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A Lagrangian particle multiphase model based on the Meshless Local Petrov-Galerkin 

method with Rankine source solution (MLPG_R) is proposed to simulate 2D flows of two 

immiscible fluids. The model is applicable to fluids with a wide range of density ratio 

from 1.01 to 1000, capable of dealing with violent flow situations (e.g. breaking waves) 

and maintaining the sharp discontinuity of properties of the fluids at the interface.  

In order to extend the MLPG_R method to model multiphase flows, an innovative phase 

coupling is proposed using an equation for pressure at the interface particle through two 

stages. In the first stage, the formulation is based on ensuring the continuity of the 

pressure and the ratio of the pressure derivative in the normal direction of the interface to 

the fluid density across the interface. Gravity current, natural sloshing of two layered 

liquids and air-water violent sloshing are successfully simulated and compared with either 

experimental data or analytical solution demonstrating a second order convergent rate.  

The second stage involves the extension of the method to account for interface tension 

and large viscosity. This is achieved by adding additional terms in the original pressure 

formulation considering jumps for both the pressure and the ratio of pressure derivatives 

in either the normal or tangential direction to fluid density at the interface. The method 

ensures both velocity continuity even with highly viscous fluids and interface stress 

balance in the presence of interface tension. Simulation of square-droplet deformation 

illustrates sharp pressure drop at the interface and relieved spurious currents that are 

known to be associated with predictions by other existing models. The capillary wave 

case also demonstrates the necessity of maintaining the jump in the ratio of pressure 

gradient to fluid density and the bubble rising case further validates the model as 

compared with the benchmark numerical results.  

Abstract 
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Apart from being the first application of the MLPG_R method to multiphase flows the 

proposed model also contains two highly effective and robust techniques whose 

applicability is not restricted to the MLPG_R method. One is based on use of the absolute 

density gradient for identifying the interface and isolated particles which is essential to 

ensure that interface conditions are applied at the correct locations in violent flows. The 

effectiveness of the technique has been examined by a number of particle configurations, 

including those with different levels of randomness of particle distribution.  The other is 

about solving the discretised pressure equation, by splitting the one set equations into two 

sets corresponding to two phases and solving them separately but coupled by the interface 

particles. This technique efficiently gives reasonable solutions not only for the cases with 

low density ratio but also for the ones with very high density ratio. 
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1.1 Background of the multiphase flow  
Multiphase flow is a flow system consisting of different fluid phases immiscible to each 

other, or having fluid and solid phases simultaneously. In flows containing fluids only, the 

phases may be of the same substance such as a liquid and its vapour, or of different 

substances such as two liquids or a liquid and a gas. The compressibility for most liquids 

is negligible maintaining a constant density. But it might become considerable for their 

vapours and gases when they are laden with high pressure, leading to varied density for a 

certain phase. In a fluid and solid system, gases or liquids constitute the fluid domain 

which coexist with the dispersed solid. These classifications are by no means unique.  In 

some works classifications are defined in terms of length scales of the flow (Hu & Adams 

2006; Wörner 2012), sorting into micro-, meso- and macroscopic, dominated to different 

extents by inertial forces as well as forces between various phases caused by viscosity 

difference and interface tension. Some texts identify the multiphase flow with general 

topologies namely disperse flows consisting of finite particles (Delnoij et al. 1997; 

Prosperetti & Tryggvason 2007), drops or bubbles distributed in a continuous phase and 

separate flows with two or more continuous streams separated by interfaces.  

 

In nature, the multiphase flow is ubiquitous, such as rainy or showery winds, air and water 

pollutions, volcanic activitie�V�����P�X�G���V�O�L�G�H�V�����V�H�G�L�P�H�Q�W���W�U�D�Q�V�S�R�U�W�����W�K�H���µ�Z�K�L�W�H���Z�D�W�H�U�¶���S�U�R�G�X�F�H�G��

by breaking waves, debris flows,  and countless other natural phenomenon. Numerous 

industrial processing systems also involve multiphase flows including cavitating pumps 

and turbines, electrophotographic processes, combustion engines, propulsion systems, oil 

and gas production and transport, etc. Multiphase flows also exist in biological and 

medical industry, from blood flow to laser surgery cavitation and so on. Accurate 

Chapter 1    Introduction 
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predictions of the flow behaviour of those processes are essential for achieving the desired 

efficiency and effectiveness of the systems. 

 

�(�Y�H�Q�� �W�K�R�X�J�K�� �W�K�H�� �W�H�U�P�� �R�I�� �µ�P�X�O�W�L�S�K�D�V�H�� �I�O�R�Z�¶�� �L�V�� �Z�H�O�O�� �X�Q�G�H�U�V�W�R�R�G���� �K�R�Z�H�Y�H�U���� �G�X�H�� �W�R�� �L�W�V��

diversity and complexity, the choice of the methods to be used largely depends on the 

types of flows and constrains that are imposed on the flow as well as motivation of the 

investigation. This work aims to study only separate multiphase flows with continuous 

phases separated by a single or multiple interfaces. When dispersed flow particles occur 

occasionally, they are regarded as dilute and isolated. Based on the length scale 

classification, the study is limited to systems that are well described by continuum 

theories, i.e. equations of continuity and momentum conservation, without considering 

either electronic forces or random particle motions that belong to the domain of statistical 

mechanics. 

 

1.2 Multiphase flow models 

1.2.1 Analytical models 

To predict the detailed behaviour and reveal the phenomena of multiphase flows, there 

exist mainly three approaches, namely theoretical, experimental and numerical. Purely 

analytical method is the most efficient and economical but is inevitably limited by the 

complexity of the multiphase flow. As for solid bodies in the fluid, even single sphere 

solutions are limited to very small or very large Reynolds number. The helpfulness of the 

analytical method is reduced further when flows become general with intermediate 

Reynolds number or when more bodies interact.  When two continuous fluids are present, 

solutions are usually restricted to small deformations even for the simplest case by 

ignoring either interface tensions or viscosities which may play dominant roles at certain 

times. For example the development of Rayleigh-Taylor instability is solved considering 

the interface tension but not viscosity in Drazin & Reid (1981) and later the correction 

took the viscosity into consideration in Velazquez et al. (1998). Both solutions are 

feasible at the very beginning of the instability but fail to predict the flow development 

when the configuration becomes complex. Another example is the natural sloshing of 

layered fluids (Faltinsen & Timokha 2009) in which, the linear solution of natural 

frequencies and corresponding modes for zero tank excitation are provided. The 

predictive capability of such solutions is limited due to ignoring the effects of viscosity 

and interface tension. When it comes to violent sloshing caused by the external excitation, 
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the analytical solution become either far from satisfactory due to various grossly 

unrealistic assumptions imposed on the flow or simply impossible to obtain. 

 

1.2.2 Experimental models 

Through laboratory scale models equipped with appropriate instrumentation, numerous 

experimental studies involving various types of multiphase flows, e.g. sedimentation 

processes (Komatina & Jovanovic 1997), single bubble rising (Bhaga & Weber 1981), 

bubble column (Walke & Sathe 2012), fluidization (Xue et al. 2012), flow in porous 

media (Das & Mirzaei 2012), lock exchange (Lowe et al. 2005) etc., have been carried out 

due to its general reliability and ease of data acquisition. However, apart from their high 

cost, there are also cases for which laboratory models are impossible to conduct or 

insufficient to acquire desired parameters. For example in the bubble column case, precise 

characterization of the bubble sizes and distributions is hard to achieve; also for the 

breaking wave case, even with high speed and high resolution cameras, the visualization 

of the entrained air is problematic, let alone accurate determination of continuous 

changing flow volume and size distribution, with �µ�Z�K�L�W�H�� �Z�D�W�H�U�¶��being taken only as 

snapshots. Perhaps the most important issue encountered by the experimental model is the 

differences in scales between experimental models and the prototype, which often would 

require a theoretical or computational model to extrapolate the laboratory results to that of 

the prototype scale reliably. 

 

1.2.3 Numerical models      

Numerical models have become an essential tool for the investigation of multiphase flow 

due to their ability to consider various effects arising in multiphase flows, such as 

interface tension, density and viscosity differences, complex interface configurations etc. 

Besides, numerical models are more promising to solve the issues of scale and 

visualization of any desired parameter. A diverse range of numerical models have been 

proposed for different types of the multiphase flow of which an important branch is the 

dispersed flow. To deal with complex flow configurations, most numerical models are 

based on Navier-Stokes equations, either Direct Numerical Simulation (DNS) or with 

turbulent models, solved by imposing an equation of state to identify the relation between 

pressure and density for compressible fluids or separating velocity and pressure to form 

�W�K�H�� �3�R�L�V�V�R�Q�¶�V�� �H�T�X�D�W�L�R�Q�� �I�R�U�� �L�Q�F�R�P�S�U�H�V�V�L�E�O�H�� �I�O�X�L�G�V�� To simulate the dispersed phase, two 

types of models are prevalent, trajectory models and two-fluid models. The former 
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simulates the moving of either actual particles or larger, representative particles driven by 

drag, dynamic pressure gradient and inter-particle collision forces and the momentum 

equation of the continuous phase is augmented by point forces which represented the 

effect of the particles. Examples are droplets near the nozzle zone of a spray dryer 

(Gauvin et al. 1975), gas bubble rising in water column (Buwa et al. 2006; Delnoij et al. 

1997) and sedimentation of solid particles in fluid (Patankar & Joseph 2001). Even though 

artificial collision models between particles are proposed and momentum transfer between 

discrete phase and continuous phase is considered, this model is usually restricted to 

dilute dispersed flows in which particle-particle interactions can be neglected. The 

alternative two-fluid model considers the interactions between the dispersed phase by 

treating it as a continuous phase and neglecting its discrete nature. This model is more 

applicable to predict dense particle/droplet flow where the interactions within the 

dispersed phase are dominant and has higher efficiency in dealing with large number of 

individual particles such as high bubble-laden flows (Druzhinin & Elghobashi 1998) and 

fluidized bed (Xue et al. 2012).  

The flow type that is focused on in this thesis is another category of multiphase flows 

generally known as separate flows, which is mainly solved by single phase flow equations 

in two streams, coupled through appropriate dynamic and kinematic conditions at the 

interface. For solving the Navier-Stokes equations, fixed mesh models adopting either 

finite element method or finite volume method were first developed for the multiphase 

simulation (Bothe et al. 2011; Fedkiw et al. 1999; Hysing et al. 2009; Rudman 1997). 

These models treat phases as one fluid incorporating interface capture algorithms such as 

widely used Volume of Fluid (VOF) (Renardy & Renardy 2002; Hoang et al. 2013), level 

set (Sussman & Fatemi 1999; Hysing 2006), phase field methods (Liu & Shen 2003) and 

their refinements. An extra equation for the parameter identifying each phase is 

introduced and needs to be solved at each time step to update the parameter, which can 

degrade the computational efficiency to some extents. The interface is usually of finite 

thickness spanning over several meshes in fixed mesh simulation. Even though the 

interface may be represented sharply with either sub-grid estimation or level-set algorithm, 

fluid properties are smoothly transferred across the interface. The incorporation of the 

continuous surface force (CSF) (Brackbill et al. 1992) and later proposed continuous 

surface stress (CSS) methods (Raeini et al. 2012) enables the fixed mesh models to deal 

with surface/interface tension issues by simply adding a volumetric force term in the 

momentum equation. However, similar to the smooth transfer of fluid properties, those 

interface force models can result in the loss of the sharp force jump at the interface. 

Another group of meshed methods is based on adaptive mesh keeping the interface on the 
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mesh face (Muzaferija & Peri´c 1997; Tukovic & Jasak 2012). Rather than smearing the 

interface over meshes, these methods maintain the sharp interface by updating the meshes 

at the each time step and the interface conditions are exactly implemented maintaining 

both the discontinuity of fluid properties and interface forces.  The main drawback of 

these methods is that the complex mesh reconstruction and the requirement for iterations 

on mesh adaptation have to be performed and are computationally expensive. These 

methods also encounter difficulties in dealing with topology change of the interface. 

Meshless methods based on Lagrangian moving particles have recently attracted strong 

interest as the next generation of computational methods. It is considered to be superior to 

the conventional mesh based method for many applications as adopting a set of arbitrary 

distributed particles without using any mesh connecting these particles. Much effort is 

concentrated on problems for which the conventional mesh based methods are difficult to 

apply, such as deformable boundary, moving interface, large deformation which would 

involve complex mesh generation and mesh adaptively, especially for multiphase flows. 

For the flow type considered here, one crucial objective is the precise interface 

representation, which in the meshless method is inherently solved by simply tracking 

particles whose fluid properties are initially allocated and maintained. Even large 

deformations or topological changes can be well handled by flexible moving particles. In 

the meshless methods group, the smoothed particle hydrodynamics (SPH) is one of the 

matured methods (Colagrossi & Landrini 2003; Hu & Adams 2007; Szewc et al. 2015). In 

SPH, the multiplication of an arbitrary function and a smoothing kernel function is 

integrated forming the integral representation of the function which is then approximated 

by summing up the values of neighbouring particles. As initially developed for 

compressible flows (Valizadeh & Monaghan 2015; Das & Das 2011), pressure is 

explicitly expressed by the equation of state. Despite its easy programming and 

unrequired boundary treatment, problems of small time steps and pressure noise are often 

encountered. Incompressible SPH (Shao 2012; Zainali et al. 2013) is then proposed to 

overcome those two problems, but the second derivative approximation of the unknown 

pressure arises in solving pressure Poisson equation which is a main hurdle to achieve 

accuracy. This issue of solving Poisson equation with second derivative approximation is 

shared by other meshless methods such as meshless particle semi-implicit (MPS) method 

(Gotoh & Fredsøe 2000; Khayyer & Gotoh 2010) whose approximation of a function on 

the discrete particle is interpolated by surrounding particles using inverse distance 

weighting usually with the Shepard weight function. The multiphase flow solver has been 

developed for both SPH and MPS methods, most of which follow one fluid approach as 



21 
 

adopted in the fixed mesh group thus losing the sharp discontinuity of fluid properties and 

forces at the interface.  

The Meshless Local Petro-Galerkin (MLPG) method is proposed to deal with Laplace and 

Poisson equations based on the local symmetric weak form and the moving least squares 

approximation (Atluri & Zhu 1998). The efficiency and accuracy of the MLPG method in 

�V�R�O�Y�L�Q�J���3�R�L�V�V�R�Q�¶�V���H�T�X�D�W�L�R�Q���L�V���V�L�J�Q�L�I�L�F�D�Q�W�O�\���L�P�S�U�R�Y�H�G���E�\���L�Q�W�U�R�G�X�F�L�Q�J���R�I���W�K�H���5�D�Q�N�L�Q�H���V�R�X�U�F�H��

solution as the test function (MLPG_R) (Ma 2005b) which omits the approximation of 

any derivatives of the unknown function. Although the MLPG_R has been developed in 

the recent decade and applied to various situations on wave structure interactions (Ma & 

Zhou 2009; Sriram & Ma 2012), so far there is no work that is devoted to the 

development of multiphase simulation using the MLPG_R method. Combining the 

flexible nature of meshless method in multiphase simulation and the advantages of the 

MLPG_R in solving Poisson equation, this study aims to extend the MLPG_R method to 

solve multiphase problems through implementing innovative interface conditions to cover 

wide range of fluid density ratios, to consider interface force and viscous effects dominant 

situations and to precisely capture interface particles for both non-breaking and breaking 

situations.      

 

1.3 Thesis overview 
The thesis starts with the introduction chapter which briefly defines the multiphase flow 

and the scope of this study, outlines the general analysis approaches adopted and states 

the aim and objectives of the study.  In Chapter 2, a review of Navier-Stokes equations 

based numerical approaches for multiphase flow including a section for interface tension 

models are presented. Chapter 3 formulates the multiphase MLPG_R equations 

implementing interface conditions which restrict the simulation to cases with negligible 

interface tension and small viscous effects. To precisely identify the interface particles 

where the interface condition exists Chapter 4 develops a new interface identification 

technique based on the absolute density gradient. Chapter 5 addresses an issue concerning 

the determination of the discretised pressure and provides a practical and efficient 

approach. Combining approaches proposed in Chapter 3 to 5, a systematic validation is 

carried out based through a number of case studies in Chapter 6. Chapter 7 extends the 

interface conditions by including the effects of interface tension and high viscosity and 

validation tests are then performed considering flows affected by high viscous and 
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interface tension forces as provided in Chapter 8. Chapter 9 summarizes the study and 

recommends future works on simulating multiphase flows with MLPG_R method. 

In this thesis, a novel multiphase flow model is proposed to simulate 2D flows of two 

immiscible fluids with following major achievements  

�x Extension of Meshless Local Petrov-Galerkin method with Rakine source 

solution (MLPG_R) from a single-phase model to a two-phase model  

�x Maintaining sharp discontinuity of fluid  properties at the interface 

�x Applicable for fluids (either inviscid or viscous) with a wide range of density 

ration (1.01 to 1000) and able to consider interface tension 

�x Applicable for flows with large deformations and breakings 

In developing this multiphase model, to achieve an effective and robust multiphase model 

several innovations are implemented in following aspects 

�x Coupling phases by an explicit pressure equation for interface particles based on 

newly derived interface conditions considering  

1. Jump of pressure gradient over density due to discontinuous pressure 

derivative in tangential direction over density, in addition with continuous 

pressure for fluids with small or zero viscosity and zero interface tension 

2. Modified jump of pressure gradient over density due to significant 

viscous effect and jump of pressure due to interface tension and normal 

shear stress for fluids with large viscosity and non-zero interface tension 

�x New technique of identifying interface particles 

�x New algorithms for solving algebraic pressure equation 
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In fully nonlinear multiphase modelling, the numerical methods are generally based on 

the Navier-Stokes equations, which can be split into two groups: mesh-based and 

meshless methods. The former is based on Eulerian or Eulerian-Lagrangian formulation 

with meshes fixed or moved to adapt to the interface in which the flux of mass, 

momentum and energy across mesh cells are simulated. The latter is based on a 

Lagrangian formulation using a set of arbitrary distributed particles without any mesh that 

provides the connectivity of those particles. The meshless methods are more adaptive and 

robust for problems with free surface, deformable boundary, moving interface and large 

deformation which the conventional mesh based methods are difficulty to apply. In this 

chapter both methods dealing with multiphase flow especially for interface treatments will 

be reviewed but with focus on the recently popular meshless methods including methods 

description and their treatment of the interface. In addition, the interface tension models 

will also be reviewed as it is critical in simulating interface tension force dominated cases. 

 

2.1 Mesh based methods 

2.1.1 Methods based on Arbitrary Lagrangian -Eulerian 

formulation  

The moving mesh methods use a set of separate boundary-fitted moving meshes for each 

phase. They represent the interface by the computational boundary, allowing accurate 

calculation of surface/interface tension force and direct implementation of the kinematic 

and dynamic conditions at the interface without any smoothing of fluid phase properties. 

Chapter 2    Literature Review 



24 
 

A mesh based method using the Arbitrary Lagrangian-Eulerian formulation was 

introduced for free surface flow (Muzaferija & Peri´c 1997). In this method unstructured 

meshes are moved to keep the grid nodes at the surface. The movement of the surface grid 

nodes is controlled by giving prescribed pressure on the surface and satisfying the 

kinematic condition and the space conservation law. But the surface tension and viscosity 

were neglected in this publication. The method was extended by Tukovic & Jasak (2012) 

and followed by Dieter-Kissling et al. (2014) to simulate interfacial flows considering 

interface tension and viscosity. In their development, the computational mesh consisted of 

two separate parts with each covering one of considered fluid phases. The two mesh parts 

were in contact over the two geometrically equal surfaces at the boundary of each phase 

(the interface) which is defined by a set of mesh faces. The mesh faces representing the 

interface are moved with the velocity computed from the interface conditions of 

continuous velocity, the balance of tangential stress and the balance of normal stress. The 

displacement of the interface mesh is used as a boundary condition for the solution of the 

mesh motion problem. With the current interface shape, pressure and velocity boundary 

conditions are then updated to solve each phase separately in a PISO iteration loop. The 

net mass fluxes through the faces at the interface were then checked if the residual levels 

satisfy the prescribed accuracy and if the procedure should return to interface movement 

to do the outer iterations. 

Despite the exact interface representing and interface condition implementing, the 

interface mesh adapting and reconstruction are complex and time consuming. This 

method also encounters difficulties in dealing with changes in interface topology such as 

overturning or breaking waves. 

 

2.1.2 Methods based on Eulerian formulation  

Different from the approach described above in which the governing equations were 

arbitrary Lagragian-Eulerian formulated and were able to be written separately for each 

phase with jump conditions imposed to couple the solutions at the fluid interface, on the 

fixed meshes with Eulerian formulation, one set of equations for the whole flow domain 

occupied by various phases is usually solved. In one set of equations, the various phases 

are treated as one fluid with variable material properties that change abruptly at the 

interface. In this way, two issues need to be considered. One is to identify different fluids 

and to descript the interface evolution; the other is to consider the coupling of those 

interface evolution algorithms with mass and momentum equations. In this section, details 

of both issues will be reviewed.    
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Identifying the different fluids and the description of the interface evolution are generally 

done by using a marker function that takes different values in the different fluids. As the 

fluids move, and the interface between fluids changes locations, the marker function must 

be updated. Updating the marker function accurately is critical for the success of 

simulations of multiphase flows. The following section will list various marker functions 

that have been developed.  

Volume of fluid (VOF) is a popular interface capturing method performs well in mass 

conservation.  The cells fully occupied by one fluid are marked as 1 and others fully 

occupied by the other fluid are marked as zero. If there is no phase change, the value of 

the marker function (�B) for the fluid material should be constant along its trajectory and 

can be expressed as 

�&�B
�&�P

L
�ò�B
�ò�P

E�› �®�Ø�BL �r (2.1) 

during interface evolution. Combining the divergence free condition given as 

�Ø�®�› L �r (2.2) 

and integrating Eq. (2.1) over the a mesh cell with a volume of �8�Ö and a boundary of �¼���a, 

it yields 
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 with �r Q�Ù�Ï Q�s is the volume fraction and �� �ª�Z�Y
 is the unit 

normal vector of cell boundary���ò�8�Ö . 

For cells with �Ù value varying from 0 to 1, the interface can be reconstructed for 

geometric representation. Early work of VOF developed piece wise constant approach 

(Noh & Woodward 1976; Hirt & Nichols 1981) and recently further improved by Yokoi 

(2007). Piecewise linear approach (Youngs 1982; Rudman 1997; Aulisa et al. 2007) is the 

state of the art in which the interface in a cell is assumed to be a line in 2D or a plain in 

3D. The unit normal of the piecewise interface in a cell is obtained from the values of �Ù of 

neighbouring cells. The drawback of this approach is that the interface segments are still 

not continuous between neighbouring cells. More recently, piecewise parabolic (Price et 

al. 2001; Diwakar et al. 2009) and piecewise cubic spline (López et al. 2004) approaches 

have been proposed and the scheme developed by Diwakar et al. (2009) provided 
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continuous interface segments between cell boundaries. The VOF is also developed 

without interface reconstruction to relieve its complexity and the interface is located on 

the transition region which may cover several cells (Zalesak 1979; Muzaferija & Peri´c 

1999; Xiao et al. 2005). The drawback of this scheme is the smearing of the interface and 

consequently numerical diffusions. Weller (2008) introduced an artificial compression 

term to the Eq. (2.1) to sharpen the interface and consequently to reduce the diffusions.  

Level set (LS) method developed by Osher & Sethian (1988) is also a general technique 

to capture the interface. In this method, the indicator is a smoothed signed distance from 

the interface as shown in Eq. (2.1) and zero level set �B�:�ž�á�P�; L �r��gives the location of the 

interface. One advantage of LS method is that the interface is sharply represented and 

complex interfacial shapes can be handled. However, severe errors arise in mass 

conservation and also in interface normal vector and curvature. To maintain the level set �B 

smooth throughout the entire simulation and to improve the mass conservation, different 

schemes of reinitializations for the signed distance function (Adalsteinsson & Sethian 

1995; Sethian & Smereka 2003; Sussman & Fatemi 1999; Min 2010) were introduced. 

Even with frequent reinitializations, mass loss also happens in long time simulations. 

Such mass loss is corrected by global (Zhang et al. 2010) and local (Ausas et al. 2011) 

mass correction steps. 

Other interface advection methods are also developed such as conservative level-set 

(Olsson & Kreiss 2005) combining VOF and LS to achieve better mass conservation of 

pure LS method and front tracking method in which the interface is tracked by Lagrangian 

marker points advected by the velocity determined from velocity field on the Eulerian 

grid. In the Phase-field approach (He & Kasagi 2007; Zhou et al. 2010) the interface is 

assumed to be of a finite thickness and the fluid dynamic is modelled by the Cahn-Hilliard 

equation which gives a physically realistic scalar field describing the concentration of one 

of the fluid components. The basic idea of this method is that an order parameter is 

adopted to characterize the different phases which satisfies the Cahn-Hilliard equations 

and is coupled to the Navier-Stokes equations. 

As the Navier-Stokes equation is solved on fixed mesh and the interface is represented by 

indicator functions, the jump conditions at the interface are implicitly implemented and 

combined into the following single-field equations which are valid for the entire 

computational domain 

�Ø�®�:�é�›�; L �r, (2.4) 
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where �é�:�ž�á�P�; and �ä�:�ž�á�P�; are constant in each phase and discontinuous at the interface. 

The surface tension force locally exists at the interface and can be expressed by Dirac 

delta function �Ü�ð with support on �Á 

�Œ�� L �:�ê�â�” �ð E�Ø�ð�ê�;�Ü�ð. (2.6) 

According to Eq. (2.4) and Eq. (2.5), density and viscosity fields and the surface tension 

term are determined based on the phase distribution. The surface tension issue will be 

discussed in section 2.3. In VOF methods the density and viscosity depend on the volume 

fraction �Ù�Ï  and the density is calculated as 

�éL �Ù�8�é�5 E�:�sF �Ù�8�;�é�6.   (2.7) 

For the viscosity, it can be computed by arithmetic mean as 

�äL �Ù�8�ä�5 E�:�sF �Ù�8�;�ä�6   (2.8) 

and also by harmonic mean as 
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Thus, the fluid properties are computed as averages weighted by the volume fraction. 

Even with level-set approach in which the interface is sharply represented, the sudden 

jump of fluid property can have an unfavourable effect on numerical stability. To avoid it, 

a common approach is to set a thickness of three meshes for the interface (Sussman & 

Fatemi 1999; van der Pijl et al. 2005) within which the density and viscosity are smoothly 

transferred. Therefore, in Euler mesh, no matter the interface is sharp or smeared 

represented, the fluid properties are commonly smeared. 

Phase-field method also represents the interface by a transition region of small but finite 

width which is based on models of fluid free energy. When coupling with Navier-Stokes 

Equations, the variable density as well as viscosity of the mixture in the fluid property 

transition zone is determined by mass concentration (Lowengrub & Truskinovsky 1998; 

Guo & Lin 2015) or alternatively the volume fraction (Liu & Shen 2003) which are also 

respectively used to relate the different velocities of the mixture to form the mass-
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averaged velocity and volume-averaged velocity. The physical meaning of the phase-field 

method also enables application to many physical states of miscible, immiscible and 

partially miscible (Anderson et al. 1998). 

 

2.2 Meshless methods 

There are also a number of attempts to adopt meshless methods in which a finite number 

of discrete particles are employed to record movement of the system. Each particle can be 

associated with one discrete physical object, or represent a computational node in the 

continuum problem domain. Field variables such as mass, momentum, energy and 

position are possessed by each particle and the evolution of the system is determined by 

the conservation of mass, momentum and energy. Most meshless methods are based on 

the Lagrangian formulation in which particles move in a Lagrangian frame according to 

the internal interactions with neighbouring particles and external forces, and the 

convection terms do not need to be dealt with. Therefore, time history of field variables 

on the material can be naturally traced. For multiphase flows, unlike mesh-based methods, 

the interface in meshless methods is traced by Lagrangian moving particles without the 

need to use any marker functions. Without connection between particles, the treatment of 

large deformation, fragmentation and coalescence of the interface or surface is much 

easier. Typical meshless methods in continuum level, also known as macroscopic level, 

include Smooth Particle Hydrodynamics (SPH), Moving Particle Semi-implicit (MPS), 

and Meshless Local Petro-Galerkin (MLPG) method. The former two methods have been 

developed to solve multiphase flows by many researchers and the discretization of the 

Navier-Stokes equations and the interface treatment will be described in the following 

sections. MLPG has been applied in single phase flows and based on which the extension 

to multiphase flows with other associated techniques have been developed during this 

study. In this review, the formulation of weak function derived from Navier-Stokes 

equations and discretization techniques for the MLPG method will be briefly introduced. 

 

2.2.1 Smooth Particle Hydrodynamics (SPH) method 

SPH was first proposed by Lucy (1977) to solve astrophysical problems governed by 

equations of the classical Newtonian hydrodynamics. Various applications simulated were 

mainly focused on fluid dynamics related areas, including gravity currents (Monaghan 

1994), flow through porous media (Morris et al. 1999; Holmes et al. 2011), shock 
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simulations (Morris & Monaghan 1997), heat transfer and mass flows (Cleary et al. 1998), 

underwater explosion (Swegle & Attaway 1995) etc. 

The basic formulation of SPH consists of integral representation of an arbitrary function 

and particle approximation. With a smooth kernel function���9 �:�žF�ž�ñ�á�D�;, the integral 

representation of function �B�:�ž�; is approximated by 

�Ã�B�:�ž�;�ÄL �ì �B�:�ž�ñ�;
��

�9 �:�žF �ž�ñ�á�D�;�@�ž�ñ, (2.10) 

where �D is the smoothing length defining the support domain of the kernel function, �ž and 

�ž�ñ are position vectors of target and neighbouring particles. By doing particle 

approximation, the continuous integral representations as Eq. (2.10) can be discretised to 

be a summation over particles in the support domain (Monaghan 1994) and expressed as 
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where �0 is the total number of particles in support domain, �I �Ý and �é�Ý are mass and 

density of particle �F located at �ž�Ý. For the spacial derivative, conventional expression 

(Monaghan 1994) can be expressed as 
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where �Ï�9 k�žF�ž�Ý�á�Do denotes the kernel gradient. To improve the accuracy, the following 

symmetric gradient form 

�Ï�B�:�ž�; L �éÍ �I �Ý

�Ç

�Ý�@�5

�F
�B�:�ž�;

�é�6 E
�Bk�ž�•o

�é�Ý
�6 �G�Ï�9 k�žF�ž�Ý�á�Do (2.13) 

is also widely used (Liu & Liu 2003; Monaghan 2005). One can see that in both Eq. (2.12) 

and Eq. (2.13) that the gradient formulations are only based on the gradient of the kernel 

function which can be analytically derived and consumes little computational time. So far, 

with the discretizations of the arbitrary function (Eq. (2.11)) and the gradient of the 

function (Eq. (2.12) or Eq. (2.13)), the Navier-Stokes equations can be solved by the 

weakly compressible SPH (WCSPH) (Antuono et al. 2012) in which the pressure is 

explicitly expressed by relating it to the density and the speed of sound. As pointed by 

Rafiee et al. (2012) and Lee et al. (2008), the advantages of WCSPH are that there is no 
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pressure boundary problem and its easy programming. However the drawbacks are also 

obvious as small time steps are required due to the sound speed adoption in the equation 

of state and spurious pressure oscillations arise during simulation. To obtain more stable 

results, artificial viscosity force is added (Colagrossi & Landrini 2003; Monaghan 2005). 

Incompressible SPH (ISPH) has also been widely adopted in the field of water wave 

dynamics (Shao & Lo 2003; Lind et al. 2012; Liu et al. 2013; Gotoh et al. 2014). In ISPH, 

the pressure Poisson equation is formed by projecting the intermediate velocity onto a 

divergence free space by prediction-correction time marching procedure. The prediction 

step is to evaluate intermediate velocity �› �Û��and position � �̃Û��without considering the 

pressure by 

�› �ÛL �› �á E�>�Ø�®�ä�:�Ø�› E�:�Ø�›�;�Í �; E�é�•�?�@�P�á (2.14) 

 
 

� �̃ÛL � �̃á E�› �Û�@�P�ä (2.15) 

Thus the correction velocity �› �ñcan be expressed as 

�› �ñL F
�@�P
�é

�Ø�L�á�>�5 (2.16) 

and the velocity at the next time step becomes 

�› �á�>�5 L �› �ÛF
�@�P
�é

�Ø�L�á�>�5�ä (2.17) 

Due to the invariability of density in an incompressible fluid, �Ï �®�› �á�>�5 is enforced to be 

zero yielding the pressure Poisson equation as follows 

�Ï �®l
�s
�é

�Ø�L�á�>�5pF
�s
�@�P

�Ï �®�› �ÛL �r�ä (2.18) 

In Eq. (2.18), the source term is based on the divergence of the intermediate velocity (Liu 

et al. 2013). The source term associated with variation of particle densities is also adopted 

in ISPH (Shao & Lo 2003) which is similar to the MPS method (reviewed in section 

2.2.2). With Eq. (2.18), the challenge is to accurately approximate the second order 

derivative of pressure when discretizing the Poisson equation. Different approximation 

schemes have been proposed and the frequently adopted one (Shao & Lo 2003; Liu et al. 

2013) is that 
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where �2�Ü�ÝL �2�ÜF �2�Ý, � �̃Ü�ÝL � �̃ÜF � �̃Ý and �ß is a small number introduced to keep the 

denominator non-zero and usually equals to �r�ä�s�D. This symmetric formulation 

corresponds to a symmetric and positive definite coefficient matrix of the linear equation 

which can be efficiently solved. To avoid large errors in discretizing the second derivative, 

particularly when particles are distributed in a disorderly manner as in violent water wave 

problems, Fatehi & Manzari (2011) proposed several forms of a higher order scheme for 

Laplace operator discretization. By comparing WCSPH and ISPH (Lee et al. 2008), larger 

time steps could be adopted (50 times larger in one of their cases) and higher accuracy 

was obtained by ISPH for the same particle number. For the disadvantages, apart from 

solving boundary value problems, directly approximate second order derivative for 

disorder particle distribution is still a significant source of inaccuracy even with diversely 

developed schemes. 

Based on above SPH theories and techniques for single phase flow, SPH has also been 

extended to model multiphase flows by properly treating the interface where the fluid 

properties are discontinuous.  Similar to the single-phase flow, the multiphase SPH can be 

also sorted into two categories: weakly compressible SPH (WCSPH) and incompressible 

SPH (ISPH).  In the WCSPH branch, Monaghan & Kocharyan (1995) started to adopt the 

WCSPH to simulate multiphase flow for the mixing dust-fluid fl ow, followed by gravity 

currents simulation (Monaghan et al. 1999). Both applications are limited in cases with 

small density differences as pointed out by (Hu & Adams 2006) due to their implicit 

assumption that the density gradient is much smaller than that of the smoothing kernel. To 

extend the simulation to large density ratios, Colagrossi & Landrini (2003) modified the 

spatial derivative approximation to diminish the large density difference effects across the 

interface. As applied in the non-conservative density evolution scheme, a mass 

conservation problem may accumulate in long time simulations even though the periodic 

density re-initialization of the density field was applied to relieve the problem to some 

extent. To ensure stability of the interface, Colagrossi & Landrini (2003) also applied a 

large unphysical surface tension on the low-density phase and applied XSPH correction 

on the momentum equation, which can be regarded as velocity smoothing or addition of a 

large viscous term. In Hu & Adams (2006), a conservative density evolution scheme was 

proposed in which the neighbouring particles only contributed to the volume rather than 

the mass. With this scheme and the newly proposed particle-averaged spatial derivative 

approximation, the density discontinuity at the interface was satisfied automatically and 
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the derivatives of the discontinuity were properly handled. The viscosity discontinuity 

was also dealt with by proposing a viscous term ensuring the continuity of velocity and 

shear stress at the interface even though both conditions were applied at the midpoint 

between each pair of particles belonging to different phases which was not the real 

interface. Cases with free surface and complex interface were not tested in their work. 

Other artificial techniques were applied to maintain the stability and sharp interface, such 

as repulsive forces between particles of different phases (Grenier et al. 2009) and the 

restricting of the degree of freedom to move the interface particles (Monaghan & Rafiee 

2013) which was not applicable to deal with violent multiphase flows (i.e. violent water-

air sloshing). Without velocity smoothing scheme or artificial surface tension, Chen et al. 

(2015) simulated multiphase flows with complex interface and large density ratios by 

ensuring pressure and space continuity at the interface. In summary, the WCSPH models 

successfully simulate multiphase flows with interfaces transferring fluid properties 

smoothly and maintain sharp discontinuities for fluids with both high and low density 

ratios. However, two issues are often mentioned for the WCSPH model.  One is the 

pressure oscillations especially near the interface due to the adoption of the equation of 

state relating pressure to the density. To remedy the problems, various attempts have been 

made, such as the summation of the particle-averaged pressure (Ritchie & Thomas 2001), 

the addition of artificial surface tension (Colagrossi & Landrini 2003), improvement of 

spatial derivatives (Hu & Adams 2006; Chen et al. 2015) and addition of repulsive force 

between different fluids (Monaghan & Rafiee 2013).  Another issue is that the time step is 

required to be normally very small in the CSPH modelling, which is considered as a main 

factor leading to its computational inefficiency (Hu & Adams 2007). In addition, the 

speed of sound adopted in low density fluid (i.e. gas) is even higher than in high density 

fluid (i.e. water) (which is unphysical) to ensure the density fluctuations are sufficiently 

low (Colagrossi 2005). Consequently, the high speed of sound for low density fluid 

requires even smaller time steps (Colagrossi & Landrini 2003).  

 

Comparatively, ISPH can use relatively larger time steps without considering the speed of 

sound and lead to better results as pressure is implicitly solved with less computational 

time (Hu & Adams 2007; Zheng et al. 2014).  Hu and Adams (2007, 2009) developed 

multiphase ISPH and proposed a scheme which can ensure the discontinuity of densities 

across the interface to investigate multiphase flows with relatively high density ratios. 

They only applied their methods to simple cases without extremely violent flow or flows 

without surface. Shao (2012) compared coupled ISPH in which the velocity prediction 

step and Poisson equation solving step were processed with mixed phase particles near the 
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interface and decoupled ISPH in which the pressure continuity condition was applied on 

the interface. It was found that both methods had comparable performance on the low 

density ratio of 1.001 and the decoupled ISPH worked better than coupled ISPH for high 

relative density ratio of 1.3. Very recently, Lind et al (2015) proposed a hybrid model for 

air-water flow in which the air is dealt with by the CSPH while the water is treated by the 

ISPH. This hybrid model satisfies the requirement of air compressibility in wave slam 

impacts as air ejection velocity prior to impact can approach the speed of sound. At the 

interface, the compressible phase provided pressure boundary condition on the 

incompressible phase ensuring the pressure continuity and providing Dirichlet boundary 

condition for the solution of the Poisson equation. On the contrary, the incompressible 

phase provides velocity boundary conditions for the compressible phase. However, as the 

definition of the interface for each phase was not mentioned, it was not clear that on 

which particles those two conditions were applied. 

 

As pointed out above, the ISPH needs to solve P�R�L�V�V�R�Q�¶�V�� �H�T�X�D�W�L�R�Q�� �I�R�U�� �S�U�H�V�V�X�U�H�� This 

implies that two issues have to be dealt with.  One issue is related to what and how the 

boundary conditions are applied on the interface. Hu and Adams (2007, 2009) suggested 

ensuring the continuity of pressure and the ratio of pressure gradient to density.  The two 

conditions were imposed in their work by assuming that the middle point between each of 

a pair of particles is on the interface. As the pressure gradient is determined averagely by 

using many pairs of particles in the range of an influence domain of a concerned point, the 

interface in their formulation was actually a layer with a thickness in an order of the 

influence domain size, about double distance of two particles.  In the coupled ISPH of 

Shao (2012), the pressure of different phase is not distinguished.  In this approach, the 

interface is actually smeared, which was perhaps one of reasons why the coupled model 

did not work as well as the decoupled model. In the decoupled ISPH (Shao 2012), only 

pressure is ensured to be continuous but not the velocity at the interface. The second 

issues related to the ISPH are about how to discretise the Laplace operator involved in the 

Poi�V�V�R�Q�¶�V�� �H�T�X�D�W�L�R�Q�V�� �I�R�U�� �S�U�H�V�V�X�U�H����Almost all the ISPH models chose to directly 

approximate the second order derivatives in the Laplace operator. Many schemes have 

been proposed as reviewed by Zheng et al. (2014).  However, the errors of the schemes 

can be more than 30% in many points when they are applied to estimate the values of 

Laplace operator on simple functions if the points are irregularly distributed. Furthermore, 

the inaccuracy is deteriorated with the increase of irregularity in the particle distribution 

(Zheng et al. 2014). As the distribution of particles in the violent motion is always 
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irregular, the concern does exist with direct approximation to the second order derivatives 

of the Laplace operator.  

 

2.2.2 Moving Particle Semi-implicit (MPS) method 

The moving particle semi-implicit (MPS) method (Koshizuka & Oka 1996) for single 

phase flow is analogous to the SPH method providing approximations to differential 

equations on the basis of integral interpolation. However, there are three typical 

differences between MPS and SPH. The first is that the original MPS applies simplified 

differential operator models based on local weighted averaging process as shown in 

Eq.(2.23) and Eq. (2.27) rather than taking the gradient of a kernel function as in SPH. A 

further difference is that MPS uses a semi-implicit prediction-correction process to solve 

the Navier-Stokes equation by treating the fluid as fully incompressible. This prediction-

correction project procedure is different from conventional WCSPH but is similar to the 

ISPH method. Finally, the particle number density is introduced in the MPS method to 

form the source term of the Poisson equation as shown in Eq.(2.22) rather than velocity 

divergence used in some of ISPH methods (Liu et al. 2013).  

The prediction and correction step is similar to that in ISPH as shown in Eq. (2.14) to 

(2.16). The incompressibility of the MPS is ensured by satisfying the constant fluid 

density and consequently the particle number density as the density of each particle 

remains constant during simulation. �J�4, �J�Û and �J�ñ denote particle number density at each 

time step, intermediate time step (after prediction) and the correction respectively which 

satisfy 

�J�ÛE�J�ñL �J�4�ä  (2.20) 

By relating the velocity correction �› �ñ with �J�ñ through the mass conservation equation, one 

can obtain 

�s
�J�4

�J�ñ

�¿�P
E�Ø�®�› �ñL �r�ä (2.21) 

Substituting Eq. (2.16) into Eq. (2.21) and replacing correction particle number density �J�ñ 

by �J�4 F �J�Û, Eq. (2.21) can be rearranged as 

�Ø�6�LL
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�ä (2.22) 
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In Eq. (2.22), the source term of the pressure Poisson equation are particle number 

densities at each time step, which is a constant from the initial setting and intermediate 

particle number density determined by the intermediate particle position at each time step. 

The Laplace operator on the LHS of Eq. (2.22) is represented by the particle interaction 

model (Koshizuka et al. 1998) as expressed below 

�Ã�Ï �6�ö�Ä�ÜL
�t�&�æ

�J�4�ã
Í k�ö�ÝF �ö�Üo
�Ý�· �Ü

�Sk�ž�FF �ž�E�á�N�4o�á (2.23) 

where���ö is an arbitrary scalar function, �&�æ is number of space dimensions,���ž�• and �ž�Ý are 

coordinates of central particle and neighbouring particle respectively, �ã is a parameter 

based on particle distribution and given by 
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where �J�4��is the constant particle number density calculated at the very beginning 

calculated as 

�J�4 L �:�J�Ü�;�4 L Í �Sk�ž�FF �ž�E�á�N�4o
�Ý�· �Ü

�ä (2.25) 

The most common kernel function applied in MPS (Koshizuka et al. 1998) is  
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where���N�4 is the cut-off radius. 

After solving the Eq. (2.22) velocities need to be updated by pressure gradient with the 

operator of  
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The original MPS method was proposed for single phase flows such as water column 

collapse (Koshizuka & Oka 1996). In that publication, the kernel as shown in Eq. (2.26) 

was first employed to maintain the incompressibility as the kernel function was infinite 

when particles overlapped which leaded to a stronger repulsive force between closer 

particles through the Poisson equation. Further development was made by Koshizuka et al. 
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(1998) in which a candidate list with the radius larger than the support domain was 

employed and from this list the particles in the support domain were picked out. The 

frequency of updating the candidate list based on the CPU time was discussed and it 

concluded that the scale of operation was reduced from �0�6 to �0�5�ä�9  where �0 denoted the 

total particle number. Techniques to deal with floating bodies were also proposed by 

using a passively moving-solid model to describe the motion of a rigid body in a fluid. In 

(Gotoh et al. 2001), a sub-particle-scale (SPS) turbulence model was introduced for high 

Reynolds number flow simulations based on the concept of sub-grid-sacle (SGS) model in 

Eulerian large-eddy simulation (LES) models. Above mentioned techniques are reviewed 

by (Gotoh & Sakai 2006) and were applied on breaking wave over a slope (Koshizuka et 

al. 1998) and over different seabed geometries (Gotoh & Sakai 1999). As for the 

interaction with structures, MPS was extended to compute nonlinear motions of a floating 

body influenced by water on the deck and to transient dynamic loads with finite elastic 

structural displacements (Hwang et al. 2014).  

Based on classic MPS gradient and Laplace approximation, several modifications were 

proposed. A corrected version of pressure gradient approximation (Khayyer & Gotoh 

2008) guarantees the conservation of both linear and angular momentum by deriving an 

anti-symmetric pressure gradient term which was applied on plunging breaking waves. 

However it was pointed out by Tsuruta et al. (2013) that such correction was equivalent to 

adding an artificial repulsive force term which was dominantly excessive and failed to 

produce the main flow features. To solve this problem Tsuruta et al. (2013) proposed a 

dynamic stabilization scheme in which the repulsive force term was in accordance with 

particle distribution. To improve and stabilize the pressure during the simulation, a higher 

order Laplace approximation for pressure and viscous term was derived (Khayyer & 

Gotoh 2010) and showed enhanced pressure calculation on sinusoidal pressure 

oscillations and violent sloshing. Meanwhile, a higher order source term was derived to 

form a new pressure Poisson equation by using higher order time differentiation of 

particle number densities. The above improvements of Laplace approximation and 

Poisson equation were then extended to 3D MPS in (Khayyer & Gotoh 2012). The 

alteration of the source term was also done by (Kondo & Koshizuka 2011; Chen et al. 

2014) to suppress the pressure oscillation in MPS. Tsuruta et al. (2015) introduced the 

space potential particles (PPS) to resolve the inconsistency in the volume conservation 

around free surface. The PPS are novel particles corresponding to each surface particle in 

the single phase flow and their locations are determined by particle number density 

deviations from that of inner particles.  
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In the fields of multiphase flow, the pioneering work was done by Gotoh & Fredsøe (2000) 

who developed a solid-fluid two-phase MPS method. Recently a weakly compressible 

MPS (Shakibaeinia & Jin 2012b) was developed introducing the equation of state to 

original MPS and presenting the ability to simulate multiphase flow with low density 

ratios (up to 5). Similar to the early stage SPH (Hu & Adams 2006) multiphase work, this 

modification comprised of density smoothing scheme giving a spatial averaging of 

density as expressed below 
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�s
�J�4

Í �é�Ý�Sk�ž�ÝF �ž�Ü�á�N�4o
�Ý�· �Ü

�ä (2.28) 

This smoothed scheme for density on interfaces was also similar to mesh-based methods 

such as VOF (Yokoi 2007) and level-set (Olsson & Kreiss 2005) presenting an interface 

smoothly transferring the fluid properties. It was pointed out by Khayyer and Gotoh (2013) 

that the smooth scheme downgrades the accuracy of sharp variations of density at the 

interfaces and subsequently led to unphysical dispersions of particles near the interface 

representing as unphysical penetration of heavier fluid into lighter fluid in immiscible 

two-phase simulations (Shakibaeinia & Jin 2012b). To minimizing density diffusion and 

maintain a sharp interface, Khayyer & Gotoh (2013) presented a first order density 

smooth scheme based on Taylor series expansion expressed as 
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This extension effectively kept the sharpness of special density variations and minimized 

the unphysical perturbations. Thus the performance of multiphase MPS was significantly 

enhanced for modelling flows with relatively high density ratio which reached 1000. 

Other efforts have been taken to maintain clear interface for high density ratio simulations. 

One of them is to incorporate the weak compressibility into Poisson�¶s equation (Natsui et 

al. 2014) which was previously applied in single phase flow (Tanaka & Masunaga 2010) 

to obtain a constant fluid volume and smoother pressure distribution. When applied in 

multiphase flow, especially for large density ratios (e.g. gas-liquid flow), the weak 

compressibility improves the stability of the interface even with special averaged density 

function (Shakibaeinia & Jin 2012b). However, improper values of the compressive 

parameter led to decrease of the fluid volume. Thus optimization tests of the parameter 

were done in a  hydrostatic case (Natsui et al. 2014) to obtain both clear interface and 

constant volume. Another technique to stabilise the gas-fluid interface is to setup a 

checker-board initial particle distribution (Natsui et al. 2014) rather than conventional 
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simple cubic distribution. The problem of particle interpenetration (no sharp interface) at 

the interface was also pointed out by (Ng et al. 2015) and was relieved by solving the 

pressure Poisson equation on the background mesh whose intermediate velocities were 

interpolated from moving particles. The densities at the interface were determined by the 

level-set method. In (Ng et al. 2015) particle deleting and feeding technique was applied 

to ensure the even particle distributing without using unphysical collision model 

(Shakibaeinia & Jin 2012b). 

 

2.2.3 Meshless Local Petro-Galerkin (MLPG) method 

The MLPG method was proposed by (Atluri & Zhu 1998) to deal with Laplace and 

Poisson equations based on the local symmetric weak form and the moving least squares 

approximation. The method successfully solved fracture mechanics problems (Batra & 

Ching 2002), beam and plate bending problems (Atluri & Zhu 2000) and three 

dimensional elasto-static and elasto-dynamic problems (Han & Atluri 2004b; Han & 

Atluri 2004a). Atluri et al. (2006) presented the MLPG mixed finite difference method 

(FDM) to solve the solid mechanics problems, in which the displacements, displacement 

gradients, and stresses were interpolated independently using identical MLS shape 

functions. The MLPG mixed finite difference method successfully solved various 

elasticity problems with complex displacement and stress solutions. For fluid dynamic 

problems, the steady flow around a cylinder, steady convection-diffusion flows in one and 

two dimensions and the incompressible flows by solving Navier-Stokes equations (Lin & 

Atluri 2001) were addressed. It was then developed to solve convection-diffusion flow 

problems (Lin & Atluri 2000). 

The method is fully general in solving general boundary value problems and linear 

Poisson�¶s equation is used here to demonstrate the formulation. The Poisson�¶s equation 

can be written as 

�Ø�6�B�:�ž�; L �C�:�ž�;              �ž �Ð�¹ �á (2.30) 

where �C�:�ž�; is the given source and the domain �¹  is enclosed by the boundary consisting 

of �Á�Ù and �Á�ä with the boundary conditions of 

�BL �B    on �Á�Ù�á (2.31) 
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(2.32) 
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where  �B and �M are the prescribed potential and normal flux, respectively , on the essential 

boundary �Á�Ù and flux boundary �Á�ä. �” is the normal direction pointing outward of the entire 

boundary. Other than Galerkin finite element or element free Galerkin methods which 

give global weak forms over the entire domain���×, the MLPG employs the local weak form 

over a local sub-domain �×�æ which is located inside the global domain and is conveniently 

taken as a circle in 2D and a sphere in 3D problems. A generalized local weak form with 

the penalty method (Atluri & Zhu 1998; Atluri & Shen 2002) to implement the essential 

boundary condition can be written as 
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where �B is the trial function, �î  is the test function and �Á�Ù is a part of the boundary �ò�×�æ 

over which the essential boundary condition is specified. The second term of Eq. (2.33) 

vanishes when the domain �×�æ is entirely inside the global domain and there is no 

interaction between �ò�×�æ and �Á�Ù. �Ù is a penalty parameter giving the value of �=�( �s.  By 

applying �*�D�X�V�V�¶�V theorem and choosing a test function �î  vanishing over �ò�×�æ (excluding 

the interaction part between the global domains), the Eq. (2.33) is rearranged to a 

generalized local symmetric weak form expressed as 
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(2.34) 

Theoretically, the Eq. (2.30) and its boundary conditions will be satisfied as long as 

the summation of all local domains covers the global domain, i.e., �ë �×�O�@�×. But 

Atluri & Zhu (1998) pointed out that satisfactory computational  results were  given even 

when the summation of sub-domains did not cover the global domain. For the trial 

function in Eq. (2.34), it requires a local interpolation or approximation to present 

unknown function of �B. In MLPG, there are a variety of independent choices of nodal trial 

and test functions applying over nodal sub-domains with different sizes and shapes. These 

features make the MLPG method very flexible. Various methods (i.e., Moving least 

square (MLS), Shepard function, Partition of Unity methods (PU), Reproducing kernel 

particle methods (RKPM) and Radial basis functions (RBF)) of approximating a trial 
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function over an arbitrary domain using its value (or fictitious value) at a finite number of 

randomly located particles were discussed in Atluri and Shen (2002). In the following 

MLPG development, MLS interpolation for trial function was widely adopted (Batra & 

Ching 2002; Han & Atluri 2004a; Atluri et al. 2006) for its reasonable accuracy and high 

order continuity. By comparing six test functions it was found that the Heaviside step 

function was robust as the corresponding MLPG method does not involve any domain and 

singular integrals to generate the global stiffness matrix and only involves a regular 

boundary integral (Atluri & Shen 2002).  

With the generalized formulation of the MLPG method, the incompressible flow problems 

were addressed by solving Navier-Stokes equations (Lin & Atluri 2001) and the method 

was first extended to simulate the nonlinear water waves by (Ma 2005a) in which after 

time-split procedure, the Poisson�¶s equation was formulated as 

�Ï �6�LF
�é
�¿�P

�Ï �®�› �ÛL �r (2.35) 

with the source term of velocity divergence where �› �Û was the intermediate velocity 

considering gravity and viscous force (not considered in (Ma 2005a) but capable to add), 

�é was the density, �¿�P was the time step in simulation discretization and  �L was the 

pressure which would be solved by MLPG method. At each of the inner particles, a sub-

domain was specified as a circle in two-dimensional simulations and over which the 

product of the Eq. (2.35) and an arbitrary test function �î  was integrated leading to  
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where  �3�M is the area of the sub-domain centred at the particle ��. In MLPG, the choice of 

test function is flexible and many variants of MLPG methods have been developed by 

(Atluri & Shen 2002) in which six test functions were compared numerically and the 

Heaviside step function was tested to be more promising than others. By employing the 

Heaviside step function expressed as 

�î L \
�s�á�������������������������������������E�J���×�Â��
�r�á �K�P�D�A�N�S�E�O�A

 (2.37) 

and applying Gauss�¶s theorem to Eq. (2.36), Ma (2005a) obtained the weak formulation 

for particles whose sub-domain �×�Â is entirely within the global domain (e.g., excludes the 

boundary particles) shown as 
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Instead of the second derivative in Poisson�¶s equation, the weak form shown in Eq. (2.38) 

only needs to deal with the gradient of the pressure. The unknown function (e.g., the trial 

function) at a specific position is approximated by a set of nodes located in its support 

domain and can be written as 

�B�:�ž�; L Í �Ô�Ý�:�ž�;�Bk�ž�Ýo

�Ç

�Ý�@�5

�á (2.39) 

where���0 is the number of total particles that affect the central particle located at �ž, �Ô�Ý�:�ž�; 

is the interpolation function also called the shape function, which is formulated by using 

moving least square (MLS) method (Atluri & Zhu 1998; Ma 2005a; Han et al. 2006). And 

the derivative of an unknown function was found by taking direct differentiation of the 

shape function.  

As for boundary particles typically used for surface and wall particles, the implementation 

of boundary conditions is altered from the original MLPG in non-linear wave simulation. 

Firstly, the surface particles on which zero pressure is specified (similar to essential 

boundary condition in (Atluri & Zhu 1998)) are solved by specifying zero pressure rather 

than in integral form as shown in penalty method. The reason is that the integral form 

works well for fixed or small displacement boundary problems while it is not suitable for 

the water wave problem as relatively large deformation occurs on the free surface (Ma 

2005a). Similar free surface conditions by direct integration are also adopted in other 

meshless particle methods (Koshizuka & Oka 1996; Lee et al. 2008). Secondly, according 

to numerical tests in (Ma 2005a), wall particles satisfying zero normal pressure gradient 

condition which is similar to flux boundary condition (Atluri & Zhu 1998) are also 

formulated by direct approximation of the pressure gradient rather than the integration 

over the incomplete sub-domain. 

A further development was carried out using a new form of the MLPG method which is 

called MLPG_R. In that method, the solution for Rankine sources rather than the 

Heaviside step function was taken as the test function (details in derivation are in section 

3.2). Based on this test function, a weak form of governing equations was derived as  

�F±
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�é
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�� �º
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(2.40) 
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which did not contain any derivatives of unknown functions and therefore made 

numerical discretization of the governing equation relatively easier and more efficient. 

This feature overcomes the problems associated with direct numerical approximation to 

second derivatives in existing ISPH and MPS formulation and the first derivatives in 

original MLPG method. Therefore, in this weak formulation, the only need is to 

approximate the un�N�Q�R�Z�Q���I�X�Q�F�W�L�R�Q�V���G�X�U�L�Q�J���G�L�V�F�U�H�W�L�]�L�Q�J���W�K�H���3�R�L�V�V�R�Q�¶�V���H�T�X�D�W�Lon. As a result, 

the approximation of the unknown functions in this approach is required to be only 

integrated. Clearly, this is an advantage over requiring the approximation of unknown 

functions to have second order derivatives. Zheng et al (2014) has shown that the use of 

this approach can significantly enhance the efficiency and robustness of numerical 

methods. A semi-analytical technique was also developed for the MLPG_R method (Ma 

2005b) to evaluate the domain integral involved in this method, which dramatically 

reduces the CPU time spent on the numerical evaluation of the integral. Numerical tests 

showed that the MLPG_R method could be twice as fast as the MLPG method for 

modelling nonlinear water wave problems. Simulations of 2D freak waves, sloshing wave 

and various nonlinear water waves were successfully carried out by MLPG_R method 

(Ma 2007). Ma (2008) made another step forward in the development of the MLPG_R 

method for water waves in which a new meshless interpolation was suggested, which is as 

accurate as the moving least square method but is much more efficient, particularly for 

computation of gradients of unknown functions.  

Taking the advantage of the meshless particle method in dealing with flows with large 

deformations or even breaking waves, the MLPG_R method was further developed to 

model the violent waves and their interactions with rigid structures for 2D cases (Ma & 

Zhou 2009) and 3D cases (Zhou & Ma 2010). In the above two works, a surface 

identification technique was proposed by incorporating three auxiliary functions into the 

particle number density method (PNDM). The new technique accurately identifies the free 

surface particles even in violent situations by additionally counting occupied quarters and 

specified rectangles of the support domain of the target particle. Compared to PNDM 

(Koshizuka & Oka 1996; Khayyer & Gotoh 2009), the accuracy of the identification is 

less dependent on regularity of particle distribution which is downgraded in violent 

situations. Ma & Zhou (2009) also adopted a source term of pressure Poisson equation 

incorporating the density invariant term used in the MPS (Koshizuka et al. 1998; Hwang 

et al. 2014; Khayyer & Gotoh 2012) into the velocity divergence in original MLPG_R 

method to overcome the particle distortion under violent conditions. A constant weighting 

of the density invariant term was obtained after numerical tests. Such incorporation of the 

source term was also discussed by incompressible SPH (Hu & Adams 2007; Gui et al. 
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2014). Hu & Adams (2007) achieved both density and velocity divergence constrains by 

double solving the pressure Poisson equation which increased the expense of CPU time. 

Alternatively, (Gui et al. 2014) combined two constrains with numerically determined 

weights whose variation was also given based on different flow conditions. Apart from 

the surface particle identification technique and density invariant introduced source term, 

the Newtonian viscosity was also considered by adding a viscous term in calculating the 

intermediate velocity in MLPG_R method (Ma & Zhou 2009). Another application called 

hydro-elasticity was also achieved by MLPG_R (Sriram and Ma, 2012) by solving fluid 

and structure dynamics separately while matching conditions on their interface by 

interaction. Besides, a novel approach was proposed to estimate pressure gradient when 

updating velocities and positions of fluid particles, leading to a relatively smoother 

pressure results. However, the MLPG_R method is up to now only applied to single phase 

flow and the extension to the simulations for multiphase flow is carried out in the 

following chapters. 

 

2.3 Interface tension models 
Since fluid molecules experience an uneven attractive molecular force near or at the 

surface and an abrupt change occurs when fluid properties change discontinuously, 

interface tension is an inherent characteristic of material interfaces of fluids. Thus, the 

effects of interface tension play important roles on many natural and industrial multiphase 

flow phenomena, especially when the characteristic length scales of the system are 

sufficiently small and become relevant compared to inertia effects. Examples can be 

found in the investigations of capillarity (Prosperetti 1981; Popinet 2009; Wang & Tong 

2010), droplet dynamics (Hysing et al. 2009; Tripathi et al. 2015), marangoni effects 

(Haj-Hariri et al. 1997; Ma & Bothe 2011) and surfactant behaviour (Stone 1990; Xu et al. 

2006). Numerical simulations of interface tension highly rely on the interface 

representation based on which the curvatures are estimated and interface tension models 

or interface boundary conditions are implemented. The following review is divided into 

two groups. The first group is that the interface tension is treated as a localized body force 

distributed within a transition region of finite thickness at the interface and the other is to 

simulate sharp interface force applied on an infinite thin interface.  

In the first group, a continuous surface force (CSF) model interpreting surface tension as a 

continuous effect across an interface (Brackbill et al. 1992) was adopted which alleviates 

constrains of topological complexity of the interfaces. By satisfying the Laplace�¶s formula 
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with the constant surface tension coefficient���P, a volumetric surface force was derived and 

shown as 

�(�æ�é�:�ž�; L �ê�â�:�ž�;
�Ø�?�Á�:�ž�;

�>�?�?
�á (2.41) 

where �â is the curvature, �?�Á is the color function varying smoothly from one constant to 

another over the interface in the original CSF work and �>�?�? is the jump of two color 

constants. The normal vector and curvature were also proposed as  

�” L
�� �Ö�Á

���� �Ö�Á��
 ,   �âL F�Ï �®�”�ä (2.42) 

This model was first implemented in VOF method (Brackbill et al. 1992) and successfully 

applied on equilibrium and non-equilibrium rod, Rayleigh-Taylor instability, wall 

adhesion and low-gravity flows. It reported that the smoothness of the curvature and 

correspondingly the surface force was dependent upon the smoothness of the colour 

function in which the density was adopted as the colour function. The smoothed colour 

function in VOF to compute the curvature and the surface tension force was then adopted 

in Ubbink & Issa (1999) and Xiao et al. (2005). For interface reconstructed VOF, the 

colour function became discontinuous on sharp represented interface which made it 

difficult to accurately evaluate the first and second derivatives and also leads to inaccurate 

results of normal vectors and curvatures (Wörner 2012). Apart from VOF, the CSF model 

is also implemented in Level-set method by replacing the colour function with a 

regularized continuous delta function associated with the level-set function (Hysing 2006; 

Raessi et al. 2009). Benefitting from the smooth level-set function across the interface, the 

calculations of normal vector and curvature becomes much easier and accurate. But in 

either method, when calculating the curvature, convergent problems occur with mesh 

refinement (Cummins et al. 2005; Desjardins et al. 2008). As a remedy, a least square 

approach adopted by Desjardins et al. (2008) in the accurate conservative level set method 

was tested to be first order convergent and furthermore height function approach 

implemented in both Level-set (Owkes & Desjardins 2013) and VOF (Owkes & 

Desjardins 2015) methods achieved a second-order convergence. But extra computations 

are required to integrate the liquid volume fraction to build the height function for the 

concerned and neighbouring cells.  

Similar to CSF, the continuous surface stress (CSS) model (Lafaurie et al. 1994; Renardy 

& Li 2001; Bothe et al. 2011) treats surface tension force as a divergence of a surface 
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stress tensor acting tangential to the interface. The conservative nature of the CSS ensures 

the zero net surface tension force for a closed interface which is superior to the CSF.  

For meshless particle approaches, although the interface is inherently traced by the 

moving of particles, the CFS (Monaghan 2000; Zainali et al. 2013) and the CSS (Hu & 

Adams 2006; Hu & Adams 2007) are widely adopted by transferring the surface force to 

volumetric force and exerting it on a layer of interface region as in mesh based methods. 

To reflect the reality of the non-uniformly distributed surface forces for each phase, a new 

density-weighted colour-gradient method (Adami et al. 2010) was proposed by using a 

sharp-jumped colour function. But convergence problems of curvature calculation still 

cannot be avoided. Zhang (2010) proposed a method to locally reconstruct the free surface 

after the surface particle identification which was also adopted in Zhang et al. (2012) for 

the interface of two-phase flows. In 2D cases, an interpolation polynomial is used to fit 

the curve and MLS is used in 3D cases. But interpolation polynomial constructed curves 

may have oscillations due to irregular interface particle distribution. Those oscillations 

lead to inaccurate first and second derivatives and consequently inaccurate curvatures. 

Although the surface and interface are sharply identified and the curvatures are calculated 

based on the sharply reconstructed curve, the volumetric surface forces are also applied 

over single particle distance (Zhang 2010) and over the scale of the kernel support domain 

(Zhang et al. 2012) by transferring the force to the particles near the interface. 

Different from volumetric surface force method, the second group treats the interface 

tension as a part of the interface boundary condition which is directly implemented on the 

sharp interface. A mesh based interface tracking method employing the Arbitrary 

Lagrangian Eulerian formulation (Tukovic & Jasak 2012; Dieter-Kissling et al. 2014) can 

be sorted into this group as the interface is sharply represented by the moving mesh faces. 

For surface/interface tension calculation, Quan & Schmidt (2007) employs least square 

parabola fitting of the mesh faces while Tukovic & Jasak (2012) use the novel force- 

conservative approach (Perot & Nallapati 2003) which ensures zero net surface tension 

force on any closed surface without requirement of complex derivatives or curve fitting. 

Although such moving mesh methods allow accurate calculation of surface tension force 

and direct implementation of the kinematic and dynamic conditions at the interface, they 

are restricted to moderately deformed interfaces with constant topology and are not 

applicable to violent situations such as wave breaking. 
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The problem discussed in this thesis involves flows containing two immiscible and 

incompressible fluid phases of �3�5 and �3�6 separated by the interface �+ as illustrated in 

Figure 3.1. In the fluid domain, particles can be sorted into three groups: those located on 

the interface (referred to as interface particles), those located continuously within each 

phase (referred to as inner particles) and those single particles sometimes break away 

from their continuous phase and penetrate into the other phase crossing the interface 

(referred to as isolated particles). Pressure and velocity will be solved for each particle 

based on the Navier-Stokes equation and the particle will move according to the achieved 

velocity in the Lagrangian way. In this chapter, the particle motion procedures will be first 

carried out. Then the pressure formulations of inner particles, interface particles and 

isolated particles will be derived based on MLPG_R algorithm and newly proposed 

interface conditions. 

Chapter 3    Methods for Multiphase 

Flows with Small Viscosity and Zero 

Interface Tension 
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Figure 3.1: Illustration of two-phase flow consisting of phase �3�5( ) and �3�6 ( ) separated by 
the interface �� (- - -) represented by interface particles ( ). There exist isolated particles 
surrounded by particles of the other phase.  

  

3.1 Equations and procedure for nodes motion  
The motion of particles is governed by the incompressible Navier-Stokes equations and 

the continuity equation in Lagrangian formulation which can be written as 

�@�› �ß

�@�P
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�é�ß
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�é�ß

�r �×�á�ß�á (3.1) 

  

�Ø�› �ßL �r�á  (3.2) 

       

�* L \
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, 

where���•��is the gravitational acceleration, �› is the fluid velocity vector, �L is the pressure, �é 

is the fluid density and �í is the fluid viscosity. The subscript �H and �G��present the phase that 

particles belong to, where���H�Ð�3�5�‘�”���3�6�á�G�Ð�3�5�‘�”���3�6���„�—�–���HM�G. It is noted that 

when�����* L �r, Eq. (3.1) becomes the normal momentum equation for continuous fluids, 

whereas �* L �s��gives the equation of a single particle moving in the other fluid driven by 

the pressure gradient of the surrounding fluid, the drag force and the gravity. 

The two forms of the continuity equation as shown in Eq. (3.2) are equivalent for 

continuous fluids but the first can be applied to isolated particles. For inner and interface 

particles (�* L �r), the motions are driven by gravity, pressure gradient and viscous force 

as in other Lagrangian multiphase approaches (Shakibaeinia & Jin 2012b; Monaghan & 

Rafiee 2013) for two continuous phases. To ensure the continuity of the terms related to 

viscous stress on the interface, the term of  �í�ß�Ø�6�› �ß in Eq. (3.1) is replaced by ���:�í�ß�Ø�6�› �ßE
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�í�Þ�Ø�6�› �Þ�;���t��  as an average for interface particles. The similar approach was also adopted 

by Grenier et al. (2009) and Flekkoy et al. (2000) by adopting the inter-particle averaged 

shear stress. 

For isolated particles (�* L �s), the total force on them is contributed by pressure gradient 

of the other phase, drag and gravity. Other forces such as lift force and Basset force are 

assumed negligible in this paper. The similar simplification was also adopted in 

Sokolichin and Eigenberger (1997) for the motion of air bubbles in water and in 

Monaghan and Kocharyan (1995) for the motion of dust particles in air. Isolated particles 

were also dealt with by Gotoh and Sakai (2006) in their MPS method in the occasion that 

single air particle was surrounded by water particles. They obtained pressure by 

temporarily giving water density to that air particle to consider the reaction force from the 

air particle to surrounding water particles while the movement of the air particle was not 

provided. �(�×�á�ß��in Eq. (3.1) accounts for the drag force exerted by surrounding phase on the 

isolated particle which was given by Odar (1964) and expressed as 

�r �×�á�ßL
�#�ß

�t�8�ß
�%�×�é�Þ���› �ÞF �› �ß���:�› �ÞF �› �ß�;�á�:�HM�G�;�á (3.3) 

where�����#�ßL �è�4�6 and �8�ßL
�8

�7
�è�4�7 with �4 being the radius of the isolated particle. 

�%�× is the drag coefficient approximated by the standard drag curve (Clift et al. 1978; 

Delnoij et al. 1997):  

�%�× L �P
�t�v
�4�Ø

k�sE�r�ä�s�w�4�Ø
�4�ä�:�;�<o �4�ØO�s�r�r�r

�r�ä�v�v �4�ØR�s�r�r�r
�á 

where�������4�ØL �t�é�Þ�4���› �ÞF �› �ß�����ä�Þ. In Eq. (3.1) and (3.3), the pressure �L�Þ and velocity �› �Þ 

at the centre of an isolated particle are interpolated from the continuous phase as it is 

assumed that a small number of isolated particles have negligible disturbance on the 

pressure of continuous phase based on Gotoh and Sakai (2006). Substituting Eq. (3.3) to 

Eq. (3.1), one can observe that there is a term of�����é�Þ �é�ß�¤ , indicating the ratio of density of 

surrounding particles to that of the isolated particle. A high value of that term leads to a 

significant effect of drag force on isolated particles such as air bubbles in water. On the 

other hand a low value leads to a negligible effect such as on water drops in air. 

On rigid wall boundaries, the following condition is satisfied  

�› �’ �®�” L �• �®�”�ä (3.4) 
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Taking time derivatives of the velocities on both sides of Eq. (3.4) and substituting 

�Š�› �’ �Š�š�¤  into Eq. (3.1) for the continuous particles, the pressure of particles on the rigid 

wall boundaries satisfies 

�” �®�Ø�L�ßL �é�ßk�” �®�• F �” �®�•�6E�í�ß�” �®�Ø�6�› �ßo�á (3.5) 

        
where���”��is an unit normal vector of the wall boundary with a velocity and an acceleration 
of �•  and �•�6, respectively. 

The model is numerically solved by a time marching procedure consisting of prediction 

and correction steps. This procedure has been adopted and detailed in our previous papers 

(Ma & Zhou 2009) for single phase flow and a summary is presented below. Suppose that 

variables of pressure, velocity and location of each particle have been found at n-th time 

step (�PL �P�á) and those will be updated at (n+1)-th time step. 

(a) Prediction step 

The time domain is first split into steps of ���@�P. With known velocity ( �› �ß
�á) and particle 

position ( � �̃ß
�á ) at n-th time step, the intermediate velocity (�› �ß

�Û) and position (� �̃ß
�Û) are 

explicitly calculated according to Eq. (3.1) by considering forces excluding the term 

associated with the pressure and yield  

�› �ß
�ÛL �› �ß

�á E�•�@�PE�í�ß�Ø�6�› �ß�@�P, (3.6) 

  
� �̃ß

�ÛL � �̃ß
�á E�› �ß

�Û�@�P. (3.7) 

(b) Correction step 

Next by considering the pressure term, the velocity at (n+1)-th time step can be expressed 

as 

�› �ß
�á�>�5 L �› �ß

�ÛF
�¿�P
�é�ß

�Ï�L�ß�á�>�5�ä (3.8) 

Then by taking divergence of both sides of Eq. (3.8) and utilizing mass conservation 

equation (Eq. (3.2))�����W�K�H���S�U�H�V�V�X�U�H���3�R�L�V�V�R�Q�¶�V equation of ���L�ß�á�>�5 is derived as 

�Ï �6�L�ß�á�>�5 L
�é�ß
�@�P

�Ï �®�› �ß
�Û�ä (3.9) 

After obtaining �W�K�H�� �S�U�H�V�V�X�U�H�� �R�I�� �H�D�F�K�� �S�D�U�W�L�F�O�H�� �E�\�� �V�R�O�Y�L�Q�J�� �S�U�H�V�V�X�U�H�� �3�R�L�V�V�R�Q�¶�V�� �H�T�X�D�W�L�R�Q�� the 

correction velocity will be estimated as 
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Finally, the full time step velocity and position will be updated by  
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It should be noted that the whole procedure of Eq. (3.6) - (3.12) is only applicable for 

inner particles. For interface particles, the pressure is not governed by Eq. (3.9) and will 

be discussed in Section 3.3, though their velocities and positions are also updated by Eq. 

(3.10) - (3.12) once the pressure is obtained. For isolated particles, the pressure equation 

will be presented in Section 3.4. Their velocities are estimated by using Eq. (3.1) with 

setting �* L �s and their positions are updated by Eq. (3.12). 

As shown in Figure 3.1, three types of nodes, e.g. inner nodes, interface nodes and 

isolated nodes, exist in the simulation with different pressure formulations. In the next 

three sections 3.2 - 3.4, pressure formulations will be given for each type of node. At the 

inner particles, the pressure is treated using the same technique as the single phase 

MLPG_R method (Ma and Zhou, 2009) in section 3.2 while the pressure at the interface 

and isolated particles is formulated by considering interface conditions in section 3.3 and 

3.4 respectively. 

 

3.2 MLPG_R formulation for the inner particles 
For inner particles, the pressure is implicitly solved by Eq. (3.9) for fluid ones and by Eq. 

(3.5) for wall boundary ones. Following the formulation in single phase MLPG_R (Ma 

2005b), for each inner fluid particle, a circular sub-domain �3�M centred at node �+ is 

specified over which the production of Eq. (3.9) and an arbitrary test function �î  is 

integrated, leading to  
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Figure 3.2: Illustration of arbitrary distributed particles, integration domain and support domain 
 
 

Several options of the test function have been explored and it was found that with the 

Heaviside step function the domain integral over �×�Â was avoided and only boundary 

integrals were involved which greatly improved the effectiveness of this method (Atluri & 

Shen 2002). When dealing with water wave problems, the Heaviside step function was 

also adopted (Ma 2005a) resulting in a formulation involving boundary integral only. 

However, in that formulation the gradient of the unknown function exists in the integrant 

which not only requires much computational time but also degrades the accuracy. To 

further improve the weak formulation, the Rankine source solution was selected as test 

function (MLPG_R) to eliminate the gradient of the unknown function (Ma 2005b). This 

test function satisfies that �Ø�6�î L �r within �×�Â, except for its centre and �î L �r on �ò�×�Â 

which is the boundary of �×�Â. The solution can be expressed as 
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where �N is the distance between a concerned point and the centre of �×�Â and �4�Â is the 

radius of �×�Â. With this test function, Eq. (3.14) is then rearranged by adding a zero term 

F�L�Ø�6�î  and applying �*�D�X�V�V�¶�V theorem, shown as 
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where���” is the unit vector normal to integration sub-domain pointing outside and �¼�B is a 

small surface surrounding the centre of �×�Â which is a circle in 2D cases and a sphere 

surface in 3D cases with a radius of �Ý. With the introduction of�����¼�B, the infinite value of �î  

at �NL �r is avoided and therefore it is straightforward to apply the �*�D�X�V�V�¶�V theorem. By 

taking�����Ý�\ �r, one can easily prove that 
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And then the final pressure equation becomes  
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�@�5F

�L�ß
�é�ß�! �� �º

�GL ±
�› �ß

�Û�®�Ø�î
�@�P

�@�×
�� �º

�ä (3.16) 

The major difference between Eq. (3.16)  and Eq. (3.9) is that Eq. (3.16) does not include 

any derivative of the functions to be solved while Eq. (3.9) contains the second order 

derivatives of unknown pressure. Approximation to the unknown functions in Eq. (3.16) 

does not require them to have any continuous derivatives, while approximation to the 

unknown functions in Eq. (3.9) requires them to have finite, or at least integrable second 

order derivatives. Therefore, use of Eq. (3.16) for further discretisation has a great 

numerical advantage over using of Eq. (3.9) directly.  One of the differences between 

MLPG_R method and MPS or ISPH lies in adopting different pressure governing 

equations for further discretisation.  MPS or ISPH methods discretise Eq. (3.9) directly, as 

indicated above. 
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3.2.1 Pressure approximation by Moving Least Square (MLS) 

method 

The unknown trial function �L�ß in weak formulation of Eq. (3.16) needs to be 

approximated by a set of discretised variables and is generally written as 

�L�ß�:�T�&�;��NÍ �ö�Ý

�Ç

�Ý�@�5

�:�ž�;�L�¸�Ý�á (3.17) 

where �0 is the number of nodes affecting the value at point �ž, e.g. the number of  

neighbouring nodes within the support domain with the radius of �4�Ø as shown in Figure 

3.2, and  �L�¸�Ýis the fictitious nodal variable on the neighbouring randomly distributed 

particle.�����ö�Ý is the shape function which can be formulated in a variety of interpolation 

ways in meshless methods as discussed in Atluri and Shen (2002). As the Moving Least 

Square (MLS) method is generally considered as one of the schemes to interpolate data 

with a reasonable accuracy, this scheme is chosen in the MLPG_R method. Here the 

function of pressure �L�ß�:�ž�;��needs to be approximated with a number of scattered particles 

located at��[�ž�Ý_�á�FL �s�á�t�á�å �á�0, resulting in an approximant �L�ß�Û�:�ž�; of �L�ß�:�ž�; defined by 

�L�ß�Û�:�ž�; L �Ò�Í �:�ž�;�‡�:�ž�;�á (3.18) 

where,  �Ò�Í �:�ž�; L �>�ð�5�á�ð�6�á�å �á�ð�à �? is a complete monomial basis of order �/  which can be 

chosen as linear: 

�Ò�Í �:�ž�; L �>�s�á�T�á�U�?�á���������������/ L �u (3.19) 

or quadratic: 

�Ò�Í �:�ž�; L �>�s�á�T�á�U�á�T�6�á�T�U�á�U�6�?�á���������������/ L �x (3.20) 

for 2D problems, and �‡�:�ž�; is a vector containing coefficients with �=�à �:�ž�;�á�FL �s�á�t�á�ä�ä�ä�á�/  

which are functions of space coordinates and determined by minimizing a weighted 

discrete �.�6 norm defined as 

�v�:�ž�; L Í �S�Ý

�Ç

�Ý�@�5

�:�ž�;c�Ò�Í k�ž�Ýo�‡�:�ž�; F �QÜ�Ýg
�6
 

����L �>�¸ �®�‡�:�ž�; F �›Ý�?�Í �®�ƒ �®�>�¸ �®�‡�:�ž�; F �›Ý�?�á 

(3.21) 
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where �S�Ý�:�ž�; is the weight function associated with the node �F in the support domain of 

the target particle with �S�Ý�:�ž�; P�r and is defined by 

�S�Ý�:�T�&�; L

�Õ
�Ö
�Ô

�Ö
�Ó�sF�x�N�6 E�z�N�7 F �u�N�8�������������NL

�N�Ý
�4�Ø

L
�+�ž�ÝF �ž�+

�4�Ø
Q�s

�r���������������������������������������������������������������������������������������NL
�N�Ý
�4�Ø

L
�+�ž�ÝF �ž�+

�4�Ø
P�s

�á (3.22) 

where �N�Ý is the distance from particle �ž�Ý to the target particle �ž, �4�Ø is the size of the 

support domain. The matrices �¸  and �ƒ  are defined as 

�¸ L f

�Ò�Í �:�ž�5�;
�Ò�Í �:�ž�6�;�å
�Ò�Í �:�ž�Ç�;

j

�ÇH�Æ

�á (3.23) 

�ƒ L e
�S�5�:�ž�; 
Ù 
Ù

�å �å �å

Ù �å �S�Ç�:�ž�;

i

�zH�z

 (3.24) 

and 

�›Ý�Í L �>�QÜ�5�á�QÜ�6�á�å �á�QÜ�Ç�? (3.25) 

where �QÜ�Ý�á�FL �s�á�t�á�å �á�0  are fictitious nodal values but not the nodal values of the 

unknown trial function �L�ß�Û�:�ž�; in general. The stationary of �v in Eq. (3.21) with respect to 

�‡�:�ž�; leads to the following relation between �‡�:�ž�; and �›Ý as 

�ï �:�ž�;�‡�:�ž�; L �n�:�ž�;�›Ý, (3.26) 

where the matrix of �ï �:�ž�; and the vector of �n�:�ž�; are expressed as 

�ï �:�ž�; L �¸ �€�ƒ�¸ L �Ã �S�Ý�:�ž�;
�z
�•�@
Ú �Òk�ž�Ýo�Ò�€k�ž�Ýo, (3.27) 

�n�:�ž�; L �¸ �€�ƒ  

����������������������L �>�S�5�:�ž�;�Ò�:�ž�5�;�á�S�6�:�ž�;�Ò�:�ž�6�;�á�å �á�S�Ç�:�ž�;�Ò�:�ž�Ç�;���?. 
(3.28) 

By solving �‡�:�ž�; with Eq. (3.26) and substituting it into Eq. (3.18), the weight function 

�ö�Ý�:�ž�; in Eq. (3.17) corresponding to particle �ž�Ý is given by 
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�ö�Ý�:�ž�; L Í �ð�à

�Æ

�à �@�5

�:�ž�;�>�� �?�5�:�ž�;�$�:�ž�;�?�à�Ý�ä (3.29) 

It can be seen that the MLS is well defined only when the matrix �ï �:�ž�; is non-singular 

which means that the number of particles within the support domain should be equal or 

larger than �/  (i.e.,�0 R�/ ) for each target particle �ž and also requires that the nodes in 

the support domain should not be arranged in a special pattern such as on a straight line in 

2D problems. 

 

3.2.2 Numerical Technique for Domain Integration 

The RHS of Eq. (3.16) is the domain integration usually numerically estimated by 

Gaussian quadrature. In this way, more than 16 Gaussian points for 2D cases and 64 

points for 3D cases may be required to achieve satisfactory results and the intermediate 

velocity �› �ß
�Û at each Gaussian point is estimated by the MLS method. To avoid evaluating 

the velocities at so many points and to improve the efficiency, a semi-analytical 

integration technique (Ma 2005b) is adopted in which the integration domain is divided 

into several sub-domains and within each sub-domain the variable is assumed to vary 

linearly and the integration is analytically performed. This method reduces the number of 

points to 5 for a 2D circle with four sub-domains and 7 for a 3D sphere with 8 sub-

domains. Details of the technique will be demonstrated here by a 2D case considering a 

circular integration domain with the size of �4�Â and centred at �:�T�4�á�U�4�;. As shown in Figure 

3.3, the intermediate velocity within each sub-domain (e.g. 0-1-2) is assumed to be linear 

and can be expressed as 

 
Figure 3.3: Illustration of division of an integration domain 
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�Q�Û�:�T�á�U�; L �Q�4
�ÛE�?�è�ë�:�TF �T�4�; �4�Â�¤ E�?�è�ì�:�UF�U�4�; �4�Â�¤ �á (3.30a) 

  
�R�Û�:�T�á�U�; L �R�4�ÛE�?�é�ë�:�TF�T�4�; �4�Â�¤ E�?�é�ì�:�UF�U�4�; �4�Â�¤ �á (3.30b) 

where �:�Q�Û�á�R�Û�; are the intermediate velocity components at any points �:�T�á�U�; within the 

sub-domain 0-1-2 and �:�Q�4
�Û�á�R�4�Û�; are those at the centre of point 0. �?�è�ë, �?�è�ì, �?�é�ë and �?�é�ì 

are constants determined by the known velocities at point 1 and 2. Taking horizontal 

velocity component as an example as 

�?�è�ë�:�T�5 F �T�4�; E�?�è�ì�:�U�5 F �U�4�; L �:�Q�s
�ÛF �Q�r

�Û�;�4�Â�á  

  
�?�è�ë�:�T�6 F�T�4�; E�?�è�ì�:�U�6 F �U�4�; L �:�Q�t

�ÛF �Q�r
�Û�;�4�Â�á  

gives 

�?�è�ëL
�:�Q�5�ÛF �Q�4

�Û�;�:�U�6 F �U�4�; F �:�Q�6
�ÛF �Q�4

�Û�;�:�U�5 F �U�4�;
�:�T�5 F�T�4�;�:�U�6 F �U�4�; F �:�T�6 F �T�4�;�:�U�5 F �U�4�;

�4�Â�á 
 (3.31a) 

  

�?�è�ì L
�:�Q�6

�ÛF �Q�4
�Û�;�:�T�5 F �T�4�; F �:�Q�5�ÛF �Q�4

�Û�;�:�T�6 F �T�4�;
�:�T�5 F �T�4�;�:�U�6 F �U�4�; F �:�T�6 F �T�4�;�:�U�5 F �U�4�;

�4�Â�á 
(3.31b) 

where �?�é�ë and �?�é�ì can be found in a similar way by considering the vertical velocity 

component. Thus the velocities in this sub-domain can be determined by Eq. (3.31a) and 

those in other sub-domains can also be determined by working out four constants with 

corresponding given velocities at three points. Consequently, the velocities in the whole 

integration domain are determined by five points (0, 1, 2, 3 and 4). Based on this, the RHS 

of Eq. (3.16) can be first rearranged by substituting the test function and transferring it to 

polar coordinate system yielding 
�5

�6���×�ç
�ì �ì �Q�ß�å

�Û�:�N�á�à�;
�Ë�º

�4 �@�N�@�à
�6��

�4  where �Q�ß�å
�Û is intermediate 

velocity in radial direction of one phase. The integration can be written as the summation 

of four sub-domains expressed as 

± ± �Q�ß�å
�Û�:�N�á�à�;

�Ë�º

�4
�@�N�@�à

�6��

�4
L Í ± ± �Q�ß�å

�Û�:�N�á�à�;
�Ë�º

�4

�� �Ô�6�-

�� �Ô

�@�N�@�à

�Ç�Ô

�Ü�@�5

�á (3.32) 

where �0�ÜL �v and �à�9 L �à�5. The integration over each sub-domain can be evaluated 

analytically using Eq. (3.30) with the integrand formulated in polar coordinate system as 

�Q�Û�:�N�á�à�; L �Q�4
�ÛE�?�Q�T�N�?�K�O�à�4�+�¤ E�?�Q�U�N�O�E�J�à�4�+�¤ �á (3.33a) 
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�R�Û�:�N�á�à�; L �R�4�ÛE�?�é�ë�N�?�K�O�à�4�Â�¤ E�?�é�ì�N�O�E�J�à�4�Â�¤ �ä (3.33b) 

The integrand in the radial direction can be expressed as 

�Q�ß�å
�Û�:�N�á�à�; L �Q�4

�Û�?�K�O�àE�R�4�Û�O�E�J�àE�?�è�ë�N�?�K�O�6�à �4�Â�¤

E�?�è�ì�N�O�E�J�à�?�K�O�à�4�Â�¤ E�?�é�ë�N�?�K�O�à�O�E�J�à�4�Â�¤

E�?�é�ì�N�O�E�J�6�à �4�Â�¤ �ä 

(3.34) 

It is easy to show that the integration of �Q�4
�Û�?�K�O�àE�R�4�Û�O�E�J�à becomes zero and can be 

omitted. The integration of the rest term in Eq. (3.34) over each sub-domain is given by 

± ± �Q�ß�å
�Û�:�N�á�à�;

�Ë�º

�4

�� �Ô�6�-

�� �Ô

�@�N�@�à 

��������������������������L
�4�Â

�v
ck�?�è�ëE�?�é�ìo�:�à�Ü�>�5 F �à�Ü�; 

��������������Ek�?�è�ëF �?�é�ìo�:�O�E�J�à�Ü�>�5�?�K�O�à�Ü�>�5 F �O�E�J�à�Ü�?�K�O�à�Ü�; 

             ������E�:�?�è�ì E�?�é�ë�;�:�O�E�J�6�à�Ü�>�5 F �O�E�J�6�à�Ü�;g. 

(3.35) 

The whole circular domain integration is the summation of Eq. (3.35) of four sub-domains 

in which way the velocities at only four points are needed rather than 16 points by 

Gaussian quadrature integration. Although the results depend on the number of sub-

domains, numerical tests show that four sub-domains are satisfactory for 2D cases (Ma 

2005b). 

 

3.2.3 Gradient estimation scheme 

For inner wall particles, the rigid wall boundary condition is satisfied by Eq. (3.5) in 

which the gradient of unknown pressures needs to be approximated. As shown by Eq. 

(3.10), the velocity updating also involves gradient estimation of previously solved 

pressure. Thus, an accurate and efficient gradient estimation scheme is required in 

MLPG_R method. A simplified finite difference interpolation (SFDI) scheme was 

proposed by Ma (2008) for either function interpolation or gradient estimation for both 

known and unknown variables. This interpolation and gradient estimation scheme 

achieves exact accuracy for linear functions independent of particle distribution, which is 

better than the scheme used in MPS (Koshizuka & Oka 1996; Yoon et al. 2001) whose 

accuracy is highly dependent on regular particle distribution. Compared to first order 
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MLS which has higher accuracy than those adopted in MPS, SFDI has the same order in 

accuracy. While without the matrix inverse in SFDI, the efficiency is significantly 

improved which was demonstrated by various case studies in Ma (2008). In this section, 

details of the SFDI gradient estimation scheme will be presented. 

An arbitrary function �B�:� �̃; is first expanded into a Taylor series near point����� �̃Ü, giving 

�B�:� �̃; L �B�:� �̃Ü�; E�:�Ï�B�;� �̃Ô
�:�˜ F � �̃Ü�; E�1�:���˜ F � �̃Ü���6�;�á (3.36) 

where �:�Ï�B�;� �̃Ô
 is the gradient of �B�:� �̃; at point � �̃Ü. Applying the above expression to a set of 

particles �F around � �̃Ü by ignoring the error term, multiplying 
� �̃Õ�á�ã�Ø�?� �̃Ô�á�ã�Ø

�+� �̃Õ�?� �̃Ô�+
�. �Sk�+� �̃ÝF � �̃Ü�+o on 

both sides of Eq. (3.36) and taking the sum of equations at all the relevant particles yields 

Í c�Bk� �̃ÝoF �B�:� �̃Ü�;g
� �̃Ý�á�ë�Ø F � �̃Ü�á�ë�Ø

�+� �̃ÝF � �̃Ü�+
�6 �Sk�+� �̃ÝF � �̃Ü�+o

�Ç

�Ý�@�5

 

����������������������L Í
k� �̃Ý�á�ë�Ø F � �̃Ü�á�ë�Øo

�6

�+� �̃ÝF � �̃Ü�+
�6 �Sk�+� �̃ÝF � �̃Ü�+ok�B�á�ë�Øo

� �̃Ô

�Ç

�Ý�@�5

 

��������������������������������EÍ Í k� �̃Ý�á�ë�ÖF � �̃Ü�á�ë�Öo
� �̃Ý�á�ë�Ø F � �̃Ü�á�ë�Ø

�+� �̃ÝF� �̃Ü�+
�6 �Sk�+� �̃ÝF � �̃Ü�+ok�B�á�Þo� �̃Ô

�×

�Þ�@�5�á�Þ�· �à

�Ç

�Ý�@�5

�á 

 (3.37) 

where �0 is the number of neighbouring particles in the support of the concerned 

particle���E,  �N�Ý�á�ë�Ø and  �N�Ý�á�ë�Ö are the coordinate components of particle���F, �Sk�+� �̃ÝF � �̃Ü�+o is 

the weight function of particle �F and k�B�á�ë�Øo
� �̃Ô

 is the gradient component of particle � �̃Ü in 

the �T�à  direction. 

Alternatively, we have 

k�B�á�ë�Øo
� �̃Ô

E�Ã �=�4�á�à�Þk�B�á�Þo� �̃Ô

�×
�Þ�@�5�á�Þ�· �à L �%�4�á�à �������:�I L �s�á�t�á�å �á�@�;�á����������  (3.38) 

where  

�%�4�á�à L
�s

�J�4�á�ë�Ø
Í c�Bk� �̃ÝoF �B�:� �̃Ü�;g

� �̃Ý�á�ë�Ø F � �̃Ü�á�ë�Ø

�+� �̃ÝF � �̃Ü�+
�6 �Sk�+� �̃ÝF � �̃Ü�+o

�Ç

�Ý�@�5

�á  
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�=�4�á�à�Þ L
�s

�J�4�á�ë�Ø
Í k� �̃Ý�á�ë�ÖF � �̃Ü�á�ë�Öo

� �̃Ý�á�ë�Ø F � �̃Ü�á�ë�Ø

�+� �̃ÝF � �̃Ü�+
�6 �Sk�+� �̃ÝF � �̃Ü�+o

�Ç

�Ý�@�5

�á  

and 

 �J�4�á�ë�Ø L �Ã
k� �̃Õ�á�ã�Ø�?� �̃Ô�á�ã�Øo

�.

�+� �̃Õ�?� �̃Ô�+
�. �Sk�+� �̃ÝF � �̃Ü�+o

�Ç
�Ý�@�5 �ä 

By solving Eq.(3.38), this gradient estimation scheme can be applied in either 2D or 3D 

cases with �@L �t or �@L �u respectively. For 2D cases which are in the scope of this thesis, 

gradient components are solved and expressed as 

k�B�á�ëo� �̃Ô
L

�%�4�á�5 F �=�4�á�5�6�%�4�á�6
�sF �=�4�á�5�6�=�4�á�6�5

�á (3.39a) 

k�B�á�ì o� �̃Ô
L

�%�4�á�6 F�=�4�á�6�5�%�4�á�6
�sF�=�4�á�5�6�=�4�á�6�5

�ä (3.39b) 

So far, all the treatments are for inner and particles which follow the work in single phase 

flow (Ma 2005b). To extend the method to model two-phase flows, this thesis focuses on 

developing new implementations of interface conditions and other associated techniques 

in the following sections to the end of Chapter 5. The validations are carried out in 

Chapter 6 based on the method described in Chapter 3 to Chapter 5. 

 

3.3 Interface conditions for fluids with small viscosity and 

zero interface tension 
The boundary conditions at the interface of two incompressible fluids (Brackbill et al. 

1992; Sussman et al. 2007) will be simplified based on the assumption of small viscosity 

for either fluid and zero interface tension. Without considering the effects of the interface 

tension, the normal pressure boundary condition between two phases (labelled �H and �G) is  

�L�ßF �L�Þ L �ì�ß�á�á F�ì�Þ�á�á���������:�H�á�G�Ð�3�5�‘�”���3�6�á�������„�—�–���HM�G�; (3.40) 

and in the tangential direction the condition is written as 

�ì�ß�á�� L �ì�Þ�á���á (3.41) 
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where  �L��  is the pressure in fluid �Ù for �ÙL �H�á�G, �ì�� �á�á and �ì�� �á�� are viscous stress in fluid �Ù 

in the normal and tangential direction respectively. Considering the fact that the dynamic 

viscosity of fluid is very small (<10-3) for many fluids, such as water and air, the viscous 

stress differences at the interface between phases are neglected resulting in the automatic 

satisfaction of Eq. (3.41) and the simplified Eq. (3.40) written as 

�L�ßL �L�Þ�ä (3.42) 

Also due to the small viscous effects, especially for inviscid fluids, the slip of tangential 

velocity at the interface is allowed and only the continuity at normal direction will be 

considered and is expressed as 

�Q�ß�á�á L �Q�Þ�á�á�ä (3.43) 

Since the Lagrangian acceleration of the continuous phase can be expressed as �• F

�Ø�L�� �é���¤ E�í�� �Ø�6�› ��  which should be continuous as well and the viscous term at the 

interface is averaged as �:�í�ß�Ø�6�› �ßE�í�Þ�Ø�6�› �Þ�;���t as discussed in section 3.1, the normal 

velocity continuity can be transferred to be 

�s
�é�ß

�ò�L�ß
�ò�J

L
�s
�é�Þ

�ò�L�Þ
�ò�J

�ä 
(3.44) 

As the pressure is continuous at the interface, the tangential derivative of the pressure at 

the interface is continuous as well and is expressed as 

�ò�L�ß
�ò�ì

L
�ò�L�Þ
�ò�ì

�ä (3.45) 

Combining Eq. (3.42) and (3.44), the jump of 
���ã

��
 at the interface is 
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(3.46) 

The following derivation and discretization will be based on Eq. (3.42) and (3.46) as the 

interface conditions for fluids with small viscosity and zero interface tension. In the ISPH 

modelling for multi-phase flow, Shao (2012) only applied the stress continuity without the 
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consideration of the velocity at the interface. Hu and Adam (2006, 2007) developed an 

ISPH formulation based on the condition of continuity pressure and �Ø�L�é�¤ . However, 

based on the derivations of Eqs. (3.42) to Eq. (3.46), jumps of  �Ø�L�é�¤  at the interface 

cannot be ignored for flows with high density ratio or significant pressure variation in 

tangential direction. Another difference in dealing with interface conditions is that, Hu 

and Adam (2006, 2007) used the concept of inter-particle-averaged directional derivative 

when they discredited �W�K�H���V�H�F�R�Q�G���R�U�G�H�U���G�H�U�L�Y�D�W�L�Y�H�V���L�Q�Y�R�O�Y�H�G���L�Q���W�K�H���3�R�L�V�V�R�Q�¶�V���(�T�X�D�W�L�R�Q���I�R�U 

pressure. When doing so, they assumed that the middle point between each pair of 

particles is on the interface. As the gradient and the second order derivatives are 

determined averagely in their formulation by many pairs of particles that influence the 

point concerned, the interface in their formulation is actually a layer with a thickness in 

the order of the radius of the support domain (usually more than double distance of two 

particles). This is the first attempt to extend the MLPG_R method to dealing with the 

multiphase flow. A new approach which is not only suitable for the MLPG_R method but 

also allows applying the conditions described by Eq. (3.42) and (3.46) on a sharp interface 

is proposed. For this purpose, the pressure near the interface denoted by � �̃4 is firstly 

expanded into a Taylor series separately in each phase: 
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Utilizing Eq. (3.42) and (3.46) and projecting Eq. (3.47) and Eq. (3.48) on normal and 

tangential directions lead to 

�s
�é�ß

k�L�ß�:� �̃; F �L�:� �̃r�;oNl
�ò�L

�é�ò�J
p

� �̃r

�:�N�” F �N�r�J�; E
�s
�é�ß

l
�ò�L
�ò�ì

p
� �̃r

�:�N�Î F �N�r�ì�;�á (3.49) 

�s
�é�Þ

k�L�Þ�:� �̃; F �L�:� �̃r�;oNl
�ò�L

�é�ò�J
p

� �̃r

�:�N�” F �N�r�J�; E
�s
�é�ß

l
�ò�L
�ò�ì

p
� �̃r

�:�N�Î F �N�r�ì�; 

����������������������������������������������������������������������������������El
�ò�L
�ò�ì

p
� �̃r

l
�s
�é�Þ

F
�s
�é�ß

p�:�N�Î F �N�r�ì�;�á 
(3.50) 

where �L�:� �̃r�;, �@
�!�ã

���!�á
�A

� �̃,

 and �@
�!�ã

�!��
�A

� �̃,

 denote the continuous quantities on the interface.  

Secondly, discretizing Eq. (3.49) and Eq. (3.50) in the support domain within each phase 

yields  
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(3.52) 

where the shape function �Î �:� �̃; is obtained by the moving least square (MLS) algorithm in 

a support domain containing both phases, �J and �I  are the numbers of particles within the 

support domain in phase���H and phase �G respectively. 

Thirdly, adding up Eq. (3.51) and (3.52) yields 
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The first two terms on the RHS of Eq. (3.53) could be cancelled out and become zero 

when sufficient particles are applied. Even though the disretization of the last term is 

taken only within one phase (on partial support domain), �Ã �:�N�Î F �N�4���;�Î �Þk� �̃ä�4o
�à
�ä�@�5  also 

becomes zero when sufficient particles are used due to the symmetricity of �:�N�Î F �N�4���; to 
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the centre particle. However, to consider general particle distributions, RHS of Eq. (3.53) 

will be retained and is represented by �(�å. Rearranging the Eq. (3.53) yields 
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where the pressure gradient will be estimated with the pressure of the last time step. Eq. 

(3.54) provides a simple and explicit pressure expression on the interface which is 

obtained by imposing the two conditions in Eq. (3.42) and Eq.(3.46).  If we would employ 

the same formulation as in Shao (2012) ensuring only pressure continuity at the interface 

and obtaining the interface pressure by interpolating from the neighbouring particles, the 

pressure should be satisfied as 
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where the subscript �&�+�5�2�* represents the decoupled ISPH (Shao 2012). 

It can be seen that Eq. (3.54) can be simplified to Eq. (3.55) only if �é�Þ���é�ß�\ �s, i.e. for the 

cases of two phases with similar densities and �(�å L �r (could be satisfied if the number 

of particles is sufficient). It maybe deduced that the interface condition of pressure 

continuity without Eq. (3.46) is suitable only for low density ratios and the extension to 

high ratios needs an additional condition of  �Ø�L�é�¤ . The major difference between Eq. 

(3.54) and the approach in Hu and Adams (2006; 2007) lies that (a) �Ø�L�é�¤  is jumped at the 

interface rather than continuous based on the conditions of pressure continuity and normal 

velocity continuity; (b) Eq. (3.54) is applied on the interface (curve in 2D) rather than in a 

layer,  so potentially the interface between two phase can be very sharp, and (c) no second 

order derivatives are involved here. 

It is noted that if the viscosity is not small and/or the surface tension needs to be 

considered, the conditions in Eq. (3.42) and (3.46) have to be modified.  The approach 

described here can be extended to deal with flows containing large viscous fluids with 

significant interface tension by modifying the interface conditions. This will be 

considered in chapter 7. 

 



64 
 

3.4 Pressure formulation of isolated particles 
As indicated above, it is assumed that a small number of isolated particles have no 

significant effects on the pressure of continuous phase, and so the pressure at the position 

occupied by an isolated particle can be estimated by considering that the position is 

occupied by a particle of the surrounding phase, i.e., it may be given by 
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where � �̃Ü�æ�ã denotes the position of the isolated particle, �H is the other phase surrounding 

the isolated particle. There are many other ways to replace Eq.(3.56), including the direct 

application of Eq. (3.16) by temporally assigning the surrounding density to the isolated 

particle, which has also been tried and gave similar results. As Eq. (3.56) is easy to be 

implemented and consistent with Eq. (3.54), i.e., Eq. (3.54) becomes Eq. (3.56) by 

setting���I L �r, the Eq. (3.56) is kept for use. Due to its consistency with Eq. (3.54), the 

equation for the isolated particle is actually treated as a special case for the interface 

particle but affected effectively by one phase. 
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In numerical simulations of two-phase flows, the description of interface evolution is 

essential to couple the two phases in solving equations describing the transport of 

momentum, mass and energy. In multiphase MLPG_R method, to explicitly implement 

the interface conditions as expressed by Eq. (3.42) and Eq. (3.46) or further development 

by considering interface tension and significant viscous effects, interface particles have to 

be first identified. There are various methods for interface description which can be 

broadly divided into two groups. One is based on mesh methods usually representing the 

interface by an indicator function resulting in the thickness either covering several grid 

cells or sharpened to zero. The other group is based on meshless methods, in which 

particles are moved in a Lagrangian manner and the surface or interface boundaries are 

represented directly. 

In mesh based methods, the volume of fluid (VOF) method captures the interface by the 

indicator function formulated with volume fraction of either phase in each mesh. To 

represent a sharp interface within the mesh, VOF is often complemented by 

reconstruction techniques such as piece wise constant approach (Hirt & Nichols 1981; 

Yokoi 2007), Piecewise linear approach (Aulisa et al. 2007; Rudman 1997) in which the 

interface in a mesh is assumed to be a line in 2D or a plain in 3D, piecewise quadratic 

(Diwakar et al. 2009; Renardy & Renardy 2002)or piecewise cubic spline (Ginzburg & 

Wittum 2001; López et al. 2004).To simplify the computational treatment, the interface 

reconstruction is subtracted representing an interface covering several meshes (Rudman 

Chapter 4    Technique of Identifying 

Interface Particles 
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1997; Ubbink & Issa 1999; Xiao et al. 2005). And later on the artificial compression 

terms were introduced (Weller 2008; Hoang et al. 2013) to sharpen the interface and 

counteract the numerical diffusion. Different from artificial geometric representation in 

VOF when reconstructing the interface, the indicator in level-set method (Osher & 

Sethian 1988) is a smoothed signed distance function from the interface and zero level-set 

gives the location of the interface. To remedy its mass conservation problem, 

reinitializations for the signed distance function (Sussman & Fatemi 1999; Min 2010) and 

mass corrections (Ausas et al. 2011; Zhang et al. 2010) were widely adopted. Instead of 

using Eulerian mesh, the arbitrary Lagrangian-Eulerian mesh system was adopted in 

which the unstructured meshes are moved to keep the grid nodes at the interface 

(Muzaferija & Peri´c 1997; Tukovic & Jasak 2012). 

As for meshless particle methods, interface can be inherently tracked by moving particles 

which are initially allocated to one phase and maintained during the simulation. Without 

connections between particles, the treatment of large deformation, fragmentation and 

coalescence of the interface or surface becomes much easier. For methods that solve two 

phases in one set of equations, in both SPH (Hu & Adams 2007; Chen et al. 2015)and 

MPS (Shakibaeinia & Jin 2012a; Khayyer & Gotoh 2013), interface conditions are 

implicitly implemented and thus the interface does not need to be explicitly identified. But 

for explicit boundary condition implementation, two situations can be observed. One 

situation is that the flow is not violent or large deformations do not occur, under which 

particles on free surface in single phase flows or on the interface in multiphase flows are 

maintained during the simulation (Ma 2005b). The other situation comes with flows being 

violent or with large deformations and therefore the inner and boundary particles are 

changeable (Lee et al. 2008; Ma & Zhou 2009; Shao 2012). Thus, surface or interface 

identification is not necessary for the former situation but for the latter it has significant 

impact on boundary condition implementation and consequently on final results.  

In this chapter a new interface particle identification technique is proposed based on 

absolute density gradient for violent flows even with isolated particles penetrating into the 

other phase. In section 4.1 the existing methods for surface and interface particle 

identification will be briefly reviewed. Then the formulations of the new identification 

technique and parameter tests are given in section 4.2. In section 4.3, comparisons 

between the new technique and the existing ones are first  carried out and then followed 

by the validations of the new technique on different density ratios, increasing randomness 

of particle distribution, various sizes of the support domain in calculating the density 

gradient and flow conditions. 
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4.1 Existing methods for identifying interface nodes  
Many applications of meshless methods (e.g. incompressible SPH (ISPH), MPS, MLPG) 

in single phase wave simulations rely strongly on free surface particle identification based 

on which the dynamic surface boundary condition can be implemented. A number of 

approaches have been proposed and adopted in various meshless methods, such as these 

using the particle number density method (abbreviated to PND) in MPS (Koshizuka et al. 

1998; Gotoh & Sakai 2006; Xu & Jin 2014) and fluid density in ISPH (Shao 2009). Both 

techniques are developed mainly for single phase problems, which lead to lower particle 

number density (MPS) or lower density (SPH) on the free surface, satisfying 

�J�ÜO�à�J�4�á (4.1) 

  
�é�ÜO�â�é�4�á (4.2) 

respectively, where�����J�ÜL �Ã �Sk�+� �̃ÝF� �̃Ü�+o�Ý  is the particle number density for the target 

article �E with neighbouring ones  �F, and  �J�4 denotes the inner particle number density 

which is initially defined. Similar to particle number density, �é�ÜL �Ã �I �Ý�Sk�+� �̃ÝF � �̃Ü�+o�Ý  is 

the estimated density and �O�4 denotes the density of the inner particle. �à and �â are 

coefficients to evaluate the decrease in  �J�Ü and �é�Ü��for the surface particles. As pointed out 

by (Koshizuka & Oka 1996) the value of �à��could be in the range of 0.8 to 0.99 and was 

selected as 0.97 in their case study of dam breaking and in (Xu & Jin 2014) for weir flows. 

�J�Ü and �â were also chosen as 0.95 for breaking waves on slopes (Koshizuka et al. 1998) 

and 0.99 for water entry of a free-fall object (Shao 2009). However, this simple approach 

has been found often to identify incorrectly the interface particles, especially when the 

particles are unevenly distributed.  

As a supplementary to PND, a mixed particle number density and auxiliary function 

method (MPAM) was proposed (Ma & Zhou 2009) by additionally counting the existing 

surface particles and the occupied quarters and crossed rectangles in the support domain 

(Eq. (22)-(24) and Fig.3 in (Ma & Zhou 2009)). Following Shao (2009) and Ma & Zhou 

(2009), the method was further developed by Zheng et al. (2014) by defining two quarter-

dividing systems and counting the occupied ones (Eq. (28)-(30) and Fig.4 in (Zheng et al. 

2014)) in which the value of �â��was chosen as 0.9. As confirmed by many calculations in 

the cited papers, the accuracy of identifying interface particles is significantly improved 

with the auxiliary functions. However apart from the complexity in sorting neighbouring 

particles into quarters and other specific regions, the dependence on the identification of 
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the previous time step could lead to error accumulation once misidentification occurs in 

previous steps.  

Lee et al. (2008) andRafiee et al. (2012) employed a tracking method by estimating the 

divergence of position vector,���  ̃, with the expression of  

�:�Ø�®� �̃;�ÜNÍ �¿�8�Ýk� �̃ÝF � �̃Üo
�Ý

�®�Ø�Sk�+� �̃ÝF � �̃Ü�+o (4.3) 

where���¿�8�Ý is the volume of particle associated with particle �F and �S is a weight function. 

The value of the numerical divergence from Eq. (4.3) is close to 2 for inner particles in 

two dimensional simulations and decreases on the free surface particles for the reason that 

the number of neighbouring particles is smaller and the support of the kernel is truncated. 

Thus the criterion identifying the free surface particles is set as 

It was indicated that not all the surface particles were identified (Lee et al. 2008) and 

some inner particles are over identified (Lind et al. 2012) although the misjudgements 

appeared to be insignificant in the cases they have considered by using the method. 

Because the theoretical value of the position vector divergence should be 2 for both inner 

and surface particles, its numerical value should be close to 2 even near or on the interface 

if more accurate and consistent approximation, such as SFDI gradient scheme (Ma 2008) 

is employed to estimate the divergence. From this point of view, the method is 

questionable for its general use and so will not be considered further in this paper. 

Above surface particle identification methods can be applied in a straightforward way to 

interface identification in two-phase flows if the density difference between the two 

phases are large (Shao et al 2012) or by neglecting the additional phase and picking out 

the �µsurface�¶ of the other phase. To improve the accuracy and reduce the complexity of 

the interface identification technique, a new approach based on the absolute density 

gradient is proposed in this paper. This method is based on the fact that the density 

gradient is infinite on the interface but zero away from it for incompressible fluids. In 

two-phase flows, it often happens that one phase penetrates into the other especially in 

violent flow situations. In that case, the penetrated parts are usually represented by an 

isolated particle for which special treatment is necessary (Gotoh & Sakai 2006). Gotoh & 

Sakai (2006) also provided an identification method using a combination of particle 

number density and the number of neighbouring particles of the other phase. In 

�:�Ø�®� �̃;�ÜO�s�ä�w�ä (4.4) 
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comparison the newly proposed technique is able to identify such isolated particles in a 

more consistent way. 

 

4.2 Absolute density gradients (ADG) based technique 
For immiscible two-phase flows with a sharp density jump at the interface, the density 

gradients are 0 for inner particles and become theoretically infinite at the interface if both 

phases are incompressible. For weak compressible phases, the density gradients are close 

to 0 for inner particles and are also theoretically infinite at the interface. To utilize this 

fact for interface identification, the absolute value of density gradient is numerically 

computed as below 

�ÚL �+�é�á�ë�+E�+�é�á�ì �+�á (4.5) 

where 

�+�é�á�×�+L
�t

�Ã �Sk� �̃FF� �̃Eo�Ý
Í �+�é�ÜF �é�Ý�+

�+�N�Ý�á�× F �N�Ü�á�×�+

�¿�N�Ü�Ý
�6 �Sk� �̃FF� �̃Eo

�Ý

�á���������@L �T�á�U (4.6) 

and the weight function  �Sk� �̃ÝF � �̃Üo  is selected as 
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where  � �̃Ý  and � �̃Ü are the position vectors of neighbour and target particles, �N�Ý�á�ë and �N�Ý�á�ì  are 

the component of � �̃Ü in the �T- and �U- direction, �4�Ø is the radius of the support domain 

proportional to �¿�H with �¿�H being the initial average particle distance and �¿�N�Ü�Ý is defined as 

�¿�N�Ü�ÝL �I�=�Tk�r�ä�z�¿�H�á�+� �̃ÝF� �̃Ü�+o. 

The numerical value of �Ú is very close 0 for inner particles and it rapidly increases when 

approaching to the interface or isolated particles. Although the gradient is theoretically 

infinite at the interface or isolated particles, it is just a large value in numerical 

computation. 

To obtain a non-dimensional scale of the absolute density gradient ���Ú�4 is introduced with 

the expression of 
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���Ú�4 L ���é�5 F �é�6�����¿�H (4.8) 

where �é�5 and �é�6 are densities of two phases. The interface and isolated particles will be 

identified by the ratio of �Ú�����Ú�4 rather than �Ú. To shed some light on the order of the ratio, 

we may consider the special cases: uniformly distributed particles with some of them 

being on horizontal (or vertical) interface, diagonal interface or isolated. If  only the 

nearest four neighbours are considered (i.e., the support domain is in the range of 1.0�¿�H

and�¾�t�¿�H), the value of �Ú�����Ú�4 should be 0.5 for horizontal or vertical interfaces, 1.0 for 

diagonal interfaces and 2.0 for isolated particles by using Eq. (4.5) and (4.6). It is noted 

here that for any fixed distribution of particles with the weight function given by Eq. (4.7) 

and a fixed support domain size, the value of ���Ú�����Ú�4 remains independent on the value of 

�¿�H. It is also noted that the value of ���Ú�����Ú�4will not be affected by the density ratio of the 

two phases.  In other words, the value of ���Ú�����Ú�4 is independent of the total number of 

particles for a given domain and density ratio. Nevertheless, in general situations with the 

particular weight function used and the chosen radius of the support domain, the value of 

�Ú�����Ú�4will  vary in a range with the change of particle distribution. Therefore most suitable 

values need to be determined by considering a range of flow conditions of the two phases. 

The following two conditions (I) and (II) are then checked: 

(I) �ÛO�Ú �Ú�4�¤ O�Ù, (4.9a) 

  
(II ) �Ú �Ú�4�¤ R�Ù. (4.9b) 

If Condition (I) is satisfied, the particles are identified to be interface particles. If 

Condition (II) is met, the particles are identified as isolated particles. If none of the 

conditions is satisfied, they are classified as inner particles.  For general cases, particles 

move and become irregularly distributed. The values of �Û and �Ù will be discussed below 

using numerical tests. This approach based on Eqs. (4.5) to (4.9a) is shortened as ADG 

(absolute density gradient) method hereafter for convenience. 

To determine the value of �Û and �Ù, a number of tests are carried out for a specified 

particle configuration as shown in Figure 4.1. In this figure, two typical regions are 

enlarged. Particles are clustered in region 1 and relatively coarser in region 2. As shown 

in Figure 4.1(a), an under-specified value of �Û (e.g. 0.1), leads to misidentifying inner 

particles close to the interface in the clustered region (some inner particles are identified 

as interface particles, i.e., over-identified). However, an over-specified value of �Û (e.g. 

0.5), shown in Figure 4.1(b), leads to missing the particles on the interface in the region 

where the distribution of particles is relatively coarser (i.e., under-identified). Based on 
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this, we can deduce that there might be a range of values for �Û which may lead to 

correctly identifying the interface particles.We have tested the value of �Û in the range of 

0.2 to 0.4 for the same configuration and found that the interface particles are correctly 

picked out and insensitive to the specific value in the range. The results of �ÛL �r�ä�t and 

�ÛL �r�ä�v are illustrated in Figure 4.2. Hereafter, the value of �Û is selected to be 0.3, unless 

mentioned otherwise. 

 

                        (a) 

 

                        (b) 

Figure 4.1: Examples of interface identifications when applying improper value of �Û. (a) shows 
inner particles close to the interface are over-identified with �ÛL �r�ä�s and (b) shows some interface 
particles are under-identified with���ÛL �r�ä�w. (density ratio: 1:1000) 
 

Another particle configuration associated with the violent sloshing of two phases is used 

to illustrate the effects of value for �Ù in Condition (II). Figure 4.3(a) and (b) show that the 

isolated particles penetrating into the other phase are identified by using the value of �Ù to 

be 1.4 and 1.6, respectively. It can be seen that the isolated particles of both phases are 

correctly identified by using either value. This demonstrates that the results are not 

sensitive to the value of �Ù when it is within the range of 1.4 to 1.6. Thus �Ù=1.5 will be 

used for isolated particle identification. 

According to above numerical tests, the values of �Û and �Ù��are selected to be 0.3 and 1.5 

for the conditions of (I) and (II) to identify the interface particles and isolated particles 

respectively.  
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                       (a) 

 

                        (b) 

Figure 4.2: Examples of interface identifications when applying proper values of���Û. (a) shows the 
interface identified by �ÛL �r�ä�t and (b) is obtained by ���ÛL �r�ä�v.  (density ratio: 1:1000) 

 

 

(a) 

 

(b) 

Figure 4.3: Isolated particles marked by squares for heavier fluid particles and diamonds for lighter 
fluid particles (density ratio: 1:1000) are identified with �Ù��being 1.4 (a) and 1.6 (b). The heavier 
phase is marked in black and the lighter is in light grey. In the enlarged figures on the right, support 
domains for each isolated particles are marked with a circle. 
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4.3 Validations of the ADG method 

4.3.1 Identification with different random distributions of 

particles 

The newly proposed interface identification technique will be further validated on random 

distributed particles. Comparison will be made with the results of other two methods. One 

is the PND method used by ISPH simulation and the other is the MPAM suggested by Ma 

& Zhou (2009) as mentioned in section 4.2. The tests are first carried out on the specified 

configuration shown in Figure 4.4 in which the unit patch is divided into two portions by 

a sinusoidal curve of ���UL �r�ä�s�O�E�J�:�t�è�T�; E�r�ä�w. Particles are randomly distributed by using 

�W�K�H�� �µhaltonset�¶�� �I�X�Q�F�W�L�R�Q�� �D�Y�D�L�O�D�E�O�H�� �L�Q�� �0�$�7�/�$�%����Below the sinusoidal curve the particles 

represent the fluid phase 1 (blue dots) and the rest is filled by fluid phase 2 (red dots). 

 

Figure 4.4: Sketch of interface testing case. 2000 random distributed particles in a unit patch 
divided into two portions by �UL �r�ä�s�O�E�J�:�t�è�T�; E�r�ä�w shown by dashed line. Blue and red dots 
represent the fluid phase 1 and fluid phase 2, respectively. 
 

For the methods of the PND and MPAM, interface particles are identified as surface 

particles of the phase 1 by ignoring the presence of the phase 2 as they are developed for 

the single phase problem. As shown in Figure 4.5 green dots are interface particles 

identified by the PND method with �àL �r�ä�z�w and �àL �r�ä�{�y in Figure 4.5(a) and (b), 

which are in the range of �à��proposed by (Koshizuka & Oka 1996). One can observe that 

the interface particles are highly over-identified as many inner particles are marked as 

interface ones although it is moderately relieved by decreasing the coefficient. Such over-

identification was also observed by (Zheng et al. 2014) in their dam breaking simulation. 
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There are also several particles located on the interface but not identified by using either 

value of �à. Other �à values are also tested and the results are shown in Figure 4.6. One can 

find that decreasing the value helps alleviate over-identification of inner particles but 

more interface particles are also missed. The reasons for such problems are that the 

accuracy of the PND method strongly depends on the randomness of the particle 

distribution which was pointed out by (Ma & Zhou 2009). For inner particles, coarse 

distribution leads to low particle number density even with complete support domain and 

so over-identification happens. On the contrary, particle clustering on the interface leads 

to high particle number density even though the support domain of its own phase is 

incomplete. For the results obtained using the MPAM shown in Figure 4.5(c), the 

accuracy is significantly improved. But over identification still happens on inner particles 

close to the interface. Since this identification technique is based on the interface particles 

identified at the previous time step, error accumulation may occur after long time 

simulation. Figure 4.5(d) shows the results obtained by the method proposed in this paper.  

It can be seen that almost all the interface particles are correctly identified by employing a 

pre-tested coefficient of ���ÛL �r�ä�u and a clear sharp interface is obtained. No inner particles 

are wrongly identified by the method. As indicated above, the new technique does not 

depend on the density ratio. To confirm this, the tests are also carried out on different 

density ratios of 0.1 and 0.01 in addition to the ratio of 0.9 in Figure 4.5(d) by using the 

ADG method, and the results for the density ratios of 0.1 and 0.01 are shown in Figure 4.7. 

This figure and Figure 4.5(d) show that the accurate identification is achieved in all the 

cases, demonstrating that the ADG method results are independent of the density ratios. 

In modelling violent multiphase flow, the particle distribution can become very random 

even they are uniformly distributed initially. It is important that the behaviours of 

interface identification methods should be examined for different levels of randomness of 

particle distributions. For this purpose, we use a configuration similar to that in Figure 4.4 

with particle number of 2500; however the particles are distributed in a way that they are 

first uniformly located and then deviated by �¿�˜ L �G�Bk�4�á�ë F�r�ä�wo�‹�ë E�@�4�á�ì F

�r�ä�w�A�‹�ì �C�¿�H, i.e., the position of particle is given by �˜ L � �̃4 E�¿� �̃�where each of�����4�á�ëand 

�4�á�ì ��is a group of random numbers ranging from 0 to 1.0 generated separately in �T- and �U- 

direction respectively; �G is the randomness and �¿�H is the particle distance in uniform 

distribution;���‹�ë and �‹�ì ��are the unit vector in �T- and �U-direction, respectively; �G��leads to 

zero deviation and uniform distribution. 
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                                        (a)                                                             (b) 

            

         
                                        (c)                                                             (d) 

Figure 4.5: Interface particles (green nodes) identification by PND with �àL �r�ä�z�w (a), PND with 
�àL �r�ä�{�y(b), PND with auxiliary functions (c) and ADG (d).Blue and red dots represent the fluid 
phase 1 and fluid phase 2 respectively. (density ratio=0.9). 
 
 
 

        
        (a)                                            (b)                                           (c) 

 
Figure 4.6: Interface particles (green nodes) identification by PND with �àL �r�ä�z (a), �àL �r�ä�y(b) 
and �àL �r�ä�x (c). Blue and red dots represent the fluid phase 1 and fluid phase 2, respectively. 
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(a)                                                              (b) 

Figure 4.7: Interface particles (green nodes) identification by ADG technique on density ratios of 
0.1 with the densities of blue and red dots of 10 and 1 respectively in (a) and 0.01 with the 
densities of blue and red dots of 100 and 1 respectively in (b).  
 
 
As �G increases, the distribution becomes more disorderly. If the value of �G��is equal to or 

large than 1, there would be possibility that the position of a particle can be shifted by 

more than �¿�H. The three methods (PND, MPAM and ADG) are employed to identify the 

interface particles for the cases with different level of randomness. The numbers of 

particles inaccurately identified for three techniques are listed in Table 4.1 with �G 

increasing from 0 to 1.2. The reference number is the number of particles at or near the 

specified interface curve within the distance of �r�ä�w�¿�H��for different randomness of���G. One 

can see that the number of misidentified particles by the PND method is small only when 

the value of �G is small but with the increase of the �G value (level of randomness), the 

number of misidentified particles is large, even much larger than the real number of 

interface particles. In contrast, the number of misidentified particles for each value of �G��by 

the MPAM is significantly reduced but is still considerable. Comparatively, the number of 

misidentification by the ADG method is very small and does not increase with the 

increase of randomness. To have a clearer look at their performances, the ratio of 

inaccurate identification defined as the number of misidentified particles divided by the 

reference number is demonstrated in Figure 4.8. It shows that, by increasing the 

randomness, more than 7 times of the specified interface particles are misidentified by the 

PND when �G��reaches 1.2 while this ratio decreases to 0.97 for the MPAM. The maximum 

ratio is only 0.125 arising at �GL �s�ä�r��and shows less dependency on the value of �G��by the 

ADG. With the same configuration, the particle numbers of 900, 1600, 2500, 3600, 4900 

and 6400 are also tested using the ADG method with the randomness���GL �r�ä�x��. The 

results shown in Figure 4.9 illustrate similar performance with the ratio of inaccurate 

identification ranging from 3.6% to 6.8% as the particle number varies, indicating that the 
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ADG technique is insensitive to the particle number. Another important thing worth 

noting is that a small number of the misidentified particles by the ADG are all near the 

interface while a large number of inner particles far away from the interface are 

misidentified by the PND as shown in Figure 4.10(a) and (b).  The misidentification of 

particles near the interface will not significantly affect the computation results as the 

values of physical variables near the interface are very close to those on the interface. 

However, the misidentification of particles far away from the interface will significantly 

alter the results of physical variables.  More discussions about this point may be found in 

Ma and Zhou (2009). 

Table 4.1: The number of misidentified particles for different particle distribution randomness by 
using PND, MPAM and ADG methods 

Randomness 
�G 

Reference 

No.*  

Number of misidentified particles 

PND MPAM ADG 

0 37 0 2 0 

0.2 42 54 16 0 

0.4 40 173 17 0 

0.6 37 222 22 1 

0.8 36 232 30 3 

1.0 32 222 30 2 

1.2 33 232 32 1 
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Figure 4.8: The ratios of inaccurate identification (number of misidentified particles/the reference 
number) of increasing randomness by using three identification techniques. 
 

 

 
Figure 4.9: The ratios of inaccurate identification (number of misidentified particles/the reference 
number) of increasing particle number using the method of ADG with randomness of 0.6. 
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                                     (a)                                                                   (b) 

Figure 4.10: Interface particles (green nodes) identification by ADG (a) and PND (b) with particle 
number of 2500 and randomness of �GL �r�ä�x. Blue and red dots represent the fluid phase 1 and fluid 
phase 2 respectively 
 

Tests are also carried out for various support domain sizes �4�Ø of the weight function 

within the range of�s�ä�v�¿�H to �v�ä�r�¿�H which is widely adopted for function interpolation, 

gradient and Laplacian approximations (Ataie-Ashtiani & Farhadi 2006; Gotoh & Fredsøe 

2000; Xu & Jin 2014; Zheng et al. 2014). Following the above setup for �GL �r�ä�x and 1.0, 

the numbers of misidentified particles by the ADG are listed in Table 4.2. It shows that a 

small support domain (e.g.�4�Ø���¿�HL �s�ä�v�á�s�ä�x ) leads to moderate increment of 

misidentification due to insufficient neighbouring particles to accurately estimate the 

density gradient. By increasing �4�Ø���¿�H(>2.1), the results become insensitive to the 

variation of the size and even better. Considering the computational time, �4�Ø���¿�HL �t�ä�s as 

selected in the above tests is reasonable, but one can choose to use a larger support 

domain for identifying the interface particles. 

Table 4.2: Numbers of misidentified particles by the ADG method with different support domain 
size �� �c for two values of �GL �r�ä�x  and 1.0 
 

�4�Ø���¿�H 1.4 1.6 1.8 2.1 2.5 3.0 3.5 4.0 

�GL �r�ä�x 7 6 2 1 0 0 0 0 

�GL �s�ä�r 8 6 3 2 1 1 0 0 

 

 

4.3.2 Identifications for the dam breaking flow 

To further validate the newly proposed identification technique on different flow 

conditions, more complex interface profiles are tested. To focus on the testing of the 
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identification technique, rather than complete simulation, interface snapshots are picked 

from a dam breaking simulation in Zheng et al. (2014), based on which particles are 

�U�D�Q�G�R�P�O�\���G�L�V�W�U�L�E�X�W�H�G���E�\���X�V�L�Q�J���W�K�H���µhaltonset�¶���I�X�Q�F�W�L�R�Q���D�Y�D�L�O�D�E�O�H���L�Q���0�$�7�/�$�%���D�Q�G���S�D�U�W�L�F�O�H��

densities are assigned based on the interface profiles provided by the simulation in in 

Zheng et al. (2014). The heavier fluid (phase 1-water) is indicated by blue dots and the 

lighter fluid (phase 2 �± air) is indicated by red dots. Based on such density distribution, 

interfaces are re-identified by the new technique and their profiles are shown in Figure 

4.11 including the changing and irregular shape of the released water with a smooth 

interface in (a), a backward jet in (b), the jet merging into the bottom water in (c) and a 

second jet in (d). A trapped air bubble also appears in (c) and (d). The density ratio of the 

two phases in this test is 0.001. As we can observe from Figure 4.11 interface and isolated 

particles (black dots) are accurately identified for all the configurations, indicating that the 

ADG method works well for more complex cases.  

 
                                    (a)                                                                  (b) 

 

 
                                      (c)                                                               (d) 

 
Figure 4.11: Black dots and filled diamonds are interface and isolated particles identified by the 
ADG technique in four dam breaking snapshots. The heavier fluid with the density of 1.0 of phase 
1 is represented by blue dots and the lighter fluid with density of 0.001 of phase 2 is represented by 
red dots.  



81 
 

A new interface particle identification method for two-phase flows based on the absolute 

density gradient (ADG) is presented in this chapter. The behaviour of the method is tested 

for different configurations including these with different level of randomness.  It is 

shown that the accuracy of the method is independent of the density ratio of two phases 

and also of the average distance between particles.  In all the cases tested, the method can 

correctly pick up almost all the interface and isolated particles as long as the support 

domain is larger than twice the average distance between particles. The small number of 

the misidentification happens only near the interface, which does not significantly affect 

the values of physical variables as they are indeed very close to those on the interface. 

After identification, the pressure formulations of Eq. (3.54) and Eq. (3.56) will be applied 

on the interface and isolated particles respectively. For inner particles, Eq. (3.5) is for 

fixed wall particles and Eq. (3.16) is for fluid ones. 
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With precise interface and isolated particles identification, the pressure equations derived 

from interface conditions can be allocated to the correct particles. With the addition of 

pressure equations for inner fluid particles having the same formulations as in the single 

phase flow, the pressure equation for the whole computational domain is completed and is 

ready to be solved by a proper algorithm. It is noted that, for inner particles, the 

commonly used rigid wall boundary is considered and other boundaries (e.g. symmetric, 

inlet, outlet etc) will be mentioned if involved. The summary of the final pressure 

equations is presented in Table 5.1. 

 

 

 

 

 

 

 

 

 

 

Chapter 5    Algorithms for Solving 

Pressure Equation 
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Table 5.1: Summary of pressure equations on different types of particles 
 

Particle type Pressure equation 

Inner fluids �F±
�” �®�:�L�ß�Ø�î�;

�é�ß
�@�5F

�L�ß
�é�ß�! �� �º

�GL ±
�› �ß

�Û�®�Ø�î
�@�P

�@�×
�� �º

 Eq. (3.16) 

Inner rigid 

walls 
�” �®�Ø�L�ßL �é�ßk�” �®�• F �” �®�•�6E�í�ß�” �®�Ø�6�› �ßo Eq. (3.5) 

Interface 

�2�:� �̃4�;

F
�é�Þ�Ã �L�ßk� �̃Ýo�Î �ßk� �̃Ý�4o

�á
�Ý�@�5 E�é�ß�Ã �L�Þk� �̃äo�Î �Þk� �̃ä�4o

�à
�ä�@�5 F �(�å

�é�Þ�Ã �Î �ßk� �̃Ý�4o
�á
�Ý�@�5 E�é�ß�Ã �Î �Þk� �̃ä�4o

�à
�ä�@�5

L �r 

Eq. (3.54) 

Isolated 

particles 
�2k� �̃Ü�æ�ãoF

�Ã �L�ßk� �̃Ýo�Î �ßk� �̃Ý�4o
�á
�Ý�@�5 F �(�å

�Ã �Î �ßk� �̃Ý�4o
�á
�Ý�@�5

L �r Eq. (3.56) 

 

5.1 Integrated-1 and coupled-2 method 
By adopting MLS method to approximate the pressure or the pressure gradient of inner 

particles, the final linear pressure equation can be written as ���w�®�| L �r�� by combining the 

discretised version of Eq. (3.16) and Eq. (3.5) (Ma and Zhou, 2009) with Eq. (3.54) and 

Eq. (3.56). Specifically, it is given as  

e
�w�’�’ �w�’�u 
Ù
�w�u�’ �w�u�u �w�u�‘

Ù �w�‘ �u �w�‘�‘

i �®]
�| �’
�| �u
�| �‘

aL ]
�r �’
�r �u
�r �‘

a (5.1) 

where �HM�G and �+ denotes the terms associated with interface or isolated particles.  It is 

noted that the elements on the top-right and the lower-left corners are zero.  That is 

because Eq. (3.16) cannot be applied across the interface. In Eq. (5.1) �-�Â�Â is an identity 

matrix. �-�ß�ß and �-�Þ�Þ represent terms for inner particles within each phase. According to Eq. 

(3.16) and (3.5) and following Ma and Zhou (2009), their elements can be expressed by 
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�� �ß�ß�á�Ü�ÝL
�s
�é�ß

^
± �Î k�ž�Ü�Ýo�®�” �®�Ø�î�@�5

�! �� �º

F �Î k�ž�Ü�Ýo

�” �®�Ï�Î k�ž�Ü�Ýo

�����á 
For inner particles 

For solid particles 

  

�(�ßL
�s
�@�P

 �̂�������
± �› �ß

�Û�®
��

�Ø�î�@�×

�” �®k�› �ß
�ÛF �•�6o

�������á 
For inner particles 

For solid particles 

where �H�Ð�3�5�á�3�6, �E does not denote the interface particles but a particle concerned and �F 

denotes the neighbouring particles of particle �E.  The elements of �w�’�u are also given by the 

above equations, which reflects the influence of the interface particles (including the 

isolated particles) on inner particles through Eq. (3.16). 

It is noted that the matrix  �w�Â�ß reflects the influence of inner particles on interface (and 

isolated) particles through Eq. (3.54) or Eq. (3.56).  Due to this, generally�����w�Â�ßM�w�ß�Â.  

Their elements �� �Â�ß�á�Ü�Ý could be expressed as 

�� �Â�ß�á�Ü�ÝL F
�é�Þ�Î �ßk� �̃Ü�ÝoF �(�N

�é�ß�Ã �Î �Þk� �̃Ü�Ýo
�á
�Ý�@�5 E�é�Þ�Ã �Î �ßk� �̃Ü�Ýo

�à
�ä�@�5

�����ä 

Similarly, 

�� �Â�Þ�á�Ü�ÝL F
�é�ß�Î �Þk� �̃Ü�ÝoF �(�N

�é�ß�Ã �Î �Þk� �̃Ü�Ýo
�á
�Ý�@�5 E�é�Þ�Ã �Î �ßk� �̃Ü�Ýo

�à
�ä�@�5

�����á 

where �I L �r or �J L �r for isolated particles, and 

�r �ÂL 
Ù���ä 

In order to solve Eq. (5.1), two possible approaches would be considered.  One approach 

is that the pressure is found by solving Eq. (5.1) as one set of equations, as adopted by 

(Hu & Adams 2009; Khayyer & Gotoh 2013). �7�K�L�V���L�V�� �Q�D�P�H�G�� �D�V�� �µ�,�Q�W�H�J�U�D�W�H�G-1 Approach 

���,���$�3�+���¶���L�Q���W�K�L�V��thesis for convenience. An alternative approach is that Eq. (5.1) is firstly 

split into two sets of equations as  

�w�’�’ �®�| �’
�” L �r �’ F �w�’�u�®�| �u

�Û���á (5.2a) 

  
�w�‘�‘ �®�| �‘

�” L �r �‘ F �w�‘�u �®�| �u
�Û���á (5.2b) 
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where the superscript �J indicates the current time step,���2�Â
�Û are pressure values at interface 

or isolated particles. �2�Â
�Û��are estimated by Eq. (3.54) or Eq. (3.56) in which the pressure of 

the surrounding particles are currently available. Within each time step, iterations may be 

performed, starting with���2�Â
�ÛL �2�Â

�á�?�5 , where the pressure value ���2�Â
�á�?�5 is obtained at the 

previous time step at interface or isolated particles. After each iteration, �2�Â
�Û will be re-

evaluated using the updated pressure.  This approach is �Q�D�P�H�G�� �D�V�� �µ�&�R�X�S�O�H�G-2 Approach 

���&���$�3�+���¶�� 

This Coupled-2 Approach is similar to a formulation in which Eq. (3.16) is applied to two 

phases separately, with the effect of interface and isolated particles taken into account.   

This is also similar to the decoupled ISPH of Shao (2012) in which the matrices �-�ß�ß and 

�-�Þ�Þ are decoupled and do not directly include the contribution from the other phase.  

However, the Coupled-2 Approach (C2APH) here is significantly different from the 

decoupled ISPH of Shao (2012) in the following aspects.  (1) In their approach, there is no 

explicit requirement on velocity condition at the interface. (2) In their approach, the effect 

of one phase on another phase is taken into account by using the pressure in the previous 

time step without iteration.  Thus the pressure cross the interface in the current time step 

is not actually ensured to be continuous. (3) Their discretisation of Poisson's equation for 

pressure is different from what is employed here as they adopted the standard ISPH 

formulation of approximating the second-order derivative directly.  It is noted that the 

results below will demonstrate that without the velocity condition at the interface, the 

method can only work for very low density ratios and fails to simulate high density ratios. 

 

5.2 Comparison of two methods 
In this section, comparison will be made in the aspect of the accuracy and CPU time of 

Integrated-1 and Coupled-2 Approaches. For the Coupled-2 Approach, since the pressure 

of interface particles, as expressed by Eq. (5.2a), is determined by the results of the last 

time step, the effects of iterations for Eq. (5.2a) within each time step will be first tested 

for different time step sizes. Then the performance of two algorithms on different density 

ratios will be examined by comparing the numerical results with theoretical and 

experimental ones. The cases considered for this purpose are a gravity current flow which 

is formed by the heavier fluid released into the lighter fluid due to the gravity. For 

numerical work, the flow is simulated in a 2D tank containing two fluids with the heavier 

fluid of density of ���é�5��on the left and lighter one of density ���é�6�� on the right. The fluids are 

separated by a partition which will be instantaneously removed to release the heavier fluid 
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into the lighter. Figure 5.1 illustrates a schematic setup of the numerical tank and initial 

phase configurations. This problem was broadly addressed by both experimental and 

theoretical studies and they will be used for pressure solving methods validation in this 

section. 

 

Figure 5.1: Illustration of initial computational setup 
 

 
Three results of laboratory experiments with different density ratios from Rottman and 

Simpson (1983), Lowe et al. (2005) and Grobelbauer et al. (1993) will be used. In 

Rottman and Simpson (1983), the apparatus was a channel with rectangular cross section, 

384cm long, 50cm deep and 20.5cm wide. The heavier phase of salt water and the lighter 

phase of fresh water were divided by a gate placed at a distance �T�4 from one of the end 

walls. When both sections were filled by equal height of two fluids, four tests were 

conducted with density ratios and dimensions listed in Table 5.2. 

Table 5.2: Setups of gravity current flow experiments in Rottman and Simpson (1983) 
 

 Density ratio �D�4�������:�?�I�; �T�4�����:�?�I�; 

Test 1 1.01 10 40 

Test 2 1.01 10 60 

Test 3 1.02 10 50 

Test 4 1.04 20 40 

It was observed from the experiment that the heavier fluid was displaced forming a 

gravity current and was propagating towards the end wall. Meanwhile, the lighter fluid 

was moving oppositely forming a backflow current and a hydraulic drop was generated 

when it met the wall. The backflow then propagated away from the wall and eventually 

over took the front of the heavier fluid current. The front positions of the heavier phase 
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were recorded at several time instants for each test using the dimensionless length of 

���T���T�4 and the dimensionless time of  �P���P�4 where �P�4 L �T�4��¥�C�ñ�D�4 and �C�ñL �C�:�é�5 F �é�6�;��

�é�6. With such non-dimentionlization, the propagating of the front was found to be 

independent of the variables listed in Table 5.2. Thus, the front positions with respect to 

the time for all the four tests are scatter plotted and data at an early time (before the bore 

over took the front) can be fitted by a straight line resulting a constant front propagating 

speed. The same non-dimensionalization will be followed in the numerical simulation and 

the fitted line from the experiments will be adopted for validations.  

The theory for gravity currents used for validation in this section is from Keller and 

Chyou (1991) in which the full range of density ratio is covered. Based on the 

observations of their experiments, two possible flow configurations were suggested 

depending on the density ratio. For low density ratios, close to unity, the oppositely 

propagating energy-conserving currents are connected by a long wave of expansion and a 

hydraulic jump, while for high density ratios, the light current is energy-conserving but 

the heavy current is supposed to have a dissipative front and the connection between two 

currents is a simple long wave expansion without the hydraulic jump. Although the full 

range of the density ratio is covered by this theory, the front velocity of the heavy current 

with density ratio of 1.01, 1.43 and 3.0 accompanying the experimental data will be used 

to validate two algorithms proposed to solve the discretised pressure equation.      

For the simulations by multiphase MLPG_R, the dimensions of the cases are set as�����D�4 L

�s�ä�r�• , �T�4���D�4 L �s�ä�t�•  and �.���D�4 L �z which is sufficient to generate a fully developed 

heavy current without the effect of the end wall. The density ratio �ÜL �é�5���é�6 is 1.01 for 

testing the iterations effects for the coupled-2 method. The numbers of particles used 

along the depth and length are 40 and 320 respectively, whereas the initial distance 

between particles is 0.025m.  Within each time step, the iteration error is calculated by 

�'�NL
�Ã �+�ã�Ô�6�-�?�ã�Ô�+�¿

�Ã �ã�Ô�6�-
�¿

  where �E is the number of iterations and the criterion for stopping the 

iteration is set to be���'�NO���s�r�?�8. Time histories of the heavier fluid front position 

obtained with and without the iteration are illustrated and compared with the linear fitted 

experiment results (Rottman and Simpson, 1983) in Figure 5.2. (a) to (d), which illustrate 

the front propagating with decreasing time steps of 0.011s, 0.0096s, 0.008s and 0.0064s 

respectively. It can be observed that the results obtained by using the iterative approach 

with all the time steps agree very well with the experiments.  However, without the 

iteration, the results can be significant different from that of the experiments (Figure 5.2a). 

But the difference goes down with decreasing time steps and can be eliminated when the 
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time step is sufficiently small (Figure 5.2d). Therefore, for this gravity current flow, the 

time step of 0.0064s will be adopted to ensure the accuracy of the coupled-2 equations 

solving algorithm.  

 

 

         (a)                                                                    (b) 

 

         (c)                                                                    (d) 

Figure 5.2: Comparison of the front time histories of heavier fluid obtained by using Coupled-2 
Approach with or without iteration at time steps of 0.011s, 0.0096s, 0.008s and 0.0064s. (�T�4��is 
initial front position and���P�4 L �š�4��¥�C�ñ�D�4,���C

�ñL �C�:�é�5 F �é�6�;���é�6) 
 
 
More features of the Coupled-2 Approach will be demonstrated next by comparing its 

results with those of Integrated-1 Approach. For this purpose, the same case as illustrated 

by Figure 5.1 will be simulated but with different density ratios of 1.01, 1.43 and 3.0 

using a fixed time step of 0.0064s which was tested to be sufficiently small to obtain 

satisfactory results without iterations. Table 5.3 presents the dimensionless mean front 

velocity defined by �Q�ÛL �Q��¥�C�"�D�4 and the CPU time (on Dell OPTIPLEX 790) required 
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by the two approaches. As for the cases with lower density ratios of �AL �s�ä�r�s and 1.43, 

the mean front velocities obtained by the two approaches are very close to each other and 

both agree reasonably well with the experiments (Rottman and Simpson, 1983). A 

theoretical result (Keller and Chyou, 1991) is also given in the table. It is found that the 

numerical results lie between the experimental and theoretical values. Although both 

approaches give similar results for the cases, the Coupled-2 Approach costs less CPU time 

in both cases with the trend that more CPU time may be saved for the higher density ratio.  

As the density ratio increases to 3.0, the Integrated-1 Approach fails to give convergent 

results whereas the Coupled-2 Approach keeps working well and yields the front velocity 

consistent with the experiment (Grobelbauer et al., 1993) and the theory. These tests 

clearly show that Integrated-1 Approach can only work for the cases with very low 

density ratio (close to 1) and fails to deal with high density ratio. The Coupled-2 

Approach works well for both low and high density ratios. When both approaches work, 

the Coupled-2 Approach is computationally more efficient. 

So far, the multiphase MLPG_R method is fully developed including the pressure 

�I�R�U�P�X�O�D�W�L�R�Q�V�� �I�R�U�� �L�Q�Q�H�U���� �L�Q�W�H�U�I�D�F�H�� �D�Q�G�� �L�V�R�O�D�W�H�G�� �S�D�U�W�L�F�O�H�V�� �E�\�� �V�R�O�Y�L�Q�J�� �S�U�H�V�V�X�U�H�� �3�R�L�V�V�R�Q�¶�V 

equation based on a local weak form using the test function of the Rankine source 

solution, explicitly implementing the continuous pressure and pressure gradient over 

density and being interpolated by surrounding particles respectively. To solve the 

discretised pressure equation, decoupled-2 approach is selected as it was justified to cover 

a wider range of density ratios and to be more efficient than the integrated-1 approach. 

With the obtained pressure, the velocity and position of each particle is subsequently 

updated. For flows where there exists large interface deformations or wave breaking, an 

interface and isolated particle identification technique based on absolute density gradient 

can be adopted. A flow chart for the whole procedure of multiphase MLPG_R method is 

shown in Figure 5.3. It should be noted that, since the interface condition considered so 

far is the continuous pressure and velocity normal to the interface, the applications are 

restricted to small viscous effects and zero interface tension. In the following chapter, 

validations of the proposed method will be provided on cases within this scope. 

Extensions to cover the flows with significant viscous effect and interface tension will be 

discussed in Chapter 7 and 7.4. 
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Table 5.3: Comparison of mean velocity of the front and CPU time by applying different methods 
with density ratio of���ÜL �s�ä�r�s, 1.43 and 3.0. (N/A: Not available; N/W: Not working)   
 
Density 

ratio���Ü 
Methods  �Q�ÛL �Q��¥�C�"�D�4 

CPU time 

(on Dell OPTIPLEX 790) 

1.01 

 

Integrated-1 

Approach 
0.467 2.02hrs 

Coupled-2 Approach 0.465 1.42hrs 

Experiments 

(Rottman and 

Simpson, 1983) 

0.440 N/A 

Theory (Keller and 

Chyou, 1991) 
0.493 N/A 

1.43 

Integrated-1 

Approach 
0.552 1.58hrs 

Coupled-2 Approach 0.549 0.57hrs 

Experiments (Lowe 

et al., 2005) 
0.480 N/A 

Theory (Keller and 

Chyou, 1991) 
0.597 N/A 

3.00 

Integrated-1 

Approach 
N/W N/W 

Coupled-2 Approach 0.795 1.32hrs 

Experiments 

(Grobelbauer et al., 

1993) 

0.659 N/A 

Theory (Keller and 

Chyou, 1991) 
0.872 N/A 
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Figure 5.3�ÖFlow chart of the multiphase MLPG_R method procedures 
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In this section, several cases including both non-breaking and breaking flow situations 

will be considered to validate the multiphase MLPG_R method which explicitly 

implements the interface conditions ensuring the continuity of pressure and normal 

velocity at the interface. For flows with large interface deformations or wave breaking, 

such as gravity current flow and violent water-air sloshing in section 6.1 and 6.3, the 

newly proposed interface identification technique described in Chapter 3 will be adopted. 

As discussed in Chapter 5, the Coupled-2 method will be used to solve the discretised 

pressure equation to cover a wide range of density ratio from 1.01 to 1000. Validations 

are conducted with both analytical solutions (i.e. two-phase sloshing with small amplitude) 

and experimental data (i.e. gravity current flows with different density ratios and water-air 

violent sloshing). 

 

6.1 Numerical simulation of the gravity current flow  
The schematic setup for this case is similar to that in Figure 5.1 for investigating different 

approaches for solving the pressure equation but the parameters here are different. In this 

section, the parameters are selected based on an experiment in Rittman and Simpson 

(1983), in which the filling height of both fluids is���D�4 L �y�?�I, the ratio of partition 

position and tank length to the filling height are �T�4�����D�4 L �y�ä�s�v and �.�����D�4 L �t�z�ä�w�z, �C�ñL

Chapter 6    Results and Validations of 

Flows with Small Viscosity and Zero 

Interface Tension 
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�v�y�?�I���O�6, and the density ratio is 1.048 (the heavier to the lighter). The apparatus setup 

and experimental conduction was previously introduced in section 5.2. 

In order to verify the effect of time step and the number of nodes, the numerical 

investigation for convergent property of multiphase MLPG_R method is carried out. For 

the time step convergent test, Figure 6.1 shows the comparison of the front position 

propagation of the heavy current for different time steps of���r�ä�z�vH�s�r�?�7�O, ���s�ä�v�vH�s�r�?�7�O 

and �t�ä�{�xH�s�r�?�7�O with a fixed particle distance of �r�ä�r�r�s�y�w�I  in both directions. It can be 

seen that little difference is observed between the results of���@�PL �r�ä�z�vH

�s�r�?�7�•��and���s�ä�v�vH�s�r�?�7�O, whereas the relativly larger time step of 2.96H�s�r�?�7�O results in 

a visible but not significant difference. To obtain a more general coefficient for time step 

indication, Courant number is adopted which is generally defined as �%L �Q�@�P���@�T where �Q 

is the velocity, �@�P is the time step and �@�T is the length interval which is equivalent to 

particle distance in the meshless method. In the gravity current flow case, �Q is specified as 

the maximum velocity in the whole domain which can be regarded as a constant obtained 

at the front of the heavy current and �@�T is defined as initial particle distance. In this case, 

the velocity is obtained by fitting the convergent results (as shown in Figure 6.1) to a 

straight line giving the gradient of 0.081�• ���•. By adopting the velocity of the front, the 

Courant numbers (specified as���%L ���Q�à�Ô�ë���@�P���@�T) of the convergent time steps become 

0.038 and 0.066 corresponding to time steps of �r�ä�z�vH�s�r�?�7�O and���s�ä�v�vH�s�r�?�7�O 

respectively. 

 
Figure 6.1: Comparison of the leading front time histories of the heavier fluid obtained by using 
different time steps. 
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In order to investigate how the results vary with different initial distance between particles, 

cases with a fixed courant number of 0.038 but different number of particles is considered.  

To do so, the cases with �@�TL �D�4���s�r, �D�4���t�r, ���D�4���v�r and �D�4���w�r, i.e. 10, 20, 40 and 50 

particles are allocated along the depth, corresponding to �@�TL �r�ä�r�r�y�I , �r�ä�r�r�u�w�I , 

�r�ä�r�r�s�y�w�I  and �r�ä�r�r�s�v�I  are investigated. Corresponding results (leading front time 

histories of heavier fluid) are plotted in Figure 6.2, together with the experimental results 

from Rittman and Simpson (1983). One can observe that coarse particle distribution 

(�@�TL �r�ä�r�r�y�I ) results in slower propagation of the head compared to experimental data 

and the gap is narrowed with refined distribution (�@�TL �r�ä�r�r�u�w�I ). The difference 

becomes invisible and the result is convergent when �@�TL �r�ä�r�r�s�y�w�I  and �@�TL �r�ä�r�r�s�v�I . 

 
Figure 6.2: Comparison of the leading front time histories of the heavier fluid obtained by using 
different initial particle distances. 
 

According to the convergence test on the time step and the initial particle distance, �@�TL

�r�ä�r�r�s�y�w�I  and �@�PL �r�ä�z�vH�s�r�?�7�O are selected for further validations. Current 

configurations represented by interfaces at t=4.7s, 7.7s and 10.7s are shown and compared 

with shadowgraphs of the experiments in (a), (b) and (c) respectively of Figure 6.3. The 

graphs show the interface from multiphase MLPG_R in red lines with backgrounds of 

shadowgraphs from experiments of Rittman and Simpson (1983). The dashed line in the 

shadowgraph marks the position of the partition separating the salt water and fresh water. 

Besides leading heads, the whole interfaces largely match the experiment as heavier fluid 

propagates to the right wall and the lighter moves oppositely (Figure 6.3(a)), then the 

backward current hits the left wall leading to a hydraulic jump (Figure 6.3(b)) and the 
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jump continually propagates (Figure 6.3(c)) to eventually overtake the front. Mixing 

between two fluids behind the front was reported and also could be observed from the 

shadowgraphs. As multiphase MLPG_R currently models two immiscible phases, such a 

mixing could not be simulated. But this phenomenon can be explained by circulation 

zones in Figure 6.4(b) in which velocity vector field is enlarged right after the current 

front at t=4.7s. In Figure 6.4(a), velocity vectors at the front demonstrate that the heavy 

current is propagating forward and the light phase right before the current is pushed 

forward but gradually goes up and backward forming the oppositely propagating light 

current.  Unlike the circulation zone in Figure 6.4(b), independent propagating fields can 

be observed at the front which hardly lead to mixing. In the same case, pressure fields 

together with interfaces at three time instants are demonstrated in Figure 6.5. It is noted 

that the filling depth is non-dimensionalised to be unity and the density of light and heavy 

fluid are given as 1.0 and 1.048 in the simulation. A smooth pressure distribution can be 

observed without any unphysical fluctuations and the pressure continuity across the 

interface proposed as an interface condition is satisfied.  

 

(a) 

 

(b) 

 

(c) 

Figure 6.3: Comparison of interfaces between MLPG_R and shadowgraphs of experiments 
(Rottman & Simpson 1983) at 4.7s, 7.7s and 10.7s in (a), (b) and (c) respectively. 
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(a) 

 

(b) 

Figure 6.4: Snapshots of velocity (non-dimensional) field in front (a) and right after the front (b) at 
t=4.7s. 
 

It has been reported (Rottman & Simpson 1983; Grobelbauer et al. 1993; Lowe et al. 2005) 

that, despite changing the initial setup (e.g.���T�4���=�J�@���D�4), the non-dimensional velocity 

(�Q�ÛL �Q��¥�C�"�D�4) of the heavier fluid front largely keeps constant and those constants do 

not significantly vary with the density ratio if it is not larger than 1.4 (Lowe et al. 2005). 

More tests with different density ratios (1.048, 1.1 and 1.3) are carried out with a new 

setup of �D�4 L �r�ä�v�I �á�T�4���D�4 L �s�ä�t�w and���.���D�4 L �z. To simulate these cases, the initial 

particle distance is selected as 0.01m by using 40 particles over the depth and the Courant 

number is chosen as 0.05 to determine the time step. 
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(a) 

 
(b) 

 
(c) 

Figure 6.5: Pressure fields of both phases and the interfaces in black dots at 4.7s, 7.7s and 10.7s. 
The density ratio is 1.048 and the setup follows one experiment in Rottman and Simpson (1983). 
The length scale is non-dimensionlised by the filling depth. 
 
 
Figure 6.6 illustrates dimensionless time histories of the leading front position of the 

heavier fluid with density ratios ranging from 1.01 to 1.3 obtained by various approaches. 

Scattered squares are experimental data (Rottman & Simpson 1983) for the tests with 

slightly different density ratios (1.01, 1.02 and 1.04); four curves are obtained by the 

newly proposed multiphase MLPG_R method for the density ratios of 1.01, 1.048, 1.1 and 

1.3; another two curves for the density ratio of 1.3 are obtained by the decoupled 

incompressible SPH (DISPH) method (Shao 2012) and the MLPG_R method adopting the 

same interface condition as in DISPH considering pressure continuity only (see Eq. 

(3.55)). From this figure, one can find that the front position time histories of the 

experiments and the multiphase MLPG_R method are almost straight lines, implying 

constant non-dimensional velocity, and correlate very well with each other when the 

density ratios are less than 1.1. When it increases to 1.3, the result of the multiphase 

MLPG_R method is still very close to the experimental one, though the difference 

between them is larger as the density ratio is larger than that in the experiments. This is 

consistent with the conclusion of Lowe et al. (2005) that the non-dimensional velocity 

does not vary significantly when the ratio is less than 1.4. One can also find that the result 

of Shao (2012) for the density ratio of 1.3 is significantly different from the experiments.  

One of the reasons may be that they did not apply the condition given by Eq. (3.46). To 

shed some light on this, we also model the case of the density ratio equal to 1.3 without 

using Eq. (3.46) (i.e. applying Eq. (3.55) rather than Eq.(3.54)). The corresponding results 

are �G�H�Q�R�W�H�G���E�\���µ�0�/�3�*�B�5�����������3�&�¶ in Figure 6.6.  It demonstrates that, for both methods 

using pressure continuity only, the propagating velocity is not a constant and is 
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significantly lowered at the beginning but gradually increases. In addition to this, we also 

find that the separation of two phases may be induced leading to the simulations breaking 

down without using the condition of continuous normal velocity  when the density ratios 

are higher than 3.0. 

 

 

Figure 6.6: Time histories of the leading front of the heavier fluids obtained by the experiments 
(Rittman & Simpson 1983), by multiphase MLPG_R for the cases with density ratio of 1.01 1.048, 
1.1 and 1.3 and by DISPH (Shao 2012) and the MLPG_R method only considering pressure 
continuity at the interface for the case with the density ratio of 1.3. 
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6.2 Numerical simulation of two-phase sloshing with 

small amplitudes 
 

 

Figure 6.7: Schematic view of tank dimensions and filling fluids for sloshing 
 

The multiphase MLPG_R method is now applied to simulating the sloshing motion of two 

layered fluids completely filling the 2D tank with the width of �. and the depth of �& as 

shown in Figure 6.7. The heavier fluid with the density of �é�6��occupies the lower part of 

the tank up to the depth of���D�6 and the lighter fluid with the density of�����é�5 occupies the 

space with the depth of�����D�5. A linear analytical solution for two-layer liquid natural 

sloshing was given by Faltinsen and Timokha (2009) when the motion is small and both 

fluids are inviscid. This solution is based on continuous pressure through the interface and 

continuous velocity normal to the interface which is the same as that applied in the 

MLPG_R method for inviscid fluids. The velocity potentials (�Ô�:�Ý�;) involving two fluids 

indicated by �FL �s�á�t are expressed by 

�Ô�:�Ý�;�:�T�á�U�á�P�; L F�=�ñ�O�E�J�:�ñ�P�;�î �:�Ý�;�:�T�á�U�;���á���������FL �s�á�t (6.1) 

      
where 

�î �:�5�;�:�T�á�U�; L �%�à �B�à �:�T�;
�…�‘�•�Š�:�è�I �:�UF�&�; �.�¤ �;

�…�‘�•�Š�:�è�D�5 �.�¤ �;
���á (6.2) 

  

�î �:�6�;�:�T�á�U�; L �B�à �:�T�;
�…�‘�•�Š�:�è�I�U �.�¤ �;

�…�‘�•�Š�:�è�D�6 �.�¤ �;
 (6.3) 

and 

�Œ�“ �:�ž�; L �‰�•�™�@
�Ê�“�ž

�x
�A�������������“ L 
Ú�á
Û�á�å�á (6.4) 
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in which �ê is the natural frequency, �I  is the mode number and �= is the amplitude of 

initial disturbance. The pressures in the two fluid domains can by means of the 

linearized Bernoulli equation be expressed as 

�2�ÝL �é�Ý�F
�ò�Ô�:�Ý�;

�ò�P
E�C�U�G�á�����������FL �s�á�t (6.5) 

By satisfying the above mentioned interface conditions, the parameters of ���#�à , �$�à , �%�à , 

the natural frequency �ê  and the interface elevation �Þ are expressed as 

�%�à L F
�#�à

�$�à
�á�����#�à L �P�=�J�Dl

�è�I �D�6
�.

p�á���$�à L �P�=�J�Dl
�è�I �D�5

�.
p���á 

�ñ�6

�C
L

�è�I
�.

�:�é�6 F �é�5�;�#�à �$�à

�é�6�$�à E�é�5�#�à
�����á (6.6) 

and  

�ÞL �=�#
��

�Å
�?�K�O�:�ñ�P�;�B�:�T�;���ä  (6.7) 

In numerical tests, an initial velocity potential was given at the beginning when �ÞL �r 

across the tank. Alternatively, an initial interface disturbance with zero velocity field by 

setting �PL �r in Eq. (6.7) can be given. However, the initial disturbance may introduce 

errors due to square particle distribution which cannot precisely match the sinusoidal 

interface profile. Thus the velocity field at �PL �è���t�ñ will be chosen as initial condition in 

simulations and then the fluids start to slosh without any external excitation. The 

dimensions of the tank are chosen as���� L �t�• , �.���&L �s, the filling ratio of the dense fluid 

is �D�6���&L �r�ä�w and the density ratio is �é�6���é�5 L �s�r. The amplitude �= is set to be���r�ä�r�t�I . 

As zero viscosity is considered, theoretically there is no energy dissipation and the 

amplitude of the interface keeps constant at �=�#
��

�Å
�B�:�T�;. 

Time step tests are first carried out with an initial particle distance���@�TL �r�ä�r�s�z�I  with 55 

particles allocated along the depth of the dense fluid. For this case, time steps of �@�PL

�v�ä�wH�s�r�?�7�O�á�u�ä�r H�s�r�?�7�O and �s�ä�wH�s�r�?�7�• corresponding to the Courant numbers of 

0.027, 0.018 and 0.009 are used. The maximum velocity in calculating the Courant 

number is obtained from Eq. (6.1), which is ���Q�à�Ô�ë�� L �=�ñ
��

�Å
. The results of interface 

elevations at �TL �r�ä�u�I  are shown in Figure 6.8. It is clear that the three tested time steps 

give similar interface elevation time histories at �TL �r�ä�u�I  while the largest time step 
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shows more dissipation and damping the interface amplitude. When it is decreased to 

�@�PL �u�ä�r H�s�r�?�7�O corresponding to the Courant number of 0.018, it is sufficient to give 

convergent results and to maintain the constant amplitude.  

With fixed courant number of 0.018 to determine the time steps based on the above 

discussion, different particle numbers of 25, 30, 35, 40, 55 and 80 along the depth of �D�6 

are then tested, corresponding to initial particle distances of �@�TL 0.04m, 0.033m, 0.029m, 

0.025m,0.018m and 0.013m respectively. Figure 6.9 shows the comparison of interface 

elevation time histories at �TL �r�ä�u�I  obtained by different particle numbers (only the 

results of �†�šL0.04m, 0.018m and 0.013m are presented for clarity) and analytical 

solutions by Faltinsen and Timokha (2009). The results indicate that the numerical 

simulations are converged and give results with little visible difference from the analytical 

solutions when �@�TQ�r�ä�r�s�z�I .  

 
Figure 6.8: Interface elevation at x=0.3m by using different time steps. 
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Figure 6.9: Interface elevation at x=0.3m by using different number of particles of MLPG_R 
method and analytical solutions (Faltinsen & Timokha 2009). 
 

Snapshots of pressure distribution at the first and the third quarter of the first period are 

shown in Figure 6.10 where the density of the heavy fluid is 1.0 and the light is 0.1. The 

gravity acceleration is also set to be unity. It shows that the pressure of the two fluids 

smoothly varies and is continuous at the interface which is illustrated by black dots in 

Figure 6.10. To further validate the pressure distribution and compare it with the 

analytical solution, the pressure along the tank depth at �r�ä�u�I  away from the left wall and 

the right wall is plotted in Figure 6.11. The solid line is obtained by analytical solution 

showing moderate pressure gradient above the interface and more significant gradient 

below the interface, which is caused by the density difference of the two fluids. It is clear 

to observe that the simulated pressure, shown in squares, fits well with the analytical 

solution and the pressure at the gradient inflection point where the interface located is 

continuous which is consistent with the interface condition. The regions near the interface 

points in Figure 6.11(a) and (b) are enlarged to show the interface displacements where 

the left side (�TL �r�ä�u) is below the initial filling of �D�6 and the right side (�TL1.7) is 

located above it. Both interface displacement and pressure on it fit well with the analytical 

solution. Figure 6.12 compares the distribution of pressure derivatives over density along 

the depth given by analytical solution and the two-phase MLPG_R method. One can see 

that numerical results agree very well with the analytical solution and also that the 

specific pressure derivative in x-direction is discontinuous while the specific pressure 

derivative in y-direction is almost continuous. This is consistent with the pressure 
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condition imposed by Eq. (3.46) with continuous normal pressure derivative over density 

but discontinuous tangential pressure gradient over density.   

 

   
                           (a)                                                                      (b) 

Figure 6.10: Snapshots of pressure distribution at the first quarter (t=0.447s) and the third quarter 
(t=1.405s) of the first period. 
 

          

 (a)                                                                    (b) 

Figure 6.11: Pressure distribution along the depth 0.3m away from the left wall (a) and 0.3m away 
from the right wall (b) at t=0.447s. 
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(a)        

     

(b) 

Figure 6.12: Pressure specific derivatives (a)-(b) in �TF and �UF directions at t=0.75 and x=0.75  
and 1.75 with the analytical solution from (Faltinsen & Timokha 2009). 

 

In order to investigate the convergent properties, the error in the results is estimated by 

comparing it to the analytical solution. The error is estimated by���'�NL

§�Ã �+�Þ�ÜF�Þ�Ü�á�Ô�+
�6�Ç��

�Ü�@�5 §�Ã �+�Þ�Ü�á�Ô�+
�6�Ç

�Ü�@�5X , where �Þ�g�á�_ is the analytical solution of wave elevation at 

�TL �r�ä�u�I  at i-th time step,  �Þ�g is the corresponding numerical result and  �0 is the total 

number of time steps during the simulation time. Figure 6.13 shows the errors with 

respect to the initial distances between particles for two filling ratios of the heavy fluid, 

which are 0.5 in Figure 6.13(a) and 0.3 in Figure 6.13(b). For either filling ratio, density 

ratios ranging from 10 to 1000 are tested. One can see that the convergence rates are close 

to 2 and the impact of the density ratio and filling ratio are negligible. The analytical 

solution also provides the natural period with specified tank dimension, fluid densities and 

filling ratios. By fixing the tank dimension as used in simulations, period variations with 

respect to the filling ratios of the heavy fluid are illustrated by the solid line and the 

dashed line for the density ratios of 10 and 1000 respectively in Figure 6.14. 
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Corresponding periods for different filling ratios of 0.1, 0.12, 0.2, 0.3, 0.5, 0.7 and 0.9 for 

both density ratios are obtained by MLPG_R numerical simulations and good agreement 

is achieved, which demonstrates the ability of the multiphase model on simulations with 

high filling ratio such as 0.9 and on low ones like 0.1 as well.  

 

(a) 

                                                                  

(b) 

Figure 6.13: Numerical errors of simulating density ratio of 10, 50, 200 and 1000 with different 
particle distances with filling ratio of 0.5(a) and 0.3(b). 
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Figure 6.14: Natural periods for different filling ratios of 0.1, 0.12, 0.2, 0.3, 0.5, 0.7 and 0.9. The 
density ratio is 10 and 1000, respectively. 
 

6.3 Violent sloshing of fluids with large density ratios 
After discussions of the non-violent cases, the multiphase MLPG_R method is further 

validated using air-water violent sloshing by comparing the results with experimental data 

provided by Kishev et al. (2006). Such experiments intend to reveal the sloshing 

occurrence and the forces acting on the tank structure of the partially filled liquid cargo 

carriers when the ship oscillates in waves. In violent conditions, the force can be large 

enough to cause local structure deformation or damage. Violent sloshing is a strongly 

nonlinear problem in which the phenomena like high speed impacts on tank walls, 

breaking waves, jets, droplets formulation and air bubble entrainment may be involved. 

Such complicated hydrodynamic phenomena make the theoretical prediction on fluid 

motions and loads on structures difficult and form strong demands on experiments. But 

experiments cannot always provide needed information of violent sloshing such as 

pressure distribution and velocity field in an economical way. Fully nonlinear multiphase 

MLPG_R model provides a competitive option to obtain such information. 

In Kishev et al. (2006), experiments on 2D violent sloshing were conducted in an 

Plexiglas made tank, 60cm wide, 30cm high, and 10cm deep. The 2D view on height and 

width plane is the same as that of previously discussed small amplitude sloshing as shown 

in Figure 6.7. The tank was oscillated in sway with the motion described as �: L



107 
 

�=�4�O�E�J�:�ñ�P�; where �=�4 was the sway amplitude and �ñ was the frequency. On each sidewall 

of the tank, there were several positions prepared for pressure gauges and the pressure 

time history obtained by gauge at �TL �r�ä�s�I  on the right hand wall will be used for 

numerical validation. One high speed camera was used to provide snapshots showing air-

water interface profiles.   

In violent flow situations, the density ratio is set to be ���é�6���é�5 L �s�r�r�r to simulate air-

water sloshing. The same tank dimension and water filling of a set of experiments in 

Kishev et al. (2006) is set as �D�6 L �r�ä�s�t�I , �D�6���&L �r�ä�v and���D�6���. L �r�ä�t . The tank is 

excited by the sway motion, where �=�4 L �r�ä�r�w�I  and �ñ L �v�ä�z�u�O�?�5 (corresponding to the 

period of 1.3s) are the amplitude and the frequency respectively. In the simulation, the 

coordinate system is fixed in the moving tank to simplify the solid boundary conditions. 

One phenomena of the violent sloshing is the formation of water droplets and air bubble 

penetration which in MLPG_R simulation are illustrated by a few air particles trapped 

into water and water particles penetrating into air as isolated particles. In that situations, 

the pressure formulation and identification technique of these particles discussed in 

section 3.4 and Chapter 4 will be adopted here.  

Time step tests of �@�PL �s�ä�s�sH�s�r�?�8�•, ���t�ä�t�sH�s�r�?�8�O��and �u�ä�u�tH�s�r�?�8�O with a fixed 

initial particle distance of 0.004m, i.e. 30 particles along the water depth, are first carried 

out. By using the maximum velocity given by���Q�à�Ô�ë�� L ¥�C�D�6, the Courant numbers of 

above time steps correspond to 0.03, 0.06 and 0.09. Water-air interface snapshots at �PL

�s�ä�v�u�O and �s�ä�w�x�O obtained by different time steps are compared in Figure 6.15, with 

enlarged inserts. The interface differences are mainly at the peak points. But when the 

time step is shorter than�����t�ä�t�sH�s�r�?�8�O, the difference is almost invisible. The directing 

courant numbers of violent sloshing cases are 0.03 and 0.06 corresponding to the time 

steps of  �s�ä�s�sH�s�r�?�8�O and �t�ä�t�sH�s�r�?�8�O respectively. 

         

(a)                                                                       (b) 

Figure 6.15: Snapshots of interfaces obtained by using the time steps of 1.11H10-4s, 2.21H10-4s and 
3.32H10-4s at t=1.43s (a) and t=1.56s (b). 
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By adopting the Courant number of 0.03, initial particle distances of �D�6/10, �D�6/20 and 

�D�6/30 (corresponding to �@�TL �r�ä�r�s�t�I , �r�ä�r�r�x�I  and �r�ä�r�r�v�I ) are tested. The interface 

profiles at different time instants are displayed on the right hand column in Figure 6.16. 

There is no significant difference between the results corresponding to these three initial 

particle distances. The left hand column of Figure 6.16 shows the comparison between 

experiment snapshots (Kishev et al. 2006) and results of smallest particle distance of 

�@�TL �r�ä�r�r�v�I . Photos from the experiment were provided for 0.1T, 0.2T, 0.3T and 0.4T 

(where T is a wave period) without exact time instants. It means that from which period 

those four instants were picked is not provided. For the simulation snapshots, four 

snapshots are picked out from the second period, in which the sloshing wave starts to be 

violent and breaking. The left hand column of Figure 6.16 shows reasonable agreement of 

wave surfaces between the experiment and the simulation and the right shows little 

difference between the case with three particle distances. Figure 6.16 also shows that the 

interface and the isolated particles are almost correctly identified at all the instants. 

Pressure time histories at �VL �r�ä�z�u�D�6 on the right wall for three initial particle distances 

are also compared with experiments and shown in Figure 6.17. It can be observed that the 

numerical pressure time history is quite smooth and correlated well with the experimental 

data.   
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(a) 

 

 
(b) 

 

 
(c) 
 

 
(d) 

 
Figure 6.16: Comparison of water-air interface profiles at t=1.43s, 1.56s, 1.69s and 1.82s from (a) 
to (d). Left column gives experiment photos compared with the simulation of �@�TL �r�ä�r�r�v�I .Right 
column gives MLPG_R results with���@�TL �r�ä�r�s�t�I , 0.006m and 0.004m (snapshots in the shape of 
circle, rectangle and square respectively). 
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(a) 

 

 

(b) 

Figure 6.17: Comparison of pressure of �VL �r�ä�z�u�D�6��on the right vertical wall between experiments 
and MLPG_R. (a) is the time history for five periods and (b) is the enlargement of the second 
period. 
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In previous chapters, the MLPG_R has been developed to simulate multiphase flows by 

explicitly implementing the interface conditions of continuous �L and 
�!�ã

���!�á
 (Chapter 3) on 

the prior identified interface or isolated particles (Chapter 4). As discussed in Chapter 5, 

the Coupled-2 algorithm is selected to solve the discretised pressure equation to deal with 

high density ratio cases and to achieve efficiency in computational time. However the 

current interface conditions are based on the assumptions of neglectable interface tension 

and small viscous effects. Therefore, the model validations are carried out on the non-

breaking and breaking cases satisfying such assumptions in Chapter 6. To further develop 

the MLPG_R model to simulate more general cases in which interface tension and 

viscous effects can be more significant, instead of continuity of �L and����
�!�ã

���!�á
 (jump of ��

�Ï�ã

��
 

already existed), a jump on pressure is introduced and the jump on 
�Ï�ã

��
 is modified. The 

jump of pressure on the interface enables the method to deal with the interface tension 

which ensures the sharp interface satisfying the pressure discontinuity and reduces the 

spurious currents compared to the widely adopted conventional continuous surface force 

method (CSF); the modified jump of  
���ã

��
 is introduced to satisfy the interface condition of 

stress balance when the viscous effects are significant in either phase. 

 

Chapter 7    Methods for Multiphase 

Flows with Large Viscosity and Non-

zero Interface Tension 
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7.1 Interface conditions with pressure jumps 
In the previous section, by considering small viscosity and zero interface tension, the 

continuity in �L was implemented. Meanwhile, continuous normal velocity combined with 

averaged viscous force were also applied at the interface particles. To extend the 

applications to high surface tension and high viscosity fluids, interface conditions 

(Brackbill et al. 1992; Sussman et al. 2007) are derived from the continuity condition for 

velocity in both normal and tangential directions as 

 �› �ßL �› �Þ���ä  (7.1) 

The jump condition for the pressure caused by viscous stress and interface tension is 

�L�ßF �L�Þ L �ì�ß�á�á F�ì�Þ�á�á E�ê�â,  (7.2) 

and the continuity condition for tangential viscous stress is 

�ì�ß�á�� L �ì�Þ�á��,  (7.3) 

where �ê is the interface tension coefficient,  �â is the local curvature and the sign of the 

surface tension indicates that phase �H is on the convex side. �ì�ß�á�á and �ì�Þ�á�á are normal 

viscous stresses on two sides and can be expressed by 

�ì�� �á�á L �t�ä�� �J�Ý�F
�ò�Q�Ý
�ò�J

�G�� 

and 

�ì�� �á�� L �ä�� �B�J�Ý�@
�! �è�Õ

�!��
�AE�ì�Ý�@

�! �è�Õ

�!�á
�A�C ,      �FL �s�á�t 

where  �” L �:�J�5�á�J�6�; is the unit normal of the interface towards the fluid with convex 

interface which is the same as that of then surface tension force, and �Î L �:�ì�5�á�ì�6�; is the 

unit tangent. According to the above two conditions, �L and 
���ã

��
 will be not continuous and 

jumps will be derived and considered in this section. 

The velocity is continuous across the interface, implying that the Lagrangian acceleration 

is continuous as well. Thus the RHS of Eq. (3.1) needs to be continuous on the interface 

(Kang et al. 2000) and to satisfy 

�r �ßL �r �Þ L �r , (7.4) 
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where 

�r �� L �• F
�5

�� �
���Ø�L�� E�í�� �Ø�6�› �� �������������ÙL �G�á�H���ä  

The expression can be rearranged within each phase and written as 

l
�Ø�L
�é

p
�ß

L �• F �r E�í�ß�Ø�6�› �ß���á (7.5) 

and  

l
�Ø�L
�é

p
�Þ

L �• F �r E�í�Þ�Ø�6�› �Þ���ä (7.6) 

For low viscosity fluids, �í�� �Ø
�6�› ��  in Eq. (7.5) and (7.6) are replaced by �:�í�ß�Ø

�6�› �ßE

�í�Þ�Ø�6�› �Þ���;���t which ensures the continuity of  
�!�ã

���!�á
 on the interface. But for high viscosity 

fluids, averaging the viscous term is no longer applicable and the term needs to be 

considered separately for each phase. Consequently, the jump of 
���ã

��
 on the interface needs 

to be modified and expressed as  

l
�Ø�L
�é

p
�ß

F l
�Ø�L
�é

p
�Þ

L �í�ß�Ø�6�› �HF �í�Þ�Ø�6�› �G���ä (7.7) 

So far, jumps of pressure and 
���ã

��
 at the interface are derived and expressed by Eq. (7.2) 

and (7.7) which will be used to formulate the pressure expression of interface particles. 

The shear stress is estimated with the velocity of the last time step and Eq. (7.3) is used to 

update the intermediate velocity of the interface particles. 

 

7.2 Pressure formulation of interface particles 
Following the section 3.3, the pressure of each phase near the interface particles denoted 

by � �̃4 is expanded into a Taylor series: 

�s
�é�ß

k�L�ß�:� �̃; F �L�ß�:� �̃4�;oN
�s
�é�ß

�:�Ø�L�ß�;� �̃,
�®�:�˜ F � �̃4�;�� (7.8) 

and   
�5

�� �Ö
k�L�Þ�:� �̃; F �L�Þ�:� �̃4�;oN

�5

�� �Ö
�:�Ø�L�Þ�;� �̃,

�®�:�˜ F � �̃4�;���ä   (7.9) 
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Substituting Eq. (7.5) and (7.6) into Eq. (7.8) and (7.9) and discretising equations in the 

support domain within each phase yields 

�s
�é�ß

Í �@�L�ßk� �̃ÝoF �L�ß�:� �̃4�;�A�Î �ßk� �̃Ý�4o

�á

�Ý�@�5

L �:�• F �r E�í�ß�Ø�6�› �ß�;� �̃,
�®Í k� �̃ÝF � �̃4o�Î �ßk� �̃Ý�4o

�á

�Ý�@�5

���á 

(7.10) 

  

�s
�é�Þ

Í �@�L�Þk� �̃äoF �L�Þ�:� �̃4�;�A�Î �Þk� �̃ä�4o

�à

�ä�@�5

L �:�• F �r E�í�Þ�Ø�6�› �Þ�;� �̃,
�®Í k� �̃ä F � �̃4o�Î �Þk� �̃ä�4o

�à

�ä�@�5

���á 

(7.11) 

where the shape function���Î �:� �̃; is obtained by the moving least square (MLS) algorithm in 

a support domain containing both phases.  

Adding up Eq. (7.10) and (7.11), it follows 

�s
�é�ß

Í �L�ßk� �̃Ýo�Î �ßk� �̃Ý�4o

�á

�Ý�@�5

E
�s
�é�Þ

Í �L�Þk� �̃äo�Î �Þk� �̃ä�4o

�à

�ä�@�5

F �N
�L�ß�:� �̃4�;

�é�ß
Í �Î �ßk� �̃Ý�4o

�á

�Ý�@�5

E
�L�Þ�:� �̃4�;

�é�Þ
Í �Î �Þk� �̃ä�4o

�à

�ä�@�5

�O 

����������������������������������������������L �:�• F �r�;� �̃,
�NÍ k� �̃ÝF � �̃4o�Î �ßk� �̃Ý�4o

�á

�Ý�@�5

EÍ k� �̃ä F � �̃4o�Î �Þk� �̃ä�4o

�à

�ä�@�5

�OE�(�é�����á 

(7.12) 

where   

�(�œL �:�í�ß�Ø�6�› �ß�;� �̃,
�®�Ã k� �̃ÝF � �̃4o�Î �ßk� �̃Ý�4o

�á
�Ý�@�5 E�:�í�Þ�Ø�6�› �Þ�;� �̃,

�®�Ã k� �̃ä F � �̃4o�Î �Þk� �̃ä�4o
�à
�ä�@�5 ���ä  

Although the first term of RHS of Eq. (7.12) can be omitted when sufficient particles are 

used, its treatment is similar to that of flows with small/zero viscosity and zero interface 

tension (see section 3.3) and the term is maintained as���(�å
�ñ computed with parameters 

obtained from the last time step.  

Utilizing Eq. (7.2) and rearranging Eq. (7.12), it follows that 
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�L�Þ�:� �̃4�;

L

�5

�� �×
�Ã �L�ßk� �̃Ýo�Î �ßk� �̃Ý�4o

�á
�Ý�@�5 E

�5

�� �Ö
�Ã �L�Þk� �̃äo�Î �Þk� �̃ä�4o

�à
�ä�@�5 F �(�å

�ñF �(�é F �(�á�á�Þ

�5

�� �×
�Ã �Î �ßk� �̃Ý�4o

�á
�Ý�@�5 E

�5

�� �Ö
�Ã �Î �Þk� �̃ä�4o

�à
�ä�@�5

���á 
(7.13) 

  
�L�ß�:� �̃4�;

L

�5

�� �×
�Ã �L�ßk� �̃Ýo�Î �ßk� �̃Ý�4o

�á
�Ý�@�5 E

�5

�� �Ö
�Ã �L�Þk� �̃äo�Î �Þk� �̃ä�4o

�à
�ä�@�5 F �(�å

�ñF �(�é E�(�á�á�ß
�5

�� �×
�Ã �Î �ßk� �̃Ý�4o

�á
�Ý�@�5 E

�5

�� �Ö
�Ã �Î �Þk� �̃ä�4o

�à
�ä�@�5

���á 
(7.14) 

where  

�(�á�á�Þ L
�5

�� �×
k�ì�Þ�á�á F �ì�ß�á�á E�ê�â��o�Ã �Î �ßk� �̃Ý�4o

�á
�Ý�@�5 ���á  

�(�á�á�ßL
�5

�� �Ö
k�ì�ß�á�á F �ì�Þ�á�á E�ê�â��o�Ã �Î �Þk� �̃ä�4o

�à
�ä�@�5 ���ä  

The pressures expressed by Eq. (7.13) and (7.14) are implemented on one interface 

particle and represent the pressure for phase �G and �H respectively. Compared to interface 

pressure in section 3.3, the extra terms of �(�é and �(�á�á�ß���(�á�á�Þ are generated by high viscous 

force and normal stress jump (includes interface tension) respectively.  

7.3 Curvature and surface tension 
To achieve an accurate pressure field, the surface tension term �ê�â in Eq. (7.13) and (7.14) 

needs to be carefully treated. For existing surface tension models, e.g. CSF (Brackbill et al. 

1992) and GFM (Fedkiw et al. 1999), calculations are based on the assumption that the 

location of the interface is known accurately, which is also required by the multiphase 

MLPG_R method. In mesh based approaches, three methods were proposed to compute 

curvature. One is estimated from an indicator function �? in both VOF and level set 

approaches and expressed as �âL �Ï �®
�Ï�Ö

���Ï�Ö��
 (Hoang et al. 2013; Popinet 2009). �? can be a 

discontinuous fluid distribution function or developed to be smoothed. But such 

approaches often do not converge with mesh refinement (Desjardins et al. 2008; Cummins 

et al. 2005). Secondly, a least square approach adopted by Desjardins et al. (2008) in the 

accurate conservative level set method was tested to be first order convergent. Thirdly, the 

height function approach implemented in both Level-set (Owkes and Desjardins, 2013) 

and VOF (Owkes & Desjardins 2013; Owkes & Desjardins 2015) methods achieved a 

second-order convergence. But extra computations are required to integrate the liquid 

volume fraction to build the height function for the concerned and neighbouring cells.  
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For meshless approaches, CSF is also widely adopted for surface tension implementation 

and the curvature is computed as the divergence of the unit normal using an indicator 

function (Hu & Adams 2006; Adami et al. 2010) following that in mesh based approaches. 

But the convergent problem still cannot be avoided. Zhang (2010) proposed a method to 

locally reconstruct the interface after the interface particle identification which was also 

adopted in Zhang et al. (2012). In their 2D cases, the interpolation polynomial is used to 

fit the curve and MLS is used in 3D cases. But interpolation polynomial constructed curve 

often has oscillations due to irregular interface particle distribution and those oscillations 

lead to inaccurate first and second derivatives and consequently lead to inaccurate 

curvatures. To remedy interpolation polynomial induced inaccuracy, MLS interpolation 

will be used to reconstruct the local interface in MLPG_R method which is less sensitive 

to the irregular interface particle distribution. 

In MLPG_R multiphase model, the interface is automatically traced by identifying 

interface particles using a numerically computed density gradient (see Chapter 4). Similar 

with Zhang (2010), a local interface curve will be reconstructed for every interface 

particles. To ensure a one-valued interface curve, a local coordinate system is first built 

(as shown in Figure 7.1) with the new origin �1�ñ located at the point averaging the 

coordinates of neighbouring interface particles, i.e., interface particles within the circle, 

and the �U�ñ axis pointing to the concerned particle. Secondly a local curve of the concerned 

particle will be constructed. Unlike using the polynomial interpolation in Zhang (2010), 

the second-order MLS technique is used to ensure a smooth curve even with irregularly 

distributed interface particles. Details of MLS technique is revisited in section 3.2.1 and 

here the curve reconstruction procedure is presented.   

 

Figure 7.1: Coordinate transformation for local curve construction. �T�K�U is coordinate system for 
the whole domain and �T�ñ�K�U�ñ is the local coordinate for interface reconstruction for the interface 
particle passed through by the �U�ñ axis 
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To obtain a second-order curve in the �T�ñ�K�ñ�U�ñ system, the approximant �U�ñ�Û�:���T�ñ�; of ���U�ñ�:���T�ñ�;, 

�š�Ð�3, can be defined by 

�U�ñ�Û�:���T�ñ�; L �–�Í �:���T�ñ�;�‡�:���T�ñ�; (7.15) 

where �–�X�:���T�ñ�; is a complete monomial basis of order �I ��can be written as 

�–�Í �:���T�ñ�; L �>�s�á�T�ñ�á�T�ñ�6�? ,     �I L �u 

and �‡�:���T�ñ�;  is a vector containing coefficients �=�Ý�:���T�ñ�;�á�FL �s�á�t�á�å �á�I  and can be expressed 

as 

�‡�:���T�ñ�; L �m�?�5�:���T�ñ�;�n�:���T�ñ�;�Ÿ�ñ���á (7.16) 

where �! �ñ�X L �>�›�ñ�5�á�›
�ñ
�6�á�å �á�›�ñ�l �? and the value of  �›�Ü�ñ�á�EL �s�á�t�á�å �á�J is from the surrounding 

interface particle in the support domain. The matrices �ï �:���T�ñ�; and �ð�:���T�ñ�; are defined as 

�m�:���T�ñ�; L �| �Í �ƒ�| L �Ã �S�Ü�:���T�ñ�;�á
�Ü�@�5 �–�:���T�ñ

�Ü�;�–�Í �:���T�ñ
�Ü�;���á  

�n�:���T�ñ�; L �| �Í �ƒ L �>�S�5�:���T�ñ�;�–�:���T�ñ
�5�;�á�S�6�:���T�ñ�;�–�:���T�ñ

�6�;�á�å �á�S�á�:���T�ñ�;�–�:���T�ñ
�á�;�?���á  

where the matrices �|  and �ƒ  are defined as 

�þ L f
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With solved���‡�:���T�ñ�;, the interpolated curve can be expressed as 

�U�ñ�Û�:���T�ñ�; L �=�5�:���T�ñ�; E�=�6�:���T�ñ�;�T�ñE�=�7�:���T�ñ�;�T�ñ�6���ä (7.17) 

The curvature and the normal vector of the interface can be calculated from the 

interpolated curve. The curvature �â is given by 

�âL
�+�@�6�U�ñ�Û���@�T�ñ�6�+

�>�sE�:�@�U�ñ�Û���@�T�ñ�;�6�?�7���6
���ä (7.18) 

The normal vector with the same direction of the surface tension pointing to the concave 

fluid in the local coordinate system is taken as 
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It is noted that the curvature does not change with the transformation of the coordinate 

system but the normal vector needs to be converted back to the original �T�K�U system 

shown asbxl 
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 (7.20) 

where �Ù is rotation of the local coordinate from the original coordinate. 

The curvature obtained by the above technique is tested on different types of curves 

including a circle, �T�6 E�U�6 L �s, an ellipse, �@
�ë

�6
�A

�6
E�U�6 L �s, and a sinusoidal curve,���UL

�O�E�J���:�T�;. Particle distances of 0.167, 0.1, 0.063, 0.05, 0.033, 0.02 and 0.013 are tested for 

the three curves and the �.�6 relative errors defined by �' �Å�. L §
�Ã �:�� �Ô�?�� �Ô�Ì�;�.

�¿
�Ô�8�-

�Ã �� �Ô�Ì
�.�¿

�Ô�8�-
 are plotted in 

Figure 7.2, where �â�Ü�Ô is the analytical curvature on the curve particle and  �â�Ü the 

corresponding numerical curvature. One can observe that second-order convergence is 

achieved by the local curve fitting with second-order MLS method. 
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Figure 7.2: Convergence of �.
Û error with different particle distance for the circle, ellipse and sine-
curve test case. The dashed line in blue indicates the second order convergence. 
 

7.4 Results and Validations of Flows with Interface 

Tension and Large Viscosity 
In this section, several cases will be simulated to show the sharp pressure jump on the 

interface caused by interface tension and how the accurate curvature and balanced 

interface force prevents spurious currents. With the modified jump of 
���ã

��
 (shown by Eq. 

(7.7)) derived from the velocity continuity at the interface, fluids with large viscosity can 

be accurately simulated. 

7.4.1 Numerical simulation of square-droplet deformation 

In this zero gravity case, an initially square shaped fluid with density of �é�5 and dynamic 

viscosity of  �ä�5 is located in the centre of a larger square as shown in Figure 7.3. The 

density of the fluid surrounding the inner square is�����é�6 and the viscosity is���ä�6. Due to 

unbalanced surface tension force, capillary waves are induced to oscillate the inner fluid 

about its equilibrium shape which is a circle based on Laplace law (Landau & Lifshitz 

1987). Viscous effects damp the oscillation and lead the inner fluid oscillate to its final 

equilibrium shape.  
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                              Figure 7.3: Set up of square-droplet deformation test 
 
 
 
This case has been widely tested to validate surface tension models and their curvature 

estimations (Brackbill et al. 1992; Adami et al. 2010; Zhang et al. 2012; Hoang et al. 

2013). Main problems shared by those simulations are that interface covers several cells 

(in the mesh based methods) or particle layers (in meshless method) within which 

curvature and surface tension are smoothed. Such smoothed interface tension force does 

not strictly satisfy the interface condition stated by Eq. (7.1) and (7.2). In addition, the 

pressure drop on the interface is smeared rather than sharp as stated in interface boundary 

conditions, leading to relatively high spurious currents that occur when the droplet 

reaches its equilibrium. With the MLPG_R surface tension model, a sharp pressure jump 

within one interface particle layer is achieved and the spurious currents are significantly 

relieved.  

The test follows the settings in Hoang et al. (2013) and all the parameters are non-

dimensionlised. The density of the surrounding fluid is �é�6 L �u�w�v�x, viscosity is �ä�6 L �s�ä�r, 

density ratio of surrounding and inner fluids is �é�6���é�5 L �t, viscosity ratio is �ä�6���ä�5 L �r�ä�v 

and the interface tension is �PL �s�ä�r. The domain size �.�6 L �t�.�5 L �v and the inner square 

is located in the centre of the outer square. When the inner drop reaches its equilibrium 

state, the shape is transformed to a circle remaining the same area as the initial square. 

According to Laplace�¶�V law, the pressure inside and outside the circle are two constants 

having a jump at the circle. By plotting the pressure at �UL �r�ä�w from the centre of the 

circle (�TL �t�ä�r) to the edge of the outer square (�TL �v�ä�r), Figure 7.4 illustrates the higher 
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constant pressure inside the inner circle and the lower constant pressure outside the circle. 

The translation between the two constants is completed on the interface particle. One can 

also observe that the simulations using 40, 60 and 80 particles along the outside square 

edge largely give similar results which are close to the analytical solution. From the 

enlarged window in Figure 7.4, good convergence can be observed when 80 particles are 

used. The reason of such sharp pressure jump is that in our newly proposed surface 

tension model, the pressure jump condition is explicitly satisfied. By storing two pressure 

values for two phases on one interface particle, the pressure jump over an infinitely thin 

interface is achieved. Similar simulations were conducted by SPH method in Zainali et al. 

(2013), the pressure across the interface gradually decreased from the inside to the outside 

of the drop which loses the sharp pressure jump stated in Laplace law. 

By recording the maximum velocity in the whole domain, Figure 7.5 shows that after a 

long time, the drop reaches its equilibrium and due to the energy dissipation of viscosity 

the maximum velocity is gradually reduced and becomes a stable but non-zero value 

which is caused by numerical errors. This non-zero stable velocity is called the spurious 

current. By checking the maximum velocity dissipation, not only the convergence is 

achieved when 80 particles are used, compared to conventional CSF model, but also the 

spurious current is significantly reduced and stabilized by the new interface tension 

treatment. 

  
Figure 7.4: Pressures measured from the centre of the circle (�TL �t�ä�r,�UL �t�ä�r) to the edge of the 
outer square (�TL �v�ä�r,�UL �t�ä�r). Pressure drop occurs at the interface of two fluids at �TL �u�ä�s�u. 
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Figure 7.5: Time history of maximum velocity with different particle numbers along the outside 
square edge. The large circle solid line is from Hoang et al. (2013) adopting CSF model with cell 
number of 100. 
 

By using 80 particles along the outside square edge, the shape change at a sequence of 

time instants, �PL �r�á�s�t�á�t�v���=�J�@���u�x are shown in Figure 7.6. The initially square shape of 

the drop results in strong interface tension force at high-curvature corners, forcing the 

drop to be oscillated. The corners of the drop gets more smooth and eventually becomes a 

circle as shown in Figure 7.7(a) whose curvature is equivalent at every point. 

Correspondingly, the pressures inside and outside the drop become two constants with a 

sudden jump at the circle which is illustrated in Figure 7.7(b).    
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                      (a)                                                                        (b)                 

                
      (c)                                                                          (d) 

Figure 7.6: Drop shapes at �–L �r�á�s�t�á�t�v���ƒ�•�†���u�x in plots from (a) to (d) respectively. Interface, 
inner and surrounding particles are in black, dark grey and light grey respectively.  
 
 

    

   

                            (a)                                                                         (b) 

Figure 7.7: Equilibrium shape of the drop in (a) and corresponding pressure distribution in (b). 
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7.4.2 Numerical simulation of capillary wave 

The capillary wave is surface tension driven flow and its small amplitude damped 

oscillation is a benchmark testing the accuracy of numerical schemes for viscous, surface 

tension driven two phase flows (Popinet 2009; Wang & Tong 2010). In this section, the 

accuracy of the newly proposed interface conditions, i.e., modified jumps of ��
���ã

��
 and 

jumps of �L will be further tested. As the modified jump of ��
���ã

��
 is introduced for highly 

viscous fluids, the effects of 
���ã

��
 jump modification for different viscosities will also be 

tested. 

A computational domain of �* H�*  is equally split into two sections filled by two fluids 

with identical kinematic viscosity. An initial sinusoidal perturbation is applied to the 

interface with the magnitude of �=�4 L �r�ä�r�s�*  and the wave length of���* . The solution of 

this initial value problem was found by Prosperetti (1981) restricted to linearized cases 

with identical kinematic viscosity. Due to infinite domains used in Prosperetti�¶s theory, a 

periodic boundary is applied on the wave progressing direction. To achieve such a 

boundary, three columns of particles are added on the left and right sides of the domain. 

The right side added particles carry the information, i.e., density, viscosity, pressure and 

velocity, of three columns of particles on the far left of the computational domain and the 

left side added particles carry the information of three columns of particles on the far right 

of the computational domain.  Following the settings in Wang & Tong (2010), the wave 

length is �ãL �* L �s�I , the dynamic viscosity is �ä�ßL �ä�Þ L �s�ä�r�2�Ô�®�O, the density is �é�ßL

�é�Þ L �s�r�r�G�C���I �7 and the interfacial tension coefficient is �êL �u�r�0���I , leading to the 

Ohnesorge number �1�DL
��

¥�:������ �;
L �s���¾�u�r�r�r. Convergence tests of different particle 

distance are first carried out. The wave amplitudes obtained by different particle numbers 

(16, 32, 64, 126) in a wave length are shown in Figure 7.8(a). Results of the test with the 

same parameters but a higher viscosity of 0.05�• �t���• is shown in Figure 7.8(b), in which a 

stronger damping can be observed. For both cases, 64 particles in a wave length are 

sufficient to achieve a convergent results and this number will be applied to the following 

capillary wave cases unless otherwise stated. To observe the convergence rate, the error is 

calculated as �' L §�5

�Ç
�Ã k�=�ÜF �=�Ø�ë�Ô�Ö�ç�á�Üo

�6�Ç
�Ü�@�5  where �0 is the number of results in the time 

history, �=�Ü is the amplitude from numerical simulation and �=�Ø�ë�Ô�Ö�ç�á�Ü is from Prosperetti�¶s 

analytical solution. For both viscosities of 0.01�• �t���• and 0.05�• �t���•, the error �'  is 

calculated for different particle numbers which are 16, 32, 64 and 128 in a wave length. 
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Figure 7.9 plots the errors with respect to particle numbers, showing second order 

convergent rate for both viscosities.         

 

(a) 

 

         

(b) 

Figure 7.8: Amplitudes time history with different particle numbers in a wave length. Kinematic 
viscosities are 0.01�• �6���• in (a) and 0.05�• �6���• in (b). 
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Figure 7.9:  Errors for different particle numbers of 16, 32, 64 and 128 in a wave length for the 
viscosities of 0.01�• �6���• and 0.05�• �6���•. The solid line indicates the second order convergence. 
 

In Chapter 3, to ensure the continuity of 
�!�ã

���!�á
 and also the normal velocity at the interface, 

the term of �í�Ø�6�› for interface particles is enforced to be the average of two phases. Such 

treatment is applicable for less viscous fluids as stated in section 3.3 and this restriction 

will be further validated in this section. The viscosities of 0.001�• �6���• and 0.01�• �6���• are 

first tested with the jump of �Ø�L�é�¤  expressed by Eq. (3.46) and Eq. (7.7), giving the wave 

amplitudes shown in Figure 7.10(a) and (b). Results with both approaches almost coincide 

and agree well with the analytical solution. While as shown in Figure 7.10(c) and (d), with 

the higher viscosities of 0.05�• �6���• and 0.075�• �6���• the gaps in results obtained by the two 

approaches increase, showing that simulated amplitudes adopting the approach with the 

jump considering high viscous effects (i.e., Eq. (7.7)) in good agreement with the 

analytical solution while that obtained by the approach with the assumption of small 

viscous effects (i.e., Eq. (3.46)) deviates from the analytical solution, further as the 

viscosity increases. It is clear that the approach of Eq. (7.7) covers the range of both low 

and high viscosity whereas Eq. (3.46) only works well with low viscosity flows. 
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(a) 

 

                                                                       (b) 

(To be continued on the next page) 
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   (c) 

 

    (d) 

Figure 7.10: Comparisons of amplitude time history between different expressions of the �Ø�L�é�¤   
jump for viscosities of 0.001�• �6���•, 0.01�• �6���•, 0.05�• �6���•��and 0.075�• �6���•. 
 
 
To quantitatively illustrate the deviations of numerical simulations from the analytical 

solutions, the relative error defined as �' �å�á�ÜL �+�=�ÜF �=�Ø�ë�Ô�Ö�ç�á�Ü�+���+�=�Ø�ë�Ô�Ö�ç�á�Ü�+ is shown in Figure 

7.11 for viscosities of 0.05�• �6���• and 0.075�• �6���•. To avoid error enlargement due to the 

denominator approaching zero, the error is truncated when �+�=�Ø�ë�Ô�Ö�ç�á�Ü���=�4�+Q�r�ä�r�v. For 

either viscosity, the jump of���Ø�L�é�¤  by Eq. (3.46) leads to considerable errors. The error 

also goes up by increasing the viscosity, the maximum of which exceed 60% and 120% 
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for the values of 0.05�• �6���• and 0.075�• �6���• respectively. By modifying the jump, the error 

is significantly lowered and maintained below 5% for either viscosity. Comparisons of 

full interface profiles at two time instants for each viscosity, i.e. �–�S�4 L �w�ä�y and 6.4 for 

0.05�• �6���• as well as �P�S�4 L5.7 and 7.6 for 0.075�• �6���•, are illustrated in Figure 7.12, 

further showing the significant improvement of the jump of �Ø�L�é�¤  by Eq. (7.7).   

 
      (a) 

 

 
                                                            (b) 

Figure 7.11: Relative errors for viscosities of 0.05�• �6���• in (a) and 0.075�• �6���•��in (b). The error is 
truncated when���+�=�Ø�ë�Ô�Ö�ç�á�Ü���=�4�+Q�r�ä�r�v.   
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              (a) 

 

              (b) 

Figure 7.12:  Interface profile comparisons at �–�S�4 L �w�ä�y���=�J�@���x�ä�v for the viscosity of 0.05�• �6���• in 
(a) and at �–�S�4 L �w�ä�w���=�J�@���y�ä�x for the viscosity of 0.075�• �6���• in (b). 
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7.4.3 Numerical simulation of bubble rising 

In this section the proposed multiphase MLPG_R method with improved interface 

treatment is further tested and validated extensively against the published results through 

numerically simulating bubble rising in viscous fluids, the cases of which are strongly 

affected by high viscosity and surface tension. Such cases exam in the accuracy of surface 

tension and viscous terms estimation by the bubble shapes and rising velocities and were 

widely adopted for multiphase flow method validation (Zainali et al. 2013; Szewc et al. 

2015). 

Based on the definition in Hysing et al. (2009), a two dimensional computational domain 

with �* �ã�$ L �t�ã�s is adopted, imposing slip condition on left and right walls and non-slip 

boundary on top and bottom walls, see Figure 7.13. A bubble with the radius of �4 L �r�ä�t�w 

is initially allocated at �@
�»

�6
�á�t�4�A where���$ L �v�4. Non-dimensional densities assigned to 

fluids inside and outside the bubble are �é�Þ L �s�r�r and �é�ßL �s�r�r�r respectively. The 

viscosities are �ä�Þ L �s and �ä�ßL �s�r and the interface tension coefficient is���PL �t�v�ä�w. The 

flow is characterised by Reynolds number �4�AL
�� �×�Î �Ò�Å

�� �×
 and Bond number���$�KL

�� �×�Î �Ò
�. �Å

��
, 

where the length scale is defined to be �. L �t�4 and the gravitational velocity is���7�Ú L

¥�t�4�C. �4�A and �$�K indicate viscous and surface tension effects against gravitational forces. 

In this case,  �4�AL �u�w and���$�KL �s�r indicating strong viscous and surface effects. 

 

Figure 7.13: The setup of the bubble rising case 
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During bubble rising and shape translation, the bubble centroid position, �ž�Ö, and velocity, 

�› �Ö, are usually used to track the bubble movement (Chen et al. 2005; Hysing et al. 2009) 

and are defined as 

�ž�ÖL
�ì �ž�@�T
��

�ì �s�@�T
��

���ƒ�•�†���› �ÖL
�ì �›�@�T
��

�ì �s�@�T
��

���á 

where �  is the domain occupied by the bubble. The simulations of this case are conducted 

with three initial particle distances of �@�HL �s���>�z�r�á�s�t�r�á�s�x�r�? to the nondimensional 

time���PL �u. Besides the benchmark results from Hysing et al. (2009) in which centroid 

positions and rising velocities were obtained by FEM and the interface was captured by  

level set algorithm, those results from FVM using Volume of Fluid (VOF) capturing 

algorithm conducted in OpenFOAM which is an open source CFD solver are also 

presented. 

Figure 7.14 compares the rising velocity for multiphase MLPG_R with particle distances 

of 1/40, 1/60 and 1/80, FEM of finest grids of 1/320 from Hysing et al. (2009) and FVM 

with refined and converged grids of 1/240 from OpenFOAM. The solutions from 

MLPG_R with different particle distances are close to each other but still have a 

noticeable gap between the results of Hysing et al. (2009). It can be observed from Figure 

7.14(b) that the velocity converges when the distance is decreased to be 1/80 and this 

converged velocity locates between solutions of FEM and FVM. Compared to 

OpenFOAM�¶�V�� �V�R�O�X�W�L�R�Q���� �Whe results obtained by multiphase MLPG_R are closer to the 

benchmark and it may be caused by the reducing of spurious currents which was 

previously discussed in the square-droplet case. Figure 7.15 illustrates the development of 

bubble centroid position by different particle distances of MLPG_R, FVM and FEM. 

Similar to the rising velocity, similar results are obtained by three MLPG_R resolutions 

which are also located between that of FVM and FEM.  

According to numerical tests of MLPG_R, the bubble gets deformed as it rises. But it 

stays compact as one enclosed region throughout the simulation which is caused by the 

strong influence of the surface tension. The shape of the bubble finally becomes stable 

and the terminal shapes at �P=3 obtained by different particle distances are shown in Figure 

7.16. The shape also converges at �@�HL �s���z�r for MLPG_R method and largely agrees 

with those from FEM capturing interface by Level set (Hysing et al. 2009) and FVM by 

VOF in OpenFOAM.  
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          (a) 

                     
            (b) 

Figure 7.14: Rising velocities (a) from MLPG_R method with initial particle distance of 1/40, 1/60 
and 1/80, FEM-Level set method (Hysing et al. 2009) and FVM-VOF (OpenFOAM) with very fine 
grids. (b) is details in maximum velocity region. 
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       (a) 

 

                   
            (b) 

Figure 7.15: Centroid position of the bubble (a) from MLPG_R method with initial particle 
distance of 1/40, 1/60 and 1/80, FEM-Level set method (Hysing et al. 2009) and FVM-VOF 
(OpenFoam) with very fine grids. (b) is enlarged details. 
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Figure 7.16: Bubble shape at t=3 from MLPG_R method with initial particle distance of 1/40, 1/60 
and 1/80, FEM-Level set method (Hysing et al. 2009) and FVM-VOF (OpenFoam) with grids if 
1/320 and 1/240 respectively.  
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8.1 Numerical techniques for multiphase MLPG_R 

Method 
This work has presented a two-phase flow model using the Meshless Local Petro-Galerkin 

method based on the Rankine source solution (MLPG_R) to simulate 2D flows of two 

immiscible fluids. A novel interface coupling method has been proposed to maintain 

discontinuity of the fluid properties and impose not only the dynamic interface condition 

of pressure continuity but also the kinematic condition of the ratio of pressure gradient to 

the density. By enforcing the above two interface conditions, the pressure at the interface 

is explicitly formulated using that of neighbouring particles within the support domain 

consisting of both phases. As the interface particles are identified at each time step 

representing a smooth interface consisting of one layer of interface particles, the newly 

formulated interface pressure can be exerted on the precise location. Those phase 

coupling treatments enable the model to cover a wide range of density ratios from 1.01 to 

1000 under either non-breaking or breaking wave situations.  

To further extend the model to be applicable for surface tension and viscous effect 

dominated cases, the implementation of the interface conditions has also been improved 

to satisfy the stress balance including interface tension in the normal direction of the 

interface and the velocity continuity at the interface. Based on the new interface 

conditions, a pressure jump is added and the ratio of pressure gradient to the density is 

modified, leading to additional terms incorporated into the original interface pressure 

formulation. As interface tension is involved in the simulation and its accuracy relies 

highly on the curvature estimation, the curvature is analytically worked out from the local 

Chapter 8    Conclusions 



137 
 

reconstructed interface curve which is based on the precisely identified interface particles. 

Tests on different curve types are carried out and second order convergence of the particle 

distance is achieved when the second order moving least square (MLS) approach is 

adopted to reconstruct the local interface curve. 

Another crucial issue addressed in this study is the interface particle identification. With 

precisely identified interface particles, the interface conditions can be properly 

implemented and the curvature of interface can also be accurately determined. The new 

interface particle identification method developed in this work is based on the absolute 

density gradient, having a numerical value very close to 0 for inner particles and rapidly 

increasing when approaching the interface or isolated particles. The performance of the 

method has been tested for different configurations including those with different levels of 

randomness of particle distributions. It is shown that the accuracy of the method is 

independent of the density ratio of two phases and of the average distance between 

particles. In all the cases tested, the method can correctly pick up almost all the interface 

and isolated particles as long as the support domain is larger than twice the average 

distance of particles.  

In this study, the two approaches have also been proposed to solve the algebraic pressure 

equation. One is that both phases are solved in one set of equations (Integrated-1) and the 

other splits the equations into two sets which are then solved separately within each phase 

(Coupled-2). In Coupled-2 approach, as the interface pressure is based on the pressure of 

the surrounding particles of the last time step, validations for the results obtained by 

Coupled-2 method with or without iterations between two sets of equations are carried out 

and it is found that iteration is not necessary when the time step is sufficiently small. For 

the comparison between two approaches by numerical tests, it came to the conclusions (1) 

the Coupled-2 approach works well for a very high density ratio (even as high as 1000) 

while the Integrated-1 approach is only limited to flows with small density ratio (typically 

less than 1.3) and (2) where both approaches work equally well, the Coupled-2 approach 

is computationally more efficient. 

In summary, the numerical techniques proposed in this study achieves not only the 

extension of MLPG_R method to two-phase flow modelling but also bring robustness 

compared to existing two-phase flow models as listed below: 

�x The model maintains sharp discontinuity of fluid properties across the interface 

and the interface with zero thickness. 
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�x Complete and accurate interface conditions are explicitly implemented at the 

sharp interface with a newly derived pressure expression. 

�x Coupled-2 approach effectively solves pressure algebraic equation 

�x The model achieves simulations for the flows with high density ratio (to 1000), 

being violent and breaking and with high interface tension and viscous effects 

without any artificial compensations. 

 

8.2  Model validation and application 
Model validations and applications have been conducted in two groups of cases 

corresponding to two interface implementation stages by incorporating the newly 

proposed interface particle identification technique and choosing the Coupled-2 approach 

to solve pressure equations. The first group is carried out by the interface conditions of 

continuous pressure and the continuous ratio of the normal pressure derivative to the 

density considering negligible surface tension and small viscosity. A jump on the ratio of 

the pressure gradient to the density is maintained for the consideration of disordered 

particle distribution. The model was first validated by the gravity current case with 

density ratio ranging from 1.01 to 1.3. It was found that the progress the dense phase front 

is validated by experimental data showing a constant front velocity and the predictions 

agreed well with the experiment. Being compared with experimental shadow graphs of 

flow configurations, the current at three time instants have been well reproduced and the 

pressure has been found continuous at the interface and smoothly distributed without any 

noise. Simulations of natural sloshing with small amplitude in a tank fully filled by two-

layer liquid have also been carried out to validate the model with analytical solutions 

involving wave elevations and pressure. Good agreements of interface elevation time 

history, pressure distribution across the interface for a number of time instants have been 

reached. With density ratio ranging from 10 to 1000 and dense fluid filling ratio of 0.5 

and 0.3, all the tests conducted on wave elevations have achieved second order 

convergence with initial particle distance. Further validations on the natural frequencies 

for the filling ratio from 0.1 to 0.9 almost coincide with the analytical solutions. The last 

case in this group has been concerned with violent air-water sloshing with density ratio of 

1000 in which a jet of water impinges on the wall and wave breaking occurs, leaving 

isolated water particles splashing out and air particles penetrating into the water. The 

wave profiles obtained by the simulation broadly agree with the test results as revealed by 

experiment photos. The predicted pressure time history on the wall is smooth with 
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negligible numerical induced oscillations and shows a good agreement when compared 

with experimental data. 

The second group has been carried out by the interface condition with a jump on the 

pressure and the jump on the ratio of the pressure gradient to the density is modified, 

including the effects of interface tension and large viscosity. The model has been 

validated by the case of square-droplet deformation in which the initial square is found 

gradually deform to become a circle due to the presence of interface tension and finally 

reach an equilibrium state. As the interface is sharply represented and a sharp pressure 

jump is implemented at the interface, the pressure achieves two constants inside and 

outside the circle by completing the jump on the interface particle, a result that agrees 

well �Z�L�W�K���/�D�S�O�D�F�H�¶�V���/�D�Z�����%�H�Q�H�I�L�W�W�L�Q�J���I�U�R�P���W�K�H���S�U�H�F�L�V�H�O�\���L�P�S�O�H�P�H�Q�W�H�G���L�Q�W�H�U�I�D�F�H���F�R�Q�G�L�W�L�R�Q�V����

the spurious current phenomena has been significantly relieved when compared with 

volume of fluid (VOF) interface treatment illustrated by the reduced maximum residual 

velocity at the equilibrium state. Another validation case is the capillary wave simulation, 

amplitude damping with the analytical solution has been compared and the effect of the 

jump modification on the ratio of the pressure gradient over the density has been 

discussed. The damping of the interface amplitude for different viscosities is obtained by 

either interface condition with two different jumps on 
���ã

��
 and compared with the analytical 

solutions. It comes to the conclusion that as the viscosity increases, the results obtained by 

the condition with the jump of  
���ã

��
 considering small viscosity deviate further from the 

analytical solutions while that obtained by the condition with the jump of 
���ã

��
 considering 

large viscosity maintain good agreement with the analytical solutions. The last case is 

bubble rising that has been validated extensively against the published results through 

numerically simulating bubble rising in viscous fluids. The final bubble shape predicted 

by the present MLPG_R method is close to the ones obtained by finite element method 

(FEM) with level set and finite volume method (FVM) with VOF. As for the rising 

velocity and centroid position progress, results of multiphase MLPG_R method locate 

between those obtained by these two methods. 

According to case studies, the model has been validated to be effective and have 

favourable features as 

�x Continuous pressure across the interface for the cases without interface tension; 

�x Sharp pressure jump at the interface presenting the interface tension if it is 

considered; 
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�x Pressure away from the interface is smoothly varied without notable numerically 

caused oscillations; 

�x Second order convergence is achieved; 

�x Applications cover the density ratio from 1 to 1000 including violent flows with 

breakings. 

 

8.3 Recommendation for future works 
Although the current multiphase MLPG_R method has been validated against a large 

number of cases, improvements in many aspects of the method are recommended here to 

enable the method to become more applicable in situations of reality, to stretch it for more 

diversity of applications by considering other complex behaviour of the multiphase flow 

and to speed up the simulation. 

As only a 2D model is developed in this study, the extension to a 3D model is essential to 

simulate a wider range of cases in reality such as a spherical bubble rising in the water 

column and the sloshing occurring in a ship carrying oil or at LNG tank which cannot be 

simplified as a 2D tank. For the simulation of sediment (sand or mud) transportation in 

water (Shao & Lo 2003; Shakibaeinia & Jin 2012a), even though fluid-sediment mixtures 

can be treated as continuous fluid, the non-Newtonian property of the flow has to be 

considered. Turbulence commonly exists in violent breaking waves, pipe flows, jets and 

wakes, etc. which have been modelled as single phase flow (Gotoh & Sakai 2006; 

Dalrymple & Rogers 2006). When considered as multiphase flows, the simulation of 

turbulence becomes challenging. The compressibility effects of the air related to breaking 

waves and in other more general situations have to be considered. From the point of view 

of computational efficiency, parallel computation or even graphic processing unit (GPU) 

utilization is necessary for large domain simulation, especially for 3D cases. An 

alternative way to speed up the simulation in ocean water wave interaction is to develop 

an integrated model using multiphase MLPG_R to deal with local wave breaking, air 

entrapment and viscous effect while a rough but more efficient model (i.e. based on 

potential theory) to deal with outer domain. 
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