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Abstract

A Lagrangian particle multiphase model basedtlmmMeshless Local Petre@alerkin
method with Rankine source solution (MLPG_R) is proposed to simulate 2D flows of two
immiscible fluids The model is applicable to fluids with widerange ofdensity ratio

from 1.01 to 1000capable ofdealing with violat flow situations(e.g. breaking waves)

and maintaining the sharp discontinuity of properiethe fluidsat the interface.

In order toextendthe MLPG_R method to model multiphase floves)innovative phase
coupling is proposed using an equation forgsure at the interface particle through two
stages. In the first stage¢he formulation is based on ensuring the continuity of the
pressure and the ratio thfe pressure derivative ithe normal direction of the interface to
the fluid density across thenterface.Gravity current, natural sloshing of two layered
liquids and anwater violent sloshing are successfully simulaiad comparewith either
experimental data or analytical solution demonstrating a second order convergent rate.
The second stagi@volves the extension of the method to accountiriterface tension
and large viscosityThis is achieved by adding additional terms in the origimabksure
formulation considering jumps for both the pressure and the ratio of pre&sivatives

in either the normal or tangential directioto fluid density at the interfac&he method
ensuresboth velocity continuity even with highly viscous fluids and interface stress
balancein the presenceof interface tension. Simulation of squaheplet deformatio
illustrates sharp pressure drop at the interface and relieved spurious sctnanare
known to be associated with predictions by other existing modiaks.capillary wave
casealso demonstratethe necessity ofmaintainingthe jumpin the ratio of presure
gradient to fluid density and the bubble rising case further vafidhie modelas

comparedvith the benchmarkumerical results

14



Apart from being the first application ¢fie MLPG_R methodto multiphase flowshe
proposed model also contairs two highly effective and robustechniqueswhose
applicability is not restricted tthe MLPG_R method. One is based ase of theabsolute
density gradient for identifying the interface and isolated particles which is essential to
ensurethatinterface conditinsareapplied atthe correct locatiamin violent flows The
effectiveness of the technighes been examinelly anumber ofparticle configurations,
including trose with different leved of randomness of particle distributio.he other is
about solvilg the discretied pressure equatioby splitting the one set equati®mto two

sets corresponding to two phases and solving them separately but coupled by the interface
particles. This technique efficiently gives reasonable solsitioh only for the cass with

low density ratio but also for the ones with very high density ratio.
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Chapter 1 Introduction

1.1 Background of the multiphase flow

Multiphase flow is &low system consistingf different fluid phasesmmiscible to each
other, orhavingfluid and solid phasesimultaneously. Iflows containing fluids onlythe
phases may be of the same substance such as a liquid and its vapour, or of different
substances such as two liquids or a liquid and aTdes compressibility for most liqds

is negligiblemaintaining a constant densitgut it might become considerable for their
vapours andjases when they are laden with high pressure, leading to varied density
certain phaseln a fluid and solid system, gases or liquids constitug fthid domain
which coexistwith the dispersed solid-hese classifications are by no means unidue.
someworks classificationsare defined in terms of length scales of the f(blu & Adams

2006; Worner 2012)sorting into micre, mese and macroscopic, dominatéal different
extentsby inertial forcesas well asforcesbetween various phaseaused by viscosit
difference and interface tension. Some texts identify the multiphase flow with general
topologies namely disperse flows consisting of finite parti¢@slnoij et al. 1997;
Prosperetti & Tryggvason 20Q7rops or bubbles distributed in a continuous phase and

separate flows with two or more continuous streams separated by interfaces.

In nature the multiphase flow is ubiquitoysuch as rainy or sh@w winds, air and water
pollutions, volcanic activit¢Y PXG VOLGHYV VHGLPHQW WUDQVSRUW
by breaking waves, debris flows, and countless other algthenomenonNumerous

industial procesisg systemsalsoinvolve multiphase flovg including cavitating pumps

and turbines, electroptagraphic processes, combustion engines, propulsion systems, oil
and gas production and transport, etc. Multiphase flows also exist in biological and

medical industry, from blood flow to laser surgery cavitation and soAagurate

16
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predictions othe flow behaviour of those processas essentidbr achievingthe desired

efficiency and effectivenessd the systems

(YHQ WKRXJK WKH WHUP RI puPXOWLSKDVH IORZY LV ZHC
diversity and complexitythe choice of the methedo be used largely depends the

types of flowsandconstrains that are imposed on the flow as welnativation of the
investigation. This work aims tetudy onlyseparate multiphase flows with continuous

phases separated bysingle or multiplenterfaces. Whendispersedlow particles occur
occasionally, they are regarded as dilute and isoldBasded on the length scale
classification the studyis limited to systemsthat arewell described by continuum

theories, i.e. equations of continuity and nemtum conservationyithout considering
eitherelectronic force®r random particle motions that belong to the domaistatistical

mechanics.

1.2 Multiphase flow models

1.2.1 Analytical models

To predict the detailed behaviour and reveal the phenomena of mséifloavs, there

exist mainly threeapproachesnamely theoretical, experimental and numerical. Purely
analytical method is the most efficient and economical but is inevitably limited by the
complexity of the multiphase flow. As for solid bodies in thed]uéven single sphere
solutions are limited to very small or very large Reynolds number. The helpfulness of the
analytical method is reduced further whlows becomegeneral withintermediate
Reynolds number ovhenmore bodies interactWhentwo continwus fluidsarepresent,
solutions areusually restricted to small deformations even for the simplest case by
ignoring either interface tensions or viscosities which may play dominant roles at certain
times. For example the development of Rayléelglylor instability is solved considering

the interface tension but not viscosity bmazin & Reid(1981)and later the correction
took the viscosity into consideration Melazquez et al(1998) Both solutions are
feasible at the very beginning dfe instabilitybut fail to predict theflow development
when the configuration becomes complex. Another example is the natural sloshing of
layered fluids (Faltinsen & Timokha 2009)n which, the linear solution of natar
frequencies and corresponding modes for zero tar&itation are provided The
predictive capability of such solutianis limited due toignoring the effect®f viscosity

and interface tension. When it comes to violent sloshing caused by the external excitation,

17



the analytical solution becomeither far from satisfaatry due to variousgrossly

unrealistic assumptions imposed on the flow or simply impossible to obtain

1.2.2 Experimental models

Through laboratoryscalemodels equipped with appropriate instrumentatimmmerous
experimentalstudiesinvolving various types of multiphase flows, e.g. sedination
processegKomatina & Jovanovic 1997%ingle bubble risingBhaga & Weber 1981)
bubble column(Walke & Sathe 2012)fluidization (Xue et al. 2012)flow in porous
media(Das & Mirzaei 2012)lock exchang€Lowe et al. 2005tc., hae been carried out
due to itsgeneralreliability andease of data acquisitiorlowever,apart fromtheir high
cost, there are also casfw which laboratory models are impossible to condoc
insufficient to acquire desired parametérsr examplén the bubble column case, precise
characterization of the bubble sizes and distributions is hard to achilsespor the
breaking wave case, even with high speed and high resolution sathergisualization
of the entrained air is problematic, let alonecuratedeterminationof continuous
changing flowvolume and size distributiorwith nZ KL W H b2ibgMaké&honly as
snapshotsPerhaps the most importaasue encountered by the experina¢model is the
differences in scalesbetween experimental models ahe prototypewhich oftenwould
requirea theoretical or computational model to extrapalagelaboratory results to that of

the prototypescalereliably.

1.2.3 Numerical models

Numerical modelshavebecome an essential tool for the investigation of multiphase flow
due to their ability to consider various effects arising in multiphase flows, such as
interface tension, density and viscosity differences, complex interface configurdtions e
Besides, numericaimodels are more promising to solve the issues of scale and
visualization of any desiredarameterA divers range of numerical models have been
proposed for different types of the multiphase flofmvhich an important branch is the
dispersed flowTo deal with complex flow configurations, most numerical models are
based on NaviebBtokesequations, either Direct Numerical Simulation (DNS) or with
turbulent models, solved hisnposing an equation of $&ato identify the relation between
pressure and density for compressible fluidseparating velocity and pressure to form
WKH 3RLVVRQYTV HTXDWLR Q ToRsinula@ e RiiSpetdad \phdsS€ Hvol O X L G \

types of models are prevalent, trajectonpdels and twdluid models. The former
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simulates the moving of either actual particles or larger, representative particles driven by
drag, dynamic pressure gradient and inparticle collisionforces and the momentum
equation of the continuous phaseaisgmented by point forces which represented the
effect of the particlesExamplesare droplets near the nozzle zone of a spray dryer
(Gauvin et al. 1975)yas bubble rising in water colunfBuwa et al. 2006; Delnoij et al.
1997)and sedimentation of solid particles in flflatankar & Joseph 200Bven though
artificial collision models between particles are proposed and momentum transfer between
discrete phase and continuous phase is considdrnsdmbdel isusually restricted to

dilute dispersed flows in kich particleparticle interactions can be neglected. The
alternative twefluid model considers the interactions between the dispersed phase by
treating it as a continuous phase and neglecting its discrete nature. This modes is
applicable to predict dense particle/droplet flow where the interactions within the
dispersed phase are dominand has higher efficienay dealing with large number of
individual particles such as high bubldelen flows(Druzhinin & Elghobashi 1998and
fluidized bed(Xue et al. 2012)

The flow typethat isfocused on in this thesis is anotletegory of multiphase flows
generallyknown as separate flows, whithmainly solved by single phase flow equations

in two streams, coued through appropriate dynamic and kinematic conditionghat
interface. Br solving theNavierStokes equati®) fixed meshmodelsadoptingeither

finite element method or finite voluntaethodwere first developed fothe multiphase
simulation (Bothe et al. 2011; Fedki et al. 1999; Hysing et al. 2009; Rudman 1997)
Thesemodels treat phases as one fluid incorporating interface capture algorithms such as
widely usedvolume of Fluid ¥OF) (Renardy & Renardy 2002; Hoang et al. 2Q18Yel
set(Sussman & Fatemi 1999; Hysing 200phase fieldnethodsLiu & Shen D03)and

their refinements. An extra equation for the parameter identifying each phase is
introduced andheedsto be solved at each time step to update the paraméti can
degra@ the computational efficiency to some extents. The interface islysfdinite
thickness spanning over several meshedixed mesh simulationEven though the
interfacemay berepresented sharply with either sgitid estimation or leve$et algorithm,

fluid properties are smoothly transferred across the interface.nieeporation of the
continuous surface force (CSKBrackbill et al. 1992)and later proposed continuous
surface stress (CS&)ethods(Raeiniet al. 2012)enableghe fixed meshmodelsto deal

with surface/interface tension issues by simply adding a volumetric force tethe in
momentum equation. However, similar the smooth transfeof fluid properties, those
interface force modelsanresult in theloss of the sharp force jump at the interface.

Another groupof meshed methods based on adaptive mesh keeping the interface on the
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mesh facgdMuzaferija & Peri'c 1997; Tukovic & Jasak 201Rather than smearing the
interface ovemeshes, thsemethod maintainthe sharp interface by updating the meshes
at the each time stegind the interface conditions are exactly implemembadhtaining
both the discontinuity of fluid properties and interface forcéBhe main drawback of
these mthods is thathe complex mesh reconstruction and the requirefogriterations

on mesh adaptation hate be performedand are computationally expensivEhese

methods also encounter difficulties in dealing with topology change of the interface.

Meshlessmethod based on Lagrangian moving partickeave recently attrad strong
interest as the next generation of computational methodscdh&deredo be superior to

the conventional mesh based method for many applications as adopting a set of arbitrar
distributed particles without using any mesh connecting these particles. Much effort is
concentrated on problenfiar whichthe conventional mesh based methods are difficult to
apply, such as deformable boundary, moving interface, large deformetich would
involve complex mesh generation and mestaptively especially formultiphase flovs.

For the flow type cosidered here, one crucialobjective is the preciseinterface
representationwhich in the meshless method is inherently solved dignply traking
particles whose fluid properties are initially allocated and maintained. Even large
deformations or topological changes can be Wwaiidledby flexible moving particles. In

the meshless methadyroup, the smoothed particle hydrodynamics (SPklone ofthe
matured method@olagrossi & Landrini 2003; Hu & Adams 2007; Szewc et al. 2015)
SPH, the multiplication of an arbitrary function and a smoothing kernel function is
integrated forming the iegral representation of the function which is then approximated
by summing up the values of neighbouring particles. As initially developed for
compressible flows(Valizadeh & Monaghan 2015; Das & Das 20l1pressure is
explicitly expressed by the equation of state. Despite its easy programming and
unrequiredooundary treatment, problems of small time steps and pressuesarmisften
encounteredincompressible SPKiShao 2012 Zainali et al. 2013)s then proposed to
overcomethose twoproblens, butthe second derivative approximation of the unknown
pressure arises in solving pressure Poisson equation which is a main hurdle to achieve
accuracy. This issue of solving Poissmuation with second derivative approximation is
shared byother meshless methods suchrashless particle seamplicit (MPS) method
(Gotoh & Fredsge 2000; Khayyer & Gotoh 20Whose approximation of a function on

the discrete particle is interpolated by surrounding particles using inverse distance
weighting usually wittthe Shepard weight functio The multiphase flow solver has been

developed for both SPH and MPS methods, most of which follow one fluid approach as
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adopted irthefixed mesh grouphuslosing the sharp discontinuity of fluid properties and

forces atheinterface.

TheMeshless Local PetrGalerkin (MLPG) methods proposedo deal with Laplace and
Poisson equationsased on the local symmetric weak form and the moving least squares
approximation(Atluri & Zhu 1998) The efficiency and accuracy of the MLPG method in
VROYLQJ 3RLVVRQYTYVY HTXDWLRQ LV VLIQLILFDQWO\ LPSUR
solution as the tesufction (MLPG_R)(Ma 2005b)which omits the approximation of

any derivatives of the unknown function. Althoutiie MLPG_R has been developed in
the recent decade and applied to various situations on wave structure inte(dtsdas
Zhou 2009; Sriram & Ma 2012)so far there is no workhat is devotedto the
development of multiphase simulatiamsing the MLPG_R method. Comhing the
flexible nature of meshless method in multiphase simulation and the advantabes of
MLPG_R in solving Poisson equation, this staimsto extendthe MLPG_R method to
solvemultiphase problems througimplementinginnovative interface conditions to cover
wide range ofluid density ratios, to consider interface force and viscous effects dominant
situations and t@recisely captw interface particke for both nonbreakirg andbreaking

situations.

1.3 Thesis overview

The thesis starts with the introduction chaptéich briefly defines the multiphase flow

and the scope of this studyutlinesthe generabnalysis approachexloptedand states

the aim and objectives of the styi In Chapter 2,a review of NavierStokes equatian
based numerical approaches for multiphase flow including a section for interface tension
models are presentd. Chapter 3 formulasethe multiphase MLPG_R equations
implementing interface conditions vdhi restrict the simulatioto cases with neglible
interface tension and small viscous effects. To precisely identify the interface particles
where the interface conditioexists Chapter 4 develops a new interface identification
technique based dheab®lute density gradient. Chapter 5 addresseissue concerning

the determiration of the discretised pressure and provides a practical and efficient
approach. Cormihing approaches proposed @Ghapter 3 to 5a systematicalidationis
carried out based tbugh a number of case studiasChapter 6 Chapter 7extendsthe
interface conditions byncluding the effects ointerface tension and high viscosiyd

validation tests are then performed considering flows affectedhigly viscous and
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interface tensiordorces as provided i€hapter 8. Chapter 9 summarizes the study and

recommends future works aimulatingmultiphaseflows with MLPG_Rmethod

In this thesis, a novel multiphase flow model is proposed to simulate 2D flows of two

immiscible fluids with following major achievements

x Extension of Meshless Local Petr®alerkin method with Rakine source
solution (MLPG_R) from a singlphase model ta twophase model

X Maintaining sharp discontinuity of fluid properties at the interface

x Applicable for fluids (either inviscid or viscous) with a wide range of density
ration (1.01 to 1000) and able to consider interface tension

x Applicable for flows withlarge deformations and breakings

In developing this multiphase model, to achieve an effective and robust multiphase model

several innovations are implemented in following aspects

X Coupling phases by an explicit pressure equation for interface particlesdrase
newly derived interface conditions considering
1. Jump of pressure gradient over density duealissontinuous pressure
derivative in tangential direction over density, in addition with continuous
pressure for fluids with small or zero viscosity and Zeterface tension
2. Modified jump of pressure gradient over density due to significant
viscous effect and jump of pressure due to interface tension and normal
shear stress for fluids with large viscosity and-mero interfaceension
x New technique of ideifying interface particles

x New algorithms for solving algebraic pressure equation
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Chapter 2 Literature Review

In fully nonlinear multiphasenodelling the numericalmethodsare generallybased on
the NavierStokes equatia which can be split into two groups meshbased and
meshless method3he former isbased orEulerian or Euleriash agrangianformulation
with meshes fixed or moved to adajm the interfacein which the flux of mass,
momentum and energy across mesh cells are simuldteel latter is based ona
Lagrangiarformulationusinga set ofarbitrarydistributed particles without any mesh that
provides the connectivity of tise particlesThe meshless methods are more adaptive and
robust for problems with free surface, deformatdeinday, moving interface and large
deformation which the conventional mesh based methods are difficulty to apphis
chapter bth methodslealing with multiphase flowspecially for interface treatmemntsl

be reviewed butwith focus on the recently pofau meshless methodiscluding methods
description and their treatment of the interfdeeaddition the interface tension models

will also be reviewed as it is critical in simulating interface tension force dominated cases.

2.1 Mesh based methods

2.1.1 Methods based on Arbitrary Lagrangian -Eulerian

formulation
The moving mesh methods useet ofseparatdoundaryfitted moving mesasfor each
phase.They represent the interface Wyetcomputational boundary, allowing accurate
calculation of surface/interface tension force and diraplementationof the kinematic

and dynamic conditions at therfacewithout any smoothing of fluid phase properties.
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A mesh based methodsing the Ambitrary LagrangiarEulerian formulation was
introduced for freesurfaceflow (Muzaferija & Peri’c 1997)In this method unstructured
meshes are moved to keep the grid nodes at the suftaeenovement of the surface grid
nodes is controlledby giving prescribed pressure on tisefface and satisfying the
kinematic condition and the space conservation law tige surface tension and viscosity
were neglecteth this publication The method was extended Bykovic & Jasak2012)

and followed ly DieterKissling et al.(2014) to simulate interfacial flows considering
interface tension and viscosiiy their developmenthe computational mesh consistafd

two separate parts with each covering one of coresiibuid phasesThe two mesh parts

were in contact over the two geometrically equal surfaces at the boundary of each phase
(the interface) which is defined by a set of mesh faths. mesh faces representing the
interface are moved with the velocity congd from the interface conditions of
continuous velocitythe balance ofangential stress and the balance of normal sffdws.
displacement of the interface mesh is used as a boundary condition for the solution of the
mesh motion problemdith the currehinterface shapegyressure and velocity boundary
conditions are then updated to solve each phase sepamateBISO iteration loopThe

net mass fluxes through the faces at the interface were then clikettieeckesidual levels
satisfy the prescribed agracy and if the procedure should return to interface movement

to do the outer iterations.

Despite the exact interface representing and interface condition implementing, the
interface mesh adapting and reconstruction are complex and time consdrhisg.
method also encountedifficulties in dealing with changes in interface topology such as

overturning or breaking waves.

2.1.2 Methods based orEulerian formulation

Different from the approach describeabovein which the governing equations were
arbitrary LagragianEulerianformulatedand were able to beritten separately for each
phasewith jump conditions imposed to couple the solutions at the fluid interfacthe

fixed mesheswith Eulerian formulationone set okquations foithe whole flow domain
occupied by variouphasess usually solvedin one set of equations, the various phases
are treated as one fluid with variable material properties that change abruptly at the
interface.In this way, two issues need to be conside@tkis to identifydifferent fluids

and to descriptthe interface evolution; the other is to consider the coupling of those
interface evolutioralgorithmswith mass and momentum equatioimsthis section, details

of bothissues will be reviewed.
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Identifying thedifferentfluids and the description of the interface evolution are generally
done by using a marker functidhat takes different values in the different fluids the

fluids move, and the interface between fluids changes locations, the marker function must
be updated.Updating the marker function accurately is critical for the success of
simulations of multiphase flow3.he following section willist various markr functions

that have been developed.

Volume of fluid (VOF) is a popular interface capturing method performs well in mass
conservation. The cells fully occupied byre fluid are marked as 1 and othefully
occupied by the other fluidre marked as zerdf there is no phase change, the value of
the marker functior§ B for the fluid materialshould be constant along its trajectory and
can be expressex

&B 0B

ekt Tl 2.1
&PLOPE>®®B_r (2.1)

during interface evolution. Combinirnige divergence free condition givas

P® L (2.2

and integrating Eq2.1) over the a mesh cell withvolume of &anda boundary of%,

it yields
I 5 . "
I—f E< 1, K, ®oB@I5r, 2.3)
! i :
where U L.Tsj ;, B@dith r Q U Qsis the volume fraction anda.z, is the unit
|

normal vector otell boundaryo 8.

For cells with Uvalue varying from 0 to 1, the interface&an bereconstructedfor
geometric representatioiarly work of VOF developed piece wise constaayproach
(Noh & Woodward 1976; Hirt & Nichols 1988nd recently further improved byokoi
(2007) Piecewise linear approa¢¥ioungs 1982; Rudman 1997; Aulisa et al. 2087he
state of the arinh which the interface in a cell is assumed to be a line in 2D or a plain in
3D. The unit normal of thpiecewisenterface in a cell isbtaned from the values oflof
neighbouring cellsThe drawback of thigpproachs that the interface segments are still
not continuous between neighbouring cdllmre recently, piecewise parabol(ierice et

al. 2001; Diwakar et al. 200@nd piecewisecubic spline(Lopez et al. 2004qpproaches
have been proposed and the scheaeeelopedby Diwakar et al.(2009) provided
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continuous interface segments between cell boundaries.VOte is also developed
without interface reconstruction to rel&its complexity and thénterfaceis located on

the trandion region which may cover several cglalesak 1979; Muzaferija & Peri'c
1999; Xiao et al. 2005)'he drawback of this scheme is the smearing of the interface and
consequentlynumerical diffusionsWeller (2008) introduced an artificial compression

term to theEqg. (2.1) to sharpen the interface aodnsequentlyo reduce the diffusions.

Level set (LS) method developed ©gher & Sethiarf1988)is also a general technique
to capture thénterface.ln this method, the indicator is a smoothecheit) distance from
the interfaceasshownin Eq.(2.1) and zero level seB:Z&, L rgives the location of the
interface. One advantage of LS methodhattthe interface is sharply represented and
complex interfacial shapes can be handlebwever, severe errors arise in mass
conservatiorand also in interface normal vector and curvatlicemaintain the level seB
smooth throughout the entire simulation and to improve the mass conserdédtenent
schemes of reinitializations for the signdistancefunction (Adalsteinsson & Sethian
1995; Sethian & Smereka 2003; Sussman & Fatemi 1999; Min 204/ introduced
Even with frequentreinitializations, mass loss also happens in long time simulations
Such mass loss corrected byglobal (Zhang et al. 2010and local(Ausas et al. 2011)

mass correction steps.

Other interface advection methods are also developed sudorservative leveset
(Olsson & Kreiss 2005¢0ombining VOF and LS to achieve better mass conservation of
pure LS method and front tracking method in whiwhinterface is tracked by Lagrangian
marker points adveateby the velocity determined from velocifield on the Eulerian
grid. In the Phasefield approach(He & Kasagi 2007; Zhou et al. 2010)e interface is
assumed to be of a finite thicknes¥ thefluid dynamic ismodelledby the CahrHilliard
equationwhich gives ghysically realistic scalar fieldescribing the concentration of one
of the fluid componentsThe Iasic idea of this method is that an order parameter is
adopted to characterize the differgitases which satisfies the CaHilliard equations

and is coupled to the Navi@tokes equations.

As the NavieiStokes equation is solved &ired mesh and the interface is represented by
indicator functions, the jump conditions at the interface are amlglimplemented and
combined into the following singléeld equationswhich are valid for the entire

computational domain

dRé>; L, (2.9)

26



N 7

0é i
—EQJ®éE T >,
oP (2.5)

L FOLE 0@ DT > E:@T >: :Eée EE

where é:2dP and &:2&P are constant in each phase and discontinuous at the interface.
The surface tension force locally exists at the interface and can be expressed by Dirac

delta function(} with support onA
EL:éd85;EQe; 0 (2.6)

According to Eq(2.4) and Eq.(2.5), densityand viscosity fields anthe surface tension
term are determined based on the phase distributiine surface tension issue will be
discussed in sectidh 3. In VOF methods the density and viscosity depend on the volume

fraction U andthe densityis calculated as
éL L& E:sF U é (2.7)
For the viscosityjt can be computed by arithmetic mean as
aL Ba E:sF ;4 (2.8)
and also by harmonic mean as

B _sFG

S
- L—E——a (2.9)
a & 2

Thus, the fluid properties are computed as averages weighted by the volume fraction.
Even with levelset approaclin which the interface is sharply represented, the sudden
jump of fluid propertycan haveanunfavourableeffect on numerical stabilitylo awid it,

a common approach is to set a thicknesshoée meshes for the interfa@ussman &
Fatemi 1999; van der Pijl et al. 20G&ithin which the density and viscosity are smoothly
transferred Therefore, in Euler mesh, no matter therface is sharp or smeared

represented, the fluid properties are commonly smeared.

Phasefield method also represents the interface by a transition region of small but finite
width which is based on models of fluid free energghen coupling with NavieGtokes
Equations the variable density as well as viscosity of the mixture in thd fwoperty
transition zone is etermined by mass concentratiiowengrub & Truskinovsky 1998;
Guo & Lin 2015)or alternatively the volume fractighiu & Shen 2003)which are also

respectively used to relate tlfferent velocities of the mixture to form the mass
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averaged velocity and voluraveraged velocityThe physical meaningf the phasdield
method also enables applicatioto many physical states of miscible, irstible and

partially miscible(Anderson et al. 1998)

2.2 Meshlessmethods

There are also a number of attempts to adopt meshless methwddich afinite number

of discrete particles are employed to record movement of the syisaemm particle can be
associated with one discrete physical objectrepresent a computational node in the
continuum problem domainField variables such as mass, momentum, energyd
position are possessed bgch particle and the evolution of the system is determined by
the conservation of mass, momentum and enévippst meshless methods abased on

the Lagrangianformulationin which particles move i@ Lagrangian frameaccording to

the internal interactions with neighbouring particles and external foreesl the
convection terms do not need to be dealt witherefore time history of field variables

on the material can be naturally tracedr multiphase flows, nlike meshbased methas]

the interfacein meshless methads traced bylLagrangan moving particleswithout the
need touse any marker functisnWithout conrection between patrticles, the treatment of
large deformationfragmentation and coalescenck the interface or surface is much
easier Typical meshless methods in continuum level, also known as macroscopic level,
include SmoothParticle Hydrodynamics (SPH), Moving Particle Sémplicit (MPS),

and Meshless LocdtetreGalerkin (MLPG) methodThe former two methods have been
developed to solve multiphase flevby many researchers and tfiecretization of the
Navier-Stokes equatins and the interface treatment will be described in the following
sections. MLPG has beappliedin single phase flows and based on which the extension
to multiphase flows with other associated techniguege beerdeveloped duringhis
study In this review, the formulation of weak function derived from Navi&iokes
equations and discretization techniqtmshe MLPG methodvill be briefly introduced.

2.2.1 Smooth Particle Hydrodynamics (SPH) method

SPHwas first proposedby Lucy (1977) to solve astrophysical problems governed by
equations of the classical Newtonian hydrodynanyi@sious applicationsimulatedwere
mainly focugd on fluid dynamics related areascluding gravity currentfMonaghan
1994) flow through porous medi@Morris et al. 1999; Holmes et al. 20119hock
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simulationgMorris & Monaghan 1997)heat transfer and mass flo{@eary et al. 1998)
underwater explosio(Bwegle & Attaway 1995¢tc.

The basic formulationfocSPH consist®f integral representation of an arbitrdonction
and particle approximatiorVith a smoothkernel function 9 : 7 F 274D;, the integral

representation of functiol: z; is approximatedy
B.7,ALY B2 9 :7F 2D @ (2.10)

where Dis the smoothing length defining the support domain of the kernel functeomd
7f are position vectors of taey and neighbouring particleBy doing particle
approximation, the continuous integral represemntatias Eq(2.10) can be discreded to
beasummation over particles thesupport domaifMonaghan 19943nd expressed as

€.
B:Z; L1 — Bkx09 kZ F Z&Doa (2.11)
Y@
where 0 is the total number oparticles in support domain, yand éyare mass and
density of particleHocated atZ; For the spacial derivative, conventional expression
(Monaghan 1994gan be expressed as
¢ »
Bz L1 Bko-19kF 204 (2.12)
Y@ &
where | 9 kz F Zy&odenotes thé&ernelgradient.To improve the accuracy, the following

symmetric gradient form

. ,,C B:z; Bkzo .
IB:z; L él IYFF EFGIkaFZYaDo (2.13
Y@b Y

is also widely usedLiu & Liu 2003; Monaghan 20050ne can see that in both E§.12)

and Eq.(2.13) that the gradient formulations are only based on the gradient of the kernel
function which can be analytically derived and consumes little computationalSinfier,

with the dscrtizations of thearbitrary function (Eg.(2.11)) and the gradient of the
function (Eq.(2.12) or Eg. (2.13)), the NavierStokes equations can be solved lpe
weakly compressiblSPH (WCSPH)(Antuono et al. 2012)n which the pressure is
explicitly expressedy relating it to the density and the speed of sodsdpointed by
Rafiee et al(2012)andLee et al.(2008) the advantages of WCSPH are that there is no
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pressure boundaryr@gblem and its easy pragnming.However the drawbacks are also
obvious as small time steps are required due to the sound speed adoption in the equation
of state andpuriouspressureoscillatiors arise during simulatiorl.o obtain more stable

results, artificial viscosity forcesiaddedColagrossi & Landrini 2003; Monaghan 2005)

Incompressible SPH (ISPH) has also been widely adopted in the field of water wave
dynamics(Shao & Lo 2003; Lind et al. 2012iu et al. 2013; Gotoh et al. 2014 ISPH,

the pressure Poisson equation is formed by projecting the intermediate velocity onto a
divergence free spadw®y predictioncorrection time marching procedurehe prediction

step is to evaluate intermediatelocity > Yand position”owithout considering the

pressure by

SUL4Ep@d E:B ;) ; E é 0@ (214
~0 L ~a E> U@@ (215)
Thus hecorrection velocity> tan be expressed as

. P .
>N L F—(? @8> (2.16)
and the velocity at the next time step becomes

, - P
»a>5 | U F—CZ,'D @355 (217

Due to the invariability of density in an incompressible fluid® 2>%is enforced to be

zero yielding the pressure Poisson equation as follows
| ®—S®1_<'5‘>5p|=—S [®YL ra (2.19)
¢ @Pp '

In Eq.(2.18), the source term is based on the divergence of the intermediate v@lacity

et al. 2013) The source term associated with variation of particle densities is also adopted
in ISPH (Shao & Lo 2003)which is similarto the MPS method (reviewed in section
2.2.2. With Eqg. (2.18), the challenge is to accurately approximate the second order
derivative of pressure when discretizing the Poisson equddifierent approximation
schemes have been proposed and the frequently adopt¢8hame& Lo 2003; Liu et al.
2013)is that
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where 25 25F 2%, gy “gF “vand Bis a small number introduced to keep the
denominator noszero and usually equals to& D This symmetric formulation
corresponds to a symmetric and positive definite coefficient matrix dintb&r equation
which can be efficiently solved.o avoid large errors in discretizinige second derivative
particularly when particles adistributedin a disorderly manner as in violent water wave
problems Fatehi & Manzari{2011) proposedseveralforms of a higher order scheme for
Laplace operator discretizatioRy comparing WCSPH and ISPiHee et al. 2008)larger
time steps could be adopted (50 times dang one of their cases) and higher accuracy
was obtained by ISPH for the same particle numliser. the disadvantages, apart from
solving boundary value problems, directly approximate second order derivative for
disorderparticledistribution is still a gnificant source of inaccuracy even wilversely

developedschemes.

Based on above SPH theories and techniques for single phas&PRbihas also been
extended to modehultiphaseflows by properly treating the interface where the fluid
properties are discontinuau&imilar to the singlphase flow, the multiphase SRidn be
alsosorted into two categorieseakly compressible SPHNCSPH) and incompressible
SPH (ISPH).In the WCSPH brach,Monaghan & Kocharyafil995)started to adopt the
WCSPH to simulate nitiphase flow for the mixing dustuid flow, followed by gravity
currents simulatiorfMonaghan et al. 1999Both applications are limited in cases with
small density differences as pointedt by (Hu & Adams 2006)due to their implicit
assumption that the density gradient is much smaller than that of the smoothingTkernel.
extend the simulation to large density rati@slagrosi & Landrini (2003) modified the
spadial derivative approximation to diminish the large density difference effects across the
interface. As appd in the nonconservative density evolution scheme, mass
conservation problem may accumulate in ldinge simulatios even though the periodic
density reinitialization of the densityfield was applied to relige the problem to some
extent. To ensure stability of the interfacEplagrossi & Landrin{2003) also applieca
large unphysical surface tension the low-density phase and applied XSPH correction
on the momentum equatipwhich can be regarded as velocity smoothingdutition of a
large viscous termn Hu & Adams(2006) a conservative density evolution scheme was
proposed in which the neighbouring particles ardytributed to the volume rather than
the mass With this schemend the newly proposed paréelveragedspatal derivative

approximation the density discontinuity at the interface was satisfied automatiwadly
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the derivatives of the discontinuity were properly handlguke viscosity discontinuity
was alsodealtwith by proposing a viscous terensuring the continuity of velocity and
shear stress at the interface even though both conditions were auptieel midpoint
betweeneach pair of particles belonging to different phases which was not the real
interface.Cases with free surface and comyplaterface were notested in their work.
Other artificial techniques were applied to maintain the stability and sharp integiace
as repulsive forces betweguarticles of different phasg&renieret al. 2009)and the
restricting of the degree of freedom to move the interface par{idesaghan & Rafiee
2013)which was not applicable to deal wiiolent multiphase flowgi.e. violent water

air sloshing) Without velocity smoothing scheme or artificial surface tensithen et al.
(2015) simulated multiphase flows with complex interface and largesijematios by
ensuring pressure and space continuity at the interface. In supthmaWWCSPH models
successfully simulat multiphase flows withinterfaces transfering fluid properties
smoothly and maintain sharp discontinuities fluids with both highand low density
ratios. However, twoissues are often mentioned for tCSPH model. @e is the
pressure oscillations especially near the interface due to the adoptioe @fuation of
state relating pressure to the denshy.remedy the problems, vatisattemptshave been
made such as theummation of the particlaveraged pressufRitchie & Thomas 2001)
the additionof artificial surface tensiofiColagrossi & Landrini 2003)improvement of
spatial derivativegHu & Adams 2006; Chen et al. 201&)daddition ofrepulsive force
between different fluidéMonaghan & Rafiee 2013)Another issue is thalhe time step is
required to be normally very small in the CSPH modelling, which is considered @s a m
factor leading to its computational inefficien¢fdu & Adams 2007) In addition, the
speed of sound adopted in low density fluid. (gas)is even higher than in higtiensity
fluid (i.e. water)(which is unphysical to ensure the density fluctuations are sufficiently
low (Colagrossi 2005)Consequently the high speed of sound for low density fluid
requireseven smaller time ste€olagrossi & Landrini 2003)

ComparativelyJSPHcan use relatively larger time stepihout considering the speed of
soundand lead to better resulés pressure is implicitly solvadith less computational
time (Hu & Adams 2007; Zheng et al. 2014Hu and Adams2007,2009) developed
multiphase ISPH angroposed acheme which can ensure the discontinuitgeifsities
across thdnterfaceto investigate multiphase flowsith relatively highdensity ratios
They only applied their methods to simple cases without extremely violenbfléews
without surface Shao(2012) compared coupled ISPk which the velocity prediction

step and Poisson equation solving step were processed with mixed phase particles near the
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interfaceand decoupled ISPkh which the pressure ctinuity condition was applied on

the interface. It wagound thatboth methods had comparable performance on the low
density ratio of 1.001 anithe decoupled ISPH worked betthan coupled ISPH for high
relative density ratio of 1.3/ery recently, Lind tal (2015) proposed a hybrid model for
air-water flow in which the air is dealt with by the CSPH while the water is treated by the
ISPH. This hybrid model satisfies theequirementof air compressibility in wavelam
impactsasair ejection velocity prioto impact can approach the speed of sodtidhe
interface, the compressible phase provided pressure boundary condition on the
incompressible phase ensuring the pressure continuity and providing Dirichlet boundary
condition for the solution ofhe Poissm equation.On the contrary, the incompressible
phase provides velocity boundary conditidor the compressible phaddowever, as the
definition of the interface for each phase was not mentioned, it was not clear that on
which particles those two conditiswereapplied.

As pointed out above, the ISPH needs to soNRIPVVRQYV HTXDWIRLY IRU
implies that two issues have to be dealt with. One issue is related to what and how the
boundary conditions are applied on the interfate.and AdamsZ007,2009)suggested
ensuring the continuity of pressure and the ratio of pressure gradient to density. The two
conditions were imposed in theiork by assuming that the middle point between each of

a pair ofparticles is on the interfacAs the pressie gradient is determined averagely by
using many pairs of particles in the range of an influence domain of a concerned point, the
interface in their formulation was actually a layer with a thickness in an order of the
influence domain size, about doublistdnce of two particles. In the coupl&sPH of

Shao (2012), the pressure of different phase is not distinguished. In this approach, the
interface is actually smeared, which was perhaps one of reasons why the coupled model
did not work as well as the deupled model. In the decoupl¢8PH (Shao 2012)only
pressure is ensured to be continuous buttetvelocity at the interfacé’he second
issues related to the ISPH areabhow to discretise the Laplace operator involved in the
POiVVRQTV HTXDWLR @QWodtRadll tiUIBRHY Xablels chose to directly
approximate the second order datives in the Laplace operatdvlany schemes have

been proposed as reviewed byeng et al(2014) However, the errors of the schemes

can be more than 30% in many points when they are applied to estimate the values of
Laplace operator on simple functions if the points are irregularly distribtethermore,

the inaccuracy isleterioratedwith the increase of irregularity in the particle tdisution

(Zheng et al 2014). As the distribution of particles in the Jemt motion is always
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irregular,the concern does exist with direct approximation to the second order derivatives

of the Laplace operator.

2.2.2 Moving Particle Semtimplicit (MPS) method

The moving particle semimplicit (MPS) method(Koshizuka & Oka 1996Jor single
phase flowis analogous to the SPH method providing approximations to differential
equations on the basis of integral interpolation. Howevleere are three typical
differences between MPS and SPHhe first is thathe original MPS appliesimplified
differential operator models based on local weighted averaging praseskown in
Eq(2.23) and Eq.(2.27) rather than taking the gradient of a kernel function as in SPH. A
further difference is that MPS uses a sémplicit predictiontcorrection process to solve
the NavierStokesequationby treating the fluidasfully incompressibleThis prediction
correction projecprocedureis differentfrom conventionaWCSPH butis similar to the
ISPH method Finally, the particle number density is introducedtlie MPS method to
form the source term of the Poisseguationas shown in E¢2.22) ratherthan velocity

divergence used isome oiISPHmethodgLiu et al. 2013)

The predictionand correctiorstep issimilar to that in ISPH as shown in Eq.14) to

(2.16). The incompressibilityof the MPS is ensured by satisfying the constant fluid
density andconsequentlythe particle number density as the density of each particle
remains constant during simulatiod, JY%nd Jdenote particle number density at each
time step, intermediate time step (after prediction) and the correction respectively which
satisfy

JUEJPL J,a8 (2.20)

By relating the velocity correction "with Jthrough the mass conservation equatimme
can obtain

SJﬁE®®ﬁL A (2.21)
J4 (JP
Substituting Eq(2.16) into Eq.(2.21) and replacing @rrection particle number density/
by J, F J0 Eq.(2.21) can be rearranged as

é J,FJY.
a

PL ij 5

(2.22)
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In Eq. (2.22), the source term of the pressure Poisson equation are particle number
densities at each timgtep which is a constarfrom the initial setting and intermediate
particle number density deteimad by the intermediate particle position at each time step
The Laplace operator on the LHS of EB22) is represented by the particle interaction
model(Koshizuka et al. 1998)s expressed below

ASo AL t&iei kdy F 60Ski-F 78N 04 (2.23)

Jsa
4Y-U

where 6is an arbitrary scalarfunction, &ds number of space dimensiorisand Zyare

coordinates of central particle and neighbouring particle respectigiedya parameter

based on particle distribution and given by

< | Av uSkey F 2oy F 25
a

K (2.24)
Ay. Kizy F g0

where J, is the constant particle number density calculatedhatvery beginning

calculated as

JaL:Jga L1 SkKieF zaNoa (2.25)
Y- U

The most common kernel function applied in MR8shizuka et al. 1998%

I .
——— Fsa N
Skzy F zgadNoL PFyF "yt QNé (2.26)
ra NP N
where Nis the cutoff radius.
After solving the Eq(2.22) velocities need to be updated by pressure gradient with the
operator of

o _ koyF o¢
Aom%ﬂ %SﬁyF 7 AN OkZy F 208 (2.27)
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The original MPS method was proposed for single phase flows such as water column
collapse(Koshizuka & Oka 1996)In that publication, the kernel ashownin Eq. (2.26)

was first employed to maintain the incompressibility as the kernel function was infinite
when particlesoverlappedwhich leaded to a stronger repulsive force between closer

particles throughhe Poisson equatioRurther development was mabg Koshizuka et al.
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(1998) in which a candidate liswith the radiuslarger than the support domaiwas
employed and from this list the particles in thegort domain were picked oufhe
frequency of updating theandidatelist based on the CPU time was discussed and it
concluded that the scale of operation was reduced B8mo 0°® where 0 denoted the
total particle numberTechniques to deal witfloating bodies were also proposed by
using a passively movingolid model to describe the motion of a rigid bawlya fluid. In
(Gotoh et al. 2001)a subparticlescale (SPS) turbulence model was introduced for high
Reynolds number flow simulatiomssed on the concept of sghd-sacle (SGS) model in
Eulerian largeeddy simulation (LES) modelé\bove mentioned techniques are reviewed
by (Gotoh & Sakai 2006and were applied obreaking wave over a slogEoshizuka et

al. 1998) and over different sead geometrieGotoh & Sakai 1999)As for the
interaction with structures, MPS was extended to compute nonlinear motions of a floating
body influenced by water on the deakd totransient dynamic loads with finite elastic

structural displacemengsiwang et al. 2014)

Based onclassicMPS gradient and Laplace approximatjcseveal modifications were
proposed A corrected version of rpssuregradient approximatiorfKhayyer & Gotoh

2008) guarantees the conservation of both linear and angular momentum by deriving an
antrsymmetric pressure gradient term which was applied on plunging breaking waves.
However it was pointedut by Tsuruta et al(2013)that such correctiowasequivalento

adding an artificial repulsive force term which was dominantly excessive and failed to
produce the main flow feature$o solve this problenTsuruta et al(2013) proposed a
dynamic stabilization scheme in which the ukspre force term was in accordance with
particle distributionTo improve and stabilize the pressure during the simulation, a higher
order Laplaceapproximationfor pressure and viscous termaswderived (Khayyer &

Gotoh 2010) and showed enhanced pressure calculation on sinusoidal pressure
oscillations and violensloshing Meanwhile, a higher order source terrasaerivedto

form a new pressure Poisson equatlmn usng higher order time differenti@n of
particle number densitiesThe above improvementsf d_aplace approximation and
Poisson equation werthen extended to 3D MPS ifKhayyer & Gotoh 2012) The
alteration of he source term was also done (Bondo & Koshizuka 2011; Chen et al.
2014)to suppress the pressure oscillation in MPSuruta et al(2015) introduced the
space potential particles (PPS) to resdlve inconsistency in the volume conssion
around free surfacdhe PPS are novel particles corresponding to each surface particle in
the single phase flow and their locations are determined by particle number density

deviations from that of inner particles.
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In the fields of multiphase flowthe pioneering work was done @ptoh & Fredsg€2000)

who developed a solifluid two-phase MPS metd. Recently a weakly compressible
MPS (Shakibaeinia & Jin 2012bjvas developed introding the equationof stateto
original MPS and preseng the ability to simulate multiphase flow witlow density
ratios (pto 5). Similar to the early stage SRHu & Adams 2006)nultiphase work, this
modification comprised of density smoothing scheme giving a spatial averaging of
density as expressed below

RBAL— 1 é/SkiF 204 (2.28)

S
Ja Y- U
This smootled scheme for density on interfaces veso similar to meskhased methal
such as VORYokoi 2007)and levelset(Olsson & Kreiss 2005presenting an interface
smoothly transferring the fluid propertieswas pointedut by KhayyerandGotoh(2013)
that the smooth schenaowngradegshe accuracy obharp variation®f densityat the
interfacesand subsequentlyed to unphysical dispersions of particles near the interface
representing as unphysical penetration of heavier fluid into lighter fluid in immiscible
two-phase simulationéShakibaeinia & Jin 2@b). To minimizing density diffusiorand
maintain a sharp interfacé&Khayyer & Gotoh(2013) presented a first order detysi

smooth scheme based daylor series expansi@xpressed as

7 7
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This extensioreffectively kept the sharpness ggecialdensity variationsand minimized
the unphysical perturbationshus the performance of multiphas#S was significantly
enhancedor modelling flows with relatively high density ratio which reached 1000.
Other efforts have been taken to maintain cleariate for high density ratio simulations.
One of them is to incorporate theegk compressibility into Poissof equatior(Natsui et
al. 2014)which was previously applied in single phase fl¢lianaka & Masunaga 2010)
to obtain a constant fluid volume and smoother pressure distribMiiben applied in
multiphase flow, especiallyor large density ratios (e.ggasliquid flow), the weak
compeessibility improves the stability of the interface even wgiplecialaveraged density
function (Shakibaeinia & Jin 2012b)However, improper values ahe compressive
parameter led to dease of the fluid volumeThus optimization tests of the parameter
were done in a hydrostatic ca@¢atsui et al. 2014j)o obtain both clear interface and
constant volumeAnother echnique to stalise the gadfluid interface is to setum

checkerboard initial particle distributior{Natsui et al. 2014yather than conventional
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simple cubic distributionThe problemof particleinterpenetratiorino sharp interface) at

the interface was also pointed out (Ng et al. 2015)and was relievedby solving the
pressure Poisson equation on the background mesh whose intermediate velocities were
interpolated from moving particle$he densities at the interfacgere determired by the
levelset methodln (Ng et al. 2015)particle deleting and feeding technique was applied

to ensure the even particle distributing without using unphysical collision model
(Shakibaeinia & Jin 2012b)

2.2.3 Meshlesslocal Petro-Galerkin (MLPG) method

The MLPG method was proposed bAtluri & Zhu 1998) to deal with Lapace and
Poisson equationisased on the local symmetric weak form and the moving least squares
approximation.The method successfullsolved fracture mechanics problenfBatra &
Ching 2002) beam ad plate bending mblems (Atluri & Zhu 2000) and three
dimensional elaststatic and elastdynamic problemgHan & Atluri 2004b; Han &

Atluri 2004a) Atluri et al. (2006) presented the MLPG mixed finite difference method
(FDM) to solve the solid mechanics problems, in which the displacements, digplaic
gradients, and stresses were interpolated independently using identical MLS shape
functions. The MLPG mixed finite difference method successfully solved various
elasticity problems with complex displacement and stress solutiensfluidd dynamic
problems, the steady flow around a cylinder, steady convediféusion flows in one and

two dimensims and the incompressible flows by solving Nax8éokes equationd.in &

Atluri 2001) were addressed. Wasthen developedo solve convectiowiffusion flow
problems(Lin & Atluri 2000).

The method is fully general in solving general boundary value prsblend linear
Poissor equation is useldereto demonstrate the formulatiofihe Poissor§ equation

can be written as
@#B:7, L C7; yASEEK: (2.30)

where C: z;is the given source and the domaims enclosed by the boundary consisting
of Aand A with the boundary conditiorsf

BL B on Aa (231
10 i 2.32
P L Mon Aa (2.32)
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where BandMare the prescribed potential and normal flux, respectively , on the essential
boundary Aand flux boundaryA,. ” is the normal direction pointing outward of the entire
boundary.Other than Galerkin finite element etementfree Galerkin methodsvhich

give global weak formover the entirelomain x, the MLPG employs the local weak form
over a local suglomain x which is located inside the global domain and is conveniently
taken as a circle in 2D and a sphere in@bBblems. A generalizedocal weak form with

the penalty methodAtluri & Zhu 1998; Atluri & Shen 2002jJo implement the essential

boundary conditiorran be written as

+:1°BF C;Tt3F =+ kBF BoTTAL ra (2.33

b R

where Bis the trial function,i is the test function andyis a part of the boundarg x,
over which the essential boundargnditionis specified.The secondterm of Eq. (2.33)
vanishe when thedomain x4is entirely inside the global domain and there is no
interactionbetweeno xand 4 Uis a penalty parameter giving the valueof s By
applying * D X Viiigbxémand choosing a test functidnvanishing overo x4{excluding
the interaction parbetweenthe global domain3, the Eq.(2.33) is rearrangedo a
generalizedocal symmetrioveak form expressed as

(2.34)
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Theoretically,the Eq.(2.30) and itsboundary conditions will be satisfied as long as
the summation of all locatlomainscovers the global domain, i.eé x5 @x. But
Atluri & Zhu (1998)pointedout that satisfactory computationaesultswere giveneven
when the summation of suwdbmains did not cover the global domakor the trial
function in Eq. (2.34), it requiresa local interpolation or appraxiation to present
unknown function ofB In MLPG, there area variety of independenthoicesof nodal trial

and test functionapplying over nodal si@lomains withdifferentsizes and shapefhese
features make the MLPG method very flexib\éarious metlds (i.e., Moving least
square (MLS),Shepard function, Partition of Unity methods (PU), Reproducing kernel
particle methods (RKPM) and Radial basis functions (RBf)approximating a trial
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function over an arbitrary domain using its value (or fictitivakie) at a finite number of
randomly located particles were discussediiluri and Shen(2002) In the following
MLPG development, MLS interpolation for trial function was widely adogi®atra &
Ching 2002; Han & Atluri 2004a; Atluri et al. 200f)r its reasondl accuracyand high

order continuity By comparingsix test functiondt was found thathe Heaviside step
functionwasrobust as the corresponding MLPG method does not involve any domain and
singular integrals to generate the global stiffness matrix @y involves a regular
boundary integrafAtluri & Shen 2002)

With the generaliz&formulation ofthe MLPG method, te incompressible flow problems
were addressed by solving Navigtokes equation@.in & Atluri 2001) and the method
wasfirst extended tsimulate the nonlinear water waves (hfa 2005a)in which dter
time-split procedure, thPoissor§ equatiorwasformulated as

e
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with the source term of velocity divergence wherwas the intermediate velocity
consicering gravity and viscous force (not consideredMa 2005a)but capable to add)
éwas the density, ¢ Pwas the time step in simulation distization and Lwas the
pressure whiclwould besolved byMLPG method At each ofthe inner particles a sub
domain was specifieds a circle in twalimensionalsimulationsand over which the

productof the Eq.(2.35) andanarbitrarytest functioni was integrated leading to

. €. -
+ @°L F—l ®YATt3 L réa (2.36)
¢
where 3,js thearea of the subdomain centred at the particleln MLPG, the chace of
test function isflexible and many variants of MLPG methods have been developed by
(Atluri & Shen 2002)in which six test functions wereompared numerically and the
Heaviside step functiowas testedo be more promising than otheBy employng the

Heaviside step functioexpressed as

N sa E Xz
'L\ s KBANSEOA (2.37)

and apjpying Gaussy theorento Eq.(2.36), Ma (2005a)obtainedthe weak formulation
for particles whose sutlomain X 3is entirelywithin the global domaiife.g., excludes the

boundary particlesshownas
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Instead othe second derivative in Poiss@nequation, the weak form shown in E238)
only needs to deal witthe gradient of the pressuréhe unknown functioife.g., the trial
function) at a specific position is approximated by a set of nodedeldda its support

domain and can be written as

B:z; L1 &:z;Bkzyoa (2.39)

where 0 is the number of total particles that afféioe central particle locadat 7, O;:7;
is the interpolation functioralso calledthe shape functionwhich is fornulatedby using
moving least square (MLS) meth@8itluri & Zhu 1998; Ma 2005a; Han et al. 200&)nd
the derivative of an unknown function was foundthaking direct differentiationof the

shape function.

As for boundary particles typicallysedfor surface and wall particlethe implementation

of boundary conditions is alterdédm theoriginal MLPG in nonlinear wave simulation.
Firstly, the surface particles on which zero pressis specified (similar to essential
boundary condition ifAtluri & Zhu 1998) aresolved byspecifying zeo pressure rather
thanin integrd form as shown in penalty methotlhe reasonis that the integiaform
works well for fixed orsmall displacement boundary problemvhile it is not suitable for
the water wave problem as relatively large deformation scouarthe free surfacgMa
2005a) Similar free surface conditienby direct integrationare also adopted in other
meshless particle metho@isoshizuka & Oka 1996; Lee et al. 2008kcondly,according

to numerical tests ifMa 2005a) wall particles satisfying zero normal pressure gradient
condition which is similar to flux boundary conditiofAtluri & Zhu 1998) are also
formulated by direct approximatioof the pressure gradient rather than the integration

over the incomplete sutbomain.

A further development was carried out using a new form oMhEG method which is
called MLPG_R. In that method, the solution for Rankine sources rather than the
Heavisde step function was taken as the test fundiil@tails in derivation are in section

3.2). Based on this test function, a weak form of governing equations was dasived
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which did not contain anyderivatives of unknown functions and therefore made
numerical discretiation of the governing equation relatively easier and more efficient.
This featureovercomes the problems associated with direct numerical approximation to
second derivatives in existing ISPH and MPS formulatiod the first derivatives in
original MLPG method Therefore, in this weak formulationthe only needis to
approximatethe UNQRZQ IXQFWLRQV GXULQJ GL\VoR.AS&ésult,QJ WKH
the approximton of the unknown functions in this approach is required to be only
integrated. Clearly, this is an advantage over requiring the approximation of unknown
functions to lave second order derivativégheng et al (2014) has shown thia¢ use of

this approach can significantly enhance the efficiency and robustness of numerical
methods A semianalytical technique was also develogedthe MLPG_R methodMa
2005b) to evaluate the domain integral involved in this method, which dramatically
reduce the CPU time spent on the numerical evaluation of the integral. Numerical tests
showed that the MLPG_R method could be twice as fast as the MLPG method for
modelling nonlhear water wave problemSimulationsof 2D freak waves, sloshing wave

and various nonlinear water waves were successfully carriedyoMLPG_R method

(Ma 2007) Ma (2008) made anothstep forward in the development of the MLPG_R
method for water wavas whicha new meshless interpolation was suggested, which is as
accurate as the moving least square methodshmuch more efficient, particularly for

computation of gradieabf unknown functions.

Taking the advantage of the meshless particle method in dealing with liblw$arge
deformatiors or even breaking wavethe MLPG_R method was further developed to
model the violent waves and their interactions with rigid structures fota&egMa &
Zhou 2009)and 3D casegZhou & Ma 2010) In the above two works, a surface
identification technique was proposed by incorporating thredliary functions into the
particle number density meth@dNDM). The newtechnique accurately identifies the free
surface particles even in violent situations by additionally courtiogipiedquarters and
specified rectangles of the support domain of the target par@Golepared to PNDM
(Koshizuka & Oka 1996; Khayyer & Gotoh 200%he accuracy of the identification is
less dependent on regularity of particle distribution which is downgraded in violent
situations.Ma & Zhou (2009) also adoptec source term of pressure Poisson equation
incorporaing the density invariant term usedthe MPS (Koshizuka et al. 1998; Hwang
et al. 2014; Khayyer & Gotoh 201#)to the velocity divergence in original MLPG_R
methodto overcome the particle distortion under violent condgidnconstant weighting

of the densitynvarantterm was obtained after numerical teSischincorporationof the

source termwas also discussed by incompressible PH & Adams 2007; Gui et al.
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2014) Hu & Adams(2007)achieved both density and velocity divergence constrains by
double solving the pressure Poisson equation which increased the expense of CPU time.
Alternatively, (Gui et al. 2014)ombined two constrains with nuneally determined
weights whose variation was also given based on different dlmvditions. Apart from

the surface patrticle identification technique and density invariant introduced source term,
the Newtonianviscosity wasalsoconsidered by adding\dascousterm in calculating the
intermediate velocityn MLPG_R methodMa & Zhou 2009) Anotherapplication called
hydro-elasticity wasalsoachieved by MPG_R (Sriram and Ma, 2012) by solving fluid
and structure dynamics separately while matching conditions on their interface by
interaction. Besides, a novel approacas proposedo estimate pressure gradient when
updating velocities and positions of fluhrticles, leading to a relatively smoother
pressureesults However,the MLPG_R method isip tonow only applied to single phase
flow and the extension to the simulations for multiphase fisvearried out inthe
following chapters

2.3 Interface tension nodels

Since fluid molecuks experiencean uneven attractive molecular force near or at the
surface andan abrupt changeoccurs when fluid properties change discontinuously,
interface tension is an inherent characteristic of material interfaces of flthds, the
effects of interface tension play important roles on maatyraland industriamultiphase

flow phenomena, especially when the characteristic length scales of the system are
sufficiently smalland becomeelevant compared to inertieffects. Examples can be

found in the investigations afapillarity (Prosperetti 1981; Popinet 2009; Wang & Tong
2010) droplet dynamicqHysing et al. 2009; Tripathi et al. 20]15parangoni effects
(Haj-Hariri etal. 1997; Ma & Bothe 20113ndsurfactanbehaviourStone 1990; X et al.

2006) Numerical simulations of interface tension highly rely on the interface
representation based on which the curvatures are estimated and interface tension models
or interface boundary conditions are implemenigueke following review is diided into

two groupsThe first group is that the interface tension is treated as a localized body force
distributed within a transition region of finite thickness at the interface and the otber is

simulate sharp interfaderce applied on an infinite thin interface

In the first groupa continuous surface for¢€SF)modelinterpreting surface tension as a
continuouseffectacrossan interfacgBrackbill et al. 1992Wwas adoptedvhich alleviates

constrains of topological complexiof the interfacesBy satisfying the Laplac§ formula
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with the constant surface tensiomefficient P avolumetricsurface force was derived and

shown as

lialP 2471
= @ (2.41)

(eZ L 647;

where ais the curvature?s the color functiorvarying smoothly fromone constant to
another over the intace in the original CSF work an#7s the jump of two color

constantsThe normal vector and curvature were also proposed as
" (0. NN - .
L o aL Fl ®a (2.42

This model was firsimplementedn VOF methodBrackbill et al. 1992jand successfully
applied on equilibrium and norequilibrium rod, RayleigiTaylor instability, wall
adhesion and lowgravity flows It reported that the smoothness of the curvature and
correspondingly the surface foraeas dependat upon the smoothness of tle®lour
functionin which the density was adopted as todour function. The smoothedolour
function in VOF to compute the curvature and the surface tension force was then adopted
in Ubbink & Issa(1999 and Xiao et al.(2005) For interface reconstruetl VOF, the
colour function became discontinuous on sharp represemiesface which made it
difficult to accurately evaluate the first and second derivatives and also leads to inaccurate
results of normal vectors and curvatuf@&rner 2012)Apart from VOF, the CSF model

is also implementedin Levelset method by mdacing the colour function with a
regularizedcontinuousdelta function associedi with the levelset function(Hysing 2006;
Raessi et al. 2009Benefiting from thesmoothlevelset function across the interfatiee
calculations of normal vector and curvature becomes muckreasil accurateBut in
either method, when calculating the curvature, convergent problems witbumesh
refinement(Cummins et al. 2005; Desjardins et al. 20083 a remedya least square
approach adopted by Desjardins et al. (2008) iratlv@rateconservative level set method
was tested to be first order convergemid furthermore height function approach
implemented in both Levedet (Owkes & Desjardins 2013pnd VOF (Owkes &
Desjardirs 2015)methods achieved a seceodier convergencd3ut extra computations
are required tantegratethe liquid volume fraction to build the heighinction for the

concerned and neighbouring cells.

Similar to CSF, thecontinuous surface stress (C3%)del(Lafaurie et al. 1994; Renardy

& Li 2001; Bothe et al. 2011reatssurface tension forcas a divergence of a surface
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stress tensor acting tangential to the interface. The conservative nature of the CSS ensures

the zero net surface tension force for a closed interface which is superior to the CSF.

For meshless particlepproaches,althoughthe interface is inherentlyraced by the
moving of particles, the CF@onaghan 2000; Zainali et al. 2018yd the CSSHuU &
Adams2006; Hu & Adams 2007are widely adopted byransferringthe surface force to
volumetric force and exerting it on a layer of interface region as in mesh based methods.
To reflect the reality of theon-uniformly distributed surface forcésr each phas a new
densityweightedcolourgradient methodAdami et al. 2010was proposedby using a
sharpjumped colour functionBut convergeoe problens of curvatue calculationstill

cannot be avoide&hang(2010)proposed a method to locally reconstructftiee surface

after the surfacearticle identification which was also adoptedzimang et al(2012)for

the interfaceof two-phase flowslIn 2D casesan interpolation polynomial is used to fit

the curve and MLS$s used in 3D caseBut interpolation polynomial constructed cusve

may have oscillatiors due to irregular interface particle distributidhose oscillations

lead toinaccuratefirst and second derivatives amdnsequentlyinaccurate curvatures.
Although the surface and interface are sharply identified and the curvatures are calculated
based on the sharply reconstructed curve, the volumetric surface forcésoaapied

over single particle distan¢ghang 2010and over the scale of the kernel support domain
(Zhang et al. 20123)y transferringthe force to the particles near the interface.

Different from volumetric surface force method, the second group treats the interface
tension as a part of the interfaoeundary condition which is directly implemented on the
sharp interface A mesh based interface tracking method employing the Arbitrary
Lagrangian Euleriaformulation(Tukovic & Jasak 2012; Dietdfissling et al. 2014fan

be sorte into this group as the interface is sharply represented bydtimg meshfaces.

For surface/interface tension calculatigpuan & Schmidi(2007) employs least square
parabola fitting of the mesh faces whilelkovic & Jasak(2012) use the novel forece
conservative approadfPerot & Nallapati 2003yvhich ensures zero net surface tension
force on any closed surface withaeguiremenif complex derivatives or curve fitting.
Although such moving mesh metrsogllow accurate calculation of surfatension force
and direct implementation of the kinematic and dynamic conditions at the inteHage,
are restriced to moderately deformed interfaxevith constant topologyand are not

applicable to violent situations such as wave breaking
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Chapter 3 Methods for Multiphase
Flows with Small Viscosity andZero

| nterface Tension

The problem discussed in this thesmwolves flows containing two immiscibleand
incompressible fluidphasesof 35and 3gseparated by the interface as illustrated in
Figure3.1. In thefluid domain, particles can be sorted into three groups: those located on
the interface (refeedto as interface particleshhose located continuouslyithin each
phase (refeed to as inner particles) and thosigle particlessometimesbreak away
from their continuous phase and penetrate into the other mhassing the interface
(refered to as isolated particleslPressure and velocity will be sel¢ for each particle
based orthe Navier-Stokes equation and the particle will move according t@théeved
velocity in the Lagrangian way. In this chapter, the particle motion procedures will be first
carried out. Then the pressure formulations of inpatticles, interface particles and
isolated particleswill be derived based on MLPG_R algorithm and nepwhpposed

interface conditions.
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Figure 3.1: lllustration of twephase flowconsistingof phase3;( ® ) and 35( < ) separated by
the interface (- - -) represented by interfagearticles (& ). There exist isolated particles
surrounded by particles of the other phase.

3.1 Equations and procedurefor nodes motion

The motion of particles is governed by tineompressible NavieBtokes equations and

the continuity equation in Lagrangian fartationwhich can be written as

O RF S S F " AE*BLL2E (S F * 1@ g E*— 1 ogh (3.1)
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where ¢ is the gravitational acceleration,is the fluid velocity vectorLis the pressureé

is thefluid density andi is thefluid viscosity. The subscripttind Goresent the phase that
particles belong to, whereHb 35‘” 364G 35" 35,,—HMG. It is noted that
when * L r, Eq (3.1) becomes the normahomentumequation for continuougluids,
whereas* L sgives the equation @ singleparticle moving in the other fluidriven by

thepressure gradient of the surroundihgd, the drag forcend the gravity

The two forms of the continuity equatioas shown in Eq(3.2) are equivalentfor
continuousfluids but the firstcanbe appliedo isolated particled-or inner and interface
particles (* L r), the motions are driven by gravity, pressure gradient and viscous force
as in otherLagrangian multiphasapproache¢Shakibaeinia & Jin 2012b; Monaghan &
Rafiee 2013¥or two continuous phase$o ensure the contiiity of the terms relatetb

viscous stresen the interfacethe termof ixz@P> gin Eq.(3.1) is replaced by:iz@> s E
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in@>p; t as an averagr interface particlesThe similar approactvas alsoadopted
by Grenier et al(2009)and Flekkoy et al{2000) by adopting the inteparticle averaged
shear stress

For isolated particles*( L 9, the total forceon themis contributed by pressure gradient
of the other phase, drag and gravity. Other forces such as lift force and Basseteforce a
assumednegigible in this paper The similar simplification was also adopted in
Sokolichin and Eigenberger(1997) for the motion of air bubbles in water and in
Monaghan and Kocharydt995)for the motion of dust particles in alsolated particles
werealsodealt withby Gotoh and SakdR006)in their MPS methodh the occasiorthat
single air particlewas surrounded by water particle$hey obtained pressure by
temporarily giving water density to that air partitdeconsiderthe reaction force from the
air particle to surrounding water particiile the movement ahe airparticle was not
provided. (xgin EQ.(3.1) accountdor thedrag force exerted by surrounding phase on the
isolated particle whicklwvas given byOdar(1964)andexpressed as

#a

rxaLt—ag%ép>pF>B:>pF>B;éiHl\/lGé (3.3

where #; L €4%and & L—? e4"with 4beingthe radius of the isolated particle.

% s the drag coefficient approximated by the standard drag q@hfe et al. 1978;
Delnoij et al. 1997)

E/ks.Eri’5V\444é;<o 4,0sSTrTIT
% L P4 2 2 a

rav 4R srrr

where 44L té,4 >, F>z & In EqQ.(3.1) and(3.3), the pressurd,and velocity»
at the centre ofan isolatedparticle are interpolated from the continuous phaset as
assumd that a small number ofolated particles havenegligible disturbance orthe
pressure of continuous phasased orGotoh andSakai @006). Substituting Eq.(3.3) to
Eq. (3.1), one can observe that there is a tefmé, @€, indicatingthe ratio of density of
surroundirg particlesto that ofthe isolated particleA high value of that term leads to a
significant effect of drag force on isolated particles such as air bubbles in @atére

other hand a low value leads toegligibleeffect such asnwaterdrops in air.
On rigid wall boundariesthe following conditionis satisfied

> ® L ®a (3.4)
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Taking time derivative of the velocities on both sides of E(B.4) and substituting
S»>. 1S dnto Eq. (3.1) for the continuous particles, the pressof particles on the rigid

wall boundaries satisfies
" @A L &K ® F” ®6E iy @&P> 04 (3.5)

where ” is anunit normal vector ofhe wall boundary witha velocity andanacceleration
of « and « Srespectively.

The model is numerically solved by a time marching procedure cogsatprediction
and correction step¥his procedure has been adopted and detailedr previous papers
(Ma & Zhou 2009)or singlephaseflow and a summarigs presented belowsSuppose that
variables of pressure, velocity giocation of each particle have been found-tt time
step (PL P) and those will be updated at(1)-th time step.

(a) Prediction step

The time domainis first split into steps of @ BVith known velocity (> &) and particle
position (~@) at n-th time stepthe intermediate velocity>(,{j and position { ,39 are
explicitly calculatedaccording toEq. (3.1) by considering forces excludinthe term

associated with the pressumad yield

>BUL>BéE‘@E|'3@)B@P (36)
WL E>d@P (37
(b) Correction step

Next by @nsidering the pressure terthe velocityat (n+1)-th time stepcan be expressed

as

4>5 0 P a4>5 3.8

> |_>,3|:—é|LB a (3.8)
R

Then ly taking divergenceof both sides of Eq(3.8) and utilizing mass conservation
equation £q.(3.2)) WKH SUHVV Xdutiod Bf LYV R d@fivédas

6L 2>5 L %E@ 4 (3.9)

After obtainingWKH SUHVVXUH RI HDFK SDUWLFOH E\theROYLQJ

correction velocity will be estimated as
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- P
>V L F—éBI L&>%4a (3.10)

Finaly, thefull time step velocity angosition will be updated by

&5 L>YE > Fa (3.12)
A5 LB ES Y@ (3.12)

It should be noted that the whgbeocedureof Eq. (3.6) - (3.12) is only applicable for
inner particles. For interface particlébe pressurds notgoverned by Eq(3.9) and will
be discussed irsection 3.3, thoughtheir velocities and positions aaésoupdated by Eg.
(3.10) - (3.12) once the pressure is obtainéwr isolated particleshe pressure equation
will be presented irBection 3.4. Their velocitiesare estimatedby usingEq. (3.1) with

setting* L sandtheirpositions are updated by H§.12).

As shown inFigure 3.1, three types of nodes, e.mner nodes, interface nodes and
isolated nodes, exist in the simulation witliferent pressure formulationgn the next
three section8.2 - 3.4, pressure formulations will be given for each type aden At the
inner particles the pressuras treatedusing the same techniquas the single phase
MLPG_R method Ma and Zhou, 2009n section3.2 while the pressurat theinterface
and isolated particles is formulated by considering interface conditions in seé@&iand
3.4respectively.

3.2 MLPG_R formulation for the inner particles

For inner patrticles, the pressurés implicitly solvedby Eq. (3.9) for fluid ones andby Eq.
(3.5) for wall boundaryones. Following the formulationn single phase MLPG_RMa
2005hb) for each inner fluidparticle a circular sultlomain 3ycentred at nodetis
specified over which the mduction of EQ.(3.9) and an arbitrary test function? is
integrated, leading to

e & o
+ LS F==1T.® AT Lra 3.13
.E@ Le @IP R (313
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Figure3.2: lllustration ofarbitrary distributed particlegntegration domain and support domain

Several options of the test function have been explored and it was found thahewith
Heaviside step function thdomainintegral over xawas avoided and only boundary
integrals were involved which greatly improved the effectiveness of this mgihad &
Shen 2002)When dealing with water wave problems, the Heavisidg function was

also adoptedMa 2005a)resulting in a formulation involvindoundary integral only.

However, in that formulation the gradient of the unknown function exists in the integrant

which not only requires much computational time but also degrades the acciwacy.
further improvethe weak formulation the Rankine source stilon was selected as test
function (MLPG_R) to eliminate the gradient of the unknown funcfda 2005b) This
test function satisfies tha®®1 L rwithin x5 except for its centre antl L ron 0 %

which is the boundary ok 4 The solution can be expressed as

N
tHIJ—-p BKRSI®Q EIAJO BPKIAIC
A S 4x .
I L— A 4, a (3.14)
|SF—|\'IAp BKRDNA@ EIAJO BKIA

where Nis the distance between a concerned point and the centrgaoid 4;is the
radius of x4 With this test function, Eq3.14) is then rearrareyl by adding a zero term
FL @7 and applying* D X Vtkekém, shown as

+ YRIlgF”eLi;2@5
a.E>a.

(3.15)

7

L + E“ Ri>J @D+
a.E>aoC *E

& g

T@®a
é,P)B@@
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where ” is theunit vector normal to integratiosubdomain pointing outsidand ¥Bs a
small surface surrounding the centre >gfwhich is a circle in 2D cases and a sphere
surface in 3D cases with a radius 6¥Vith the introductiorof ¥Bthe infinite value ofi

at NL ris avoided and therefor¢ is straightforward to apply the D X Viiepxem.By
taking Y\ r, one can easily prove that

+ "RTI Ly@%B réa
a.E>a.

+ " @LI1;@5 Flg

e

and

+  "RH>E@E ra
a,E>a.

And then the final pressure equation becomes
@ & (3.16)

The majordifferencebetweenEq. (3.16) andEq. (3.9) is thatEqg. (3.16) does not include
any derivative ofthe functionsto be solvedwhile Eq. (3.9) contains the second order
derivatives of unknown preare Approximation to the unknown functions in E3.16)
does not require them to haemy continuous derivatives, while approximation to the
unknown functions in Eq3.9) requires them to have finiter at leastntegrablesecond
order derivatives.Therefore, use of Eq(3.16) for further discretisation has a great
numerical advantage overing of Eqg. (3.9) directly. One ofthe differences between
MLPG_R method and MP®r ISPH lies in adopting different pressure governing
equations for further discretisatioMPS or ISPHmethod discreti® Eq.(3.9) directly, as
indicated above
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3.2.1 Pressure approximation by Moving Least Square (MLS)

method

The unknown trial function Lzin weak formulation of Eq. (3.16) needs to be

approximatedy a set of discretised variables and is generally written as

C
L& NI 6y:7;Lya (3.17)
Y@b
where 0 is the number of nodes affecting thalue at point Z, e.g. the number of
neighbouring nodes within the support domain with the radiudgas shown irFigure
3.2, and Lys the fictitious nodal \ariable on the neighbouringandomly distributed
particle 6yis the shape functiowhich can beormulatedin a variety ofinterpolation
ways in meshless methodsdiscussed irtluri and Shen(2002) As the Moving Least
Square (MLS) method is generally considered as one of the schemes to interpolate data
with a reasonable accuracy, this scheme is chosé¢heiMLPG_R method. Her¢he
function of pressurdy: Z; needs to be approximated with a numbfscatteregarticles

located at[Z; &L sd & &, resulting in an approximanit,d: 7; of Lg: Z;defined by
LW:7; L O :7;t:7;4 (3.18)

where, O':7; L X588 &, 1s a complete monomial basis of ordewhich can be

chosen as linear:
O:7;LsardJa / Lu (3.19
or quadratic:

O :7; L ssardsartar fa | L x (3.20)

which are functions of space coordinates and determined by minimizing a weighted

discrete. gnorm defined as
vz Li Sz kyot:z F G§g
Y@ (3.2
L> G:%, FY? &f & @7 F¥YA

53



where Sy: Z;is the weight function associated with the ndée the support domain of

the target particle wittSy: Z; P rand isdefinedby

A #yF 2+
AENENFM N L Qs

Sy B L 4o 5 4o 5 a (3.22)
N N H#Fz+
or NL— L Ps
o) 4g 4g

where Nis the distance from particléyto the target particleZ, 44is the size of the

support domainThe matrices, and f are defined as

0 :7s;
, L0 %0 4 (323
Nio.y .
O 12¢) e
Ss:z; U U
fLed& & & i (329
U & Sc¢iz;,,,
and
¥ oL QA 4y (3.25

where Q&L sd& & are fictitious nodal valuebut not the nodal valuesf the

unknown trial functionLGD: Z;in general. Thetationary ofvin Eq.(3.21) with respect to

t:7;leads to the following relation betwedn Z;and ¥as
T:2;%:Z2;, L n:z;¥ (3.26)
where the matxi of T : Z; andthe vector ofn: Z; are expressed as
i:2; L, ¢f, L AlgSyiz; OkzyoOf k0 (3.27)
n:z; L, ¢f

(3.28)

L 355:7;0:25,856:2,0:25,8 85¢:2,0:2¢; ?

By solving #:Z;with Eq. (3.26) and substituting it into Eq3.18), the weight function

Ov: Z;in Eq.(3.17) correspondingo particle Zyis given by
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Ov:Z; L1 08y :2;>7%:7;%$:72;2v4 (3.29

It can be seen that the MLS is well defined only when the matrik;is nonsingular

which means that the number of particles within the support domain should be equal or
larger than/ (i.e,0 R /) for each target particlZand also requireghat the rodesin

the support domain should not be arranged in a special pattermsuxia straight line in

2D problems

3.2.2 Numerical Technique for Domain Integration

The RHS of EQ.(3.16) is the domain integration usually numerigakstimated by
Gaussianquadratureln this way, more than 16 Gaussian points for 2D cases and 64
points for 3D cases may be required to achietisfaatory resultsaand the intermediate
velocity > ,gf’at each Gaussian poirst éstimated by the MLS methob avoid evaluating

the velocities at so many poinand to improve the efficiency, a serainalytical
integrationtechnique(Ma 2005b)is adoptedn which the integration domain is divided
into several swgomains and within each sdomain the variable is assuméeal vary
linearly and the integration is analytically performddhis method reduces the number of
pointsto 5 for a 2D circle with fouisubdomains and 7 for a 3D sphere with 8 sub
domains.Details of thetechniquewill be demonstrated here by a 2D case considering a
circular integration domain with the size dfand centred atT,dJ),;. As shown inFigure

3.3, theintermediate velocity within each sammain (e.g. €4-2) is assumed to be linear

and can be expressed as

4

Figure3.3: lllustration of division of an integration domain
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F:TAS L QUE %6 TF Ty, 842 E 2 1 UF Uy; 0448 (3:308)
RETAS L RYE 24 TF Ty, R44E %, UF U,; 044 (3.30b)

where : @&, are the intermediate velocity components at any paimés); within the
subdomain 01-2 and :Qlorﬂo; are those at the centre of point Ry %, %eand %;
are constants determined by the known velocities at point 1 aidkihg horizordl
velocity component as an exampke

26 TFTLE2GFU; L:QYFQY%4,a

26T FT E2 L FU; L:QUYF QY44

gives

o | SQUFQUIGFUIF:QUFQUIBF U (3.313)
e TFLGFU, FiFLUFyY;

o | SQUFQUTFTiFIQUF QYN F T (3.31b)
%1 A

TWFT, GFU.F LFT, GFy,; @

where % sand %; can be found in a similar way by considering the vertical velocity
component. Thus the velocities in this gldmaincanbe determined by E¢3.31a) and
those in other sudomainscan also be determined by working out four constants with
corresponding given velocities taree points. Consequently, the velocities in the whole
integrdaion domain are determined by five points (0, 1, 2, 3 an@®43ed on this, the RHS
of Eq.(3.16) can befirst rearranged by substituting the test funct@ma transferringt to

polar coordinate systeryielding6—5X§‘|46 ‘|4E° Q_z,g’: N&a; @ N @hare ng’is intermediate

velocity in radial direction of on@hase The integration can be written g summation

of four subdomains expressed as

. Co .
6 Eo R @5- Eo R
+ + QYN ON@AE + + QYNA, ON@aA (332
4 4 s O 4

where OgL vand & L &. The integration over each stdomain can be evaluated

analytically using Eq(3.30) with theintegrand formulateth polar coordiate systenas

F:N&; L QUE N ? K@AE % N O Bd.a (3.339)
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RENg; L RUE 24N 2 KBIAE 2%, N O Bdz (3.33b)
Theintegrand in the radial direction can be expressed as

QYN L QY2 K R Y0 E B o \? Kf@n4,
E%2,NOEJag4DaN?KOaA®EJa (3.34)
E ?éi |\D éa°4Aa

It is easy toshow thatthe integration onU? K CEé&UO E Becomes zero and can be

omitted. The integration of the rest term in E2j34) over each suldomain is given by

e B
+ = QYN& @@ a
16! 4
A L2 5.
L_V d’(?ééE?éiO.a(}5FaU, (3.35

EK%e F 2,00 Bds? K&s F O B Kig
E: % E %e:OB&;,5 FOEA;g

The whole circular domain integration is the summation of(&85) of four subdomains

in which way the velocities at only four points are needed rather than l1@spon
Gaussian quadratur@tegration. Although the results depend on the number of sub
domains, numerical tests show that four-domains aresatisfactoryfor 2D case{Ma
2005b)

3.2.3 Gradient estimation scheme

For inner wall particles, the rigid wall badary condition is satisfied by E{3.5) in

which the gradient of unknown presswaeed to be approximatedAs shown by Eq.
(3.10), the velocity updatg also involves gradient estimation of previously solved
pressure. Thus, an accurate and efficigradient estimation scheme is requiried
MLPG_R method. A simplified finite difference interpolation (SFDI) scheme was
proposedby Ma (2008)for either function interpolation or gradient estimation for both
known and unknown variablesThis interpolation and gradient estimation scheme
achieves exact accuracy for linear functions independent of particle distribution, which is
better than the s&eme used in MP8oshizuka & Oka 1996; Yoon et al. 200dhose

accuracy is highly dependent oegular particle distribution. Compared to first order
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MLS which has higher accuracy than those adopted in MBI hasthe same ordédn
accuracy.While without the matrix inverse in SFDI, the efficiency is significantly
improved which was demonstrated \mrious case studies in Ma (2008) this section,

details of the SFDI gradient estimation scheme will be presented.
An arbitrary functionB:™ ; is first expanded into a Taylor series npaint ~; giving
B, LB "G E:IB-,"F g EL:"~Fy%a (3.36)

where :1 B;- is the gradient ofB:~; at point ~ i Applying the above expression to a set of
particles Faround " gby ignoring the error term, muItipIyirrééi@:i:‘f‘“a Skfy F "oon
7o

both sides of E((3.36) and taking the sum of equations at all the relevant particlesyield

G - .
I &BKyoF BZ~U;Q—Y@Q) i f@ SkfyF "o
vas FyF gt
C .~ - 6
L o F o © SkeyF " (kB O (3.37)
ves TvF ot ©
¢ e
El 1 Kyeg F g 0—2—22 SkfyF ~iokB,Q 4
Y@ b@®- a fyF”~ ©

where 0 is the numbef neighbouringparticles in the support dhe concerned
particle E N4, and Ng,are the coordinate componentspzfrticle F Sk+'y F ™ jlois

the weight function of particléand kB, o. is the gradient component of particlgin
[¢]

the T, direction.

Alternatively, we have

k&, o E ASass. 5 =aap ko L %a I L sd& a@a (3.39
where

Q ~ i
%a L—— [ BKyOF B g—2——22 Skfy F " yiod

480 yap fyF gt
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By solving Eq(3.38), this gradient estimation scheme can be applied in either 2D or 3D
cases with@L t or @L urespectively. For 2D cases which are in the scope of this thesis

gradient components are solvedlaxpressed as

%s F =15 6%
k%QAL A% _ 4:5_6 %é
6 SF=15674s5

(3.3%)

%% F =14 %
kﬁQAL 9% 4% 5 %a
o SF =s567uss5

(3.39b)

Sofar, all the treatments are for inner and partigiagch follow the work in single phase
flow (Ma 2005b) To extend the method to model tphase flows, this thesis focuses on
developing new implementations iofterface conditions and other associated techniques
in the following sections to the end of @Qer 5. The validations are carried out in

Chapter 6 based on the method described in Chapter 3 to Chapter 5.

3.3 Interface conditionsfor fluids with small viscosity and

zero interface tension

The boundary conditions at the interfagfetwo incompressible fluid¢Brackbill et al.
1992; Sussman et al. 200/l be simgified based on the assumption of small viscosity
for either fluid and zero interface tensidithout considering theffects of the interface

tension, thaxormalpressurédoundary condition between two phases (labehédd Gis
lgF L Ligg Fipg 'HGD35'" 3ga,—HMG (3.40)
and inthetangentialdirection the condition is written as

o Lipsd (3.41)
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where L is the pressure in fluidifor UL HG 1 gandi 4 are viscous stress in fluit)

in the normal and tangential direction respectively. Considering the fact thdyrthmic
viscosity of fluid is very small (<1f) for many fluids, such as water and air, the viscous
stress differenceat the interfacéetween phases are neglected reagylin the automatic
satisfaction of Eq(3.41) and the simpfied Eq.(3.40) writtenas

L L Lo (342

Also due to the small viscous effecespeciallyfor inviscid fluids,the slip of tangential
velocity at the interfacas allowed and only the continuity at normal direction will be

considerednd is expressed as
Qu L Qad (343

Since the Lagrangian acceleration of the continuous phase can be expresséd as

@ wé Ei &> which should be continuous as well and the viscous term at the
interface is averaged asp@> zE i.@>; tas discussed in sectidi, the normal
velocity continuity can b&ansferredo be

solg, s oLy (3.44)

€&0J & 0J

As the pressure is continuous at the interface, the tangential derivative of the pressure at

the interface igontinuous as well and is expressed as

0 0
Olsy Oley (349
01 Oi
Combining Eq(3.42) and(3.44), the jump ot atthe interface is
L
l—p Fl—p
b R
le‘ FIbL EIOL FIOL (3.46)
cod "ok mesP T el |
oL s s _
L—I|— F— pa
Ol ér

The following derivation and discretizatiovill be based orEq. (3.42) and(3.46) asthe
interface conditioafor fluids with small viscosity and zero interface tensionthe ISPH

modelling for multiphase flowShao(2012)only appliedthe stresgontinuity withoutthe
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consideration othe velocity at the intéace Hu and Adam(2006,2007) developed an

ISPH formulation based on the condition of continuity pressure @rdé However,

based on thalerivations of Eg (3.42) to Eq. (3.46), jumps d O leéat the interface
cannot be ignored for flows with high density ratio or significant pressure variation in
tangential direction. Another difference in dealing with interface conditions is Hioat,

and Adam(2006,2007)used the concept of intparticleaveraged directional derivative

when theydiscreditedWKH VHFRQG RUGHU GHULYDWLYHYV LQYROYHC(
pressure. When doing so, they assumed that the middle point between each pair of
particles is on the interfacéAs the gradientand the second order derivativese
determined averagely their formulationby many pais of particlesthat influence the

point concerned, the interface in their formulation is actually a layer with a thickness in
the order ofthe radius of the support domain (usually more tiianble distance of two
particle3. This is the first attempt to extend the MLPG_R method tdirtpavith the
multiphase flowA new approach which is not only suitable for the MLPG_R method but
also allowsapplyingthe conditionsdescribed by Eq3.42) and(3.46) on a sharp interface

is proposedFor this purpose, theressurenearthe interfacedenoted by™,is firstly

expanded into a Taylor series separately in each phase:

S S

— kg™ F Lg:";ON— 1@lg- ®™F 7 ja (3.47)
er €r

S

EbkLpf;FLp r,oN - ®TFT A (348

Utilizing Eq. (3.42) and(3.46) and projecting Eq(3.47) andEq. (3.48) on normal and

tangential directionkead to

S ~ . - A
_éBkL“ ; FL: r,oNI 5) ‘N F Ny E 5P a (3.49)

Sk ; F L™ N| ‘N F S|OL ‘N FN;;
ép LD I”O R NJ’ 'B (\)‘Ip N Ni’

; s s (350)

where L:~ @— A and éﬁ A denote theontinuousjuantities on the interface.

Secondly dlscretlzmg Eq(3. 49) andEg. (3.50) in the support domain within each phase
yields

61



a

S . -
_é | @BkNYOF L:~4;A| gk~Y40

13
Y@b
) , (3.5))
N a N a
L . P s oL ]
L lEE{ | ‘N FNJ,'[3ky’40E—ér$|Fip~ | N FNi,lgky40a
r Y@b r Y@b
s a
— I @K 40F L:"4; Al pK 540
& o
. a N a
oL : P s oL . ) A ia
L IER | ‘N F NJ,lgk Y4OE—ég|Fip~ | ‘N F Nl’lbk 540 (3.52
r 4@ ra@
. a
E1n 12 ESpi N F Ny T oK sl
0]p~r ép éﬁp@BN NI’ pR a4
a

where the shape functioh:~;is obtained byhe moving least square (MLS) algorithm in
asupport domain containing both phasdand | arethe numbers oparticles within the

support domain in phasehnd phase@espectively

Thirdly, addng up Eq.(3.51) and(3.52) yields

a a
S . A S . -
— | LEkNYO| [3k~\’(4OE_, I I—bk~é ol bk~é40
ez €p
Y@b a@p
a a
s . . S . < o~ .
FL= L0 TpKwoE— L4 1 TpK g40M
e . €p x
Y@b a@o

J
oL i A , )
LFzs @ N INFNail (KgoET NF Nail k' 0O (353
. Rs M. s
< J |
s oL . o ) o
E—él'—OIG N :NFN;|H(90E| :NFN;IGKMOO
" R M. s
OL S S I
EFgG Fg F2Gl :NFN T yoa

The first two termson theRHS of Eq.(3.53) could becancelledout and becomeero

when sufficient particles are applieBven though the disretization of the last term is
taken only within one phase (on partial support domaiffgs:NF N ;T K 440als0

becomes zero when sufficient particles are used due to the symmetriciiy/Fofy ;to
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the centre particledowever, b consider general particle distributioRHS of Eq. (3.53)

will be retainedandis represented bys. Rearranging the E¢3.53) yields

8, A8 LK vol oK'y OE é; A2 K 50l pK 440F (3
27 F & Y@SLI% Zé K OF & ,a@isal-pA a0l pK aa (a L4 (350
& Alas | fKO0E &A3g | pK 440

wherethe pressure gradient will be estimated with the pressure of the last tim&ctep
(3.54) provides a simple and explicit pressure expressionthe interface which is
obtained by imposing the two conditions in E842) and Eq(3.46). If we would employ
the same formulation as Bhao(2012)ensuring onlypressure continuitat the interface
and obtaining the interface pressure by interpolating from the neighbouring pattieles
presureshould be satisfieds

A8 LK ol oK OE A2 K ol bk pp 0

2, ATER T Y@BLGWFOAG Al f@_’lzp NMOD ML ra (355
A2 __ | kKroEA2 I,k 0
Yap ' ™ F a@p ' PN M

where the subscrip& + 5 2r&presentshe decoupled ISPKShao 2012)

It can be seen th&g. (3.54) can be simplified t&q.(3.55) only if &, &\ s i.e. for the
cases of two phases with simitdensitiesand (3 L r (could be satisfied if thaumber

of particles is sufficient It maybe deduced thathe interface condition ofressure
continuity without Eq.(3.46) is suitable only for low density ratios and the extension to
high ratios needs an additional condition & &é The major difference between Eq.
(3.54) and the approach in Hand Adamg2006; 2007)iesthat (a) @ kéis jumped at the
interface rather than continuous based on the conditions of pressure continuity and normal
velocity continuity (b) Eq.(3.54) is appliedon the interface (curve in 2D) rather than in a
layer, so potentially the interface between two phase can be very sharp, and (c) no second

order derivatives are involved here.

It is noted that if the viscosity is not small and/or the surface tensiors rteete
considered, the conditions in E@.42) and (3.46) have to be modified. The approach
described here can be extended to deal fldtlys containing large viscous fluids with
significant interface tension bynodifying the interfaceconditions. This will be

considered irchapter7.
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3.4 Pressure fomulation of isolated particles

As indicated above, it is assumed that a small number of isolated particles have no
significant effects on the pressure of continuous phase, and so the pressure at the position
occupied by an isolated partictean be estimated by consideritigat the position is

occupied by a particle of treurroundingphase, i.e., it may be given by

Ales Lk 50l v OF (a2

— ra (3.56)

2Ky 0F
where "y Jdenotes the position of thisolated particleHs the other phasesurrounding
theisolated particleThere are many other ways to replace(Eg6), including the direct
application of Eq(3.16) by temporallyassigning the surrounding density te tisolated
particle which has also been triethd gave similar resulté\s Eq.(3.56) is eay to be
implemented anctonsistentwith Eq. (3.54), i.e., Eq.(3.54) becones Eq. (3.56) by
settingl L r, the Eq. (3.56) is kept for use. Due to its consistgneith Eq. (3.54), the
equation for the isolated particle is actually treated as a special case for the interface

particle but affecteéffectively by one phase.
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Chapter 4 Technique ofldentifying

| nterface Particles

In numerical simulatios of two-phase flovs, the description of interface evolution is
essential to couplehe two phases in solving equations describing the transport of
momentum mass and energyn multiphase MLPG_R method, to explicitly implement
the interface conditions as expressed by(B42) andEq. (3.46) or further development

by consideringnterface tension and significant viscous effects, interface particles have to
be first identified There are various methods for interface description which bea
broadly dividedinto two groups Oneis based on mesh methods usually representing the
interface by an indicator function resulting in the thickness either covering several grid
cells or sharpened to zerdhe other group is based on meshless methods, in which
particles are moved ia Lagrangianmannerand the surface or interface boundaides

representedirectly.

In mesh based methodke volume of fluid (VOF)methodcaptures the interface by the
indicabor function formulated with volume fraction of either phase in each mBsh.
represent a sharp interface within the mesh, VOFoften complemented by
reconstruction techniques such @iece wise constant approa@Hirt & Nichols 1981,
Yokoi 2007) Piecewise linear approa¢Aulisa et al. 2007; Rudman 199in) which the
interface in ameshis assumed to be a line in 2D or a plain in 3D, pieceyisaratic
(Diwakar et & 2009; Renardy & Renardy 20@R®)piecewisecubic spline(Ginzburg &
Wittum 2001; Lopez et al. 200&)p simplify the computational treatmerthe interface

reconstructions subtraced representing an erface covering several mesh@&udman
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1997; Ubbink & Issa 1999; Xiao et al. 200#nd later on theartificial compression
terms wereintroduced(Weller 2008; Hoang et al. 2013 sharpen the interface and
counteracthe numerical diffusionDifferent from artificial geometric representatian

VOF when reconstructing the interfacthe indicator in leveset method(Osher &
Sethian 1988)s a smoothed signed distarfaactionfrom the interface and zero levett

gives the location of the interface. To remedy its mass conservation problem,
reinitializations for the signedistancefunction (Sussman & Fatemi 1999; Min 201and

mass correctionfAusas et al. 2011; Zhang et a01D) were widely adoptednstead of
using Eulerian mesh, the arbitrary Lagrangianerian meshsystem wasadoptedin
which the unstructured meshes are moved to keep the grid nodes at the interface
(Muzaferija & Peri’c 1997; Tukovic & Jasak 2012)

As for meshless particle methods, interface can be inherently tracked by moving particles
which are initially allocated to one phase and maintained during the simubatithmut
connections between patrticles, the treatment of large deformation, fregime and
coalescence of the interface or surfaeeomesnuch easierFor methods that solve two
phases in one set of equations, in both $AH & Adams 2007; Chen et al. 20550

MPS (Shakibaeinia & Jin 2012a; Khayyer & Gotoh 20Ql18)terface conditions are
implicitly implemented and thube interfacaloes not neetb beexplicitly identified. But

for exgicit boundary conditionimplementation two situations can be observedne
situation is that the flow is not violent or large deformations do not occur, under which
particles on free surface in single phase flows or on the interface in multiphaseriows a
maintained during the simulatigiMa 2005b) The other situation comes with flows being
violent or with large deformations and therefore the inner and boundary particles are
changeabldLee et al. 2008; Ma & Zhou 2009; Shao 2Q1P)us, surface or interface
identification is not necessary for the former situatian for the léter it has significant

impact on boundary condition implementation aodsequety on final results.

In this chapter a new interface particle identification technique is proposed based on
absolute density gradient for violent flows eveithvisolatedparticlespenetrating into the

other phaseln section4.1 the «isting methods for surface and interface particle
identification will be briefly revewed.Then the formulations of the new identification
techniqueand parametertests are given in sectiom.2 In section4.3, comparisons
between the new technique and the existing anedirst carried out and then followed

by thevalidations of the new technique on different density ratimseasing randomness

of particle distribution,various sizes of the suppodomainin calculating the density

gradient and flow conditions.
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4.1 Existing methods foridentifying interface nodes
Many applications of meshless methqesg. incompressible SPH (ISPH), MPS, MLPG)

in dngle phase wavsimulationsrely stronglyon free surface particle identification based
on which the dynamisurfaceboundary condition can be implemented. A number of
approaches have been proposed and adoptearimusmeshless methodsuch aghese
usng theparticle number densitgnethod ébbreviatedo PND)in MPS (Koshizuka et al.
1998; Gotoh & Sakai 2006; Xu & Jin 201dhd fluid densityin ISPH(Shao 2009)Both
techniques ardeveloped mainly for single phaseblems,which leadto lower particle

number densityMPS) or lower censity(SPH on the free surfaceatisfying

JpOalta (4.1)
6,0 aé*a (4.2)

respectively,where JyL AySkfy F ~ois the particle number density for the target
article Bwith neighbouring onesF and J*denotes the inner particle number density
which is initially defined. Similato particle number densityé; L Ayl (Skfy F ~ois
the estimateddensity and @ denotes the density of the inner partickand aare
coefficients to evaluate thdecreasin Jgand éifor the surface particles. As pointedt

by (Koshizuka & Oka 1996)he value ofacould bein the range of 0.8 to (%and was
selected as 0.97 their case study of dam breaking and¥u & Jin 2014)for weir flows.
Jiand awere alsochosenas 0.95 fo breaking waves on slep (Koshizuka et al. 1998)
and 0.99 for wateentry of a fredall object(Shao 2002)However, thissimpleapproach
has been found often to identiigcorrectly the interface particlesespecially wherthe

particles are unevenly distributed.

As a supplementario PND, a mixed particle number density and auxiliary function
method(MPAM) was proposedMa & Zhou 2009)by additionally counting the existing
surface particles and the occupied quarters and crossed rectangles in the support domain
(Eqg. (22)(24) and Fig.3 inMa & Zhou 2009). Following Shao(2009)andMa & Zhou

(2009) the method was further developed by Zheng et al. (2014) by defining two quarter
dividing systems and counting the occupmees (Eq. (28f30) and Fig.4 if(Zhenget al.

2014) in which the value ofawas chosen as 0.8s confirmedby manycalculations in

the cited paperghe accuracyf identifying interface particles significantly improved

with the auxiliary functionsHoweverapart fromthe complexity in sortingneighbouring

particles into quarters and other specific regiadhe dependence on the identification of
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the previous time stepould lead to error accumulation once misidentification océnrs

previous steps

Lee et al.(2008 andRafiee et al(2012)employed a tracking method @stimatingthe
divergence of position vector , with the expression of

PO ;gNT  ¢8KyF ~(p® KfyF "o (4.3)
Y

where ¢ 8;is thevolume of particle associated with particl&nd Sis a weight function.

The value of thenumericaldivergencefrom Eq.(4.3) is closeto 2 for inner particles in

two dimensional simulations and decreases on the free surface particles for the reason that
the number bneighbouring particles is smaller and the support of the kernel is truncated.
Thus thecriterionidentifying the free surface particlésset as

P® ;30 saa (4.9)

It was indicated that not all the surface particles were identffiee et al. 2008and
some inner particles amver identified (Lind et al. 2012)although the misjudgements
appeared to be insignificamt the cases they have considered by using the method
Becausdhe theoetical value othe position vectodivergence should befar both inner

and surface particlets numerical valushould be close to 2 even near or on the interface
if more accurate and consistent approximation, sucdFad gradient schem@la 2008)

is employed to estimate thdivergence From this point of view, the method is

guestionabldor its general use and so will not be considered furthdisrpaper.

Above surface particle identification meth®dan beappliedin a straightforwardway to
interface identification intwo-phase flowsif the density difference betweenthe two
phases are large (Shao et al 2012bymneglecting the additional pee and picking out
the gurfacefof the otherphase.To improve the accuracy and reduce the complexity of
the interface identificatiortechnique,a new approactbased on theabsolutedensity
gradientis proposedin this paper This method is based on tHact that the density
gradient isinfinite on the interface but zero away fromfdr incompressible fluidsin
two-phase flows, it often happens that one phase penetrates into the other especially in
violent flow situations.In that case, the penetratedris are usually represented by an
isolated particle for which special treatmehecessaryGotoh & Sakai 2006)Gotoh &
Sakai (2006) also provided an identification method using a combination of particle

number density and the number of neighbouring particles of the other phase.
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comparisonte newly proposed technique is abledentify such isolated particlda a

moreconsistent way.

4.2 Absolute density gradients(ADG) based technique

For immiscible twephase flowswith a sharp density jump ahe interfacethe density
gradientsareO for inner particles anbdecometheoreticallyinfinite at theinterfaceif both
phass are incompressibld-or weak compressible phases, demsitygradientsareclose
to O for inner particles andre alsatheoretically infiniteat theinterface To utilize this
fact for interface identificationthe absolutevalue of density gradientis numerically
computed as below

UL +4+E #; # (4.5)
where
t . Ny F N+ . .
Wy tL——-—— 1 #yF é+——— SKF "0ad @L TA
« S oF o , eyF ey NG FF pa @ (4.6)

and the weight functionSK'y F "pis selected as
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where "y and ~gare the position vectors of neighbour and target partitdgsnd N; are
the component of ¢jn the F and U direction, 4g4is the radius of the support domain

proportional to¢ Hvith ¢ Hbeing the initial average particle distance agid is defined as

CNSL T =Tkr & o HFy F 7o

The numericalvalue of Uis very close0 for inner particles and it rapidly increaseisen
approaching to the interface or isolated peeticAlthough the gradient is theoretically
infinite at the interfaceor isolated particlesit is just a large value in numerical

computation.

To obtain a nomlimensional scale of thabsolute density gradient),is introduced with

the expregsn of
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UL é&Fé& ¢H (4.8)

where é;and é;are densities of two phasebhe interface and isolated particles will be
identified bythe ratio of U U, rather thanU To shed some light on the order of the ratio,
we may consider the special casesiformly distributed particlesvith some of them
being onhorizontal (or vertical) interfacegiagonalinterface or isolated. If only the

nearest four neighbouese considered.€., the supportdomainis in the range of 1.@W

and¥1 ¢ M the value ofU U, should be 0.5 fohorizontal or vertical interfaces, 1.0 for
diagonal interfaces and 2.0 for isolated particles by usind4%).and (4.6). It is noted

here that for anfixed distribution of particles with the wgit function given by Eq4.7)

and afixed support domain size, the value &f U,remains independent on the value of
¢Hit is also noted that thealue of U Uwill not be affected by the density ratio of the
two phases. In other words, the value Gf U,is independent fothe total number of
particles for a given domain and density rai@vertteless, in generalituations with the
particular weight function used and the chosen radius of the support dtmeayajue of

U Uwill varyin a range with the change of partidistribuion. Therefore most suitable
values need to b#etermined by considering a range of flow conditions of the two phases.

The following two conditiongl) and (ll) are then checked:

() UoUay, Oy (4.99)
(I Usy, R U (4.9b)

If Condition () is satisfied, theparticles are identified to be interface particldfs

Condition (Il) is met,the particles are identified asolated particleslf none of the

conditions is satisfied, they are classified as inner partidi@s. general caseparticles

move and becomérregularly distributed. The valus of Uand Uwill be discussed below
using numericaltests This approachbased orEgs.(4.5) to (4.9a) is shortened as ADG
(absolute density gradient)ethod hereafter for convenience.

To determine the value ofland U a number oftess are carried out for aspecified
paticle configurationas shown inFigure 4.1. In this figure, two typical regions are
enlargedParticles are clustered in region 1 amedhtively coarsem region 2.As shown
in Figure 4.1(a), an underspecifiedvalue of ((e.g. 0.1),leads tomisidentifying inner
particlesclose to the interface itne clustered regioiisome inner particles are identified
as interface articles, i.e., oveidentified). Howevet an overspecifiedvalue of Ue.g.
0.5), show in Figure4.1(b), leads tomissng the particles on the interface the region

where the distribution of particles is relatively coar§es., undetidentified). Based on
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this, we can deduce that therdght be a range of values fdswhich may lead to
correctly identifying the interface particles.We have tested the vallégnathe range of
0.2 to 0.4for the same configuration and found that thierface particles are correctly

picked outand insensitive to thepecific value inthe rangeThe results ofUL r 4 and

UL r&areillustrated ifFigure4.2| Hereafter the value ofUs selectedo be 0.3 unless

mentioned otherwise

(@)

(b)

Figure 4.1: Examples of interface identifications when applying improper valu® (a) shows
inner particles close to the interf:ace are adentifiedwith UL r &and (b)shows some interface
particles are undedentified with UL r & (densityratio: 1:1000)

Another particleconfigurationassociated witlthe violent sloshingf two phasess used

to illustrate theeffects ofvalue for Uin Condition (I).[Figure4.3{a) and (bjshowthatthe

isolated particlepenetrating into the other phase @tentified by usinghe value ofUto
be 1.4 and 1.6respectively. It can be seen that the isolated patifldboth phasesre
correctly identified by usingither value This demonstrates that the results are not
sensitive to the value ofwhen it iswithin therange of 1.4 to 1.6Thus 1.5 will be

usedfor isolated particle identification

According to above numerical tests, the va# Uand Uare selectedo be 0.3 and 1.5
for the conditions ofIj and (I) to identify the interface particles and isolated particles

respectively.
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(@)

(b)

Figure4.2: Examples of interface identifications when applyprgpervaluesof U (a) shows the
interface identified byUL rd and (b) is obtainedy UL r& (density ratio: 1:1000)

(@)

(b)

Figure4.3: Isolated particles marked by squafer heaver fluid particles and diamorsdor lighter
fluid particles @ensity ratio: 1:1000%re identified withUbeing 1.4 (a) and 1.6 (b). The heavier
phase is marked in black and the lighter is in light ghethe enlarged figuresn the right support
domains for each isolated particles are marked with a circle.
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4.3 Validations of the ADG method

4.3.1 Identification with different random distributions of

particles
The newly proposeihterface identification technigueill be further validated on random
distributed particlesComparison will be made with the results of other two methods.
is the PND method used by ISPH simulation and the other is the MPAM suggested by

& Zhou (2009)as mentioned irsection4.2 Thetests are first carried out on the specified

configuration showtin|Figure4.4{in which the unit patch is divided into two portions by

a sinusoidal curve ofUL r &0 Etle T, E r & Particles are randomly distributed by using
W KnhHltognseff] | XQFWLRQ DY DL O Beio@ tte kiusOidaicupsthe particles
represent the fluid phasgldlue dots) and the rest is filled Byid phase 2 (red dots).

Figure 4.4. Sketch of interface testing case. 2000 random distributed particles in a unit patch

divided into two prtions by UL r&0O Etlé T, E r &shown by dashed lineBlue and red dots
represent the fluid phaseahd fluid phase Zespectively.

For the methos of the PND andMPAM, interface particles are identified as surface
particles of the phase 1 lignoring the presase of the phase 2s they are developed for

the single phase problenAs shown inFigure 4.5 greendots are interface particles
identified by the PND methodwith aL r&wand aL r§yin|Figure 4.5(a) and (b)

which are in the range dproposed byKoshizuka & Oka 1996)One can observhat
the interface particles are highly oveentified asmanyinner particles are marked as
interface ones although it is moderately relieved lyessing the coefficienSuch over

identification was also observed ¥heng et al. 2014i) their dam breaking simulation.
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There are also several particles located on the interface but not identifisihgyeither
value of a Other avalues are also tested and thsults are shown |iF1igure4.6 Onecan
find that cecreasing the value hel@dleviate overidentification of inner particles but

more interface particles am@so missed.The reasondor such problems are that the
accuracy of the PNDmethod strongly depends on themandomnessof the particle
distribution whichwas pointedout by (Ma & Zhou 2009) For inner particles, coarse
distribution leads to low particle number density even with complete support domain and
so overidentification hapens.On the contraryparticle clustering on the interface leads

to high particle number density even though the support domain of its own phase is

incomplete. For theesults obtained using the MPAMshown in|Figure 4.5(c), the

accuracy is significantly improve@®ut over identification still happens on inner particles
close to the interface. Sindais identificationtechniques based on the interface particles

idertified at the previous time stegrror accumulabn may occurafter long time

simulation|Figure4.5{(d) shows the results obtained by the methoggsed in this pape

It can be seen that almost all the interface particles are correctly idehtifeadployinga
pretested coefficient of UL r &and a clear sharp interface is obtairédinner particles
are wronglyidentified by the method. As indicatedove, the new technique does not

depend on the density ratio. To confirm thise tests are also carried out on different

density ratios of 0.1 and 0.04 addition to the ratio of 0.9 JRigure4.5(d) by using the

ADG methodand the resultfor thedensity ratios of 0.1 and 0.01 are showigure4.7

This figure angiFigure 4.5(d) show thathe accurate identificatiois achieved in all the

cases, demonstrating that the ADG method resultmdependenof the density ratios.

In modellirg violent multiphase flowthe particle distribution can become very random
even they are uniformly distributed initially. It is important that the behaviours of

interface identification methods should é&@eamined for different levels of randomness of

particle distributionsFor this purpose, we use a configuration similar to th&ignre4.4

with particle number of 2500owever theparticles aralistributed ina way that they are

first uniformly located and then deviated by~ L GHds, Frawocs E @, F

raA«; G Hi.e., the position of particle is given ByL "4 E ¢”whereeach of 44 and
44, is a group of random numberangirg from 0 to 1.(yenerated separately ihand U

direction respectively Gis the randomness angHs the particle distance in uniform
distribution <sand «; are the unit vector inF and Udirection, respectively;deads to

zero deviation and uniform distribution.
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(@) (b)

(©) (d)

Figure 4.5: Interface particlesgfeennodes) identification by PND witla L r & wa), PND with
a L rdyb), PND with auxiliary functions (c) andDG (d).Blue and red dots represent the fluid
phase 1 and fluid phase 2 respectively. (densityxatf).

@) (b) (©)

Figure 4.6: Interface particlesgreennodes) identification by PND witla L r&(a), a L r &b)
and a L r &(c). Blue and red dots represent the fluid phase 1 and fluid phase 2, respectively
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(@) (b)

Figure 4.7: Interface particleggreennodes) identification byADG technique on density ratios of
0.1 with the densities of blue and red dots of 10 and 1 respectively in (a) and 0.01 with the
densities of blue and red dots of 100 and 1 respectively in (b).

As Gncreases, the distributidmecomes more disorderlif. the value ofGs equalto or
large than 1, there would be possibility that the position of a particle can be shifted by
more than¢ HThe three methods (PNIMPAM and ADG) are employed to identify the

interface particles fothe cases with different level of randomne$he numbers of

particles inaccurately identified for three techniques are listddale 4.1 with G

increasing from O to 1.2. The reference number is the number of particles at or near the
specified interface curve within the distancerdf Hor differentrandomness of5 One

can see that the number of misidentified partibpthe PND method is small only when

the value ofGs small but with the increase of th@value (level of randomnesshe
number of misidentified particles large, even much larger than the real number of
interface particles. In contrashe number ofmisidentified particles for each value @by

the MPAM s significantly reducedut is still considerabléComparativelythe number of
misidentification by the ADG method is very smaédnd doesnot increase with the
increase ofrandomnessTo have aclearer look at their performanceghe ratio of

inaccurate identification defineals the number of misidentified particles divided by the

reference number iglemonstratedin |Figure 4.8| It shows that, by increasing the

randomness, more than 7 times of the specified interface particles are misidentified by
PND when Geaches 1.2 while this ratio decreases to @8the MPAM. The maximum

ratio isonly 0.125 arising atGL séd@and shows less dependency on the valu€xnf the

ADG. With the same configuration, the particle numbers of 900, 1600, 2500, 3600, 4900
and 6400 are also tested usiti;g ADG method with therandomnessGL r &. The

results shown ifFigure 4.9|illustrate similar performance with the ratio of inaccurate

identification ranging from 3.6% to 6.8% as the particle number varies, indicating that the
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ADG technigue is insensitive to the particle numb&nother important thing worth
noting is thata smal number of the misidentified particles by the ADG are all near the
interface while a large number of inner particles far away from the interface are

misidentified by the PND as shovim|{Figure 4.10{a) and (b) The misidentification of

particles near the interface will not significantiffect the computation results as the
values of physical variables near the interface are very close to those on the interface.
However, the misidentification of particles far away from the interface will significantly
alter the results of physical variables. More discussions about this point may be found in
Ma and Zhou (2009).

Table4.1: The rumber of misidentified particlefor differentparticle distribution randomnesy
usingPND, MPAM andADG methods

Randomness Reference Number of misidentified particles
G No. PND MPAM ADG
0 37 0 2 0
0.2 42 54 16 0
0.4 40 173 17 0
0.6 37 222 22 1
0.8 36 232 30 3
1.0 32 222 30 2
1.2 33 232 32 1

77



Figure 4.8: The ratios of inaccurate identification (number of misidentified particles/the reference
number)of increasing randomness by using three identification techniques

Figure4.9: Theratios of inaccurate identification (number of misidentified particles/the reference
number)of increasing particle number using the method of ADG with randomness of 0.6.
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() (b)

Figure4.10: Interface particlesgreennodes) identification byADG (a) andPND (b) with particle
number of 2500 and randomness®t. r & Blue and red dots represent the fluid phase 1 and fluid
phase 2 respectively

Tests are also oded out for various suppodomain sizes 440f the weight function
within the range oba&¢Ho vi ¢ Hvhich is widely adopted for function interpolation,
gradient and_aplacian approximatiorn@taie-Ashtiani & Farhadi 2006; Gotoh & Fredsge
2000; Xu & Jin 2014; Zheng et al. 201#pllowing the abve setup forGL r &and 1.0,
the numbers ofisidentifiedparticlesby the ADGare listed ifiTable4.2| It shows thaa

small support domain (e.gdgy ¢HL s&&s& ) leads to moderateincrement of
misidentification due to insufficient neighbouringarticles to accurately estimate the
density gradient. By increasindg ¢H>2.1), the results become insensitive to the
variation of the size and even bett€onsidering the computational timdg ¢HL t &as
selected inthe above tests is reasonableut one can choose to use a larger support
domain for identifying thenterface particles

Table4.2: Numbers of misidentified particldsy the ADG methodwvith different supportdomain
size for twovaluesof GL r& and 1.0

4y ¢H| 1.4 1.6 1.8 2.1 2.5 3.0 3.5 4.0
GL r& 7 6 2 1 0 0 0 0
GL sa 8 6 3 2 1 1 0 0

4.3.2 ldentifications for the dam breaking flow

To further validate the newly proposed identification technique ddferent flow

conditions,more complex interface profiles atested.To focus on the testing of the
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identification techniquerather than complete simulatioimterfacesnapshotsre picked

from a dam breaking simulatiom Zheng et al.(2014) based onwhich particles are
UDQGRPO\ GLVWUL Batanst® EXQEWLIQRIQWIKHDLODEOH LQ 03$7/9%¢
densities are assigned based on the interface profiles provided by the simulation in in
Zheng et al(2014) The heavier fluid(phase iwater) isindicatedby blue dots andhe

lighter fluid (phase 2zair) isindicated by red dotBased on such density distribution,

interfaces are ralentified by the new techniquend theirprofiles are shownin|Figure

4.11}including the changing and irregular shape of thedeased watewith a smooth

interface in (a)a backward jet in (b), the jet merging into the bottom water in (c) and a
second jet in (d)A trapped air bubble alsappearsn (c) and (d).The density rati@f the

two phase this test is @OL As we can observe frgffigure4.11jinterfaceand isolated

particles (black dots) are accurately identifiedall the configurationsndicatingthat the
ADG method works well for more complex cases.

(@) (b)

(€) (d)

Figure 4.11: Black dots and filled diamonds are interface and isolated particles identified by the
ADG technique in four dam breaking snapshdtse heavier fluid with the density of 1.0 of phase

1 is represented by blue dots and the lighter fluid with density of 0.001 of phase 2 is represented by
red dots.
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A new interfaceparticleidentification methodfor two-phase flowsdased on the absolute
density gradienfADG) is presented in this chaptdihe behaviour of the method is tested

for different configurations including these with different level of randomness. It is
shown that the accuracy of the mathe independent of the density ratio of two phases

and also of the average distance between patrticles. In all the cases tested, the method can
correctly pick up almost all the interface and isolated particles as long as the support
domain is larger thatwice the averagedistance betweeparticles. The small number of

the misidentificatiorhappens only near the interface, which does not significantly affect

the values of physical variables as they are indeed very close to those on the interface.

After identification, the pressure formulations of £8.54) andEq/|(3.56) will be applied

on the interface and isolated particles respectiviedy.inner particles, E¢(3.5) is for

fixed wall particles and E[§3.16) is for fluid ones.
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Chapter 5 Algorithms for Solving

PressureEquation

With precise interface and isolated particles identification, the pressure equations derived
from interface conditions can be allocat®edthe correct particlesNith the addition of
pressure equations for inner fluid particles having the same formulatsoimsthe single
phase flow, the pressure equation for the whole computationainis completed and is
ready to be solved by a proper algorithth.is noted that, for inner particles, the
commonly used rigid wall boundary is considered and other baesda@:.g.symmetric

inlet, outlet etc) will be mentioned if involved. The summary of the final pressure

equations is presentedTable5.1
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Table5.1: Summary of pressure equations on different types of particles

Particle type Pressure equation
. " RLDT Le s D@1
Inner fluids Ft —— @%-GL % X Eq(3.16
o e @ e ., @P @ aj
Inner rigid ) )
" @l &K ® F” ®CE iy &> 0 Eql(35
walls
274,
ép A s Lk vl oK 'v4 OE €A% g5 LoK 50l pK 54 0F (3
Interface | F— Y@SL‘% v ewTm ,a(aiB\LpA a“b”ad (& Eq[(3.54
& Algs | tK0E é3ASgs | K 540
Lr
Isolated A8 = Lk vol gK'\4 OF (3
_ 2K f — & Lfé bl @ Eq[(356
particles Alas | K0

5.1 Integrated-1 and coupled2 method

By adopting MLS method to approximate the pressure or the pressure gradient of inner
particles the finallinear pressure equatiocanbe written asw ® L r by combining the
discretsed version of Eq(3.16) and Eq}(3.5) (Ma and Zhou, 2009) witkq.(3.54) and
Eq{(3.56). Specifically, it is given as

we wy, U r
Ny Wyy wWyi @] yal Jrya (5.2
U w, w. | - r

where HM Gand +denotes the termassociated withinterfaceor isolatedparticles. It is

noted that the elements on thap-right and the loweleft corners are zero. That is

because E¢(3.16) cannot be appliedcrossthe interfaceln Eq[(5.1) - 4 s an identity

matrix. - g and - , gepresenterms for inneparticles withineachphaseAccording to Eqg.

(3.16) and(3.5) andfollowing Ma and Zhou (2009}her elements can be expresdsd
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s + Tkiyo® @T@BI kzye , Forinner particles
BEY’L—éBA Lo a
" @Tkzge For solid particles

S %> BO@T@ X, For inner particles
a

(BL_@P

" @& JF «® For solid particles

where HP 35 &8¢, Eloes not denote the interface particles but a particle concantkH
denotes the neighbouring particles of partieldhe elements ofv. are alsagiven by the

above equatia) which reflecs the influence of the interface particles (including the

isolated particles) on inner particles thgbueq}(3.16).

It is noted that the matrixwj geflects the influence of inner particles on interface (and

isolated) particles througgqg.|(3.54) or Eq.|(3.56). Due to this,generally wa gV wg.A

Their elements zg ¢ould be expresseab

- &1 K g @F (n 5
A A T =~ Ry T i~
€ A%gs | K 0 QE € Al | K @
Similarly,

0 b Ky @F
cwL F &l pK y @F (n 4

Al TpK G QE & A Tk uo
wherel L ror J L rforisolated particles, and

raL Ua

In order to solveEq/(5.1), two possible approaches would be considered. One approach

is that thepressures found by solving Eq(5.1) as one set of equationss adopted by
(Hu & Adams 2009; Kayyer & Gotoh 2013)7 KLY LV QDPHG -DApproa@WHJIUD W I
, $3+ 1 L @edsidricgnvenience. A dternativeapproach is thaq|(5.1) is firstly

splitinto two sets of equationas

w®& Lr Fw,®, & (5.2a)

we ®& Lr. Fw,®,Ja (5.2
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where the superscriptindicates the current time ste;ﬂAUare pressure values at interface
or isolated particlesZAOare estimated bkq| (3.551} or Eq|(3.56) in which the pressure of

the surrounding particles are currently availallithin each time step, iteratismay be

performed, starting witt2 L 2275, where the pressunalue 2:275is obtainedat the

previous time step at interface or isolated particles. After each iteréﬁﬁmll be re

evaluated using the updated pressure. This approaGhOPHG DV -p &p&b H G
& $3+ ¢

This Coupled2 Approach is similar t@ forrmulationin which EqJ(3.16) is appliedto two

phass separately, withthe effect of interface and isolated particledken into account.
This is also similar to the decoupled ISPH of SHz@1p in which the matrices- z; agnd

- ppare decoupled and do not directly include the contribution fiteenother phase.
However, theCoupled2 Approach (C2APH)here is significantly different from the
decoupled ISPH of Shao (2012) in the following aspects. (1) In theioagnrthere is no
explicit requiremenon velocity condition at the interfac€2) In their approach, the effect
of one phase on another phasealen into account bysingthe pressur@ the previous
time step without iteration. Thus the pressure ctiossnterface irthe current time step
is notactuallyensured to be continuou8) Their discresation of Poisson's equaticior
pressure is different from what is employed hasehey adopted the standard ISPH
formulation of approximating the secondder derivative directly.It is noted that the
results belowwill demonstrate that without the velocity condition at the interfabe
method can only work for very low density ratend faik to simulatehigh density ratis.

5.2 Comparison of two methods

In this section, comparison will be made in the aspetheéccuracy and CPU timef

Integratedl and Couple€ ApproachesForthe Couplee? Approachsince the pressure

of interfaceparticles as expressed by H(p.2d)| is determineddy the results of the last

time stepthe effects ofterationsfor Eq/(5.2a)|within eachtime stepwill be first tested

for different time step sizehen the performance of two algorithms on different density
ratios wil be examined by comparing the numerical results with theoretical and
experimental oned.he cases considered for this purpasza gravity current flow which

is formed bythe heavier fluid released into the lighter fluid due to the graWtr
numericawork, the flow is simulated in D tank containing two fluidsvith the heavier

fluid of density of &on the left and lighter onef density & on the rightThe fluids are

separated by a partition which will be instantaneously remtavezlease the heaviéluid
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into the lighteriFigure5.1|illustrates a schematic setup of the numerical tankimitiell

phaseconfigurations.This problen was broadly addressed by dih experimentaknd
theoretical studies and they will be used for pressure solving nsethtidationin this

section

Figure5.1: lllustration of initial computational setup

Three results of laboratory experiments with different density rétoys Rottmanand
Simpson (1983) Lowe et al.(2005) and Grobelbauer et al(1993) will be used.In
Rottmanand Simpson(1983) the apparatus was a channel with rectangular cross section,
384cm long, 50cm deep and 20.5cm witlee heavier phase of salt water dhd lighter
phase offreshwaterweredivided by a gate placed at a distariérom one of the end

walls. When both sections were filled bgqual height oftwo fluids, four tests were

conducted withdensity ratios and dimensions liste(Tiable5.2

Tableb5.2: Setups of gravity current flow experimentsRottmanandSimpson(1983)

Density ratio D, 2?1 T 1?1
Test 1 1.0 10 40
Test 2 1.01 10 60
Test 3 1.02 10 50
Test 4 1.04 20 40

It was observed from the experiment that the heavier fluid was displaced forming a
gravity current andvas propagating towards the end wall. Meanwhile, the lighter fluid
was moving oppositely forming a backflow current and a hydraulic drop was generated
when it met the wall. The backflotithen propagated away from the wall and eventually

over took the frant of the heavier fluid current. The front posit®of the heavier phase
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were recorded at several time instants for each test using the dimensionlesofength
T T,and thedimensionlesgime of PRwhereR L T, ¥OD,and 'L C:és F é;

€. With such nondimentionlization, the propagating of the front was found to be

independent of the variables listedTiable5.2| Thus, the front positions with respect to

the time for allthe four test@re scatteplotted and data an early time (before the bore
overtook the front) can be fitted by a straight line resulting a constant front propagating
speedThe same nodimensoraization will be followedin thenumerical snulation and

the fitted linefrom the experimentwill be adopted for validations.

The theory for gravity currents used for validation in this section is #afer ard
Chyou (1991) in which the full range of density ratio is covered. Based on the
observations of theiexperiments, two possible flow configurations were suggested
depending on the density ratio. How density ratios close tounity, the oppositely
propagating energgonserving currents are connected by a long wave of expansion and a
hydraulic jump while for high density ratios, the light current is enecgnserving but

the heavy curm is supposed to have a dissipative front and the connectiordretwo
currents is a simple long wave expansion without the hydraulic jump. Although the full
range of the density ratio is covered by this theory, the front velocity of the heavy current
with density ratio 0fL.01, 1.43 and 3.0 accompanying the experimental data will be used

to validate two algorithms proposed to solve the discretised pressure equation.

For the simulations by multiphase MLPG_Re tdimensions of the casaresetas D, L

sde, T, Oy L sde and . D, L zwhich is sufficient to generate a fully developed
heavy current withouthe effectof the end wall The density ratioUL é; égis 1.01for
testing the iterationeffects for the coupled2 method The numbers ofparticles used
along the depthral length are 40 and 320 respectively, whereas the initial distance
between patrticles is 0.025mithin each time steghe iteration error is calculateldy

A, &% 230

"NL T " where Hs the number of iterationand the criteriorfor stopping tle

iteration is set tobe 'N O sr’8. Time histores of the heavier fluid front position

obtained with and without the iteratiameillustrated anccomparedwith thelinear fitted

experiment results (Rottman and Simpson, 198Bjidgare5.2| (a) to (d) which illustrate

the front propagating with decreasing time steps of 0.011s, 0.0096s, 0.008s and 0.0064s
respectivelylt can be observedhatthe results obtained by using therative approach
with all the time stepsgreevery well with the experiments. However, without the

iteration, the results can be signéit different from that of the experimerEEigureS.Za).

But the differencegyoes downwith decreasing time ste@mdcan be eliminated when the
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time step is sufficiently sma|F{gure 5.2d). Therefore, for this gravity current flow, the

time step of 0.0064s will be adopted to ensure the accurathe abupled2 equations

solving algorithm.

() (b)

(© (d)

Figure 5.2: Comparison of thdront time histores of heavier fluidobtained byusing Coupled2
Approach with or without iteratioat time steps of 0.011s, 0.0096s, 0.008s and 0.0¢G4&s

initial front positionand B L §, ¥COD, C'L C:& F &; &)

More featurs of the Coupled2 Approach will be demonstrated next by comparing its

results with tlese of Intgrated1l Approach. For this purpose, the same caskuatrated

by|Figure 5.1|will be simulatedbut with different density ratios of 1.01, 1.43 and 3.0

using a fixed time step of 0.0064shich was tested to be sufficigntsmall to obtain

satisfactory results without iteratiafifable 5.3| presents the dimensionless mean front

velocity defined bij L Q ¥CD,and the CPU tim¢on Dell OPTIPLEX 790 required
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by the two approaches.sfor the case with lower density ratie of AL s sand 1.8,
the mean front velocities obtained the two approachearevery closeto each otheand
both agree reasonablywell with the experiments (Rottman and Simpson, 1988).
theoretical result (Keller and Chyou, 1991) is aygeen in the table. lis found that the
numerical resu#t lie betweenthe experimental and theoretical valuédthough both
approachegive similar resultdor the caseghe upled2 Approach costs less CPU time
in both cases with the trend that more CPU time may be sawduef higher density ratio.
As the density ratio increesto 3.0,the Integated-1 Approach fails to giveonvergent
resultswhereas th&€oupled2 Approachkeeps working well anglields the fronwvelocity
consistent with the experiment (Grobelbauer let 2093) and the theoryThes tests
clearly show that Integtedl Approach can only work for the cases with very low
density ratio (close to 1) anfhils to deal with high density ratio. The Coupled
Approach works well for both low and high densityiga. When both approaches work,

the Couplee? Approach is computationally more efficient.

So far, the multiphase MLPG_R method is fully developed including the pressure
IRUPXODWLRQV IRU LQQHU LQWHUIDFH DQG LVRODWHG
equation based on a local weak form using the test function of the Rankine source
solution, explicitly implementing the continuous pressure and pressure gradient over
density and being interpolated by surrounding particles respectively. To solve the
discretised pressure equation, decougteabproach is selected as it was justified to cover

a wider range of density ratios and be more efficient tharthe integratedl approach.

With the obtained pressure, the velocity and position of each patrticle isqaebtg
updated. For flowsvherethere exist large interface deformations wrave breaking, an
interface and isolated particle identification technique based on absolute density gradient
can be adopted. A flow chart for the whole procedure of multiphdd@GMR method is

shown inFigure5.3| It should be noted that, since the interface condition considered so

far is the continuous pressua@d velocity normal to the interfacahe applications are
restricted to small viscous effects and zero interface tension. In the following chapter,
validations of the proposed method will be provided on cases within this scope.
Extensions to cover the flowsith significant viscous effect and interface tension will be
IChapter ranc 7.4

discussed
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Table5.3: Comparison of mean velocity of the front and CPU time by applying different methods
with density ratioof UL s& s 1.43 and 3.0. (N/A: Not available; N/W: Not working)

Density Method . CPU time
. ethoas L Q¥C
ratio U eLQ D (on Dell OPTIPLEX 790)
Integated1
0.467 2.02hrs
Approach
Coupled2 Approach 0.465 1.42hrs
1.01 Experiments
(Rottman and 0.440 N/A
Simpson, 1983)
Theory(Keller and
0.493 N/A
Chyou, 1991)
Integated-1
0.552 1.58hrs
Approach
Coupled2 Approach 0.549 0.57hrs
1.43 Experiments (Lowe
0.480 N/A
et al., 2005)
Theory(Keller and
0.597 N/A
Chyou, 1991)
Integated-1
N/W N/W
Approach
Coupled2 Approach 0.795 1.32hrs
300 Experiments
(Grobelbaueet al., 0.659 N/A
1993)
Theory(Keller and
0.872 N/A
Chyou, 1991)
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Figure5.3 OFlow chart of themultiphase MLPG_R methqarocedures
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Chapter 6 Results andValidations of
Flows with Small Viscosity andZero

| nterface Tension

In this sectionseveral caseicluding both norbreaking and breakinfjow situations
will be considered to validateghe multiphase MLPG_Rmethod which explicitly
implements the interface conditions ensuring the continuity of pressuren@nuhl

velocity at the interface. For flows with large interface deformationwave breaking,

such as gravity current flow and violent watér sloshing in sean|6.1 and|6.3 the

newly proposednterface identification technigugescribed ifChapter Bwill be adopted

As discussed ifChapter bthe Coupled2 method will be used to solube discretised

pressure equation to cover a wide range of density ratio from 1.01 to\é@fations
are conducted with both analytical solutions (i.e.-phase sloshing with small amplitude)
and experimental datae. gravity current flows with different density ratios and wsaiier

violent sloshing).

6.1 Numerical simulation of the gravity current flow

The schematic setufor this cases similar tothatin{Figure5.1{for investigating different

approaches for solving the pressure equation but the paraineteese differentin this
section, the parameters are seledbeded on an experiment Rittman and Simpson
(2983) in which the filling height of both fluis is D, L y?1, the ratio of partition
positionand tank lengthio the filling heightare T, D, L y&vand. D, L tzavzC'L
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vy? | @, and thedensity ratiois 1.048 (the heavieto the lighter).The apparatus setup

and experimental conduction waeviouslyintroduced in sectiqh.2

In order to verify the effect of time step and the number of nodes, the numerical

investigation for convergent property of miphase MLPG_R method is carried obtr

the time step convergent teftigure 6.1 shows the comparison of thfeont position

propagaidn of the heavycurrentfor different time steps of & vVHs 1’/ Q s& vHsr’’0
and t § x H s r’ 7 Quith a fixed particle distance afdr sy Win both directionslt can be
seen that little difference is observed between the results @B r& vH
sr’’eand s& vH s r’ " Qwhereas the relativiiarger time step of 2.9d s r’’ Qesults in

a visible but not significant differenc&o obtain a more general coefficient for time step
indication Courant number is adopted which is generally definethhsQ @ @ Where Q

is the velocity, @i® the time step and® i§ the length interval which is equivalent to
particle distance ithemeshless method. In the gravity current flow ca3de,specified as
the maximum velocity in the whol#gomain which can be regarded as a tamsobtained

at the front of the heavy curreabhd @ i defined as initial particle distanda this case,

the velocity is obtained by fitting the convergent res@isshown irfFigure 6.1) to a

straight line giving the gradient of 0.081 « By adopting the velocity of the fronthe
Courant numbers (specified 8L Q g @ R®)Tof the convergent time steps become
0.038 and 0.066corresponding to time steps afZ vHsr’’Oand s& vHsr’’O
respectively.

Figure 6.1: Comparison othe leadingfront time histores of the heavier fluidobtained by using
different time steps.
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In order toinvestigate how the results vary with different initial distance bet\peaeitles,

cases with a fixedourant number of 0.03&ut different number of particles is considered.
To do so, the casaesith @ T Oy s Dy tr, Oy vrand D, wri.e. 10, 20, 40 and 50

particles are allocated along the deptorresponding to@ T ré&ryl , r&ruw,

rarsyWw and rdarsvl are investigatedCorresponding results (leading frotitne

histories of heavier fluid) are plotted

fgure6.2

together with the experimental results

from Rittman and Simpson (1983Dne can observe thaarse particle distribution

(@ T raryl) results in slower propagation of the head pamd to experimental data

and the gap is narrowed with refined distributio®@(T r&ruw ). The difference

becomes invisible and the result is convergent W@ rarsywand @ T r&rsw.

Figure 6.2: Comparison othe leadingfront time histores of the heavier fluidobtained by using

differentinitial particledistancs.

According to the convergence test on the time step and the initial particle dis@rce,

rarsyw and @PravHsr’’Oare sebcted for further validations. Grrent

configurations represented by interfacet=4t7s, 7. % and 10.% are shown and compared

with shadowgraphs of the experiments in (a), (b) and (c) respecti\iéligmfeGB The

graphs showthe interface from multiphase MLPG_R in red lines with backgrounds of

shadowgraphs from experimentsRittman and Simpson (1983)he dashed line in the

shadowgraph marksefposition of theartition separating the salt water and fresh water.

Besides leading heads, the whole interfaces largely match the experiment as heavier fluid

propagates to the right wall and the lighter moves oppoinFégu(e 6.3(a)), then the
backward current hits the left wall leading to a hydraulic jl1liﬁ'|gL(re 6.3(b)) andthe
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jump continually propagateqFigure 6.3(c)) to eventually overtake the frontlixing

between two fluids behind the front was reported and also could be ob$emvethe
shadowgraphsAs multiphase MLPG_R currently models timamiscible phasg such a

mixing could not be simulatedBut this phenomenon can be explaineddirgulation

zones inFigure 6.4{b) in which velocity vector field is enlarged right after the current

front at t=4.7s In|Figure 6.4{a), velocity vectorsat the frontdemonstrate that the heavy

current is propagating forward and the light phase right before the current is pushed

forward but gradually goes up and backward forming the oppositely propagating light

current. Unlike the cirdation zone ifFigure 6.4{b), independenpropagating fieldsan

be observed at the fromthich hardly lead to mixingln the same case, pressure fields
together withinterfaces at three time instants are demonstra‘é‘diglure 6.5| It is noted

that the filling depth is nedimensiomlised to be unit and the density of light ancehvy

fluid are given as 1.0 and 1.048 in the simulatidrsmooth pressure distribution can be
observed without any unphysical fluctuations and the pressure continuity across the
interface proposed as an interface condition is satisfied.

(@)

(b)

(€)

Figure 6.3: Comparison of interfaces between MLPG_R and shadowgraphs of experiments
(Rottman & Simpson 1983t 4.7s, 7.7s and 10.7s in (a), (b) and (c) respectively.
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(@)

(b)

Figure6.4: Snapshots of velocitfnon-dimensional¥ield in front @ and right after the fronbj at
t=4.7s

It has beemeportedRottman & Simpson 1983; Grobelbauer et al. 1993; Lowe et al. 2005)

that, despite changing the initial setup (eTg =J @), the nondimensional velocity

(QAJ LQ ¥C_D1) of the heaviefluid front largely keeps constant and those constaluts
not significantly varywith the density ratioif it is not large than1.4 (Lowe et al. 2005)
More test with different density ratio1.048, 1.1 and 1)3are carried out witla new
setup of Oy L r&l &; Dy L sdwand . D, L z To simulate these cases, the ialit
particle distance is selected as 0.01m by using 40 particles over the depth Godrére

number is chosen &05to determine the time step

96



(@

(b)

(€)

Figure 6.5: Pressure fields of both phases and the interfaces in black dots at 4.7s, 7.7s and 10.7s.
The density ratio is 1.048 and the setup follows one experimdRotiman and Simpson (1983
The length scale is nedimensionlised by the filling depth.

Figure 6.6| illustrates dimensionlesdime histores of the leading front position of the

heavier fluidwith density ratios ranging from 1.01 to JBtainedby various approaches.
Scattered squares aexperimental datgRottman & Simpson 1983jpr the testswith
slightly different density ratios (1.01, 1.02 and 1;0#ur curvesare obtained byhe
newly proposednultiphaseMLPG_R method for the density ratios of 1.01, 1.048, 1.1 and
1.3; another two curves for the density ratio of 1.3 are obtainethdoylecouple
incompressibleSPH (DISPHMethod(Shao 2012andthe MLPG_R method adopting the

same interface condition as in DISPH considering pressure continuity onlyE¢see

(3.55)). From this figure, one can find that the fropbsition time histories of the

experiments and the muytiase MLPG_R method are almadtaight line, implying
constantnondimensional velocity and correlate very well with each other when the
density ratios are less than 1\When it increases to 1.3, the result of the multiphase
MLPG_R methodis still very close to the experimental orthpugh the difference
between them is larger as the density ratio is latgan hatin the experimentsThis is
consistent with the conclusion abwe et al.(2005 that thenondimensional velocity
does not vary significantly when the ratio is less than 1.4. One can algbdtrige result

of Shao (2012jor thedensity ratio of 1.3 is significantly different from the experiments.

One ofthereasons may bthatthey did not apply the condition given by K8.46). To

shedsomelight on this, we also model the caskethe density ratio equal to 1v@thout
using Eq[(3.46) (i.e. applying Eq[(3.55) rather than Elm). The corresponding results
are GHQRWHG E\ p0/3mBHure 6.ﬂ§ &tfdemonstratethat, for bothmethods

using pressure continuity only, the propagating velocity is not a constantisand
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significantly lowered at the beginning but gradually increaseaddition to this, we also
find that the separation of two phaseay be inducetkading tothe simulationdreakng
downwithout usng the condition of continuousormal velocity when thedensity ratios

arehigher than 3.0.

Figure 6.6: Time histaies of the leadingfront of the heavier fluids obtained bthe experiments
(Rittmané& Simpsonl1983), bymultiphaseMLPG_Rfor the casesvith density ratio 0fl.011.048,
1.1 and 1.3and by DISPH (Shao2012) andthe MLPG_R methodonly considering pressure
continuity at the interfackr the case with thdensity ratioof 1.3.
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6.2 Numerical simulation of two-phase sloshing with

small amplitudes

Figure6.7: Schematic view of tanlimensionsand filling fluidsfor sloshing

Themultiphase MLPG_R methdd now applied to simulating the sloshing motion of two
layered fluidscompletely filling the2D tank with the width of . and the depth o&as

shown inFigure 6.7| The heavierfluid with the densityof ésoccupies thdower part of

the tank upto thedepth of Dyand thelighter fluid with the density of & occupies the
space with the deptbf D, A linear analytical solutiorfor two-layer liquid natural
sloshingwas given byFaltinsenand Timokha (2009)when the motion is smadind both

fluids are inviscid This solution is based on continuous pressure through the interface and
continuous velocity normal to the interfagehich is the same as thapplied inthe
MLPG_R method for inviscid fluidsThe velocity potentialg O Y') involving two fluids
indicaedby FL sé areexpressed by

OV :TAKP L F=A OEAPT 'Y:Tak 4 FL sd (6.1)
where

‘e8] :UF &;ua.; |

A TAa L .
I>:Tads L % BT, T <Bho. a (6.2
e _T_...‘-:élun.; 63
T LR e ©3
and

>~ E"z raize z
CE:z;L%o-@X—A “ L UdJaa (6.4)
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in which éis the natural frequency, is the mode numbeand =is the amplitude of
initial disturbance The pressures in the two fluid domains day means of the

linearized Bernoulli equation be expressed as

. 00Y ,
4L é&F55EC@a FLsa (6.5)

By satisfyingthe above mentioned interface conditions, the parameterg;0f$;, %,

the natural frequencyg and the interface elevatiolkare expressed as

#, el el
% L F?"" at, L PZDI—DSpé$a L P:DI—[%pé
a . .
A &l (& F & #, $s
LN Tl 1L W (6.6
C . ee$a Ee:-,#a
and
bL =# ?K@RBT, & (6.7)

In numerical tests, an initialelocity potential was given at thieeginningwhen pPL r
across the tanlAlternatively, an initial interface disturbanegth zero velocity fieldby

setting PL rin Eq.|(6.7) can be given. However, the initial disturbance may introduce

errors due to square particle distribution which cannot gecimatch the sinusoidal
interface profile. Thus theelocity field at PL & t fiwill be chosen as initial condition in
simulations andthen the fluidsstart to slosh without any external excitatioifhe
dimensions of the tank are chosen ak te, . & L s the filling ratio of thedensdluid
is Oy & L raand the density ratids €5 & L sr The amplitude=is set tobe rétl .

As zero viscosity is consideredtheoretically there is no energy dissipation and the

amplitude of the interface keeps comtt = #;& B:T.

Time steptests ardirst carried out with ainitial particledistance@ L r&s a4 with 55
particles allocated along the depth of the dense.flaid tHs case,time stepsof @ P
vavH s r’"Gua Hsr’’Cand sdvH s 1’7« corresponding to theCourant numbers of

0.027, 0.018 and 0.009 aresed The maximum velocity in calculatingthe Gurant

number is obtained from E[6.1), whichis Qg@ges L = ﬁ7&' The results ofinterface

elevations atT L ral are showrin|Figure6.8] It is clearthat the three tested time steps

give similarinterface elevatio time histories aff L r &l while the largest time step
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shows more dissipation and damgpithe interfaceamplitude When it is decreasedo
@ P ud Hs r’’ @orresponding tehe Gurant number of 0.@® it is sufficient to give

convergent resultsnd to mantain the constaramplitude

With fixed courant number of 0.018 to determine the time steps based on the above
discussion, ifferent particle numbers &5, 30,35, 40, 55 and 8Calong the deptlof Dy

arethen tested correspondindo initial particle distances of@l L 0.04m, 0.033m, 0.029m,

0.025m,0.018m and 0.013m respectivdiigure 6.9 shows the comparison of interface

elevationtime histores at TL ra&l obtained by different particle numbe¢snly the
results of tSL0.04m, 0.018m and 0.013m are presented for cladtyy analytical
solutions byFaltinsen andTimokha (2009) The results indicate that the numerical
simulations are converged agive results with little visible difference from tlamalytical

solutionswhen @ Qréas4.

Figure6.8: Interface elevation at x=0.3by using different time steps.
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Figure 6.9: Interface elevation at x=0.3m by using different number of particles of MLPG_R
method and analytical solutio(Baltinsen & Timokha 2009)

Snapshots of pressure distributianthe first and the third quarter of the first period are

shown inFigure6.10)where the density of the heavy fluid is 1.0 and the light is 0.1. The

gravity accelaation is also set to be upitlt shows that the pressure thfe two fluids

smoothly varies and is continuous at theerfacewhich isillustrated by black dotn

Figure 6.10| To further validatethe pressure distribution and compare it with the

analytical solution, the pressure along the tank deptiidt away from the left wall and

the right wallis plottedin|Figure 6.11] The solid line is obtained by analytical solution

showing moderate pressure gradient above the interface and more significant gradient
below the interface, whicis caused by the density differencettod two fluids. It is clar

to observe that the simulated presswgigownin squaresfits well with the analytical
solution and thepressure at thgradient inflection point where the interface located is

continuous which is consistent with the interface dionl The regions near the interface

points inFigure 6.11{a) and (b) are enlarged to show the interface displacements where
the left side (TL rd) is below the ini@l filling of Dyand the right side TL1.7) is

located above it.Bothinterface displacememindpressuren it fit well with the analytical

solution{Figure6.12/compares the distribution of pressure derivatioger densitylong

the depth given by analytical solutiamd the twephase MLPG_R method. One can see
that numerical results agree very well with the analytical solution and also that the
specific pressure derivative indirection is discontinuous while the specific pressure

derivative in ydirection is almostcontinuous.This is consistent with the pressure
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condition imposed b¥q/{(3.46) with continuous normagbressure derivative over density

but discontinuousangentialpressurgradientover density

(a) (b)

Figure6.10: Snapshots of pressure distributianthe firstquarter(t=0.447s)and the third quarter
(t=1.405s)of the first period

(a) (b)

Figure6.11: Pressure distribution along tlieepth0.3m away from the left wall (a) and 0.3m away
from the right wall (b) at t=0.447s.
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(b)

Figure 6.12: Pressure specific derivativga)-(b) in T Fand UFdirections at t=0.7%nd x=0.75
and 1.75 with the analytical solution frdialtinsen & Timokha 2009)

In order to investigate the convergent propertiee,etror in the resultsis estimated by

comparing it to the analytical solution.The error is estimated by 'NL

§ A RF %EX§A‘E@5%J§, where Ry is the analytical solution of wave elevatiat

TL ral at ith time step, Ris the corresponding numerical result aritiis the total

number oftime steps during the simulatidime. |Figure 6.13 showsthe errors with

respect to the initial distances between particlesviorfilling ratios of the heavy fluid

which are 0.5 ifFigure6.13{a) and 0.3 ifFigure 6.13(b). For either filling ratio, density

ratios ranging from 10 to 1000 are test®de can see th#te convergenceates are close

to 2 and the impact of the density ratio and filling ratio aegigible. The analytical
solution also provides the natural period with specified tank dimension, fluid densities and
filling ratios. By fixing the tank dimemgn as used in simulations, period variations with

respect to the filling ratios athe heavy fluid are illustrated by the solid line and the

dashed line for the density ratios of 10 and 1000 respectivelfigure 6.14

104



Corresponding periods for differefilting ratios 0f0.1,0.12, 0.20.3 0.5, 0.7 and 0.6or
both density ratios are obtained by MLPG_R numerical simulationg@od agreement
is achieved which denonstrates the ability of the multiphase model on simulations with

high filling ratio such as 0.9 and on low ones like 0.1 as well.

(@)

(b)

Figure 6.13: Numericalerrors of simulating density ratio of 10, 50, 200 and 1000 with different
particle distances with filling ratio of 0.5(a) and 0.3(b).

105



Figure 6.14: Natural peiods for differentfilling ratios 0of 0.1,0.12, 0.2 0.3 0.5, 0.7 and 0.9. The
density ratio is 10 and 100fespectively

6.3 Violent sloshingof fluids with large density ratios

After discussions of the nernolent casesthe multiphase MLPG_Rmethodis further
validated using aiwater violent sloshing by comparing the results with experimental data
provided by Kishev et al.(2006) Such experiments intdnto reveal the sloshing
occurrence and the forces acting on the tank structure of the partially filled liquid cargo
carriers when the ship oscillates in waviesviolent conditions, the force can be large
enough to cause local structure deformation oratgem Violent sloshing is a strongly
nonlinear problem in which the phenomena like high speed impacts on tank walls,
breaking waves, jets, droplets formulation and air bubble entrainment may be involved.
Such complicated hydrodynamic phenomena make theetie prediction on fluid
motions and loads on structures difficult diedm strong demands on experiments. But
experiments cannot always provide needed information of violent sloshing such as
pressure distribution and velocity field in an economical.viFajly nonlinear multiphase

MLPG_R model provides a competitive option to obtain such information.

In Kishev et al.(2006) experiments on 2D violent sloshing were conducted in an
Plexiglas made tank, 60cm wide, 30cm high, and 10cm deep.O’'k@® on height and

width plane is the same as that of previously discussed small amplitude sloshing as shown

in |Figure 6.7| The tank was oscillated in sway with thmeotion described as L
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=, 0 ER BRwhere =,was the sway amplitude arfiiwas the frequencyOn each sidewall
of the tank, there were several positions prepared for pressure gadyéise pressure
time history obtained by gauge atL r&l on the righ hand wall will be used for
numerical validationOne high speed camera wased to provide snapshaiowing air

water interface profiles.

In violent flow situatiors, the density ratio is set to bég & L srrrto simulate ai
water sloshing. The same tank dimension and water filling of a set of experiments in
Kishev et al.(2006) is set asDy L r&tl, Oy &L r&and Dy . L rd&. The tank is
excitedby the sway motion, where=, L r@aw and fi L v& uJ °(correspondingo the
period of 1.3s) are the amplitude and the frequency respectlvethe simulation, the
coordinate system ifixed in the moving tank to simplify the solidoundaryconditions.
One phenomena of the violent sloshing is the formationadér droplets and air bubble
penetration which in MLPG_R simulation are illustratedebjew air particles trapped
into water and water particlggnetratingnto air as isolated particledn that situations,
the pressure formulation and identificatibechnique of these particlediscussed in
sectioT3.4 andChapter 4will be adopted here.

Time steptestsof @ P s& sHsr’8e, tdsHsr’8Cand uaitHsr’80with a fixed
initial particle distancef 0.004m i.e. 30 particles along the water degte first caried
out. By using the maximum velocitygiven by Q 5 L ¥CD; the Courant numbes of

above time steps correspondd®3, 0.06 and 0.0%Vaterair interface snapshots &L

s& wand sav Xobtained by different time steps are comparegFigure 6.15 with

enlarged insertsThe interface differences are mairdy the peak pointsBut when the
time step is shortethan t s Hs r’8Qthe difference is almost invisibl@he directing
courant numbey of violent sloshingcasesare 0.03 and 0.06 corresponding to the time

steps of s& sHsr’8Cand t 4s Hs r’8Qesctively.

(a) (b)

Figure6.15: Snapshots of interfaces obtainedusjng thetime steps ol.11HL0%s, 2.21HL0“s and
3.32HL0%s att=1.43s(a) and £1.56s(b).
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By adoptingthe Courant number of 0.03, initial particle distances¥fL0, Dy20 and

0/30 (correspondingo @ T rédstl, rd@rxl andrdrvl) are tested. The interface

profiles at different time instants are displayed on the figimdcolumn inFigure 6.16

There is no significant differendeetween the results correspondinghese threénitial

particle distancesThe lefthandcolumn ofFigure 6.16

shows the comparison between

experimentsnapshotgKishev et al. 2006)and resultsof smallest particle distance of
@ T ré&rvl. Photosfrom the experimenvere providedor 0.1T, 0.2T, 0.3T and 0.4T

(where T is a wave peril) without exact time instant$t means that from which period

those four instants were picked is not providédr the simulation snapshots, four

shapshotare picked out fromthe second perigdn which the sloshing wave starts to be

violent and breakig. The lefthandcolumn ofFigure6.16

shows easonable agreement of

wave surfaces between the experiment and the simulatidnthe right shows little

differencebetweerthe case with three partictiistances

Figure6.16/also shows that the

interface and the isolated particles are almost correctly identified at all the instants.

Pressure time histories &tL r & uQyon the right wall for thrednitial particle distances

are also compared with experiments and sho

\Figare 6.17,

It can beobserved thathe

numerical pressure time history is quite smooth and correlated well with the experimental

data.
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(@)

(b)

(€)

(d)

Figure6.16. Comparison of wateair interface profiles at t=1.43s, 1.56s, 1.69s and 1.82s from (a)
to (d). Left column gives experiment photos compared with the simulatio@ d r &r vl .Right
column gives MLPG_R resuligith @ T ra@stl, 0.006n and 0.004n (snapshots in the shape of
circle, rectangle and square respectively).
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(@)

(b)

Figure6.17: Comparison of pressure &fL r & uDon the right vertical wall between experiments
and MLPG_R.(a) isthe time history for five periods and (b) is the enlargement of the second
period.
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Chapter 7 Methods for Multiphase
Flows with Large Viscosity andNon-

zero I nterface Tension

In previous chapters, the MLPG_R has bdewelopedo simulate multiphase flows by

explicitly implementing the interface conditions of continuduzmd!,—‘?51 Chager 3 on

the prior identified interface osolated particlesGhapter 4. As discussed [Chapter b

the Gupled? algorithm is selected to solveddiscretsed pressure equation to deal with
high densityratio cases and to achieefficiency in computational timeHowever the
current interface conditions are based on the assumptioregtactablénterface tension

and small viscous effect3herefore, the model validations are carried out on the non

breaking and breaking cases safigfysuch assumptions|i@hapter ¢ To furtherdevelop

the MLPG_R model to simulate more general cases in which interface tension and
viscous effects can be more significaimstead ofcontinuity of Land!,—éé(jump of 2
alreadyexisid), a jump on pressureis introducedand the jump orZis modified The

jump of pressureon the interface enables the method to deal with the interface tension
which ensures the sharp interfasatisfying the pressure discontinuiyd reduces the

spurious currents compared ttee widely adopted conventional continuous surface force

method (CSF)the modifiedjump of ~2is introduced to satisfy thimterface condition of

stress balancehen the viscous effects are significant in either phase.
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7.1 Interface conditions with pressurejumps

In the previoussection by considering smalliscosity and zero interface tensiahge
continuity in Lwas implemented. Meanwhile, continucusrmal velocity combiad with

averaged viscous forcevere also appliedat the interface particlesTo exend the
applications to high surface tension and high viscosity fluidgrface conditions
(Brackbill et al. 1992; Sussman et al. 20@@derived fromthe continuity condition for
velocity in bothnormal and tangential directisas

sglLo>pa (7.0
The jumpcondition forthe pressureaused by viscous stress and interface tension
IgFlpLigg Fipg E€4 (7.2)
andthe continuity condition for tangentiaiscousstresss

i L ipa (7.3)

where éis the interface tension coefficientais the local curvature and the sign of the
surface tension indicates that phades on the convex sidelpg and ipg are normal

viscous stresson two sides andan beexpressed by

. . . 0Q
Il gLta JYI%OJG

and
i aLa By@ AEIy@P AC  FLsd

where ” L :Js8g;is the unit normabf the interfacetowards the fluid with convex

interface which is the same as thattleén surface tension forgand 1 L :igdg;is the

unit tangentAccording tothe above two conditionsl,_and—g‘ will be not continuous and

jumps will be derived and considered in thétion

The velocityis continuous across the interfageplying that the Lagrangian acceleration

is continuous as well. Thube RHS of Ed(3.1) needsto be continuous on the interface
(Kang et al. 2000and to satisfy

reLrpLr, (7.9
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where

r LeF2 @ Ei & UL G#a

The expression can be rearranggthin each phasand written as

gL
|—,pL°FrEI'BW>gé (75)
€y
and
gL
I—ép LeFrEi,@>pa (7.6)
b

For low viscosity fluids, i @> in Eq.|[(7.5) and|(7.6) are replaced by i@ > zE

ir@®>p; twhich ensures the continuity 01!1 on the interface. But for high vissity
la

fluids, averaging the viscous term is no longer applicable and the term needs to be

considered separately for each ph&msequentlythe jump of-2 on the interface needs

to bemodifiedand expressed as

L 7]
e R e

L
p

So far, jumpsof pressure and® at the interfacare derived and expressed by [EQ2

and(7.7) which will be used to formulate the pressure expression of interface particles.

The shear stress is estimated with the velocity of the last time step 1a(r?cBE 5. used to

update the intermediate velocity of the interface particles.

7.2 Pressure formulation of interface particles

Following the section3.3 the pressureof each phaseearthe interfacearticlesdenoted

by ",is expanded into a Taylor series:

S S

— klg™; F Lg"4;0N— (@lg- @7 F 7y, (7.8)
€r ér ,

and

—SokLpIN;FLpZNA,;ON—SO:@ka’ @ F~,; & (7.9)
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Substituting Eq(7.5) and(7.6) into Eq|(7.8) ang (7.9? and discretising equatioms the

support domain within each phase yields

a

S . R
& | @gK'yoF Lgi"4; Al gK'y40

Byes 4 (7.10

L:s FrEiglrg- @ KyF 40 gKy04
Y@

s @
? i @.pk~aOF Lp:~4;ATpk~a40

b

4@ (7.12)

a
L:eFr Eipgs) p;'“y @j k~a F~40Tpk~a40é
a@d
where the shape functioh:~ ;is obtained byhe moving least square (MLS) algorithim

asupport domaimrrontaining both phases.

Addingup Eq}(7.10) and(7.11), it follows

a a

S0 Ly g u0E— | LK 50l pK a40
egv@ epéi@S
~ . 8 o~ a
F NLB'é—:' | TaKwoE Lpép“' I TpK 00 (7.12)
Y@b a@
a a
Lie Fri- N KyF 740 gK'y0E T K3 F740 pK 3400 (s &

Y@b a@d

where

(CEL :ig@) 8;~' @3@5k~YF ~40i f;k~Y4OE :ip@) p;~' @g@Bk~a F ~40ipk~é4oa

Although thefirst term of RHS of Eq(7.12) can be omitted when sufficient particles are

used, itsreatments similar to that of flows with small/zero viscosity and zero interface

tension (see sectigf.3) and the term ignaintainedas ({‘computed with parameters

obtained from the last time step.

Utilizing Eq{(7.2) andrearrangind=qJ(7.12), it follows that
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Lo:"4s
L_5x A gs Lk vol 3k~y4oE—5© Rigs Lok a0l pK 340F (a"F (¢ F (s (7.13
a

575 1 573 1 1
— Nes | K0E— Algs | bK aa0

L4
5 ~ ~ ~ ~ 5 ~ ~ ~ ~ ~
= Va5 LeK 7ol eK'u 0E— Adgs LK a0l pK aqOF (a"F (¢ E (a& (7.14)
- — = a
_5)( A%@; [ gk~Y4OE—5© Ag@sl pk~é4o
where

(sp L—ikipé Fig E & 20A5 T ky0a

(é@L—E’Ok‘urﬁ Fipg E & 80A8 G T K 5,04

The pressures expressed by F;‘q13) and|(7.14)| are implemented on one interface

particle and represent the pressure for phamed Hespectively. Compared to interface

pressure irsection3.3 the extraterms of (sand (38 (apare generated by high viscous

force and normal stress jump (includes interface tension) respectively.

7.3 Curvature and aurface tension

To achieveanaccurate pressure field, the surfaeesion termé &n Eq|(7.13) ang (7.14f

needto be carefully treatedror existing surface tension modet.g. CSHBrackbill et al.
1992)and GFM(Fedkiw et al. 1999)calculatims are based on the assumption that the
location ofthe interface is known accuratelyhich is alsorequiredby the multiphase
MLPG_R methodln mesh based approaches, three methods were proposed to compute

curvature.One is estimated from an indicator functidin both VOF and level set
approaches and expressedéak | (@}%(Hoang et al. 203; Popinet 2009)?can be a

discontinuous fluid distribution function or developed to be smootlidd. such
approaches often do not converge with mesh refine(@agjardins et al. 2008; Cummins
et al. 2005) Secondly, a least square approach adopted by Desjarding20G8)in the
accurateconservative level set method was tddtebe first order convergerithirdly, the
height function approach implemented in both Lesal (Owkes and Desjardins, 2013)
and VOF(Owkes & Desjadins 2013; Owkes & Desjardins 2018)ethods achieved a
secondorder convergenceBut extra computations are required itdegratethe liquid

volume fraction to build the heighinctionfor the concerned and neighbouring cells.

115



For meshless approach&3SF isalsowidely adopted for surface tension implementation
andthe curvature is computed as tHiwergence otfthe unit normal using an indicator
function(Hu & Adams 2006; Adami et a2010)following that in mesh based approaches
But the convergent problem still cannot be avoidétlang(2010) proposed a method to
locally reconstruct the interface after the interface particle identificatihich was also
adopted inzhang et al(2012) In their 2D casestheinterpolation polynomial is used to
fit the curve and MLSs used in 3D caseBut interpolation polynomial constructed curve
often hasoscillatiors due to irregular interface particle distribution and those oscillations
lead toinaccuratefirst and second derivatives armbnsequentlylead to inaccurate
curvatures.To remedy interpolation polynomial induced inaccuracy, MLS interpolation
will be usedto reconstruct the local interface in MLPG_R methnddch is kesssensitive

to the irregular interface particle distribution

In MLPG_R multiphase model, the interface is automatically traced by identifying

interface particles usingnumerically computed density gradideeg¢Chapter 4. Similar

with Zhang @010), a local interface curve will be reconstructed for every interface
particles. To ensure a omalued interface curve, a local coordinate system is first built
(as shown ir[Figure 7.1) with the new origin1flocaked at the point averagng the

coordinatesf neighbouring interface particles, i.e., inteé particles within the cirgle
and theU'axis pointing to the concerned particBecondly a local curve of the concerned
particle will be constructedJnlike using the polynomial interpolation in Zhang (2010),

the seconérder MLS technique is used to ensure a smooth curve even with irregularly

distributed interface particles. Details of MLS technidgieevisited in sectigi3.2.1and

here the curve reconstruction procedsrpresented

[
»

Interfa

~o

v

r

Figure 7.1: Coordinate transformation for local curve constructidrKig coordinate system for
the whole domain and"KU'is the local coordinate for interface reconstruction for the interface
particle passed through by thd'axis
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To obtain a secondrder curve irthe TKWUlsystem, the approximant T of U" Tf,
§ b 3, can be defined by

utY 7oL T T (7.15)
where X T is a complete monomial basis of ordecan be written as
T Lossafar™®2 1 Lu

and t: T is a vector containing coefficients;: T,&L s4 & 4 and can be expressed

as
t: T L n?S: Thn: Y4 (7.16)

where ! ™ L > 4% & &M 2andthe value of >J4EL s4 & &lis from the surrounding

interface particle in the support domaline matricesi : Th;and &: T are defined as
mT;L|"f] LAGSs T, — Ty : Ty &

n:Th L F LS Th— T, 886 Th—: T 88 &8, Th—: Ty ;24
wherethe matrices| and f are defined as

T ™: T,

T ® U
pLf= T, Le ® ® ® i4
_|’:-|-ﬁé; U ® ™:T

With solved t: T, the interpolated curve can be expressed as
U010 L= T E=: THTE =, T T 4 (7.17)

The curvature and the normal vector of timerface can be calculated from the

interpolated curveThe curvatureais given by

Uo @
aL xE@@ﬁUgﬂf; - & (7.18)

The normal vector with the same direction of the surface tempsioning to the concave

fluid in the local coordinate system is taken as
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It is noted that the curvature does not change with the transformation of the coordinate
system but the normalector needs to be converted back to the origifil dystem

shown abxl

@ 0 .
O %’?KOELDE%OE‘FU?KGW
\ o BKMU V@™ Or
L o @’ ‘@ (7.20)
— _ ?2KOANE #F— OE AP K G4
o an @
o BKNBU V@™ P r

where Uis rotation of the local coordinate from the original coordinate.

The curvature obtained biyhe above technique is tested diifferent types of curves

. 6
including a circle TP E P L s an ellipse CazJA E P L s and asinusoidalcurvg UL
O ET. Particle distances of 0.167, 0.1, 0.063, 0.05, 0.033, 0.02 and 0.013 are tested for

. . AL & o1 .
the threecurves andhe .%relative errors defined by L G‘A'd OF)A]O' are plotted in
@3- O

Figure 7.2[ where &;ds the analytical curvature on the curve partieled §gythe

corresponding numerical curvatur®ne can observe that secemrdier convergence is

achieved by the local curve fitting wiiecondorder MLS method.
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Figure7.2: Convergence of Uerror withdifferent particle distance for the circle, ellipse and sine
curve test casd.he dashed ling blueindicates the second ordesnvergence

7.4 Results and Validations of Flows with Interface

Tensionand Large Viscosity

In this section, several cases will be simulated to show the sharp pressure jump on the
interface caused by interface tensicend how the accurate curvatuemd b#anced

interface force prevents spurious currefsth the modified jump of? (shown by Eq.

(7.7)) derived from thevelocity continuityat the interfacefluids with large viscositycan

be accurately simulated

7.4.1 Numerical simulation of squaredroplet deformation

In thiszero gravitycase, an initially squarghaped fluidwith density of é&sand dynamic

viscosity of &gis located in the centre of a larger square as shoykigure 7.3| The

dengty of the fluid surrounding the inner square &and the viscositys &. Due to
unbalanced surface tension force, capillary waves are induced to oscillate the inner fluid
about its equilibrium shape which is a circle based on Laplacélamdau & Lifshitz
1987) Viscous effects damp the oscillation and leaditimer fluid oscillateto its final

equilibrium shape.
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Figure7.3: Set up of squardroplet deformation test

This case has been widely tested to validate sutErt@onmodels and their curvature
estimations(Brackbill et al. 1992; Adami et al. 2010; Zhang et al. 2012; Hoang et al.
2013) Main problems shared by those simulations are that interface covers several cells
(in the mesh based maths) or particle layers (in me#dss method) within which
curvature and surface tension are smootlsedh smoothed interface tension foomes

not strictly satisfythe interface condition statedy Eq{(7.1) and(7.2). In addition the

pressure dropn the interface is smearegther than srpas stated in interface boundary
conditiors, leading torelatively high spurious currentsthat occur when the droplet

reaches its equilibriumvith the MLPG_R surface tension model sharp pressure jump
within one interface particle layer is achievadshe spurious currents are significantly

relieved.

The test follows the settings in Hoang et @013) and all the parameters are non
dimensionlisedThe densityof the surrounding fluid is L u w v xiscosityis 8g L s,
density ratioof surrounding and inner fluids i& és; L t, viscosity ratiois 85 a5 L r&
and the interfacéensionis PL sd& The domain sizeg L t.5 L vand the inner square
is located in the centre of tlmuter squaréWhen the inner drop reaches its equilibrium
state, the shape is transformed to a circle remaining the same area as trayiritie.
According to Laplacél Vw, thepressure inside and outside the circle tare constants

having a jump at the circle. Bylotting the pressurat UL r &from the centre of the

circle (T L t &) to the edge of the outer squar€ I( vd), Figure7.4|illustrates thehigher
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constanpressure inside the inner cir@dead the lower constapressureutside the circle
The translation betweedhetwo constants is completexh the interface particléne can
alsoobserve tht thesimulatiors using 40, 60 and 80 particles along the outside square

edge largely give similar results which are close to the analytical solution. From the

enlarged windown|Figure 7.4| goodconvergence can be observed when 80 particles are

used.The reason of such sharp pressure jump is ithaiur newly proposed surface
tension modelthe pressure jump condition is explicitly satisfi@g. storing two pressure
values for twophaseson one interface particle, the pressure jump oventamtely thin
interface is achievedimilar simulations were conducted by SPH method in Zainali. et a
(2013) the pressure across the interface gradually decreased from the inside to the outside
of the drop which losethe sharp presirejump stated in Laplace law.

By recording the maximum velocity in the whole domgtigure 7.5|shows thaiafter a

long time, the drop reaches its equilibrium ahek to the energy dissipation of viscosity
the maximum velocityis gradually reduced anldecomes a stablbut nonzero value
which iscaused by numerical errors. This rzero stable velocity is calletthe spurious
current By checking the maximum velocitglissipation, ot only the convergences
achievedwhen 80 particles are usedyngparedto conventionalCSF modelbut alsothe
spurious current is significantly reduced asi@bilized by the newinterface tension

treatment

Figure 7.4: Pressuresneasured from the centre thfe circle (TL t& UL t &) to the edge of the
outer square TL v& UL t &). Pressure drop occurs at the interface of two flaid$ L u& u
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Figure 7.5: Time history of maximum velocity with different particle numbers alongatside
square edgeTlhe large circle solid line is from Hoang et al. (2013) adopting CSF model with cell
number of 100.

By using 80 particles algnthe outside square edgbhe shapechangeat a sequence of

time instants PL r & téa v =J @ »areshown inFigure7.6| The initially square shape of

the drop results in strong interface tension force at-bighature corners, forcing the
dropto be oscillated. The corners of the dggis more smooth and entually becomes a

circle as shown inFigure 7.7{a) whose curvature is equivalent at every point.

Correspondingly, the pressures inside and outsigaitbp become two constants with a

sudden jump at the circle which is illustrategFigure7.7(b).
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(@) (b)

(©) (d)

Figure 7.6: Drop shapes atL rétéav f « fuxn plots from (a) to (d) respectivelynterface,
inner and surroundingarticles are in blagldark grey and light grey respectively.

() (b)

Figure7.7: Equilibrium shape of the drop in (a) and corresponding pressure distribution in (b).
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7.4.2 Numerical simulation of capillary wave
The capillary wave is surface tension driven flow and its llsesaplitude damped
oscillationis a benchmark testing the accuracy of numerical schemes for viscous, surface

tension driven two phase flow®oinet 2009; Wang & Tong 2010)n this section, the

accuracy of the newly proposed interface conditions, mmgdified jumps of 8 and
jumps of Lwill be further tested As the modified jump of —2is introduced for highly

viscous fluids,the effects of—éjump modification for different viscosities will also be

tested.

A computational domain of H* is equally split into two sections filled by two fluids
with identical kinematic viscosityAn initial sinusoidal perturbation is applied to the
interface with themagnitudeof =, L r & s* and the wave lengtbf *. The solution of
this initial value problem was found WBrosperetti{1981) restrictedto linearized cases
with identical kinematic viscosityDue to infinite domains used in Prosper8ttheory,a
periodic boundary is applied on the wave progressing direclionachieve sucta
boundary, three columns o#mgicles are added dheleft and right sides of the domain.
The right side addegarticles carry the information, i.edensity viscosity, pressure and
velocity, of three columns of particles on the far lefthef computational domain and the
left sideadded particles carry the information of three columns of particles on the far right
of the computational domainfFollowing the settings iWang & Tong(2010) the wave
lengthis &L * L sl, the dynamic viscositys 8; L &, L sd& 2y @ the densityis é; L

é, L srrG Cl "and the interfacial tension coefficieig € L ur0 |, leadingto the

Ohnesorge numbeELDL¥_—__ L s 3wurrr Convergence tests of different particle

distance are first carried otthe wave amplitudesbtainedby different particle numbers
(16, 32, 64, 126in a wave length are shown ligure 7.8(a). Results of the test with the
same parameters but a higher viscosity of ©.05is shown iTFigure?.S b), in which a

stronger damping can be observédr both cases, 6farticles in a wave length are

sufficient to achieve a convergent results and this number will be applied tdlokeérfg

capillary wave cases unless otherwise stafedbserve the convergesrate,the erroris

calculated as L §?5; Aﬁ?@skzuF =@é@g§where0is the number of results the time

history, =js the amplitude from numerical simulation args 4§ from Prosperet$
analytical solution.For both viscosities of 0.0k t eand 0.05+ ! ¢, the error' is

calculated for different particle numbers which afe 32, 64 and 128 a wave length.
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Figure 7.9| plots the errors with respect to particle numbers, showing second order

convergent rate for both viscosities

(@)

(b)

Figure 7.8: Amplitudes time history witldifferent particle numbers in a wave lengtinematic
viscosities are 01« © «in (a) and 0.05 © «in (b).

125



Figure7.9: Errorsfor different particle numbersf 16, 32, 64and 128 in a wave lengfior the
viscositiesof 0.01« ¢ «and 0.05 © « The solid line indicates the second order convergence.

In[Chapter Bto ensure the continuity e'{ia and also the@ormalvelocity at the interface,

the term ofi @> for interface particles is enforced to be the averagwophasesSuch

treatment is applicable for less viscous fluids as stategdtion3.3and this restriébn

will be further validated in this sectioffhe viscosities of 0.0046 sand 0.01s ¢ sare

first tested with the jump o leéexpressed by E(f3.46) and Eq/(7.7), giving the wave

amplitudes shown |Rigure7.1({a) and (b)Resultswith both approaches almost noide

and agree well with the analytical solutiddhile as shown iEigure?.lO ¢) and (d), with

the higher viscosities of 0.05° «and 0.075 © «the gas in resultsobtained bythe two
approaches incregsshowing thasimulated amplitudes adoptirige approach with the

jump considering high viscous effects (i.e., H@.7)) in good agreement with the

analytical solution while that obtained by the approadtih the assumption of small

viscous effects (i.e., Eq(3.46)) deviatesfrom the analtical solution further as the

viscosity increasedt is clear that the approadf Eq|(7.7) covers the range of both low

and high viscosity where&sy/(3.46) only works well with low viscosity flow.
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(@)

(b)

(To be continued on the next page)
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(€)

(d)

Figure 7.10: Comparisons of amplitude time history betwetfierent expressions of th@ laé
jump for viscosities of 0.00% & « 0.01+ & « 0.05 & «and 0.075 6 -«

To quantitatively illustrate the deviations of numerical simulations from the analytical

solutions, the relative error defined agy L +F =g s 6 4% =z & 047 shown ir{Figure

7.11]for viscosities of 0.0% ® eand 0.075 ® « To avoid error enlargement due to the

denominatorapproaching zerothe erroris truncated whem=gs 68 F2+Qrav. For

either viscosity the jump of @ leéby Eq/(3.46) leads to considerablerrors The error

also goes uppy increasinghe viscosity,the maximum of which excee@0% and120%
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for the valuef 0.05¢ ® «and 0.075 © erespectively. Bymodifying the jump, the error
is significantly loweredand maintained below 5% for either viscosiBomparisons of
full interface profiles at two time instanfer each viscosity, i.e-S, L w&and 6.4 for
0.05¢ 6 eas well asPS, L5.7 and 7.6 for0.075+ © < are llustrated ir{Figure 7.12

further showing thaignificantimprovement of thgump of @ leéby Eq|(7.7).

(@)

(b)

Figure 7.11: Relative errcs for viscosities 0f0.05¢ ¢ «in (a) and 0.075 & «in (b). Theerroris
truncatedvhen =45 65— +Qrav
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(@)

(b)

Figure7.12: Interface profile comparisons a8, L wy = J @& for the viscosity 0f0.05« ¢ «in
(a)and at-S, L wav=J @for the viscosity 0D.075¢ ¢ «in (b).
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7.4.3 Numerical simulation of bubble rising

In this section the proposed multiphase MLPG_R method with improved interface
treatments further tested and lrdated extensively against the published results through
numerically simulating bubble rising in viscous fluids, the sasfewhich are strongly
affected by high viscosity and surface tenstuch cases exain the accuracy of surface
tension and viscougrms estimatiomy the bubble shapes and rising velocities and were
widely adopted for multiphase flow method validati@ainali et al. 2013; Szewc et al.
2015)

Based orthe definition inHysing et al.(2009) a two dimensional computational domain

with * &b L t &is adopted, imposinglip conditionon left and right walls and neslip

boundaryon top and bottom wallsseéFigure7.13| A bubble with the radius oft L rdw

is initially allocated at@ét4Awhere$ L v4. Non-dimensionaldensitiesassigned to

fluids inside and outside the bubble aég L srrand é;L srrrrespectively. The
viscosities ared, L sand &; L s rand the interface tension coefficiaatP L tvav The

1A and Bondnumber $ KL — O'A,

flow is characterised byRreynoldsnumber 4 AL
where the length scale is defined to b& t4and te gravitational velocity is 7y L

¥t4 C4 Aand $ Kndicate viscous and surface tension effects aggnasitationalforces.

In this case,4 AL uvand $ KL s rindicating strong viscous and surface effects.

Figure7.13: The setup of the bubble rising case
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During bubble rising andhape translatiorthe bubble centroid positignzg and velocity
> g are usuallyused tatrack the bubble moveme(€hen et al. 2005; Hysing et al. 2009)

and are defined as

. i Z@T i >@T
Zp L febgol a
i s@T i s@T

where is the domain occupied by the bubbl&e simulations of this case are conducted
with three initial particle distances o Hs > ré&tr& x 1?to the nondimensional
time PL u Besides the benchmark results fréfgsing et al.(2009) in which centroid
positions and rising velocities were obtaingy FEM and the interface was captured by
level setalgorithm, those results frolmVM using Volume of Fluid (VOF) capturing
algorithm conducted in Ope@AM which is an open source CFD solver are also

presented

Figure7.14/compares the rising velocifgpr multiphase MLPG_R with particle distances

of 1/40, 160 and 180, FEM of finest grids of 1/320 frorysing et al.(2009)and FVM
with refined and convergedgrids of 1/240 from OpeROAM. The solutions from

MLPG_R with different particle distances are close to each other but still have a

noticeable gap betwedhe results oHysing et al(2009) It can be observed frgfigure

7.14(b) that the velocity converges when the distance is decreased to banit¥/88is

converged velocitylocates between solutions of FEM and FVNMompared to
OperrFOAM TV V R Ohe\WesuRIbtaied by muiphase MLPG_R are closéo the

benchmarkand it may be caused by the reducing dapurious currents which was

previously discussed e squaredroplet casgkigure7.15|illustrates the development of
bubble centroid position by different particle distances of MLPG-YRM and FEM.

Similar to the rising velocitysimilar results are obtained by three MLPG_Railations
which arealso located between that of FVM and FEM.

Accordingto numerical tests of MLPG_R, the bublgets deformeds it rises But it
stays compact as one enclosed region throughout the simulation which is caused by the

strong influence of th surface tension. The shape of the bubble finally becomes stable

and the terminahapesat B3 obtainedby different particle distances are show(Figure

7.16| The shape also converges @ H's z rfor MLPG_R methodand largely agrees

with those fromFEM capturing interface bievel set(Hysing et al. 2009and FVM by
VOF in OpenFOAM
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(a)

(b)

Figure7.14: Rising velocities (ajrom MLPG_R method with initial particle distance of 1/40, 1/60
and 1/80, FEMLevel set method (Hysing et &009) and FVMVOF (OperrOAM) with very fine
grids. (b) isdetails in maximum velocityegion.
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(@)

(b)
Figure 7.15. Centroid positionof the bubble(a) from MLPG_R method with initial particle

distance of 1/40, 1/60 and 1/80, FHMvel setmethod (Hysing et al2009) and FVMVOF
(OpenFoam) with very fingrids (b) is enlargeddetails.
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Figure7.16: Bubble shape at t=3 from MLPG_R method with initial particle distance of 1/40, 1/60
and 1/80,FEM-Level set method (Hysing et &009) and FVMVOF (OpenFoam) witlgrids if
1/320 and 1/240 respectively
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Chapter 8 Conclusion:s

8.1 Numerical techniques for multiphase MLPG_R
Method

This work has presentedtwo-phaseflow model usinghe Meshless Local PetrGalerkin
method based othe Rankine source solutioMLPG_R) to simulate 2D flows of two
immiscible fluids. Anovel interface coupling metholdas beerproposedto maintain
discontinuity of the fluid properties and im@asot only the dynamic interface condition

of pressure continuity but also the kinematic condition of the ratio of pressure gradient to
the densityBy enforcingthe above two interface conditions, the pressure at the interface
is explicitly formulatedusing that of neighbouring particles within the suppdoimain
consistingof both phasesAs the interface particles are identified at each time step
representinga smoothinterfaceconsisting of one layeof interface particlesthe newly
formulated interfacepressure can be exerted on the precise locafitiose phase
coupling treatmentsnablethe modelo cover a wide range of density rativom 1.01 to

1000 under either nelreaking or breakingravesituations.

To further extend the model to be appliealfbr surface tension and viscous effect
dominated caseshe implementation othe interface conditioneasalsobeenimproved

to satisfy the stress balanéecluding interface tensioin the normal direction of the
interface and the velocity continuityt dhe interface.Based on the new interface
conditiors, a pressurgump is addedand the ratio of pressure gradient to the density
modified, leading toadditional termsincorporatedinto the original interface pressure
formulation. As interface tensions involved in the simulation and its accurafies

highly on the curvature estimation, the curvature is analytically workefiamthe local
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reconstructed interface curve whictbised on therecisely identified interface particles.
Tests on differst curve types are carried out and second order convergence of the particle
distance is achieved whehe second ordemoving least squareMLS) approach is

adopted to reconstruct the local interface curve.

Another crucial issue addressed in this studghésinterface particle identificationVith
precisely identified interface particleghe interface conditionscan be properly
implementedandthe curvatureof interfacecan alsobe accuratelyetermined. Thaew
interfaceparticle identification methoddeveloped in this works based on the absolute
density gradienthavinga numericalvalue very closeto 0 for inner particles and rapidly
increagng when approaching the interface or isolated particlese performanceof the
methodhas beenested for different configurations includingae with different leved of
randomnessf particle distributions It is shown that the accuracy of the method is
independent of the density ratio of two phases and of the average distance between
particles. Inall the cases tested, the method can correctly pick up almost all the interface
and isolated particles as long as the support domain is larger thantlwieserage
distance of particles.

In this study, theéwo approachebhave also beeproposed to sokv thealgebraic pressure
equation. One is that both phases are sbinene set of equations (lgtatedl) and the
other splits the equations into two sefsich are thersolved separately within each phase
(Coupled2). In Couplee? approachas the intgface pressure is based on the pressure of
the surrounding particles of the last time step, validations for the results obtained by
Coupled2 method with or without iterations between twessitequations are carried out
and it is found that iteratiors not necessarwhenthetime step is sufficiently small. For
the comparison between two approadmgsumerical testst came to theonclusiong1)

the Coupled2 approach works wefbr a very highdensity ratio évenas high asL000)
while the Integrated approach isnly limited to flows with small density ratiotypically

less than 1.3and(2) where both approaches worqually wel| the Couplee? approach

is computationdy moreefficient.

In summary, the numerical techn&pi proposed in this studgchieves not only the
extension of MLPG_R method to twahase flow modelling buglso bring robustness

compared to existing twphase flow modelas listed below:

X The model maintains sharp discontinuity of fluid properties adfussnterface

and the interface with zero thickness.
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x Complete and accurate interface conditions are explicitly implemented at the
sharp interface with a newly derived pressure expression.

x Coupled2 approach effectively seds pressure algebraic equation

X The model achieves simulations for the flows with high density ratio (to 1000),
being violent and breaking and with high interface tension and viscous effects

without any artificial compensations.

8.2 Model validation and application

Model validations and apightions have been conducted in two grougs cases
corresponding to two interface implementation stages rmporporating the newly
proposed interface particle identification technique and chodsegoupled2 apprach

to solve pressure equationithe frst group is carried out by the interface condiioh
contirnuous pressureard the continuousratio of thenormal pressurederivative to the
densityconsideringnegigible surface tension ansmall viscosity.A jump on the ratio of

the pressure gradient to the density is maintained for the consideration of disordered
particle distribution.The model was first validated by the gravity current case with
density ratio ranging from 1.01 to 1.3. It was found thatptiogresshe dense phaskont

is validated by experimental data showing a condtamt velocity andthe predictions
agreedwell with the experiment. Being compared with experimental shadow graphs of
flow configurations, the current at three time imgsahave been well reproduced and the
pressure has been found continuouthainterface and smoothly distributed without any
noise. Simulations of natural sloshing with small amplitude in a tank fully filled by two
layer liquid have also been carried datvalidate the model with analytical solutions
involving wave elevationgnd pressure Good agreemerst of interface elevation time
history, pressure distribution across the interfémea number ofime instantdhave been
reachedWith density ratio raging from 10 to 1000 and dense fluid filling ratio of 0.5
and 0.3, all the tests conducted on wave elevatioamge achievel second order
convergence with initigparticle distance. Further validat®on the natural frequencies

for the filling ratio from 0.1 to 0.9 almost coincide with the analytisalutions The last
case in this groupas beemroncerned wittviolent airwater sloshing with density ratio of
1000in which a jet of water impingeson the wall andvave breaking occurs, leaving
isolated watemarticles splashing out and air particles penetrating into the water. The
wave profiles obtained by the simulatibroady agree withthe test results as revealed by

experiment photos. e predicted pressureme history on the wall is smooth with
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negligible numerical induced oscillations and shows adgagreement when compared

with experimental data.

The second groupas beercarried out by the interface condition wighjump onthe
pressureand the jump on theratio of the pressure gradient to tensityis modified
including the effects ofinterface tension and large viscositfhe model has been
validated bythe case of squadroplet deformatiorin which the initial squards found
graduallydeform to beomea circle due to the presemof interface tension and finally
reach an equilibrium state. As the interfasesharply represented ardsharp pressure
jump is implementedat the interfacethe pressure achieves two constants inside and
outside the circle by completing the jump on the interfparticle,a result thatagrees
well ZLWK /DSODFHTV /DZ %HQHILWWLQJ IURP WKH SUHFLVF
the spurious current phenomehas beenmsignificantly releved when compare with
volume of fluid YOF) interface treatment illustted by the reduced maximum residual
velocity atthe equilibrium stateAnother validation case the capillary wave simulation,
amplitude dampingvith the analytical solutiofas been comparexhd the effect of the
jump modification on the ratio of the pessure gradient over the denshgs been
discussedThe dampingof the interface amplitude fatifferentviscositiesis obtained by

either interface condition wittwo different jumps orZ and compared with the analytical

solutions.It comes to the conclusiomhat as the viscosity increases, thsultsobtained by

the condition withthe jump of —éconsidering small viscositgeviate further from the

analytical solutions while thaibtained by the condition witthe jump of-2 considering

large viscositymaintain good agreement with the analytical solutidri®e last case is
bubble risingthat has been validated extensively against the published results through
numerically simulating bubble rising in viscous fluid@he final buble shapepredicted

by the presenMILPG_R method is close to the ones obtainedifiye element method
(FEM) with level set andinite volume method KVM) with VOF. As for the rising
velocity and centroid position progress, results of multiphase MLPG_tRodhdocate
betweernthoseobtained by thsetwo methods.

According to case studies, the model has been validatdok teffective andhave

favourablefeaturesas

x Continuous pressure across the interface for the cases without interface tension;
X Sharp presser jump at the interface presenting the interface tension if it is

considered;
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X Pressure away from the interface is smoothly varied without notable numerically
caused oscillations;

X Secondrder convergence is achieyed

x Applications cover the density ratfoom 1 to 1000 including violent flows with

breakings.

8.3 Recommendation for future works

Although the current multiphase MLPG_R method has bealidated againsa large
number ofcases, improvements in many aspeétthe methodare recommended here to
enable the metho becomemore applicable in situations of reality, to stretch it for more
diversity of applications by considering other complex behaviour of the multiphase flow
and to speed up the simulation.

As onlya 2D modelis developed in this study, the extension to a 3D model is essential to
simulatea wider rangeof cases in reality such as a spbalrbubble rising inthe water
column andhe sloshingoccurring in a ship carryingil or at LNG tank which cannobe
simplified as a 2D tank. For the simulation @lgnent(sand or mudjransportation in
water(Shao & Lo 2003; Shakibaeém& Jin 2012a)even thougtiluid-sediment mixtures

can betreated as continuous fluid, the nNewtonian propertyof the flow has to be
considered. Turbulence commonly exists in violent breaking waves, pipe flowangkts
wakes etc. which lave been modelled as single phase flom(Gotoh & Sakai 2006;
Dalrymple & Rogers 2006)When considered as multiphase flows, fimulation of
turbulence becomes challengifithe compressibility effects of the ailated to breaking
waves and in other more general situations have to be consiéeoed thepoint of view

of computational efficiency, parallel computation or egeaphic procssing unit GPU)
utilization is necessary for large domasimulation, especially for 3D cases. An
alternative way to speed up the simulation in ocean water wave interaction is to develop
an integrated model using multiphase MLPG_R to deal with local Wwesaking, air
entrapment and viscous effect while a rough but more efficient model (i.e. based on

potential theory) to deal with outer domain.
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