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Abstract

We analyse the mortality of couples by fitting a multiple state model to a large

insurance data set. We find evidence that mortality rates increase after the death

of a partner and, in addition, that this phenomenon diminishes over time. This

is popularly known as a “broken-heart” effect and we find that it affects widowers

more than widows. Remaining lifetimes of joint lives therefore exhibit short-term

dependence. We carry out numerical work involving the pricing and valuation of

typical contingent assurance contracts and of a joint life and survivor annuity. If

insurers ignore dependence, or mis-specify it as long-term dependence, then sig-

nificant mis-pricing and inappropriate provisioning can result. Detailed numerical

results are presented.
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1 Introduction

The conventional premise in multiple life contingencies is that the remaining lifetimes of

joint lives are mutually independent. Dependence between two lifetimes and its effect on

insurance contracts have been investigated in several recent papers. Empirical investiga-

tions on coupled lives have shown that the assumption of independence is not realistic

and can only be justified by computational convenience.

Frees et al. (1996) and Carriere (2000) present alternative ways of modelling depen-

dence of times of death of coupled lives. They calibrate their models to a data set and

observe a significant degree of positive correlation between lifetimes. One implication,

among others, is that joint life annuities are underpriced while last survivor annuities are

overpriced. Carriere and Chan (1986) also evaluate bounds on single premiums for last

survivor annuities.

The above authors adopt a methodology based on copulas but Frees et al. (1996)

also experiment with common shock models, originally introduced by Marshall and Olkin

(1967, 1988), as another way of specifying dependence. They find that the common shock

models do not give as good a fit to their data as their copula model.

Norberg (1989) and Wolthuis (2003) design a basic, continuous-time Markov chain for

the mortality status of a couple. This consists of four states representing both spouses

being alive, the man being widowed, the woman being widowed, and both being dead.

Norberg (1989) shows that dependence between remaining lifetimes follows if the force

of mortality experienced by an individual, when his spouse is alive, differs from the force

of mortality when he or she is widowed. Wolthuis (2003) assumes a simple parametric

specification of the forces of mortality as a function of a baseline force of mortality, using

one parameter for dependence only. Denuit and Cornet (1999) generalize Wolthuis’ (2003)

approach by allowing for four parameters, one parameter per type of transition intensity.

(See also Denuit et al., 2001.) They fit the model to a Belgian data set and establish

a significant reduction in the mortality of married men and women, and a significant
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increase in the mortality of widows and widowers, compared to average lives in the Belgian

population.

All these papers study the impact of dependence between two remaining lifetimes on

the pricing of life insurance products on the lives concerned. Dependence, however, also

affects the valuation of such contracts over time. Prospective provisions are based on laws

of mortality that apply on the policy valuation date. If the remaining lifetimes of a couple

are dependent at the outset of a policy, then any of the two lives’ survival probabilities

may depend on the life status of the partner.

Furthermore, it is essential to characterize the type of dependence that applies be-

tween remaining lifetimes. Hougaard (2000) identifies three different types of dependence

between lifetimes, related to the time frame: (a) instantaneous dependence, (b) long-term

dependence, (c) short-term dependence.

Instantaneous dependence arises from common events that affect both lives at the

same time. For example, a couple may be involved in the same accident. On the other

hand, long-term dependence is generated by a common risk environment that goes on to

affect a surviving partner for his remaining lifetime. For instance, two partners may come

from the same part of a country or from the same socio-economic class, which determines

their common risks. Dependence is said to be long-term if the force of mortality of the

survivor is a constant or increasing function of time since the spouse’s death.

Short-term dependence is characterized by an immediate shift in the mortality rate of

one life upon the death of the other, with the excess mortality diminishing over time. The

best-known example of short-term dependence is the “broken-heart syndrome”, which is

researched by Parkes et al. (1969) and Jagger and Sutton (1991). Dependence is said to

be short-term if the force of mortality of the survivor is a decreasing function of time since

the spouse’s death.

The question as to which type of dependence prevails within the framework of multiple

life contingencies is a crucial one. Hougaard (2000) suggests that in the case of a married

couple, short-term dependence is more relevant than long-term dependence. This assertion
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is underpinned by one of the main results from the empirical work of Parkes et al. (1969)

and Jagger and Sutton (1991). Both studies show that, within about 6 months after the

death of their partner, the mortality of widowers is comparable with that of married men.

More recently, Holden et al. (2010) find conclusive evidence that the onset of widowhood

triggers an immediate rise in the frequency of depressive symptoms, which then diminish

over time, thereby providing more evidence for the short-term nature of dependence. (It

is worth noting that they observe that this effect does not disappear completely with the

passage of time.)

Much of the literature to date does not capture short-term dependence. This is true

of the models based on copulas, such as those of Frees et al. (1996) and Carriere (2000).

Spreeuw (2006) shows that most common Archimedean copulas exhibit long-term depen-

dence. This includes all copulas with a frailty specification such as Frank (used by Frees et

al., 1996), Clayton, and Gumbel-Hougaard. Youn and Shemyakin (1999, 2001) show that,

when implementing a copula model, ignoring the difference between the physical ages of

the two partners can lead to an underestimation of both the instantaneous dependence

and the short-term dependence. Shemyakin and Youn (2006) adopt a Bayesian approach,

allowing for incorporation of prior knowledge about individual mortality.

Jagger and Sutton (1991) do consider short-term dependence but apply the Cox pro-

portional hazards model (for details, see Cox, 1972) to a small data set. Apart from age,

they include other risk factors such as physical disability, physical impairment and cog-

nitive impairment as covariates. The basic Markov model, as used by Denuit and Cornet

(1999), is a special case of long-term dependence, since the mortality of a remaining life

is independent of the time of death of the spouse. A significant and promising departure

from the aforementioned literature is the semi-Markov model of Ji (2011) and Ji et al.

(2011), that was developed simultaneously with the work in this paper. Their model

captures instantaneous, long-term and short-term dependence in joint lifetimes, and is

discussed in greater detail in a subsequent section.

In this paper, we use an extended Markov model that permits the mortality of a
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remaining life to depend on the time elapsed since a spouse’s death. In section 2, we

give formal definitions of long-term and short-term dependence, and we describe in detail

our Markov model by contrast with the models of Norberg (1989), Wolthuis (2003) and

Denuit and Cornet (1999). We employ the same data set as used by Frees et al. (1996),

Carriere (2000), Youn and Shemyakin (1999, 2001), Shemyakin and Youn (2006), and Ji

et al. (2011). Section 3 gives the main characteristics of the data set and makes the case

for developing models for short-term dependence. Our estimation method follows Denuit

et al. (2001) and estimation results are given in section 4. In section 5, we show the

impact of short-term dependence of lifetimes on the pricing and valuation of policies over

time.

2 An Augmented Markov Model

2.1 Types of Dependence

Before describing our model, we formalize the notion of short-term dependence, as in

Spreeuw (2006).

We consider two lives (x) and (y), who are respectively aged x and y at duration 0.

The complete remaining lifetimes of (x) and (y) are denoted by Tx and Ty, respectively.

We assume that Tx and Ty are continuously distributed, with upper bounds ωx − x and

ωy − y, respectively. The variables ωx and ωy denote the limiting ages of (x) and (y).

For t ∈ [0, ωx − x) and s ∈ [0, ωy − y), we define µ1 (x+ t) and µ2 (y + s) as the forces of

mortality relating to Tx and Ty.

Further, define µ1 (x+ t |Ty = ty ) as the conditional force of mortality of (x) at dura-

tion t (age x+t) given that (y) has died at duration ty (age y+ty) with ty ∈ [0, t). Likewise,

we define µ2 (y + s |Tx = tx ) as the conditional force of mortality of (y) at duration s (age

x+ s) given that (x) has died at duration tx (age x+ tx) with tx ∈ [0, s).

We can now specify the notions of long-term and short-term dependence, using the
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Figure 1: Markov model as in Norberg (1989) and Wolthuis (2003).

definition in Spreeuw (2006).

Definition 1 The remaining lifetimes Tx and Ty exhibit short-term dependence if

µ1 (x+ t |Ty = ty ) is an increasing function of ty ∈ [0, t] (or equivalently, if µ2 (y + s |Tx = tx )

is an increasing function of tx ∈ [0, s]). On the other hand, there is long-term dependence

between Tx and Ty if µ1 (x+ t |Ty = ty ) is constant or decreasing as a function of ty ∈ [0, t]

(or equivalently, if µ2 (y + s |Tx = tx ) is constant or decreasing as a function of tx ∈ [0, s]).

2.2 Model A: Independence of Lifetimes

The first model that we consider is the standard model in multiple life contingencies where

the remaining lifetimes of joint lives are independent. We refer to this subsequently as

Model A. It is easiest to describe in terms of the four-state continuous-time Markov model

of Norberg (1989) and Wolthuis (2003), for the mortality status of a couple consisting of

a man aged x and a woman aged y. This is depicted in Figure 1. In this model, µ01 (·)

and µ23 (·) are the force of mortality functions for a man whose spouse is still alive and

for a man whose spouse has died, respectively. Likewise, µ02 (·) and µ13 (·) represent the

respective force of mortality functions for a woman whose spouse is still alive and a woman

whose spouse has died.
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Independence of remaining lifetimes, in this model, implies that the force of mortality

functions µ01 (·) and µ23 (·) for the male are identical and, likewise for the female, µ02 (·)

and µ13 (·) are identical functions (Norberg, 1989).

2.3 Model B : Long-term Dependence of Lifetimes

The second model that we consider is that of Denuit and Cornet (1999), which is itself an

adaptation of the model of Norberg (1989) and Wolthuis (2003) as illustrated in Figure 1.

Denuit and Cornet (1999) specify the following conditional forces of mortality as functions

of the marginal forces of mortality:

µ∗

01 (t) = µ1 (x+ t |Ty > t) = (1− α∗

01) µ1 (x+ t) (1a)

µ∗

02 (t) = µ2 (y + t |Tx > t) = (1− α∗

02) µ2 (y + t) (1b)

µ∗

13 (t) = µ2 (y + t |Tx ≤ t) = (1 + α∗

13) µ2 (y + t) (1c)

µ∗

23 (t) = µ1 (x+ t |Ty ≤ t) = (1 + α∗

23) µ1 (x+ t) (1d)

where α∗

01, α
∗

02, α
∗

13, α
∗

23 ≥ 0. (We reserve the non-starred version of these symbols for

our main model, which is Model C below.)

In this model, death of the man leads to a constant increase of the woman’s mortality

by
1+α∗

13

1−α∗

02

, whereas a man’s mortality goes up by a factor of
1+α∗

23

1−α∗

01

whenever his spouse

dies. Note that this model is a special case of long-term dependence, since the mortality

of one life only depends on whether the spouse has died or not, and not when (s)he died.

2.4 Model C : Short-term Dependence of Lifetimes

We may now introduce our model, which we label as Model C. We extend the Markov

model of Denuit and Cornet (1999) by allowing the mortality of a remaining life to depend

on the time elapsed since spouse’s death. Upon the death of his spouse, every widower

enters an initial bereaved state. He may leave this initial bereaved state either by tran-

sition to the death state at any time or by transition to an ultimate widowed state after
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Figure 2: Six-state model.

a fixed period. Similar states of initial bereavement and ultimate widowhood exists for

widows. The crucial point is that the survivor’s mortality in the ultimate widowed state

can differ from that in the initial bereaved state. This model therefore allows explicitly

for short-term dependence as per Definition 1.

More precisely, we augment the state space of the four-state model in Figure 1 by

splitting each of the widowed states into two further states. This leads to a six-state

model as shown in Figure 2. A woman becoming widowed will enter state 1 ((y) alive,

(x) died less than t1 years ago) in which she will stay for at most t1 years, after which, if

still alive, she makes the transition to state 2 ((y) alive, (x) died more than t1 years ago)

from which only the transition to state 5 (both dead) is possible. Likewise, a man losing

his spouse will first enter state 3 ((x) alive, (y) died less than t2 years ago) where he will

stay for at most t2 years, after which he will automatically make the transition to state 4

and stay there while alive. Note that t1 and t2 are not necessarily equal. This allows for

a different time-scale of broken-heart effect for males and females.

Using the extended model in a proportional hazards setting requires additional pa-
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rameters than those in equations (1a)–(1d). The modified specification is as follows:

µ01 (t) = µ1 (x+ t |Ty > t) = (1− α01) µ1 (x+ t) (2a)

µ03 (t) = µ2 (y + t |Tx > t) = (1− α03) µ2 (y + t) (2b)

µ15 (t) = µ2 (y + t |0 ≤ t− Tx < t1 ) = (1 + α15) µ2 (y + t) (2c)

µ25 (t) = µ2 (y + t |t− Tx ≥ t1 ) = (1 + α25) µ2 (y + t) (2d)

µ35 (t) = µ1 (x+ t |0 ≤ t− Ty < t2 ) = (1 + α35) µ1 (x+ t) (2e)

µ45 (t) = µ1 (x+ t |t− Ty ≥ t2 ) = (1 + α45) µ1 (x+ t) (2f)

where α01, α03, α15, α25, α35, α45 ≥ 0.

Note that the earlier four-state Model B is a special case of our augmented six-state

Model C, with α15 = α25 = α∗

13 and α35 = α45 = α∗

23.

Note also that it is conceivable for short-term dependence to be negative, in the sense

that α15 or α35 could be negative. For example, the strain of caring for a sick partner

could be relieved upon the partner’s death. However, this effect is not reported in the

literature and, overall, widow(er)hood appears to increase mortality initially. The data

set that we describe in the next section also confirms this and gives no evidence of negative

short-term dependence.

3 Data Set

We use the same data set as Frees et al. (1996), Carriere (2000) and Youn and Shemyakin

(1999, 2001) and Shemyakin and Youn (2006). The original data set comprises 14,947

contracts in force with a large Canadian insurer. The period of observation runs from

29 December 1988 to 31 December 1993. Like the aforementioned papers, we eliminate

same-sex contracts (58 in total). There are also 3,435 contracts that are held by couples

with more than one policy and, following Youn and Shemyakin (1999, 2001), we eliminate

all but one contract per couple.
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There remain 11,454 couples or contracts, which can be broken down in four sets,

according to the survival status at the end of the observation. There are 195 couples

where both lives died during the observation period, 1,048 couples where the male died

and the female survived during the period, 255 couples where the female died and the

male survived, and 9,956 couples where both survived. The average age of males and

females is about 68 and 65 respectively. There are few couples (88 in total) in the data

set where at least one partner was 40 years old or younger, so they are excluded from our

analysis.

To simplify terminology, we assume in the remainder of this paper that all couples are

married and we use the term spouse and partner interchangeably. What matters is that

the coupled lives have a permanent relationship. The question of whether a relationship

is of a marital type is of secondary importance.

It is instructive to calculate some basic mortality rates from the data to attempt to

discern any pattern that may exist. First, we combine males and females. In the last row

of Table 1, we show the mortality rate for all lives whose partners are still alive. Table 1

also contains the mortality rates for all lives whose partners have died, grouped according

to the value of e ∈ {0, .., 4}, where e is the whole number of years since spouse’s death.

(That is, the partner died between e and e + 1 years ago.) For each of the groups, we

calculate the Risk Exposure, in years, and count the observed number of deaths, and

obtain mortality as the ratio of the two.

From Table 1, we can clearly see that:

1. The mortality for widows and widowers is higher than for lives whose partner is still

alive.

2. The mortality is highest among lives who have lost their partner recently, i.e. less

than one year ago.

In Tables 2 and 3, we distinguish between males and females and allow for the impact

of age. Because of a lack of data, we cannot estimate mortality rates at integer ages, so we
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Deaths Exposure Mortality

Partner dead

e = 0 126 1,230.64 0.102389

e = 1 35 869.18 0.040277

e = 2 18 551.58 0.032633

e = 3 8 312.66 0.025590

e = 4 6 106.25 0.056470

Partner alive 1,410 83,738.58 0.016838

Table 1: Mortality for all couples, with e denoting the number of years since partner’s

death

group widowers by age, and separately also group widows by age. We make the following

observations based on Tables 2 and 3:

1. In the majority of cases, the mortality of widow(er)s is significantly higher than that

of lives whose partner is still alive. This would imply a strong dependence between

the lifetimes of coupled lives (as confirmed in previous studies and discussed in

section 1).

2. In most cases, the mortality of widow(er)s whose partner died less than a year ago is

higher than the mortality of other widow(er)s. The mortality of lives whose partner

died more than a year ago exhibits an irregular pattern as a function of e.

3. The ratios in Tables 2 and 3 indicate how much greater the mortality of recently

widowed individuals is compared with the mortality of less recently widowed indi-

viduals. With one exception, these ratios are higher for widowers than for widows.

This seems to suggest that the broken-heart syndrome has a stronger impact on

men than on women.

The scarcity of data means that care must be taken before drawing firm conclusions.

In both Tables 2 and 3, there are some cells where zero deaths have been observed, and

hence the estimated rate of mortality is also equal to zero. Furthermore, in some columns,
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Age Partner dead Partner Ratios

group e = 0 e = 1 e = 2 e = 3 e = 4 alive

(a) (b) (c) (a)/(b) (a)/(c)

66− 75 0.0295 0.0321 0.0223 0.0163 0.0226 0.0057 0.9194 1.3229

76− 85 0.1221 0.0146 0.0653 0.0351 0.0000 0.0313 8.3678 1.8698

86− 95 0.1954 0.1713 0.0688 0.0806 0.0000 0.0413 1.1407 2.8401

Table 2: Mortality rates for married women and widows, and ratios of mortality rates,

with e denoting the number of years since partner’s death

Age Partner dead Partner Ratios

group e = 0 e = 1 e = 2 e = 3 e = 4 alive

(a) (b) (c) (a)/(b) (a)/(c)

66− 75 0.1835 0.0695 0.0254 0.0556 0.0000 0.0194 2.6423 7.2244

76− 85 0.4699 0.0923 0.0461 0.0000 0.2322 0.0553 5.0891 10.1931

86− 95 0.5097 0.1452 0.0888 0.2150 0.3785 0.0703 3.5088 5.7399

Table 3: Mortality rates for married men and widowers, and ratios of mortality rates,

with e denoting the number of years since partner’s death
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contrary to what one would expect, mortality is not always increasing as a function of

age.

We emphasize that the above methodology is not used to estimate mortality rates at

individual ages: it merely serves to underpin our case for extending the Markov model by

allowing for a time dimension. We turn to the estimation of individual mortality in the

next section.

4 Statistical Modelling

4.1 Model Identification

Our aim in this section is to estimate our augmented Markov model, as described in

section 2.4, using the data set described in section 3. The first step is to give the precise

specification of Model C, by identifying the cut-off point between states 1 and 2, and

between states 3 and 4.

In particular, we choose t1 by testing, for different values of t1, whether there is a

significant difference between the observed mortality rates of recently bereaved widows

(where spouse’s death occurs within t1 years) and the observed mortality rates of the

remaining widows. Our test hypotheses are:

H0 : S15
y (t) = S25

y (t) , for all t > 0,

H1 : S15
y (t) 6= S25

y (t) , for at least one t > 0,

where Si5
y (t) is the probability that a widow, aged y in state i where i ∈ {1, 2}, does not

enter state 5 within t years. If H0 is true, then the observed mortality rates in states 1

and 2 are two samples from the same survival function, otherwise they are governed by

different survival functions.

To compare the mortality of recent widows with longer-term widows, we perform a

two-sample Kolmogorov-Smirnov test. In the usual version of this test, the distributions

of two samples are compared by computing the maximal absolute deviation Dm,n =

13



t1 0.5 1 1.5 2 2.5

test statistic 1.9755 1.4759 1.0631 0.9622 0.5739

p-value 0.0009 0.0259 0.2090 0.3134 0.8948

Table 4: Outcomes of Kolmogorov-Smirnov test

supt

∣∣∣F̂m(t)− Ĝn(t)
∣∣∣, where m and n are the sizes of the two samples and F̂m(t) and Ĝn(t)

are their respective empirical distribution functions. The null hypothesis that F̂m(t) =

Ĝn(t) for t > 0 is rejected if the test statistic
(

mn
m+n

) 1

2 Dm,n is greater than the critical value

of the Kolmogorov distribution for a certain significance level. We use the censored-data

version of the Kolmogorov-Smirnov test which is based on empirical survival functions.

More precisely, the test employs a statistic that is the largest absolute value of the weighted

sum of the differences in the Nelson-Aalen estimates of cumulative hazard rates in the

two samples. This test is readily implemented in various statistical software packages and

is described by Fleming et al. (1980), with the asymptotic theory discussed by Andersen

et al. (1993, p. 391).

An alternative to the Kolmogorov-Smirnov test is the logrank test (see e.g. Machin

et al., 2006, p. 51). However, this does not employ Smirnov-type maximal absolute

deviation statistics. It may therefore fail to capture temporary differences in survival

distributions when, for example, a large local deviation is offset by a small opposite

overall bias (Fleming et al., 1980; Klein and Moeschberger, 1997, p. 209). It is, of course,

temporary differences in mortality between recently bereaved and longer-term widow(er)s

that we seek to identify.

The results of the Kolmogorov-Smirnov test comparing the mortality of widows aged

y = 60 in states 1 and 2, for different values of t1, are shown in Table 4. We note that the

higher t1 is, the higher the p-value. For t1 = 0.5 or t1 = 1, the test is significant at 5% level,

but not for higher values of t1. We conclude that both t1 = 0.5 and t1 = 1 are suitable

as cut-off points between the states 1 and 2. For computational convenience, we choose

t1 = 1 in the numerical applications that follow. A similar test can be undertaken for

14



widower’s mortality, of course. We obtain similar results and again t2 = 1 is a convenient

specification. This is also consistent with the results of Parkes et al. (1969) and Jagger

and Sutton (1991) for widowers.

Before proceeding to parameterize the six-state model, we make two further remarks.

First, the Kolmogorov-Smirnov test is a nonparametric test and the choice of t1 = 1 and

t2 = 1 does not depend on any assumed underlying mortality law. Secondly, the test is

used here to identify the six-state model and provide indicative values for t1 and t2. The

model is parameterized and then validated using further tests later.

4.2 Estimation

In their copula models of joint mortality (briefly described in section 1), Frees et al. (1996)

and Carriere (2000) use marginal distributions that are Gompertz. Carriere (2000) fits

the marginal survival function prior to considering copulas and demonstrates that the

Gompertz model performs significantly better than other mortality models. In the case

of independent lifetimes, the copula models and the Markov models are exactly the same,

of course. Ji et al. (2011) also cite the parsimony of the Gompertz mortality function,

its smoothness, and the ease of extrapolation to extreme ages as justification for using

Gompertz mortality in their semi-Markov model of joint mortality. For these reasons, we

also specify the marginal force of mortality functions to be Gompertz, implying that

µ1(x) =
1

σm

exp

(
x−mm

σm

)
, µ2(y) =

1

σf

exp

(
y −mf

σf

)
. (3)

We follow the two-step estimation procedure of Denuit and Cornet (1999). First, the

parameters of the base Gompertz distributions are estimated using all male and female

mortality data. Based on this, the α family of parameters defined in equations (2a)–(2f)

are then estimated. This is the same approach as in Denuit and Cornet (1999), except

that they parameterize a Makeham distribution.

The log-likelihood in terms of the parameters of the male base Gompertz mortality
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function is:

ℓ1 = e−mm/σm

∑

i:all males

(
eui/σm − evi/σm

)
+

1

σm

∑

i:male
deaths

vi − mmdm
σm

− dm log σm, (4)

where dm denotes the total number of male deaths, ui is the entry age of (male) life i in

the investigation, and vi is his exit age on death or censoring. A similar function applies

to the log-likelihood pertaining to the parameters of the female base Gompertz mortality

function.

Our maximum likelihood estimates, with standard errors in brackets, of the parameters

of the base Gompertz mortality functions in equation (3) are as follows: mm = 86.37

(0.247), σm = 9.76 (0.343), mf = 92.07 (0.336), and σf = 8.06 (0.217). There are

slight discrepancies in our estimates of σm and σf as compared to Frees et al. (1996) and

Carriere (2000), possibly because our data set is slightly different from the one used by

these authors.

An alternative to this two-step estimation procedure would be to estimate all pa-

rameters, i.e. Gompertz parameters and α-parameters, in a single maximum-likelihood

exercise. This could result in somewhat better estimates of the Gompertz parameters but

it would also lead to more complicated likelihood functions. In any event, the estimates

of mm, σm,mf and σf given above have small standard errors. The two-step procedure

also has the advantage that formulas for the estimators of the α parameters are simple

and easy to interpret.

Next, we estimate the α family of parameters in equations (2a)–(2f) by partial maxi-

mum likelihood. The partial log-likelihood function for α01 is given by

ℓp1(α01) = − (1− α01)
∑

i:all males
in state 0

∫ v0,i

u0,i

µxi
dxi + d01 log (1− α01) +

∑

i:male deaths
in state 0

µv0,i
(5)

with d01 denoting the observed number of male deaths in state 0, u0,i denoting the entry

age of life i in state 0, and v0,i denoting his age at exit from state 0. A similar partial

log-likelihood function ℓp2(α02) for α02 may be found. For lives in state 0, this leads to

16



estimates

α̂01 = 1 − d01




∑

i:all males
in state 0

∫ v0,i

u0,i

µxi
dxi




−1

, (6a)

α̂02 = 1 − d02




∑

i:all females
in state 0

∫ v0,i

u0,i

µyi
dyi




−1

, (6b)

where d01 is as above and d02 is the observed number of female deaths in state 0. We see

from equations (6) above that, for each life under risk, we take the force of mortality with

parameters estimated as above, integrated over the age range in which the life was under

observation. The observation in state 0 ends on death of the life, death of the spouse, or

at censoring.

Given the partial maximum likelihood, the parameters α01, α02, α15, α25, α35 and α45

are estimated independently of each other. For instance, if α̃01 represents the maximum

likelihood estimator of α01 and D01 represents the random number of male deaths in

state 0, then α̃01 is asymptotically normally distributed with mean α01 and variance given

by the Cramér-Rao lower bound. This can be simplified to

−
(
E

[
∂2ℓp1
∂α2

01

])
−1

= −
(
E

[ −D01

(1− α01)2

])
−1

=
(1− α01)

2

ED01

. (7)

The standard error of α̂01 is therefore estimated as (1−α̂01)/
√
d01, with a similar expression

for the standard error of α̂02.

The remaining parameters αj5, for j ∈ {1, 2, 3, 4}, are also estimated as above. For

example, the partial log-likelihood function for α15 is

ℓp3(α15) = − (1 + α15)
∑

i:all females
in state 1

∫ v1,i

u1,i

µyi
dyi + d15 log (1 + α15) +

∑

i:female deaths
in state 1

µv1,i
. (7)

The notation is self-explanatory, e.g. dj5 represents the observed number of female deaths

in state j, uj,i is the entry age of life i in state j, and vj,i is the exit age of life i from
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t1 α01 α15 α25

0.5 0.062 5.058 1.236

(840, 0.037) (27, 1.17) (39, 0.36)

1 0.062 3.398 1.151

(840, 0.037) (37, 0.72) (29, 0.40)

1.5 0.062 2.843 1.061

(840, 0.037) (45, 0.57) (21, 0.45)

∞ (four-state model) 0.062 2.014 n/a

(840, 0.037) (66, 0.371)

Table 5: Estimates of parameters of dependence for bereaved females. Numbers in brack-

ets are relevant number of deaths in data and standard error respectively

state j. Thus, for lives in states 1, .., 4, we get as estimates:

α̂j5 = dj5




∑

i:all females
in state j

∫ vj,i

uj,i

µyi
dyi




−1

− 1, for j ∈ {1, 2}, (8a)

α̂k5 = dk5




∑

i:all males
in state k

∫ vk,i

uk,i

µxi
dxi




−1

− 1, for k ∈ {3, 4}. (8b)

The standard errors of the estimates in equations (8) are given by

s.e. [α̂j5] =
1 + α̂j5√

dj5
for j ∈ {1, . . . , 4}. (9)

The estimates turn out to be very sensitive to the choice of age range. When estimating

coefficients α̂j5, j ∈ {1, . . . , 4}, we use as ages of entry the intervals [65, 85] for males and

[60, 80] for females, as these intervals contain the largest proportion of widowed lives. Our

findings also suggest that the dependence between the two lifetimes varies with the ages

of individuals.

Tables 5 and 6 display the results of our parameter estimation procedure, assuming

different values of t1 and t2. The last two rows of each table display the parameters
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t2 α03 α35 α45

0.5 0.137 13.267 0.379

(266, 0.07) (51, 2.00) (20, 0.31)

1 0.137 7.185 0.408

(266, 0.07) (55, 1.10) (16, 0.35)

1.5 0.137 5.472 0.058

(266, 0.07) (62, 0.82) (9, 0.35)

∞ (four-state model) 0.137 2.926 n/a

(266, 0.07) (71, 0.47)

Table 6: Estimates of parameters of dependence for bereaved males. Numbers in brackets

are relevant number of deaths in data and standard error respectively

pertaining to Model B, i.e. the standard four-state Markov model as in Figure 1. Note

that t1 = ∞ and t2 = ∞ imply that α15 = α∗

13 and α35 = α∗

23, and therefore the

parameters α25 and α45 are irrelevant. The tables clearly show that α01 is smaller than

both α15 and α25, and similarly that α03 is smaller than both α35 and α45. This implies

that the lifetimes are dependent on each other. Tables 5 and 6 also show that α15 > α25

and α35 > α45. This suggests the presence of short-term dependence for both genders,

with such dependence being stronger for widowers than for widows.

However, the estimates of the coefficients α15, ..., α45 all have fairly large standard

errors, so the differences between α15 and α25, and also between α35 and α45, could be

due to chance. We therefore perform a formal test for short-term dependence in the next

section.

4.3 Model Testing

We perform two validation tests on the model. First, we test whether widows’ mortality

depends significantly on the time elapsed since death of the spouse. We use the likelihood
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t1 0.5 1 1.5 2 2.5

−2 log(Λ) 19.633 15.128 14.260 13.103 0.820

p-value 9.382× 10−6 1.005× 10−4 1.592× 10−4 2.948× 10−4 0.3652

Table 7: Results of likelihood ratio tests for dependence of widows’ mortality on time

since partner’s death.

ratio test to test the null hypothesis

H0 : α15 = α25

against the alternative hypothesis

H1 : α15 6= α25.

Let Lp
3(α15) be the partial likelihood function for α15, corresponding to the log-likelihood

ℓp3(α15) given in equation (7). That is, ℓp3(α15) = log (Lp
3(α15)). The likelihood ratio is

therefore

Λ =
Lp
3(α̂25)

supα15
Lp
3(α15)

=
Lp
3(α̂25)

Lp
3(α̂15)

= exp (ℓp3(α̂25)− ℓp3(α̂15))

=

(
1 + α̂25

1 + α̂15

)d15

exp


(α̂15 − α̂25)

∑

i:all females
in state 1

∫ v1,i

u1,i

µyi
dy


 , (10)

where d15, u1,i and v1,i are as defined earlier.

Table 7 exhibits the results of the tests for different values of t1. The critical value

of the χ2-distribution with 1 d.f. at 5% significance level is 3.84, and we find that H0 is

rejected for t1 = 0.5, 1, 1.5 and 2. This validates our choice of t1 = 1 in section 4.1,

although we note that t1 = 0.5 yields an even smaller p-value than t1 = 1. Similar tests

for widowers’ mortality confirm that t2 = 1 is acceptable.

The second validation test that we consider is a test of goodness-of-fit to the mortality

data of the base Gompertz mortality distributions in equations (3), with the parameter

estimates given in section 4.2. We consider males and females separately and carry out a
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χ2-test, losing 2 degrees of freedom because of the Gompertz parameters. For males aged

[65,90] and females aged [47,98], the null hypothesis of Gompertz mortality is not rejected

at 5% significance level (p-values of 0.062 and 0.065 for males and females respectively).

When we include younger and extreme older ages for males, the paucity of data and

consequent small risk exposure lead to a poor fit for the Gompertz. We discuss the use

of Gompertz mortality further in the next section.

4.4 Data and Modelling Issues

Before concluding this section on estimation, a number of issues concerning the data and

the model that we have used are highlighted.

First, even though we have a large data set, the data is sparse at extreme ages. There

is a small number of widows (906) and an even smaller number of widowers (337), which

exacerbates estimation errors. This can be seen in Tables 5 and 6. For example, the

standard error for α15 is larger than for α03, the former pertaining to the mortality of

recently bereaved widows and the latter to females whose partners are still alive. The

standard error for α15 is however smaller than for α35, where α35 concerns the mortality

of recently bereaved widowers.

Secondly, we recognise that the Gompertz mortality law is idealized and is chosen for

its tractability and, although the test in section 4.3 shows adequate goodness-of-fit, it is

unlikely to be the best-fitting mortality model. Indeed, Ji et al. (2011) make a similar

argument and justify their use of Gompertz mortality on similar grounds. Nevertheless,

it is worth noting that Carriere (2000) finds that alternative distributions, such as the

Weibull, have a worse fit than the Gompertz to the same data set. This is also consistent

with the findings of Ji et al. (2011) on a four-state model that corresponds to Model B in

section 2.3 but also includes a constant-intensity transition for the simultaneous death of

both partners, in the event of a common shock such as an accident. They calibrate the

Gompertz distribution to each of the 4 states separately (whereas we followed Denuit and

21



Cornet (1999) by fitting the Gompertz distribution to all male and all female mortality

data) and they find that Gompertz’ law gives an adequate fit to the same data set,

although Makeham’s law may provide an improved fit.

Thirdly, it is worth remarking on a specific drawback of our 6-state Markov model

(Model C ), which is the jump in mortality experienced upon transition from state 1 to

2, and from state 3 to 4. It is unrealistic that there would be such an abrupt end to the

broken-heart effect, with a step change in mortality after an initial bereavement period.

This very issue is addressed by Ji et al. (2011) in work that was done concurrently with

ours and on the same data set. They use a semi-Markov model, which allows the mortality

of the widow(er) to be a continuous function of time elapsed since death of the spouse.

This 4-state semi-Markov model is an attractive alternative to our 6-state Markov

model, but it also suffers from a number of shortcomings. For example, Ji et al. (2011)

use a transition intensity that is exponentially declining in time since partner’s death. It

does not seem very realistic to assume that the broken-heart effect declines at its fastest

rate at the very time when the partner dies. The broken-heart syndrome may arguably

intensify for a period shortly after the death of a spouse as the effects of loneliness and

other factors cumulate with adverse psychological consequences (Holden et al., 2010). It

may be more appropriate to consider a reverse sigmoidal function, representing stagnation

or very slow initial decline followed by a faster amelioration in mortality rates as recovery

from bereavement progresses.

An advantage of our model is that the jump in mortality is like a step function that may

indeed approximate the reverse sigmoidal shape that a post-bereavement excess mortality

function might take. The broken-heart effect is likely to taper off over a much shorter

time-scale than the duration of long-term life insurance products. Indeed, the analysis of

Ji et al. (2011, Fig. 5) seems to indicate that, after one year, the excess post-bereavement

mortality has almost halved for widows and completely disappeared for widowers, which

is consistent with our choice of t1 = 1 year in the statistical test described in section 4.3.

Consequently, the smoothness of such a rapid decline may have little bearing on the
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pricing of long-term annuities and assurances.

A major constraint of semi-Markov models is that parameterizing them often requires

considerably more data than is available. For example, in the model of Ji et al. (2011), a

parameter is required in the exponential decay function to govern the speed of reduction of

the bereavement effect. As is acknowledged by Ji et al. (2011), the small number of deaths

among widows and widowers leads to high parameter uncertainty. Ignoring catastrophic

events such as accidents that lead to simultaneous deaths, there is an implicit assumption

in their model that the longer-term mortality of a widowed individual is the same as it

would be if the individual’s partner were alive. (That is, the exponential decay function

specified by Ji et al. (2011) tends to 1.) This is not necessarily the case in Model C,

where it is possible for µ25 6= µ03, for example. One may make allowance for this in the

semi-Markov model, but only at the expense of an additional parameter for each gender,

thereby compounding parameter estimation error. Another advantage of our model is

therefore that it has a minimum number of parameters, allowing for both an immediate

bereavement effect (α15, α35) and a possible long-term bereavement effect after the initial

period (α25, α45).

Finally, the jump in transition intensities is in fact a common feature of all Markov

models that involve splitting of states. It occurs for example in demographic models

for disability insurance, which are useful for estimating rates of recovery from disability

(Haberman and Pitacco, 1999; Gregorius, 1993), and in Markov chain models of select

mortality (Norberg, 1988; Möller, 1990).

5 Impact on Pricing and Reserving

5.1 Model Implementation

In this section, we use the models and parameter estimates previously obtained to analyse

the impact of the type of dependence on the pricing and valuation of contracts which may
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still be in force when one of the lives dies. We investigate the following whole-life contracts:

• Contingent assurance contracts: a benefit of 1 is payable immediately on the death

of (y), provided this happens after the death of (x). We consider three distinct

premium payment arrangements: (a) Single Premium, (b) Level Premium I, which

refers to a level premium payment annually in advance while both alive, and (c)

Level Premium II, which refers to a level premium payment annually in advance

while (y) is alive. We assume that, at the issue of the contract, ages are x = 55 and

y = 50.

• Joint life and survivor annuity: a benefit of 1 p.a. is payable in arrears until either

(x) or (y) dies, reducing to 0.6 p.a. after the first death and continuing while the

survivor is alive. We consider a single premium payment only. We assume that, at

the issue of the contract, both lives are aged 65.

The data set, that we describe in section 3 and that we use to parameterize our model

in section 4, is based on annuities. Annuitant mortality is typically lighter than assurance

mortality. Whilst it is fine to investigate the joint life and survivor annuity above, it is not

ideal to model a contingent assurance contract based ultimately on annuitant mortality

data. Nevertheless, this is the only data set that is available at present. We believe that

it is valuable to consider at the very least the qualitative effects of short-term dependence

in joint mortality on assurances as well as on annuities.

For both types of contracts, we calculate:

1. the premium payable, under different premium payment arrangements,

2. the state-dependent net premium provisions at several durations.

The term provision, commonly used in UK actuarial practice, may be interpreted

synonymously with the term reserve. Note that when calculating provisions in state 0,

i.e. when both lives are alive, we calculate the value at 0, 1, 5, 10, 15, 20 years since the

start of the contract. When calculating provisions in states 1, 2, 3 or 4, i.e. when one
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spouse has died and the other is still alive, the time of death of the first spouse can take

the values 15, 19.25, 19.5, 19.75 and 20 years (all from the start of the contract) while

the provision is calculated at duration 20.

We use all three models, as described in section 2, to perform the above calculations.

The models and their associated parameter values are summarised below.

• Model A is the Markov model with independence of the remaining lifetimes Tx and

Ty. We use the Gompertz mortality functions of equation (3) in section 4.2 with

estimated parameters given therein.

• Model B is the four-state model of Denuit and Cornet (1999), as displayed in Figure

1. The mortality of widow(er)s does not depend on time elapsed since spouse’s

death. This implies that α∗

13 = α15 = α25 and α∗

23 = α35 = α45. Using the data

set gives parameter estimates α̂∗

01 = 0.06, α̂∗

02 = 0.14, α̂∗

13 = 2.01, α̂∗

23 = 2.93 (from

Table 5 with t1 = ∞, and Table 6 with t2 = ∞).

• Model C is our extended Markov model, displayed in Figure 2. It allows the mor-

tality of widow(er)s to depend on time elapsed since death of the spouse. We use

t1 = t2 = 1 and the parameter values α̂01 = 0.06, α̂03 = 0.14 (which are obviously

the same as in Model B for lives with partner alive) as well as the parameter values

α̂15 = 3.40, α̂25 = 1.15, α̂35 = 7.19 and α̂45 = 0.41 (from Table 5 with t1 = 1, and

Table 6 with t2 = 1).

For both sets of policies, we assume interest at 5% per annum.

5.2 Contingent Assurance Contracts

5.2.1 Premiums

Table 8 shows the premiums calculated for the contingent assurance contract under the

three different models and for the three different premium payment patterns. Model B

results in the highest premiums, followed by Model C and Model A. Dependence causes

25



Model A Model B Model C

Single Premium 0.11435 0.15065 0.14220

Level Premium I 0.00801 0.01041 0.00983

Level Premium II 0.00662 0.00905 0.00845

Table 8: Premiums for the contingent assurance contracts

premiums for contingent assurances to be higher which is why Model A yields the lowest

premiums.

Thus, ignoring dependence results in under -pricing by around 20% (Model A relative

to either Model B or Model C ). But assuming dependence that is persistent rather than

short-term results in over -pricing by around 6% (Model B relative to Model C ).

The lower premium for Model C relative to Model B is due to the lower mortality

experienced by widows after a year in Model C. This effect appears to outweigh the impact

of higher mortality in the first year upon entering widowhood.

5.2.2 Provisions

Table 9 gives the provisions in state 0 for contingent assurances. Note again that Model B

gives the highest values, and Model A the lowest values. Our modelling shows that an

insurance company which assumes independence of joint lifetimes, when they are in fact

dependent in the short term, will under -provision for a contingent assurance by about

20% (Model A compared to Model C ). And if it assumes long-term dependence, when

dependence is in fact short-term, it will over -provision by around 4–6%. This remains

true irrespective of the premium payment pattern.

In Table 10, we can view the provisions to be held at duration 20 when (x) has died

and (y) is still alive. Obviously, death of the male causes the payment of the sum as-

sured to be made with certainty. This is why the provisions in Table 10 are significantly

higher than the values in Table 9. Again, the independence assumption and long-term

dependence assumption lead to significant under-provisioning and over-provisioning re-
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Time Single Premium Level Premium I Level Premium II

A B C A B C A B C

0 0.114 0.151 0.142 0.008 0.010 0.010 0.007 0.009 0.008

1 0.120 0.158 0.149 0.016 0.020 0.019 0.013 0.018 0.017

5 0.144 0.189 0.179 0.049 0.063 0.060 0.043 0.058 0.054

10 0.181 0.236 0.224 0.098 0.126 0.120 0.087 0.116 0.110

15 0.225 0.291 0.277 0.156 0.198 0.189 0.140 0.185 0.176

20 0.277 0.352 0.338 0.221 0.277 0.267 0.202 0.262 0.251

Table 9: Provisions in state 0 for the contingent assurance contracts

spectively, compared to short-term dependence.

The provision at duration 20 has been tabulated according to different periods elapsed

since death of the spouse, i.e. spouse died 1 year ago (duration 19), 9 months ago (duration

19.25), half a year ago (duration 19.5), 3 months ago (duration 19.75), or has just died

(duration 20). Model B takes no account of the time elapsed since spouse’s death and the

provision under Model B is therefore fixed at 0.5784. On the other hand, Model C does

allow for time since death of spouse and this leads to the highest provision at duration 20

(because of the short-term nature of the dependence).

5.3 Joint Life and Survivor Annuity Contract

5.3.1 Premiums

The premiums calculated for the joint life and survivor annuity contract under Models A,

B and C appear in Table 11. Recall that we only consider a single premium payment for

this type of policy. If independence of coupled lifetimes is assumed instead of short-term

dependence, a typical joint life and survivor annuity contract is over -priced by about 2.3%

(Model A in comparison to Model C ). On the other hand, if coupled lifetimes are assumed

to be dependent in a persistent rather than transient way, this contract is under -priced
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Time of Single Premium or Level premium II

death Level premium I

A B C A B C

15 0.425 0.578 0.530 0.350 0.505 0.452

19 0.425 0.578 0.530 0.350 0.505 0.452

19.25 0.425 0.578 0.532 0.350 0.505 0.455

19.5 0.425 0.578 0.534 0.350 0.505 0.457

19.75 0.425 0.578 0.536 0.350 0.505 0.460

20 0.425 0.578 0.538 0.350 0.505 0.462

Table 10: Provisions at duration 20 in state 1 (Models A and B) and in state 1 or 2

(Model C ) for the contingent assurance contracts

by about 1.8% (Model B in comparison to Model C ).

Model C results in a premium that is intermediate between the premiums under

Models A and B, which is consistent with the results for the contingent assurance product

in section 5.2.1. However, it is now Model A that yields the highest premium, followed

by Model C, then Model B. This conforms with intuition. The higher the degree of

dependence, the more likely the event that the deaths of the two are separated by a short

spell only, and therefore the shorter the expected period during which annuity instalments

are payable. The higher premium for Model C relative to Model B follows from the lower

mortality experienced by widows after a year in Model C. It appears again that this

outweighs the impact of higher mortality in the first year after becoming widowed.

Reassuringly, these results mirror the results reported by Ji et al. (2011) when they

price joint life and survivor annuities using (a) their semi-Markov model of joint lifetimes

(analogous to our Model C above), (b) a Markov model of long-term dependence only

(Model B), and (c) a model of independent lifetimes (Model A). As in our model annuity

contract described in section 5.1, they also assume that the partners to whom annuities

are sold are of the same age. However, they do consider a range of different ages, whereas
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Model A Model B Model C

Single premium 12.0935 11.6107 11.8232

Table 11: Premiums for the joint life and survivor annuity contract

Time Model A Model B Model C

0 12.0935 11.6107 11.8232

1 11.7889 11.2897 11.5043

5 10.5040 9.9431 10.1579

10 8.7804 8.1624 8.3522

15 6.9992 6.3642 6.4956

20 5.2647 4.6668 4.7136

Table 12: Provisions in state 0 for the joint life and survivor annuity contract

we price annuities only for partners aged 65 (a typical retirement age). Ji et al. (2011)

find that the model that allows for short-term dependence generates higher annuity values

for younger couples, and lower values for older couples, as compared with the model with

long-term dependence only. This agrees with our intuition above: older couples do not

enjoy a long enough period of lower mortality after the initial bereavement period of high

mortality, as predicted by the model with short-term dependence. For them, the higher

mortality soon after bereavement outweighs the lower mortality experienced thereafter

and their annuities are therefore cheaper than for younger couples.

5.3.2 Provisions

Table 12 gives the provisions in state 0 for the joint life and survivor annuity. Note

again that Model A gives the highest values, and Model B the lowest values. Assuming

independence, when short-term dependence is in fact prevalent, leads to an excess of

2–12% in the provisions whereas assuming long-term dependence leads to a shortfall of

1–2.5% in the provisions (Models A and B respectively relative to Model C ).
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Time of Death Model A Model B Model C

15 3.5497 1.8410 2.3134

19 3.5497 1.8410 2.3134

19.25 3.5497 1.8410 2.2463

19.5 3.5497 1.8410 2.1791

19.75 3.5497 1.8410 2.1120

20 3.5497 1.8410 2.0448

Table 13: Provisions at duration 20 in state 1 (Model A or B) and in state 1 or 2 (Model C )

for the joint life and survivor annuity contract

In Table 13, we can view the provisions to be held at duration 20 when (x) has died

and (y) is still alive. Death of one partner triggers reduced annuity payments on the life of

the survivor. The provisions in Table 13 are therefore lower than the values in Table 12.

Like before for the contingent assurance, the provision at duration 20 has been tabu-

lated according to various periods elapsed since death of the spouse. The independence

assumption (in Model A) and long-term dependence assumption (in Model B) lead to sig-

nificant over-provisioning (by 53–74%) and under-provisioning (by 10–21%) respectively,

compared to short-term dependence (Model C ).

Table 14 contains the provisions arising at duration 20 when the female dies before the

male. As anticipated, the provisions under Model C are intermediate between those of

Models A and B. Model A indicates over-provisioning by 69–110% and Model B indicates

under-provisioning by 26–41%, compared to Model C. Since male survivor mortality is

higher than female survivor mortality, provisions in Table 14 are lower than those in

Table 13.

As for the contingent assurance contract, the provision after the first death varies with

time since the first death in Model C (in both Tables 13 and 14). Ignoring dependence

(in Model A) or assuming the wrong type of dependence (long-term, in Model B) means

not only that an insurer commits the wrong amount of capital to reserves, but in addition
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Time of Death Model A Model B Model C

15 2.8014 0.9782 1.6517

19 2.8014 0.9782 1.6517

19.25 2.8014 0.9782 1.5701

19.5 2.8014 0.9782 1.4905

19.75 2.8014 0.9782 1.4131

20 2.8014 0.9782 1.3378

Table 14: Provisions at duration 20 in state 2 (Model A or B) and in state 3 or 4 (Model C )

for the joint life and survivor annuity contract

precludes it from managing the provision dynamically.

6 Conclusion

The traditional assumption made in life insurance about the independence of the remain-

ing lifetimes of a couple has come under greater scrutiny recently. In this paper, we

postulated that dependence between coupled lifetimes is of a short-term type. That is,

the chance of dying increases after the death of a partner but then returns over time to

levels closer to normal. This is commonly described as a broken-heart effect.

To investigate this effect, we used a North American life insurance data set of 11,454

policies to which we fitted an augmented six-state Markov model. This model splits the

widowed state into a recently bereaved state and an ultimately widowed state (for males

and females separately). In line with previous studies, we found evidence that remaining

lifetimes are statistically dependent: mortality rates increase significantly after the death

of a spouse. Furthermore, we found evidence for short-term dependence: mortality rates

increase after the death of a spouse, but they decrease again after about a year. This

effect is stronger among widowers than among widows.

We examined the consequences of the broken-heart syndrome for life insurers by setting
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up two model contracts: a contingent life assurance policy, and a joint life and survivor

annuity. Our modelling showed that an insurance company that sells a typical contingent

life assurance contract and assumes independence of joint lifetimes, when these lifetimes

are in fact dependent in the short term, charges a premium that is about 20% too low and

builds up a provision that is about 20% too low. If the insurance company assumes long-

term dependence, on the other hand, it will over-price by about 6% and over-provision

by around 4–6%. For a typical joint life and survivor annuity, assuming independence

when short-term dependence is prevalent results in over-pricing by about 2.3% and over-

provisioning by around 2–12%. Assuming dependence of the wrong type (that is, long-

term rather than short-term) leads to a premium that is too low by about 1.8% and

provisions that are too low by 1–2.5%.

Of course, the conclusions of any statistical modelling exercise are always limited by

the modelling assumptions that are made, and further modelling work is always desirable.

Our conclusions, for both the assurance and annuity policies that we model, do appear

to be robust to the premium payment arrangements and to typical interest rates. One

area of work for the future is to model more insurance products with realistic features.

For example, the joint life and survivor annuity contract that we considered in this paper

is very common in the UK as part of a retirement income strategy with an element of

protection for widows and widowers. It is often sold with a five-year guarantee.

Our conclusions are also limited by the data set that we used. In particular, we

only had an annuitant mortality data set available and we used this to parameterize our

model. We reiterate that the results described above for the contingent assurance contract

must be qualified with this fact. Indeed, modelling short-term dependence requires the

availability of abundant data. The research in this paper may encourage life insurers and

pension providers to pool, build up and maintain large data sets involving the mortality

of coupled lives. With data sets that are more extensive than the one used in this paper,

it will also be possible to allow for different degrees of excess mortality of widow(er)s,

for different age ranges. One could then investigate whether the impact of death of the
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partner is stronger at older ages, as this would usually involve relationships that have

lasted longer. One could also investigate whether younger widows and widowers are more

able to recover from bereavement, perhaps because they have a more extensive social

network.
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