, see Dwork & Pottenger 2013)
for the items encoded in a Bloom filter. This problem has been studied by Alaggan et al. (2012).
They show that differential privacy can be satisfied if each bit of a Bloom filter is flipped with a
probability p = 1/(1 + eε/k), where k is the number of hash functions and ε is the privacy parameter.
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Figure 7: The effect of adding random bits to files with 10,000 Bloom filters each on the
F-Score depending on the similarity threshold. 20% errors in the identifiers.

In contrast to our expectation, the amount of overlap between the two files to be linked
does not show an effect on the amount of random noise which could be added (see figure
8). Even files with little overlap of records (50%) and high error rates in identifiers (20%
per identifier), a similarity threshold of .85 yields a precision of 1.0 and recall of .8706.

Adding 5% random bits to bloom filters seem to affect PPRL performance only slightly.
Given the fact that deterministic attacks are likely to fail with noisily Bloom filters,
adding up to 5% random bits will enhance security of Bloom filter PPRL without serious
losses in precision and recall.

7.3 Avoiding padding

In record linkage applications based on q-grams, adding blanks at the beginning and end
of an identifier is common practice. This padding allows the identification of q-grams at
the beginning or end of an identifier in a q-gram set. Usually, padding at least increases
precision in a record-linkage process. However, padded q-grams are usually among the
most frequent q-grams in identifiers. For example, among the 50 most frequent bigrams
in German surnames, 18 are padded bigrams. Since frequent padded q-grams can be
identified easily even after encryption, not padding identifiers is recommended for PPRL.

7.4 Standardizing the length of identifiers

The distributions of quasi-identifiers such as names are usually not uniform, but show
high variations and skewness. For example, in a large German administrative database
covering about 40% of the population, the length of first names varies between 2 and
24 with a mean of 9.7 (and a skewness of 0.52); the length of last names varies between
2 and 46 with a mean of 7.2 (skewness 1.9). Very long or very short names can be
easily identified in a Bloom filter, since the number of bits set to one are exceptionally
large or small. Therefore, to protect against this way of re-identification, the length
of identifiers should be standardized. Long names could be shortened by deletion or
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Figure 8: The effect of adding random bits to files with 10,000 Bloom filters each on the
F- Score depending on the similarity threshold, errors in identifiers and differ-
ent overlap. First row: 10% errors in the identifiers, second row: 20% errors in
the identifiers. First column: 50% overlap, second column 75% overlap, third
column 100% overlap.

sampling of q-grams. Shortening the identifiers will prevent the identification of longer
names. Furthermore, the distribution of bigram frequencies will change. Short identifiers
may be extended by key stretching (Kelsey et al. 1998). The basic idea of key stretching
is the extension of a g-bit key to g + t bits. Key stretching is a standard technique in
cryptography, but so far has not been used in PPRL. Key stretching for PPRL can for
example be implemented by random sampling q−grams of an extended alphabet and
concatenating these with the short name. Of course, key stretching will also modify
the frequency distribution of q−grams. Standardizing the length of identifiers will make
re-identification of rare short or long names more difficult, furthermore attacks based
on q−gram frequencies will need additional information. However, no empirical studies
on the cryptographic and PPRL properties of these techniques seem to be currently
available.

7.5 Sampling bits for composite Bloom filters

Sampling from identifiers can be seen as a special case of deleting characters. Therefore,
instead of deleting characters, sampling can be used. Durham (2012) published a varia-
tion of CLKs, denoted by Durham et al. (2013) as composite Bloom filters. Bit positions
from separate Bloom filters for each identifier are sampled. The initial Bloom filters
are built either statically (constant values for the length of the Bloom filters and the
number of hash functions) or dynamically (such that an approximately equal number
of bit positions is set to one in each Bloom filter). Next, bits are sampled from these
separate Bloom filters, either the same number of bits from each or proportional to the
discriminatory power of each Bloom filter. Finally the sampled bits are concatenated and
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permuted. Applying the attack described above on these kind of Bloom filters would not
be promising, because composite Bloom filters consist of multiple identifiers, like CLKs,
and their bit positions are sampled from the initial Bloom filters.

7.6 Re-hashing

To impede attacks on q-gram-encodings, the resulting bit arrays can be transformed.
Obvious ideas for the transformation of bit arrays such as rotating (Schnell et al. 2011)
or permutation (Durham 2012) offer no protection against attacks as described above.
Therefore, other techniques are needed. As an example, a new technique will be described
here. The method is based on a second hashing of the already hashed q-grams.

Re-hashing

Simone Steinmetzer2

2University of Duisburg-Essen, Germany

August 22, 2014

Description of the Re-hashing scheme

We consider a database of Cryptographic Longterm Keys (CLKs) of length m equal to
1,000 bits, built from multiple identifiers.
At first, we define a window with a size equal to w bit positions, which slides along the CLK
during the re-hashing process. The steps the window slides forward are defined through
a number of s bit positions. If the window has reached the desired position, the bits
of the CLK that are covered by the window are read out and interpreted as the binary
representation of an integer. Afterwards, this integer serves as a seed for a random sample
of kre integers, which are drawn with replacement from the set {0, . . . , m � 1}. Next,
we generate a new CLK, initially filled with zeros, and set those positions to one that
correspond to the random numbers. Finally, we slide the window s positions to the right
and repeat the described procedure. If the combination of windowsize and stepsize does
not divide the length of the CLK, the window covers the missing number of bits from the
beginning of the CLK. Let us consider an example:

Example 0.1. Imagine a CLK of length m = 1,000 and a window of size w = 8 with step
size s = 6 as depicted in Figure 1. Then the binary subvector v = (0, 1, 0, 1, 0, 0, 1, 1) of

w = 8

0 0 1 0 1 0 0 1 1 0 0

27 26 25 24 23 22 21 20

. . . 1 1 1 0 1 0 0 999

Figure 1: CLK serving as input to the re-hashing procedure with a window of length 8.

length 8, which is defined through the window, serves as pattern for the following binary

1

Figure 9: Re-hashing a CLK (l = 1000) with a window of size w = 8. The bits covered
by the window are used as integer seed for the generation of a set of kre random
numbers

Consider a database of CLKs or other Bloom filters of length m equal to 1,000 bits,
built from multiple identifiers. For re- hashing a CLK, we define a window of w bit
positions, which slides along the CLK. The number of bit positions the window slides
forward is denoted with s. The bits covered by the window are used as the binary
representation of an integer. This integer serves as a seed for a random sample of kre
integers, which are drawn with replacement from the set {0, . . . ,m − 1}. Next, a new
second stage bit array is initialized with zeros. The bit positions that correspond to the
random numbers are set to one. Finally, the window will shift s positions to the right
and the re-hashing procedure is repeated. If the combination of window size and step
size does not divide the length of the CLK, the window covers the missing number of
bits from the beginning of the CLK.

The procedure will be explained using an example: Assume a CLK of length m =
1,000 and a window of size w = 8 with step size s = 6 (see figure 9).Then the binary
vector v = (0, 1, 0, 1, 0, 0, 1, 1) of length 8, which is defined by the window, serves as
pattern for the binary representation of an integer:

1 · 20 + 1 · 21 + 0 · 22 + 0 · 23 + 1 · 24 + 0 · 25 + 1 · 26 + 0 · 27
= 1 + 2 + 16 + 64

= 83.

Next, using 83 as the seed for a random generator, a random sample of kre = 3 numbers
from the set {0, . . . 999} is drawn and assigned to 83. Thus, for each binary representation
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Figure 10: F-Scores for PPRL of two files with 10,000 records after re-hashing of CLKs
with k = 1, 2, 4, 8, 12 hash functions, window size w = 8 and step size s =
8, 10, 12, 16

which produces the integer 83 the same positions in the new bit array are set to one.
Finally, the window is shifted 6 bits to the right. The bits that are now covered by the
window are used as binary representation of another integer. Finally, a new random
sample of three numbers is assigned to this integer and the bit positions corresponding
to the new sample are also set to one in the new bit array. This new second stage CLK
is used like a traditional Bloom filter for PPRL.

The results of a small simulation of PPRL using two files with 10,000 records is shown
in figure 10. Larger step sizes decrease the performance (at least for the given window
size here). Larger number of hash functions increase performance for re-hashing. For
the parameter settings used here (no additional errors, overlap of 100%), lower similarity
thresholds show better results for all but one experiment. The lower right figure (s = 8)
demonstrates a decrease in linkage quality below a similarity threshold of .75. Below
this threshold, the number of false positives increases sharply; therefore the precision
and accordingly the F-Score becomes unacceptable. However, high values of precision
and recall can be achieved with small (5 < s < 10) step sizes, high numbers of hash
functions (k ≥ 12) and moderate similarity thresholds (0.75 ≤ t ≤ 0.8). Therefore, the
idea of re-hashing CLKs or other Bloom filters seems to deserve further study. Since the
choice of these parameters depend on m and k and the number of q-grams per identifier,
the choice of optimal parameters for re-hashing is subject to ongoing research.

7.7 Salting keys with record specific data

In computer science, salt is an additional random string that is concatenated with pass-
words before a one-way function for hashing is used (Schneier 1996; Morris & Thompson
1979). In this application, salts are a defence against dictionary attacks. The idea can

25



be used for Bloom filter based PPRL as suggested by the author in Niedermeyer et al.
(2014). Salting describes the process of generating hash values that depend on record-
specific keys. Short identifiers such as date or year of birth are obvious candidates for
such a key. Then, for a single bigram b appearing in two names, the same bit positions
will be set to one in the corresponding Bloom filters only if the keys coincide. If the keys
are not equal, it is very unlikely that all hash values for the bigram b are the same. If the
keys are erroneous in one file, the records will not match, since the bit pattern is different
for the same records. Therefore, the key values for salting should contain no errors at
all. In practice, very few identifiers beyond date of birth are suitable candidates. If such
keys can be used, salting in PPRL increases precision and does not reduce recall. The
effect of salting is similar to blocking. However, the use of salting increases the entropy
of encrypted identifiers. For example, the bigrams resulting from the name FELLEGI
would be hashed completely different if the year of birth is used as a key and two persons
with this name were born in 1959 and 1972. Therefore, filtering phantom atoms as de-
scribed above would be much harder with salting. Hence, if suitable blocking variables
with very low error rates are available, the values of the blocking variables should be
used within each block as a salt for hashing.

7.8 Fake injections

All proposed attacks on Bloom filters strongly depend on comparing observed frequencies
of bit patterns and expected frequencies of encoded entities. Names and q-grams of
names show highly skewed distributions.15 Hence, the success of these attacks can be
reduced if the frequency distribution of the input is modified artificially. This could
be achieved, for example, by inserting random strings which contain rare q- grams.
Thus, the overall frequency distribution of hashed q- grams will be closer to a uniform
distribution, which makes re- identification more difficult. Karakasidis et al. (2012)
described three such fake injection methods in the context of phonetic codes. These
approaches could be adopted to Bloom filters. However, all these methods have serious
drawbacks.

7.9 Evaluation of Bloom filter hardening procedures

Most of the methods described here have been proposed quite recently. This is also true
for the criteria used for evaluating these methods. The most elaborated contribution
here by Vatsalan et al. (2014) suggested a series of standardized measures of disclosure
risk DR based on Ps(a

M ) as probability of suspicion. Given ng as the number of values
in the dataset GM matching a value aM in the anonymized dataset DM, the probability
of suspicion is 1/ng. Normalizing this to 0 ≤ Ps(a

M ) ≤ 1 and denoting with N the

15Fox & Lasker (1983) showed that the distribution of English surnames is highly skewed and obeys
Zipf’s law by a discrete Pareto distribution. The same phenomenon is observed for the q-gram
frequencies.
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number of records in GM yields

Ps(a
M ) =

1/ng − 1/N

1− 1/N

This probability is primarily used for the definition of

maximum risk, DRmax as the maximum Ps(a
M ) over all values in DM,

marketer risk, DRMark as the number of records in DM, which can be re-identified with
Ps(a

M ) = 1.0,

mean risk, DRMean as the mean of all Ps(a
M ).

Although Vatsalan et al. (2014) presented first results for some PPRL techniques, their
proposal must still be proven to be useful in practice. However, systematically testing the
privacy properties of the procedures discussed above is currently the most urgent research
problem within Bloom filter based PPRL. It must kept in mind that a cryptanalytic
attack on a building block of a PPRL (such as as a cryptographic hash functions) can
invalidate the results of computing privacy metrics. Since it is impossible to prove that
information protection designs are unbreakable (Pieprzyk et al. 2003), privacy metrics
are just a necessary first step for the evaluation of PPRL procedures.

8 Future Research

Progress in PPRL has been remarkable during the last 5 years. PPRL is now a very
active research field in statistics, computer science and application areas such as medicine
and official statistics. However, for practical applications using real world population
size databases, some problems deserve further study.

Most PPRL approaches are currently based on encrypted string data. However, in
some situations either geographical proximities or temporal distances are among the
set of available quasi-identifiers. Despite some recent progress (Farrow 2014), using the
ordinal or metric information as quasi-identifiers in PPRL is an unresolved topic up to
now.

One of the most urgent problems is due to missing identifiers or quasi-identifiers.
This problem has received very little attention (Ong et al. 2014). Regarding encrypted
identifiers in PPRL, currently very little is known. Therefore, for this important practical
problem, systematic research is lacking.

Privacy preserving blocking for datasets with about 100 million records on current
hardware needs about a day of computing time. Using the most promising approaches
from PPRL blocking, massive parallel or GPU implementations should be easy by com-
parison, since the results of blocks are in many applications independent. Although,
parallel implementations of sorted neighborhood (Kolb et al. 2012) and canopy cluster-
ing (https://mahout.apache.org) have been published, practical parallel implementations
of PPRL blocking for secure environments are currently not readily available.
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Instead of using functions of identifiers to compute similarities, Wong & Kim (2013)
suggested a protocol to compute similarity coefficients of binary vectors by exchanging
only some temporary summation variables with the help of a homomorphic encryption.
The authors did not intend this approach to be used in PPRL, but these building blocks
can be used as part of a PPRL protocol. Although Zhang & Zhang (2012) showed
that the approach of Wong & Kim (2013) has security problems, the idea of using
summation variables for comparing Bloom filters is new to PPRL. A different approach
for cryptographic secure Bloom filter similarity computations was introduced by Beck
& Kerschbaum (2013). They encrypt every bit of a Bloom filter in a two party protocol
to compute an approximation to the similarity of two Bloom filters. However, although
none of these protocols meets the requirements for applications in real-world settings of
medical research, they open new areas of research in PPRL.

9 PPRL research and implementation with national databases

Finally, it must be emphasized that the most important obstacles against the widespread
use of PPRL techniques are not technical problems or the availability of easy to use soft-
ware. More important than precision, recall and run time performance is the acceptance
of the protocols by the data protection agencies supervising the data custodians accord-
ing to the relevant jurisdiction. Even if trusted and tested standard techniques such
as ALCs are used, getting the legal permission for a national linkage project seems to
require about two years in most jurisdictions. If new techniques have to be approved,
longer delays should be expected. A recent example is given by a report for the British
Office for National Statistics. They considered several methods for linking adminis-
trative data within the Beyond 2011 Programme, but refrained from all “(. . . ) recent
innovations, such as bloom filter encryption (. . . )” since they “(. . . ) have not been
fully explored from an accreditation perspective” (Office for National Statistics 2013).
Therefore, if new PPRL techniques are to be widely used, systematic research on cryp-
tographic properties according to European and other international legal standards has
to be done. This will require the joint effort of lawyers, computer scientists, statisticians
and cryptographic experts. Coordinated efforts across disciplines and across national
borders within existing research structures usually require many years. Therefore, the
actual implementation of new PPRL procedures may require at least as much political
action as additional research efforts.
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