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ABSTRACT. There are well-established survival analysis methodologies
for data sets which are complete, with accurate information on censoring.
But what if they are not complete? In this paper we consider how to
analyse cases where “hidden censoring” occurs, where individuals have
effectively left the study but the hospital is unaware of this. We develop
a new Markov chain-based methodology for generating survival curves
and hazard functions, and demonstrate this using a breast cancer dataset
from the Kurdistan region of Iraq.

1. INTRODUCTION

The modelling of survival has a long history, and there are well-established
methodologies for estimating survival probabilities for individuals with a
given medical condition (Cox and Oakes, 1984; Crowder, 2012; Crowder
et al, 1991; Lawless, 2003). Essentially identical methods are also used for
modelling the failure of items, such as components in machines (see e.g.
Barlow and Proschan, 1975; Bedford and Cook, 2009). The most funda-
mental functions used in survival analysis are the survivor function, which
is the probability that an individual survives beyond time t, and the hazard
function, which is the risk of death (per unit time). Thus if our individual has
lifetime distribution T, following standard terminology (see .e.g. Chapter 2
of Cox and Oakes, 1984), the survivor function is

(1) S(t) = P [T > t]

and the hazard function is

(2) h(t) = −
d
dt
S(t)

S(t)
.

Expressing the relationship in equation 2 the other way round, we obtain

(3) S(t) = e−
∫ t
0 h(u)du.

1
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These fundamental properties can be estimated directly from data in a num-
ber of ways, but perhaps the simplest and most robust is the Kaplan-Meier
estimator, which estimates the hazard function, using the discrete hazard
function

(4) hj =
dj
nj
,

where dj is the number of observed deaths within a particular (unit) interval,
and nj is the number of individuals at risk at the start of that period. The
survivor function is then estimated by

(5) Ŝ(t) =
t∏

j=1

(1− hj).

This method automatically takes into account any data censoring, where an
individual is known to leave the study at a particular time, by reducing the
number at risk nj by the number of censored individuals cj . Thus we update
the number at risk as follows:

(6) nj+1 = nj − dj − cj.
A great advantage of this method is that reliable estimates can be obtained

without making assumptions about the underlying distribution T . The only
information that we need to apply this methodology is, for all times where
we take measurements, knowledge of the values of the total number of indi-
viduals at risk at the start of the time period and the total number of deaths
within the time period, i.e. all vallues of nj and dj . This then enables ro-
bust comparisons between survival curves from different studies, perhaps
between different types of treatment, different times or different countries,
and helps clinicians to assess the effectiveness of different approaches. Sig-
nificant censoring can be factored in as described above without problems,
provided that records are sufficiently good to know when contact with pa-
tients has been lost. The focus of this paper is how to tackle problems when
you do not have this knowledge, and siginificant “hidden” censoring occurs
unknown to the researchers, using a real example as a case study. In Section
3 we shall present two models, one without and one with censoring, which
address this problem. In fact our models, in particular the second model, do
make parametric assumptions, based as they are on an underlying Markov
chain model. Nevertheless the models, in particular the simpler first model,
will be robust to (at least certain types of) deviation from them.

2. A KURDISH BREAST CANCER DATASET

Breast cancer is the most common cancer in the West, affecting a large
number of women (and men) at some point in their lives (WHO Global
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Burden of Disease, 2008). There are various risk factors, such as obesity,
age and hormone replacement therapy during menopause (Lan et al., 2013;
Robb et al., 2007; Rudat et al., 2013). Breast cancer has been well studied
and treatments are becoming more sophisticated and successful (De San-
tis et al., 2014). The American Cancer Society reports that around 250,000
breast cancer cases are diagnosed in the U.S. per year, and of these, al-
most 10 percent affect women under age 45. While this percentage may
sound relatively insignificant in comparison to the total number of women
diagnosed annually, it is a noteworthy ratio particularly when compared to
other cancers. In women under 40 breast cancer is the leading cause of can-
cer deaths (Ries et al., 2007). While the UK currently has the 11th highest
breast cancer rate with 89.1 of every 100,000 women every year expected to
develop breast cancer (NHS Choices, 2011). Breast cancer is also becoming
a more common disease in the developing world (Ozmen, 2006). In partic-
ular, we are interested in the incidence of breast cancer in the Kurdistan
Region of Iraq. This has not received a lot of detailed attention; examples
include Majid et al. (2009), Othman et al. (2011), Majid et al. (2012) and
Shabila et al. (2012) (see also for example Alwan et al. (2000), Hughson
(2012), Hussaion (2009) for other work on breast cancer in the Kurdistan
region, and Dey et al. (2010), Rennert (2006) and Sughayer et al. (2006)
for work on the incidence of breast cancer elswhere in the wider region).
These papers addressed various important questions, especially related to
the incidence of breast cancer, but so far no detailed survival analysis has
been carried out for the Kurdish region of Iraq.

We consider a data set of breast cancer patients from Nanakaly Hospital.
Nanakaly Hospital is a public sector hospital in Erbil, the capital of the
Kurdistan region of Iraq, which was established in 2004 and is funded by
the Kurdistan Government. It is a centre concerned with all types of cancer.
The hospital registry department collects data regarding the type of cancer
and the age of the patients, the time of diagnosis and (if appropriate) the
time of death, as well as personal details, and these are registered on the
statistical database. We have access to the most recent data on breast cancer,
minus the personal information.

Detailed times of death were provided, with censoring only at the end of
the study period on 1st June 2014, see Figure 1 for an illustration. Analysing
the above data using SPSS, provided the Kaplan-Meier survival curve in
Figure 2. The function flattens out to effectively a horizontal line, indicat-
ing a hazard rate tending to zero. This is clearly not a realistic survival
curve. For comparison, a survival curve for a set of breast cancer data from
Schumacher et al. (1994) is shown in Figure 3. The problem with the sur-
vival curve from Figure 2 is that we calculated it on the assumption that
all individuals other than those who died (or were censored by reaching the
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FIGURE 1. Illustrative plot of survival times including end
of period censoring (C), recorded death (D) and hidden cen-
soring, individuals unknowingly lost to the study (L), for the
Kurdish data from Nanakaly Hospital.

FIGURE 2. The original survival curve for the Kurdish data
from Nanakaly Hospital.
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FIGURE 3. Survival curve for the German data from
Schmoor et al. (1996) and Schumacher et al. (1994).

end of the study period) were still active in the study, but in fact individuals
often did not return to the hospital after initial treatment, and there are no
clear records of when the deaths of these individuals occur, or of which in-
dividuals these are. Thus there is some secret censoring that we do not have
knowledge about. We can think of this to mean that whilst the values of dj
are accurate, the values of nj are not, and we are (after some time, greatly)
overestimating them.

This paper will present two related methods for overcoming this problem,
and obtaining a realistic survival curve for the Nanakaly data. The data itself
will be analysed more fully in a separate paper.

3. MARKOV MODELS

3.1. A Markov model without censoring. We shall first introduce a con-
tinuous time Markov model without overt censoring (Cox and Miller, 1965;
Grimmett and Stirzaker, 2001). In our data the only observed censoring was
caused by the end of the study period, although as patients were being re-
cruited all the time during the period, the censoring time could be small, and
such censoring could occur for any time less than 2602 days, the time from
the earliest record considered to the end of the study period. Thus all of the
individuals censored and removed from the number at risk in the standard
way following equation (6) (see equation (15)) was censoring of this type.
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FIGURE 4. The Markov survival model without censoring

Consider a population of individuals in three categories; either at risk (I),
died (D) or who have left the study (without our knowledge), which we shall
call “lost” (L). Individuals simply move from state I to the other two states
at constant rates l to L and p to D. We thus have a population as described
by Figure 4. We denote the proportion of individuals in states I, L and D
at time t by PI(t), PL(t) and PD(t) respectively. State I cannot be entered,
and is left at constant rate per individual l+p, thus we obtain the differential
equation (see e.g. Chapter 8 of Haigh, 2002)

(7)
d

dt
PI(t) = −(l + p)PI(t).

Since at time 0 every individual is in the “at risk” category, so that PI(0) =
1, we obtain

(8) PI(t) = e−(l+p)t.

Since state D is entered at rate pPI(t), we also have

(9)
d

dt
PD(t) = pPI(t),

which using equation (8) and the fact that PD(0) = 0 yields

(10) PD(t) =
p

l + p

(
1− e−(l+p)t

)
.

Since PL = 1− PI − PD, we obtain

(11) PL(t) =
l

l + p

(
1− e−(l+p)t

)
.

Suppose that, as in the original survival plot, we consider the data without
realising that the category L exists. We can see from equations (10) and (11)
that

(12)
PL(t)

PD(t)
=
l

p
.
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Let us denote the ratio l/p by α, which is the number of “lost” individuals
per death. As t → ∞ there are no more observed deaths, as all individuals
who have not already died have in fact been “lost”. We can obtain an esti-
mate of α by the ratio of the number of individuals apparently still in the
study n∞ and the number who have been observed to die D∞, yielding

(13) α̂ =
n∞
D∞

.

Thus an easy way to construct a survival curve from the data is to adjust the
number at risk, instead of using the formula from equation (6), to instead
use

(14) n̂j+1 = n̂j − dj − α̂dj − cj,
which implies that

(15) n̂j+1 = n̂j −
D∞ + n∞
D∞

dj − cj.

We can see that using this updating method α̂ from equation (13) is the
appropriate estimate to use, by observing that after all observed deaths have
been accounted for, using equation (15) an extra n∞ individuals will have
been removed from the at risk category. This is precisely the number of
individuals which we noted had been “lost”.

The survivor function is then just calculated using equation (5), with hj
calculated using

(16) hj =
dj
n̂j
.

This method will work well even if the underlying death rate and the rate
of loss of individuals vary in time, as long as they vary in proportion with
each other. If this is not the case, there would be a bias in the estimates
of the hazard function hj that we obtain. To tackle this problem we would
need to have some more specific information about the way in which the
loss of individuals into the L category differed from the rate of deaths, and
this is likely to be problem specific, for example depending upon hospital
procedures, and so we do not discuss any specific methodological ideas in
this paper.

As mentioned in Section 2, there is overt censoring in this population
caused by the end of the study period. This creates a potentially significant
problem, because even the “lost” individuals are censored in this way, and
so without adjustment the number of individuals at risk can be underesti-
mated due to double counting (effectively the same individual being lost
and then censored can be removed twice). This in turn leads to a lower esti-
mate of α than would otherwise be the case. In the alternative model below



8 SURVIVAL ANALYSIS MODELLING WITH HIDDEN CENSORING

FIGURE 5. The Markov survival model with censoring

we shall see a different, higher, estimate of α, and there is some discrep-
ancy between the estimated survival curves of the two methods as a result,
since the above errors cause an overestimate of the survival curve for the
first model. We shall discuss this issue later (see from Figures 6 and 7).

3.2. A Markov model with censoring. More generally we would like to
allow for observed censoring as well as hidden censoring within our model.
Observed censoring occurs either when an individual is still alive at the end
of the study period, or where they leave the study before the end, but the
hospital is aware of it. Hidden censoring occurs when they leave the study
but the hospital is not aware of it. Thus we now add an extra “censored”
category C to our model, where individuals move from I to C at rate q. Im-
portantly, individuals also move from the lost category L to C at the same
rate q. This is clearly appropriate for our dataset, since the only overt cen-
soring is due to the end of the study, and thus any individual will reach this
at the same time, whether in category I or L. We thus now have a population
as described by Figure 5. We note that for individuals censored because we
know that they have dropped out of the study prior to the end time, it would
seem reasonable to assume that these and the “lost” individuals would be
entirely separate, and so that the transition rate q from state L to state C
would be absent.

Following the transitions in Figure 5, there is a constant rate of departure
per individual from state I , so that we have

(17)
d

dt
PI(t) = −(l + p+ q)PI(t),
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and similarly to before, we obtain

(18) PI(t) = e−(l+p+q)t.

We also still have

(19)
d

dt
PD(t) = pPI(t),

which using equation (18) and the fact that PD(0) = 0 yields

(20) PD(t) =
p

l + p+ q

(
1− e−(l+p+q)t

)
.

For the lost category L, we have entry to the state at rate lPI(t) and depar-
ture from the state at rate qPL(t)

(21)
d

dt
PL(t) = lPI(t)− qPL(t).

Using standard methods (see e.g. Chapter 8 of Haigh, 2002), together with
the fact that PL(t) = 0, yields

(22) PL(t) = e−qt
l

l + p

(
1− e−(l+p)t

)
.

Finally, since PC = 1− PI − PD − PL, we obtain

(23) PC(t) =
l + q

l + p+ q

(
1− e−(l+p+q)t

)
− e−qt l

l + p

(
1− e−(l+p)t

)
.

It is clear that the death rate for individuals in the at risk category I , i.e.
the correct hazard function, is simply

(24) hc(t) = p.

Using equation (3), the true survivor function for our model is thus simply

(25) Sc(t) = e−pt.

Since we perceive individuals from class L as being in category I too, we
observe an apparent hazard function of

(26) ha(t) =
PI

PI + PL
p.

Substituting the appropriate terms from equations (18) and (22) and rear-
ranging gives

(27) ha(t) =
p(l + p)

p+ le(l+p)t
.

Following equation (3), the apparent survivor function is thus

(28) Sa(t) = e−
∫ t
0 ha(u)du,
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which rearranges to

(29) Sa(t) =
l + pe−(l+p)t

l + p
=
α + (e−pt)1+α

1 + α
.

Thus we can express Sc(t) in terms of Sa(t) as follows:

(30) Sc(t) = ((1 + α)Sa(t)− α)1/(1+α) .
The apparent survival curve Sa(t) from Equation (29) flattens out to a

limiting value α/(1+α). We can thus estimate α by equating this theoretical
limit with the observed limiting value of the survival curve from the data
which we shall denote by s∞, giving:

(31) α̃ =
s∞

1− s∞
.

This yields the conversion formula from the apparent to the corrected sur-
vival curve as

(32) Sc(t) =

(
1

1− s∞
Sa(t)−

s∞
1− s∞

)1−s∞
.

We note that our final solutions for the survivor function and the haz-
ard function do not contain q at all. In fact, this means that these solutions
are unaffected if q is replaced by a time-dependent function q(t). This is
important, as the censoring time is in reality directly related to the rate of
recruitment into the study, which may be influenced by non-random factors.
It also means that we can apply this method to cases without censoring as in
the previous method of Section 3.1. We also note the discrepency between
our two estimates of α. In general when overt censoring occurs, α̂ will be
smaller than α̃, because the first model neglects the influence of censoring
in the estimation procedure.

4. APPLYING OUR MODELS TO THE KURDISH DATA

From the Kurdish data we obtained the following values: n∞ = 232, D∞ =
240 and s∞ = 0.5969, which gives the two alternative estimates of α̂ =
0.9667 and α̃ = 1.4807 lost individuals per death. Applying our method
from Section 3.1 gives the adjusted survival curve from Figure 6. Using the
alternative method from Section 3.2 gives the adjusted survival curve from
Figure 7.

We can see that the two alternative survival curves generated by our meth-
ods now resemble the survival curve from the German data from Figure 3.
The curves in our case are clearly lower than that of the German data, indi-
cating poorer survival rates among the Kurdish patients. There are a num-
ber of reasons for this, including later diagnosis, less efficient treatment
regimes, and different patient demographics, which we will consider in a
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FIGURE 6. An adjusted survival curve for the Nanakaly data
using the method without censoring from Section 3.1.

FIGURE 7. An adjusted survival curve for the Nanakaly data
using the method with censoring from Section 3.2.
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later paper. Comparing the two curves from Figures 6 and 7, we see that
initially the two curves are roughly the same, but for later times, the curve
in Figure 6 is clearly above that in Figure 7. We should also note that our
methods are likely not be very accurate near the end of the curves, i.e. when
the last of the recorded deaths occur. Thus in the case of the Nanakaly data,
the curves beyond about 700 days are likely to be inaccurate.

We should also note that the above methodology can be applied to any
survival curve, so that if we have a survival curve from a subset of the data,
or for patients with particular properties, then the method of adjusting the
original survival curve is completely unchanged.

5. SIMULATIONS

In this section we consider simulations to investigate the validity of our
modelling procedure. We consider the example German data from Figure 3,
as we have an accurate survival function for this. For each simulation, we
chose a distribution and simulated each individual from the German data
being “lost” following this distribution. Thus if death happens before the
individual is lost, we observe the death, but if the individual is lost first we
assume that they are still in the study, and do not observe their death, if
it occurs. This thus replicates what happens in the Nanakaly data, and the
situation that we are modelling.

The models that we have considered are Markov with constant rate, which
would yield an exponentially distributed time of loss. We considered various
values of this distribution. One set of simulations considered a mean loss
time of 2000 days. Given the length of the German study, this accounted for
quite a significant loss of data. One example run of this is shown in Figure
8 where the apparent survival probability after 2000 days has only fallen
to approximately 0.8 instead of the true value of just over 0.6 as a result.
The survival curves generated for our two models are shown in Figures 9
and 10 respectively. We can see that in both cases, the models significantly
correct the survival function from the apparent survival function shown in
Figure 8. The first model gives a somewhat conservative correction, which
is higher than the true survival function in Figure 3. As explained in the
final paragraph of Section 3.1, this is because of the double counting of lost
and censored individuals. The estimate of the second model is clearly bet-
ter, with a closely comparable survival curve. These curves are typical of
different simulations with the same mean loss time.

Exponential distributions with higher means yield even better results, as
the level of loss is diminished, and so the amount of adjustment that needs
to be carried out through our procedure is reduced. For exponential distribu-
tions with lower means (in particular below 500 days), and thus very large
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FIGURE 8. The survival curve for a sample simulation of
loss from the German data, where loss of individuals occurs
following an exponential time with mean 2000 days.

data loss, figures became increasingly less accurate, as a larger proportion
of deaths were missed, and this led to overestimates of survival rates.

We also considered non-exponential distributions, for example Gamma
(2, θ), for patient loss. When this led to a large number of lost individuals
(for sufficiently high means this did not, and thus as above the corrections
were not large and were accurate) we would expect our model to perform
worse in such circumstances, as this would indicate that the underlying
Markov assumption was not correct. This was indeed the case, although
the models still corrected the false apparent curves to significant effect, and
as for exponential distributions with small means, the effect was generally
to produce slightly conservative survival functions, which overestimated the
true survival curve.

Thus we see that our models perform well in many circumstances, and
even when less accurate, are always an improvement on considering the
apparent survival curves from the unadjusted data.

6. DISCUSSION

In this paper we have developed a new method for performing a survival
analysis on a set of data where there are important unknown factors; namely
secret censoring of the data, so that the number of individuals apparently at
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FIGURE 9. An adjusted survival curve for the Gemran data
with simulated loss following an exponential distribution
with mean 2000 days, using the method without censoring
from Section 3.1.

risk is greater than those actually at risk. In particular we have shown how
to adjust a Kaplan-Meier analysis to find a survival curve in such circum-
stances, and also shown how to estimate a true hazard (survivor) function to
the biased one obtained directly from the data.

A limitation of our methodology is that it is based upon a Markov chain,
and so transition rates are assumed constant over time. In fact some relax-
ation of these assumptions, such as making the censoring rate q time depen-
dent, does not affect the model accuracy. Similarly, allowing the parameters
l and p to be time dependent does not affect the model, provided that they
vary with α = l/p constant. This however is not always reasonable, and it
is possible to envisage some situations where this is far from being the case.
In such circumstances our predictions would not be reliable. Similarly, if
different groups of individuals have different rates with different l/p ratios,
this might also affect the results. We claim, however, that in circumstances
where the problems outlined occur, our model is a good first step, and a
considerable improvement on making no adjustment. This is demonstrated
in Section 5 where we simulated the loss of individuals from the German
data set, and compared the resulting survival curves from our models with
those from the original data.
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FIGURE 10. An adjusted survival curve for the German data
with simulated loss following an exponential distribution
with mean 2000 using the method with censoring from Sec-
tion 3.2.

This leads on to the question, how prevalent will the problems that we
have described be? With sufficiently accurate records and follow-up of in-
dividuals they will not occur, and of course a better solution than applying
our methods is to have these processes in place. Nevertheless, in reality they
often will not be. This is particularly the case in regions with a history of
upheaval and developing medical services. It can be argued that these are
precisely the regions which most need accurate survival models and so the
application of our methods can be of significant value.
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