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Abstract: It has been argued that it is incompatible to maintain unitary time-evolution

for time-dependent non-Hermitian Hamiltonians when the metric operator is explicitly

time-dependent. We demonstrate here that the time-dependent Dyson equation and the

time-dependent quasi-Hermiticity relation can be solved consistently in such a scenario for

a time-dependent Dyson map and time-dependent metric operator, respectively. These

solutions are obtained at the cost of rendering the non-Hermitian Hamiltonian to be

a non-observable operator as it ceases to be quasi-Hermitian when the metric becomes

time-dependent.

1. Introduction

The time-evolution of Hamiltonian systems is a central and fundamental issue in quantum

mechanics, especially with regard to physical applications. The key principles are very well

understood for a long time for Hermitian Hamiltonian systems and can be found in almost

any standard book on quantum mechanics. However, the situation is quite different for

the class of non-Hermitian systems that possess real or at least partially real eigenvalue

spectra. Such type of models have been investigated sporadically for a long time, but

the relatively recent seminal paper [1] has initiated a more systematic study. For time-

independent systems the governing principles are by now also well understood and many

experiments exist to confirm the key findings, e.g. [2, 3, 4]. For recent reviews on the

subject area see for instance [5, 6] or [7, 8] for recent special issues.

In contrast, time-dependent non-Hermitian systems are far less well investigated and

it appears that so far no consensus has been reached about a number of central issues.

Whereas the treatment for systems with time-dependent non-Hermitian Hamiltonians with

http://arxiv.org/abs/1511.08092v1


Time-dependent quasi-Hermiticity

time-independent metric operators [9, 10] is widely accepted the more general setting with

a time-dependent metric is still controversially discussed [11, 12, 13, 14, 15, 16, 17, 18].

Explicit solutions to the central equations, i.e. the time-dependent Dyson and the time-

dependent quasi-Hermiticity relation, have not been reported. Instead most authors resort

to a non-unitary time evolution [12, 14, 16, 17, 18] for these systems by insisting on a

quasi-Hermiticity relation between a Hermitian and a non-Hermitian “Hamiltonian”. The

main purpose of this manuscript is to demonstrate that this is in fact not necessary. We

add some clarifying arguments to the central discussion, provide some analytic solutions

to the key equations and discuss some of the consequences.

Our manuscript is organized as follows: In section 2 we state the general framework for

a description of a unitary time-evolution for time-dependent non-Hermitian Hamiltonians.

In section 3 we provide two explicit examples that illustrate the working of our proposal

and in section 4 we state our conclusions.

2. The time-dependent Dyson and quasi-Hermiticity relation

As our starting point we take the two time-dependent Schrödinger equations (TDSE)

h(t)φ(t) = i~∂tφ(t), and H(t)Ψ(t) = i~∂tΨ(t). (2.1)

Both Hamiltonians involved are explicitly time-dependent, with h(t) being Hermitian

whereas H(t) is taken to be non-Hermitian, i.e. h(t) = h†(t) and H(t) 6= H†(t). We

also insist here that operators may only be referred to as Hamiltonians if they generate the

time-evolution for the system under consideration, that is if they satisfy the TDSE. Next

we assume that the two solutions φ(t) and Ψ(t) to (2.1) are related by a time-dependent

invertible operator η(t) as

φ(t) = η(t)Ψ(t). (2.2)

It then follows immediately by direct substitution of (2.2) into (2.1) that the two Hamil-

tonians are allied to each other as

h(t) = η(t)H(t)η−1(t) + i~∂tη(t)η
−1(t). (2.3)

Thus h(t) and H(t) are no longer related by a similarity transformation, or more formally

by the adjoint action of the Dyson operator, as in the completely time-independent scenario

[19] or the time-dependent scenario with time-independent metric, but instead their mutual

dependence involves a gauge-like term as discussed in [9, 10, 11]. We emphasize, however,

that although formally the last term in (2.3) resembles a gauge connection this is not the

role it plays here. We refer to equation (2.3) in as the time-dependent Dyson relation as it

generalizes its time-independent counterpart. Taking the Hermitian conjugate of equation

(2.3) and using the Hermiticity of h(t) yields a relation between H(t) and its Hermitian

conjugate

H†(t)η†(t)η(t)− η†(t)η(t)H(t) = i~∂t

[

η†(t)η(t)
]

. (2.4)

Interpreting ρ(t) := η†(t)η(t) as a metric operator this relation replaces the standard quasi-

Hermiticity relation well known in the context time-independent non-Hermitian quantum
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mechanics [20]. The justification for this interpretation emerges as a consistency require-

ment from demanding the existence of a metric operator ρ(t), such that time-dependent

probability densities in the Hermitian and non-Hermitian system are related as
〈

φ(t)
∣

∣

∣
φ̃(t)

〉

=
〈

Ψ(t)
∣

∣

∣
ρ(t)Ψ̃(t)

〉

=:
〈

Ψ(t)
∣

∣

∣
Ψ̃(t)

〉

ρ
. (2.5)

For unitary time-evolution these probabilities are preserved in time such that the derivative

of both sides with respect to time must vanish. For the left hand side this is simply

guaranteed by the Hermiticity of h(t) and the validity of the corresponding TDSE (2.1).

The right hand side yields instead the consistency relation

H†(t)ρ(t)− ρ(t)H(t) = i~∂tρ(t), (2.6)

which when compared to (2.4) allows for the aforementioned identification for ρ(t) in terms

of η(t) as announced above. We refer to equation (2.6), which may already be found in

[11], as the time-dependent quasi-Hermiticity relation. It is noteworthy to point out that

the reverse statement also holds, i.e. metric operators that do not satisfy (2.6) do not allow

for unitary time-evolution.

It is now evident that in complete analogy to the time-independent scenario any self-

adjoint operator o(t), i.e. an observable, in the Hermitian system has an observable coun-

terpart O(t) in the non-Hermitain system related to each other as O(t)= η−1(t)o(t)η(t),

since
〈

φ(t)
∣

∣

∣
o(t)φ̃(t)

〉

=
〈

o(t)φ(t)
∣

∣

∣
φ̃(t)

〉

=
〈

Ψ(t)
∣

∣

∣
O(t)Ψ̃(t)

〉

ρ
=
〈

O(t)Ψ(t)
∣

∣

∣
Ψ̃(t)

〉

ρ
. (2.7)

Obviously due to equation (2.3), the non-Hermitian Hamiltonian H(t) does not belong to

the set of observables in this system as it is not related to h(t) by a similarity transformation,

which was already pointed out in [9, 10, 13, 15]. However, there is no compelling reason

why the non-Hermitian Hamiltonian H(t) ought to be observable. Nonetheless, one may

easily find a closely related operator

H̃(t) = η−1(t)h(t)η(t) = H(t) + i~η−1(t)∂tη(t), (2.8)

which is observable as it is related to the Hermitian observable h(t) by means of the afore-

mentioned similarity transformation. In other words H̃(t) is quasi-Hermitian. However,

the operator H̃(t) has no obvious concrete meaning and is certainly not a Hamiltonian in

the sense that it does not generate the time-evolution in this system and does not satisfy

the original TDSE.

The relations above are directly transferred to the time-evolution operators. Recall

that for the Hermitian Hamiltonian h(t), satisfying (2.1), the unitary time-evolution to a

state φ(t) = u(t, t′)φ(t′) from a time t′ to t is governed by the time-evolution operator

u(t, t′) = T exp

[

−i
∫ t

t′
dsh(s)

]

, (2.9)

satisfying

h(t)u(t, t′) = i~∂tu(t, t
′), u(t, t′)u(t′, t′′) = u(t, t′′), and u(t, t) = I. (2.10)
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As usual T denotes here time-ordering. Evidently we could replace h(t) by H(t) or H̃(t) in

(2.9), with the effect that in the former case we no longer have a unitary time evolution and

in the latter we have a contradiction since H̃(t) does not satisfy the TDSE for this system,

i.e. it is not a Hamiltonian. However, given the time-evolution operator u(t, t′) for the

Hermitian system it follows straightforwardly from (2.7) that the unitary time-evolution

operator U(t, t′) for the non-Hermitian system evolving ψ(t) = U(t, t′)ψ(t′) is given by

U(t, t′) = η−1(t)u(t, t′)η(t′). (2.11)

Thus we are in complete agreement with Mostafazadeh’s conclusions in [11, 13, 15]

that for time-dependent metric operators one can not simultaneously have a unitary time-

evolution and an observable arbitrary Hamiltonian; one can only have one or the other.

The treatments in [12, 14, 16, 17, 18] give up the possibility of a unitary time-evolution by

insisting on a quasi-Hermiticity relation between H(t) and h(t), hence leaving the role of

the non-Hermitian operator H(t) in an obscure state. Since it does not satisfy the TDSE

it remains unclear by what kind of principle it is introduced.

Thus so far the incompatibility between the unitary time-evolution and an observable

Hamiltonian is left as a negative statement [11, 13, 15], apart from the above mentioned

treatments for non-Hermitian Hamiltonians of unclear origin. It appears that no attempt

has been made to solve the relations (2.3) or (2.6). A possible reason is that one may

insist in the observability of the Hamiltonian. However, there is no compelling reason

for such a view. In the time-independent setting it is standard procedure to commence

with non-Hermitian Hamiltonians in terms of some auxiliary variables x and p, which

are not observable. Here we extend this principle to the Hamiltonian itself and treat the

Hamiltonian H(t) as a mere auxiliary operator, which does, however, play the role as

governing the time-evolution.

3. Solutions to the time-dependent Dyson and quasi-Hermiticity relation

It is of course vital to demonstrate that the above formulae are not empty and can indeed

be solved consistently. As in the time-independent case we have now various options to

solve these equations depending on the quantity or quantities given at the starting point.

In general, we commence with the non-Hermitian Hamiltonian H(t) satisfying the TDSE

(2.1). One may then compute, at least in principle, the metric ρ(t) from the time-dependent

quasi-Hermiticity relation (2.6) as ρ(t) is the only unknown quantity therein. The Dyson

map η(t) then follows directly from its relation to ρ(t), in which for simplicity one may

assume η(t) to be Hermitian such that one just has to take the square root. When η(t) and

H(t) are determined one can use (2.3) to compute directly the Hermitian counterpart h(t).

The final step then consists of solving either of the TDSE (2.1) for φ(t) or Ψ(t), obtaining

the counterpart simply from (2.2). Alternatively one may also make a suitable Ansatz for

η(t) and compute the right hand side of (2.3) demanding the result to be Hermitian. Let

us see this in detail for two examples by solving (2.3) in the first and (2.6) in the second.
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3.1 Non-Hermitian harmonic oscillator with linear terms

We consider first the time-dependent Hamiltonian for the harmonic oscillator with addi-

tional linear terms in the standard creation and annihilation operators a and a†, respec-

tively,

H(t) = ω(t)a†a+ α(t)a+ β(t)a†, ω(t), α(t), β(t) ∈ C. (3.1)

For convenience we set here and in what follows ~ = 1. Evidently H(t) is non-Hermitian

when α(t) 6= β∗(t). Notice that when demanding PT -symmetry for the Hamiltonian in the

time-independent setting one demands ω(t), α(t), β(t) → ω, iα, iβ ∈ R, since PT : a→ −a,
a† → −a†. However, any real-valued function ω(x), iα(x), iβ(x) may now be replaced for

instance by the complex-valued functions ω(it), iα(it), iβ(it) still leaving the Hamiltonian

PT -symmetric, since PT : t → −t, i → −i. In order to solve the time-dependent Dyson

relation (2.3) we make a natural Ansatz for the time-dependent Dyson map

η(t) = eγ(t)a+λ(t)a† γ(t), λ(t) ∈ C. (3.2)

as being similar in form to the Hamiltonian in the argument of the exponential. Substi-

tuting η(t) into (2.3) yields

h(t) = ω(t)a†a+ u(t)a+ v(t)a† + f(t), (3.3)

with the constraints

u = α+ ωγ + iγ̇, v = β − ωλ+ iλ̇, f =
i

2

(

γλ̇− γ̇λ
)

− ωγλ− αλ+ βγ. (3.4)

As common we denote time-derivatives by an overhead dot. For h(t) in (3.3) to be Hermi-

tian we require the additional constraints ω(t) ∈ R, u = v∗ and f = f∗, which correspond

to the two equations

α− β∗ + ω(γ + λ∗) + i
(

γ̇ + λ̇
∗
)

= 0, (3.5)

i

2

(

γλ̇− γ̇λ+ γ∗λ̇
∗ − γ̇∗λ∗

)

+ ω (γ∗λ∗ − γλ) + α∗λ∗ − αλ+ βγ − β∗γ∗ = 0. (3.6)

Attempting to solve these equations by assuming η(t) to be the standard displacement op-

erator fails, as in that case we have γ = −λ∗, which by (3.5) implies that α(t) = β∗(t) such

that our supposedly non-Hermitian Hamiltonian H(t) becomes Hermitian. Alternatively

we may take γ = λ∗ and α(t) = −β∗(t), which reduces the above to the simple constraint

α+ ωγ + iγ̇ = 0. (3.7)

Notice that this is just saying that u needs to vanish. We can in fact solve this equation

by

γ(t) = eiχ(t)
[

γ(0) + i

∫ t

0
dsα(s)e−iχ(s)

]

, (3.8)

where χ(t) :=
∫ t

0 dsω(s). Thus given the model defining functions α(t) and ω(t) via

our starting Hamiltonian H(t), we can directly compute γ(t). For the presented solu-

tion our Hermitian Hamiltonian turns out to be simply the harmonic oscillator with a
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time-dependent frequency and overall shift. Of course there could be more involved solu-

tions to (3.5) and (3.6). The solution φ(t) to the TDSE for the Hermitian Hamiltonian h(t)

is then easily found as a special case of the treatment in [21], such that we have now also

obtained a solution Ψ(t) = η−1(t)φ(t) to the TDSE for the non-Hermitian Hamiltonian

H(t) subject to the above mentioned constraints. For the convenience of the reader we

recall the solution from [21]. The ground state |φ0(t)〉 was found to be a coherent state

|θ(t)〉 dressed with a time-dependent Lewis-Riesenfeld phase Φ0(t)

|φ0(t)〉 = eiϕ0(t) |θ(t)〉 , (3.9)

given by

|θ(t)〉 = e−|ϑ(t)|2
∑∞

n=0

ϑn(t)√
n!

|n〉 , ϑ(t) = ϑ(0)e−iχ(t), ϕ0(t) = ϕ0(0)−
∫ t

0
dsf(s), (3.10)

with |n〉 being a standard Fock eigenstate of the number operator a†a. Excited states are

constructed in a similar fashion, see also [22, 23] for further details.

The observables in the non-Hermitian system are easily computed. For instance, the

quadratures (X,P ) corresponding in the Hermitian system to the coordinate and momen-

tum operators x =
(

a† + a
)

/
√
2 and p = i

(

a† − a
)

/
√
2, respectively, are now simply

shifted operators in the original variables

X = η−1xη = x− i
√
2 Im γ, and P = η−1pη = p− i

√
2Re γ. (3.11)

The observable operator related to the Hermitian Hamiltonian, albeit not satisfyimg the

original TDSE, results to

H̃(t) = η−1(t)h(t)η(t) = ω(t)
[

a†a− γ(t)a+ γ∗(t)a†
]

+
i

2
[γ̇(t)γ∗(t)− γ(t)γ̇∗(t)] . (3.12)

We notice that H̃(t) and H(t) have the same structure in their operator content.

3.2 Non-Hermitian spin chain

Next we consider a discretised lattice version of the Yang-Lee model proposed originally in

[24]. The model is an Ising quantum spin chain in the presence of a magnetic field in the

z-direction together with a longitudinal imaginary field in the x-direction

HN (t) = −1

2

N
∑

j=1

(σzj + λ(t)σxjσ
x
j+1 + iκ(t)σxj ), λ(t), κ(t) ∈ C. (3.13)

The boundary conditions for the Pauli spin matrices are taken to be σ1 = σN+1. Here we

modify the model by introducing a time-dependence into the coupling constants by replac-

ing λ, κ in previous studies by time-dependent functions λ(t), κ(t). The PT -symmetry

of the Hamiltonian is PT : σx → −σx, σz → σz, t → −t, i → −i. For small length N

time-independent Dyson maps, metric operators and isospectral counterparts have been

constructed in [25]. We present here the simplest example for the time-dependent scenario

– 6 –
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by taking N = 1, such that the Hamiltonian acquires the form of a simple non-Hermitian

2× 2-matrix

H1(t) = −1

2
[σz1 + λ(t)σx1σ

x
1 + iκ(t)σx1 ] = −1

2

(

1 + λ(t) iκ(t)

iκ(t) λ(t)− 1

)

. (3.14)

Instead of solving equation (2.3) as in the previous subsection, we now attempt here to

solve the time-dependent quasi-Hermiticity relation (2.6) for the metric operator ρ(t) by

assuming the most general Hermitian form as an Ansatz

ρ(t) =

(

α(t) β(t) + iγ(t)

β(t)− iγ(t) δ(t)

)

, α(t), β(t), γ(t), δ(t) ∈ R. (3.15)

Taking λ(t), κ(t) ∈ R, the substitution of ρ(t) into (2.6) yields

(

α̇− βκ γ − κ
2 (α+ δ) + β̇ + iγ̇ − iβ

γ − κ
2 (α+ δ) + β̇ + iβ − iγ̇ δ̇ − βκ

)

= 0. (3.16)

The equations resulting from each matrix entry are solved by

α(t) = α0 +

∫ t

0
dsβ(s)κ(s), δ(t) = δ0 +

∫ t

0
dsβ(s)κ(s), γ(t) = γ0 +

∫ t

0
dsβ(s), (3.17)

with β(t) constraint to

β̇(t) +

∫ t

0
dsβ(s)− κ(t)

∫ t

0
dsβ(s)κ(s)− κ(t)

2
(α0 + δ0) + γ0 = 0. (3.18)

The latter equation is nontrivial, but we will demonstrate that it actually possesses mean-

ingful solutions. A great simplification is achieved by assuming β(t) = κ̇(t), since then the

two integrals may be solved easily, leaving us with a second order differential equation for

the time-dependent function κ(t)

κ̈(t) + κ(t)

(

1− α0 + δ0
2

+
κ2(0)

2

)

− 1

2
κ3(t) + γ0 − κ(0) = 0. (3.19)

Given the values for the entries in the matrix ρ as in (3.17), with the above assumption and

implementing (3.19) we find an additional constraint on the combination of initial values

|ρ(t)| = 1

4

[

κ2(0) − 2α0

] [

2δ0 − κ2(0)
]

−
[

γ0 − κ2(0)
]

> 0, (3.20)

to guarantee a positive definite metric.

In general solution to (3.19) are Jacobi elliptic functions, that is complex, which are

however excluded by the fact that α(t) , β(t), γ(t) and δ(t) have to be real by assumption.

Nonetheless, for special values of the elliptic modulus we may also obtain several real

solutions. For instance,

κ(t) = 2 tan(t), with γ0 = 0, α0 = 6− δ0, |ρ(t)| = −4 + 6δ0 − δ20, (3.21)

κ(t) = 2 sec(t), with γ0 = 2, α0 = 4− δ0, |ρ(t)| = −4 + 4δ0 − δ20, (3.22)

κ(t) = 2 tanh(t), with γ0 = 0, α0 = −2− δ0, |ρ(t)| = −4− 2δ0 − δ20, (3.23)
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solve the constraining equation (3.19) with δ0 left as a free parameter. We observe that not

all of these solutions are permissible as (3.22) and (3.23) will always lead to nonpositive

operators ρ(t). However, solution (3.21) admits the possibility |ρ(t)| > 0 in the range

3−
√
5 < δ0 < 3+

√
5. For convenience, we take now δ0 = 1 in what follows and analyze this

solution further. Using the above values, the time-dependent metric operator is computed

to

ρ(t) =

(

5 + 2 tan2(t) 2 sec2(t) + 2i tan(t)

2 sec2(t)− 2i tan(t) 1 + 2 tan2(t)

)

, (3.24)

such that |ρ(t)| = 1. Assuming the Dyson operator to be Hermitian we may compute it

by first diagonalizing ρ(t) = η2(t) = UDU−1, with D being a diagonal matrix, and subse-

quently computing
√

ρ(t) = η(t) = U
√
DU−1. As ρ(t) is positive definite this operation is

well-defined. In this manner we obtain the time-dependent Dyson operator

η(t) =
1

√

sec2(t) + 1

(

2 + sec2(t) sec(t)(sec(t) + i sin(t))

sec(t)(sec(t)− i sin(t)) sec2(t)

)

. (3.25)

These expressions allows us to compute the Hermitian Hamiltonian h(t) by means of (2.3)

h(t) =
1

3 + cos(2t)

(

−1
2 [1 + 3λ(t) + [3 + λ(t)] cos(2t)] −i sin(2t)

i sin(2t) 1
2 [1− 3λ(t) + [3− λ(t)] cos(2t)]

)

.

(3.26)

Evidently there might be many more solutions when allowing λ(t), κ(t) to have nonvan-

ishing imaginary parts or when relaxing the assumption on β(t) in solving (3.18). Here it

suffices to demonstrate that some meaningful solutions exists.

4. Conclusions

We have demonstrated that the time-dependent quasi-Hermiticity relations (2.6) and there-

fore also the time-dependent Dyson relation (2.3) possess meaningful solutions. This means

a consistent description of a unitary quantum time-evolution with time-dependent metric

is indeed possible. Unlike as in previous treatments we do not demand a quasi-Hermiticity

relation between a Hermitian Hamiltonian and a non-Hermitian Hamiltonian, which in-

evitably leads to non-unitary quantum evolution. Instead, we do not demand the ob-

servability of the non-Hermitian Hamiltonian that satisfies the TDSE and simply treat it

as an auxiliary operator. Nonetheless, the system still possess a well-defined observable

Hamiltonian in form of h(t).

Evidently there are still many open problems. Clearly more explicit solutions for

concrete models would shed further light on the viewpoint we proposed. The uniqueness

problem of the metric operator in the time-independent case is well known, i.e. given a

non-Hermitian Hamiltionian as a starting point of the construction one obtains numerous

consistent solutions for the metric operator. This issue is still unresolved to a large extent

in the time-independent scenario. For the time-dependent case this difficulty appears to

be much more amplified and solutions are even more ambiguous. However, more complex
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settings often allow to find special criteria for very particular solutions and the hope is that

one might be able to extract concrete selection criteria from these considerations.
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support and City University London for kind hospitality.
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