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Abstract— Medical image analysis and visualization, can 

contribute in quantitative and qualitative analysis of Magnetic 

Resonance Imaging (MRI) towards an earlier diagnosis of Alz-

heimer’s disease (AD). Moreover, the early detection of Mild 

Cognitive Impairment (MCI) has recently attracted a lot of at-

tention. The main objective of this paper is to present a survey 

of recent key papers focused on the classification of MCI and 

AD and the prediction of conversion from MCI to AD using 

volume, shape and texture analysis. The most frequent ana-

tomical features used in the assessment of AD, is the hippocam-

pus, the cortex and the local concentration of grey matter. 

Shape analysis can identify the signs of early hippocampal at-

rophy, whereas volume analysis evaluates the structure as a 

whole. Shape analysis seems to be a more accurate technique 

both in classification of patients and in prognostic prediction. 

Compared to volume, shape and voxel based morphometry 

(VBM) techniques, texture analysis can be used to identify the 

microstructural changes before the larger-scale morphological 

characteristics which are detected by the other aforementioned 

techniques. We concluded that quantitative MRI measure-

ments can be used as an in vivo surrogate for the classification 

of patients and furthermore, for the tracking the Alzheimer’s 

disease progression.  

Keywords— Alzheimer’s disease; Mild Cognitive Impair-

ment; quantitative MRI; temporal lobe; hippocampus; brain 

volume; prediction; classification. 

I. INTRODUCTION 

Mild Cognitive Impairment (MCI) represents a transi-

tional period between normal ageing and clinical probable 

Alzheimer’s disease (AD) [1]. Nowadays, the diagnosis of 

AD is based on Mini Mental State examination (MMSE) 

such as the criteria documented in the Diagnostic and Statis-

tical Manual of Mental Disorders based on the revised rec-

ommendations of the National Institute of Neurological Dis-

orders and Stroke–Alzheimer Disease and Related 

Disorders working group [2]. However, by the time a patient 

is diagnosed with AD using the standard clinical assessment, 

the brain tissue has already undergone widespread and irre-

versible synaptic loss [3]. AD is indicated by inevitable and 

insidious progression of atrophy which initially affects the 

Medial Temporal Lobe (MTL) of the brain [4], a region of 

the brain which includes anatomically related structures that 

are essential for declarative memory [5]. The regions af-

fected earlier by AD are the entorhinal cortex, followed by 

hippocampus, amygdala (see Fig. 1) and parahippocampal 

gyrus, a grey cortical region that surrounds hippocampus. 

With disease progression, these regions lose neuronal tissue 

with consequent brain atrophy [6].  

There is a pressing need to identify the early signs of the 

disease using in vivo techniques, apart from the MMSE tests. 

In order to identify the MCI stage, suitable biomarkers need 

to be used. A biomarker is a biochemical or anatomical fac-

tor which can provide quantitative measurements of the 

pathophysiologic processes of a disease [2] thus, many re-

searchers have been using neuroimaging to evaluate this 

possibility. The Alzheimer’s disease Neuroimaging Initia-

tive (ADNI) [7] is a multicenter collaborative effort created 

in 2003 by the National Institute on Aging, the National In-

stitute of Biomedical Imaging and Bioengineering, the Food 

and Drug Administration, private pharmaceutical compa-

nies and non-profit organizations. It is an open source data-

base where a huge collection of Positron Emission Tomog-

raphy (PET) and MRI images are available online. Apart 

from imaging data, other biological markers such as cere-

brospinal fluid (CSF) of more than 2000 participants includ-

ing AD patients, MCI subjects and elderly controls are avail-

able online. This paper focuses on studies derived mainly 

from the ADNI database, and more specifically on the stud-

ies where quantitative MRI analysis was used for the assess-

ment of the disease. 

Structural MRI is a non-invasive imaging modality that 

provides high resolution images of the brain in any plane. 

The high tissue contrast images provided by 3D T1-

weighted acquisitions enables accurate structural neuroim-

aging analysis which can be used as a possible biomarker for 

both the assessment of the disease and the prediction of con-

version from MCI to AD [8]. Furthermore, because MRI 

does not use any ionizing radiation it is a suitable technique 

for longitudinal studies, which are necessary in the investi-

gation of AD. It has been proved by many volumetric and 

shape and thickness analysis studies [9]–[13] that structural 

MRI based software tools allow the visualization of macro-

scopic tissue changes, and thus can help on the detection of 

neuronal loss in the initial stages of the disease. Features re-

lated to texture may have the potential to detect earlier and 

more subtle changes in neural tissue than other volumetric 

or shape analysis techniques [14].   

This paper also provides a very brief review of the most 

widely referenced medical image analysis techniques used 
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in the assessment of AD. It focuses on selected studies pub-

lished in the last decade, investigating the prediction of con-

version from MCI to AD and the classification of MCI pa-

tients, using only structural MRI imaging and specifically 

volume, shape and texture analysis techniques. The results 

of the various ADNI studies might not be directly compara-

ble; however, the data used are from the same database. 

 

  
Fig. 1 Axial (A), sagittal (B) MRI views of hippocampus (H) and amyg-

dala (A) segmentation [15]. Brain regions that are affected earlier by AD  

II. QUANTITATIVE MRI STUDIES BASED ON VOLUME 

AND SHAPE CHARACTERISTICS 

 Table 1 and Table 2 tabulate quantitative MRI studies 

covering volume, shape and texture analysis for brain atro-

phy classification and prediction from MCI to AD, respec-

tively. In each table the following data are presented: study, 

subjects, follow-up duration, region of interest (ROI) inves-

tigated, data type, classifier, accuracy, sensitivity and speci-

ficity. 

II.A Classification of MCI and AD studies: One of the 

most common areas affected, at the very early stage of the 

disease, is the hippocampus [16], [17]. Several studies [5], 

[9], have used  volume measurements and confirmed that 

hippocampus atrophy as seen in structural MRI can consti-

tute a useful diagnostic biomarker. Chupin et al., 2009 [10] 

used automated segmentation techniques in order to calcu-

late hippocampal volume in an attempt to differentiate nor-

mal controls (NC), MCI and AD subjects. In their study, 

they achieved an overall classification accuracy of 64%, 

showing that global hippocampal volume evaluation may 

not be a very accurate measure, mainly due to the fact that 

hippocampal volume is as variable in young as in older 

adults, thus this may have implications on the final results 

[18]. Desikan et al., [19] carried out automated structural 

measurements of entorhinal cortex and supramarginal gyrus 

thickness. In conjunction with hippocampal volume, they 

classified MCI from AD patients with high accuracy. Ger-

ardin et al. [20] used hippocampal shape features instead of 

volume analysis. Shape analysis methods can be used to re-

veal atrophy on local and non-global areas of the hippocam-

pus, and according to the authors, the classification accuracy 

was superior to studies that used volume analysis. Specifi-

cally, they obtained a classification rate of 94%, with a sen-

sitivity of 96% and a specificity of 92% for AD vs controls, 

and for MCI vs controls an accuracy of 83%, sensitivity 83% 

and specificity 84%. Kloppel et al., [21] used SVM for the 

classification of patients (from 3 different groups) by using 

two different types of analysis: in the first model they used 

data from the whole brain and on the second they used data 

from an ROI within the hippocampus. Their results were 

comparable with other techniques which restrict their anal-

ysis only to medial temporal lobe structures. However, 

shape analysis used in [20]  resulted in  a better classification 

accuracy for both AD vs NC and MCI vs NC. 

 
Table 1:  Quantitative MRI studies in the classification of MCI and AD patients 

 

Volume and shape analysis 

Study Subjects ROI Data type Classification method Classification Acc. Se. Sp. 

Chupin et al., 

2009 [10] 
210 MCI 

Hippocampus & 

amygdala 
Volume Bootstrapping 

NC vs AD 
NC vs MCI 

NC vs MCIc 

MCIc vs MCInc 

76% 
61% 

71% 

64% 

75% 
61% 

67% 

60% 

77% 
61% 

72% 

65% 

Desikan et al., 
2009 [19] 

49 NC, 48 MCI 

 

94 NC, 57 MCI 

Entorhinal cortex 

& supramarginal 

gyrus 

Volume & 
Thickness 

Logistic regression 
model 

MCI 
AUC: 0.91 
AUC: 0.95 

74% 
90% 

94% 
91% 

Gerardin et al., 

2009 [20] 

23 NC, 23 MCI, 

25 AD 
Hippocampus Shape SVM 

NC vs AD 

NC vs MCI 

94% 

83% 

96% 

83% 

92% 

84% 

Kloppel et al., 
2008 [21] 

20 NC, 20 AD Grey matter Thickness SVM 
NC vs AD 

NC vs mAD 
mAD vs FTLD 

95% 
81.1% 
89.2% 

95% 
60.6% 
94.7% 

95% 
93.0% 
83.3% 

Texture analysis 

Zhang et al., 

2012 [22] 
17 NC, 17 AD 

Hippocampus & 

entorhinal cortex 

3D tex-

ture 
Non-linear ANN NC vs AD 

64.3% - 

96.4% 
- - 

Simoes et al., 
2012 [23] 

15 NC, 15 MCI Grey matter 
Texture 
maps 

SVM NC vs MCI 87% 85% 95% 

GLOSSARY: ROI: Region of interest; Acc: accuracy; Se: sensitivity; Sp: specificity; MCIc: MCI converters; MCInc: MCI non converters; SVM: support 

vector machine; AUC: area under curve; NC: Normal controls; ANN: Artificial neural network; mAD: mild AD; FTLD: frontotemporal lobar degeneration.
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II.B Prediction of conversion from MCI to AD studies: 

Many studies have been investigating the prediction of con-

version from MCI to AD (see Table 2). In a recent study, 

Costafreda et al., [24] used a fully automated procedure to 

extract 3D hippocampal shape morphology in order to pre-

dict conversion from MCI to AD. Their predicting model 

had an accuracy of 80% (sensitivity 77%, and specificity 

80%) which was competitive with other predictive models 

which used non automated measurements. In their predic-

tion model, only hippocampus was used, which interestingly 

achieved a predictive performance comparable or superior 

to those employing a multi-region or whole brain approach   

[14],[15]. In [25], the authors used VBM analysis to evalu-

ate the volume of white matter (WM) and grey matter (GM) 

of 103 MCI patients which they followed up for 15 months 

in order to predict which individuals will convert to AD. 

They evaluated their results via cross-validation and 

achieved an accuracy of 81.5% which is the one of best re-

sults published. Plant et al., 2010 [17] in order to predict the 

conversion from MCI to AD from atrophic changes across 

the brain, they used 3 different classifiers including Support 

vector machine (SVM), Bayes statistics, and Voting Feature 

Intervals (VFI). When the anterior cingulate gyrus and or-

bitofrontal cortex was included in their measurements, they 

obtained their best predictive accuracy which was 75%. 

Bakkour et al., [27] applied measures on cortical thickness 

of nine ROI’s to test the predictive performance of this 

model. Among the other ROI’s, MTL, cortical thickness had 

the best peak performance, predicting conversion to mild 

AD with 83% sensitivity and 65% specificity. Querbes et 

al., [28] used mean cortical thickness within 22 ROI’s and 

they obtained an accuracy of 73% and a sensitivity of 75% 

by applying their Normalized Thickness Index (NTI) on 

subjects from the ADNI database. In a very similar study 

[13], cortical thickness was measured, and based on the re-

sults, it was noticed that atrophy patterns differ with the dis-

ease progression, thus by learning these differences, the pre-

diction accuracies can be improved. 

The aforementioned ROI and whole brain studies success-

fully discriminated the individuals who converted from MCI 

to AD. The study by Desikan et al., [29]  attempted to pre-

dict the time to progress from MCI to AD. They used auto-

mated MRI-based software tools to apply measurements of 

medial temporal cortex thickness and volume on 64 ROI’s 

among the two hemispheres of 324 MCI patients. Further-

more, they compared their results with CSF samples and 

PET measures and interestingly, their results revealed that 

structural MRI could better predict the disease progression 

rather than CSF biomarkers and metabolic changes detected 

rom PET. In a very similar study by Vemuri et al., [30] 

where structural MRI and CSF biomarkers on 399 subjects 

were used, the results were similar to the study in [29] as it 

was found that MRI could predict with higher accuracy the 

time to conversion from amnestic MCI to AD, compared to 

CSF biomarkers.  

III. QUANTITATIVE MRI STUDIES BASED ON TEXTURE 

ANALYSIS 

Texture analysis, is a less frequently used compared to 

volume and shape analysis. The information provided by 

texture analysis cannot be visible through volume and 

shape properties [23] thus, texture analysis techniques may 

have the advantage of detecting earlier, subtle changes [31]. 

There exist different methods for texture analysis: (i) struc-

tural methods, (ii) statistical based methods, (iii) model 

based methods and (vi) transform based methods [32]. Quite 

frequently, the features are extracted from the grey level co-

occurrence matrix (GLCM) methods which computes how 

often pair of pixels with specific values occur in an image 

[33]. 

III.A Classification of MCI and AD studies: In [22], 

Zhang et al., used 3D texture features to identify normal 

controls from AD patients. They used over 100 texture fea-

tures which were extracted from spherical ROIs placed 

within the area of the hippocampus and the entorhinal cor-

tex, using image histograms, gradients, co-occurrence ma-

trices and Run Length matrices (RLM). However, the clas-

sification accuracy of the method varied significantly, from 

64.3% to 96.4%, depending on the chosen ROI. Not many 

studies applied texture analysis on MCI patients. One such 

study  was that of Oliveira et al., [34] where texture analysis 

was carried out only in the thalamus and corpus callosum of 

the brain. Because of the small number of subjects (17 MCI, 

16 mild AD patients and 16 NC) the segmentation of corpus 

callosum and the thalamus was carried out manually and 44 

texture parameters were extracted. The analysis was carried 

out separately for the two types of ROI’s (and not on the 

whole brain) using the MaZda program [35]. According to 

the authors that method was more reliable than other tech-

niques, where they analyze the brain texture as a homoge-

nous structure. The aim of their study was to classify normal 

aging subjects from MCI and AD patients. In a similar study 

[36], where only corpus callosum was evaluated using 3D 

texture analysis on AD, MCI and normal controls, it was 

found that the 3D texture features had significance   differ-

ences between the 3 groups of subjects. Because microstruc-

tural changes on the brain tissue start to develop years before 

the larger- scale alterations, Simoes et al., [23] used a whole-

brain voxel-wise approach by applying local statistical tex-

ture maps for the classification of MCI patients from NC. In 

order to classify the two groups they used SVMs and they 

obtained a mean accuracy of 87%, with a sensitivity at 85% 

and a specificity at 95%. However, the number of samples 

used in the study was very small as they used only 15 NC 

and 15 MCI patients. 

III.B Prediction of conversion from MCI to AD studies: 

One of the few recent studies that carried out texture analysis 

to predict MCI to AD progression was that of Martinez 

Torteya et al., [37]. In their study, they used Magnetization-

Prepared Rapid Acquisition with Gradient Echo (MP-

RAGE) images from the ADNI database and they include 
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six features, one related to genotyping, three related to im-

age signal distribution and two related to texture features. In  

order to apply ROI’s for every image, they used it’s corre-

sponding segmentation mask provided by [38]. For each 

ROI they used 9 texture-related features together with 13 

morphological features and 28 signal distribution related 

features. They presented an MCI to AD progression bi-

omarker which yielded a mean blind accuracy of 0.79. 

IV. MAGNETIC RESONANCE SPECTROSCOPY AND 

DIFFUSION TENSOR IMAGING IN THE 

ASSESSMENT OF MCI AND AD 

Magnetic Resonance Spectroscopy (MRS) is a non-inva-

sive technique, which can be used to measure metabolites 

[39]. The concentration of N-acetyl aspartate (NAA) in cor-

tical tissue has been associated with neuronal density and 

consequently, with AD patients [40]. MRS was used previ-

ously [43] in order to test its ability in the distinction of nor-

mal older subjects and AD patients. However, the results 

were variable and dependent on the anatomic region ana-

lysed.  MRS it was found to be ineffective in clinical practice 

[43]. 

Diffusion tensor imaging (DTI) is another non-invasive 

MRI technique which studies the orientation and integrity of 

WM tracts by measuring the diffusion of water molecule in 

neural tissue [44]. DTI studies have been used to detect the 

levels of Fractional Anisotropy (FA) of water molecules in 

order to detect changes of white matter in AD. FA was found 

to be decreased in specific regions of the brain in AD and 

MCI patients compared to controls [45].  

However, both MRS and DTI techniques are beyond the 

scope of this paper. Furthermore, thay are not included in 

the National Institute on Aging and Alzheimer’s Association 

criteria for preclinical, MCI, and AD [46]. 

Table 2:   Quantitative MRI studies in the prediction of conversion from MCI to AD

Volume and shape analysis 

Study Subjects 

Follow-

up 

(months) 

ROI Data type 
Converters/    

total MCI 

 Classifica-

tion method 
Acc. Se. Sp. 

Costafreda et 

al., 2011 [24] 

71 AD, 103 MCI      

88 NC 
0-12 

Hippocam-

pus 
Shape 22/103 nSVM 80% 77% 80% 

Misra et al., 

2009 [25] 
103 MCI 0-36 Whole brain 

VBM - Grey 

& White 

matter 

27/103 nSVM 81.5% - - 

Plant et al., 

2010 [26] 

32 AD,  24 MCI        

18 NC 
0-30 Whole brain 

VBM - Grey 

matter 
9/24 VFI 75% 56% 87% 

Bakkour et al., 

2009 [27] 
49 QAD 0-30 Cortex Thickness 20/49 ROC - 83% 65% 

Querbes et al 

2009 [28] 

130 AD 122 MCI 

130 NC 
0-24 Cortex Thickness 77 /122 LDA 73% 75% 69% 

Desikan et al., 

2010 [29] 
324 MCI 0-36 Neocortex 

Volume and 

Thickness 

TC: 60/162 

VC: 58/162 

Factor    

analysis 

AUC:0.82 

AUC:0.84 

74% 

87% 

84% 

66% 

Texture analysis  

Martinez-

Torteya et al., 

2010  

62 MCI 0-24 Whole brain 
Signal and 

texture 
- Risk analysis AUC: 0.79 - - 

GLOSSARY: ROI: Region of interest; Acc: accuracy; Se: sensitivity; Sp: specificity; QAD: questionable AD dementia; ROC: receiver operating charac-

teristic; LDA: linear discriminant analysis; nSVM: non Support Vector Machine; VFI: voting feature interval; TC: Testing cohort; VC: Validation cohort; 

AUC: area under curve; NC: Normal controls. 

V. CONCLUDING REMARKS 

The challenge for modern neuroimaging is to help in 

the early diagnosis of Alzheimer’s disease and structural 

MRI is one of the biomarkers that could be selected in the 

assessment of early AD. Quantitative structural MRI is 

sensitive to the neurodegeneration that occurs in mild AD 

as it reveals the atrophy of the structures within the MTL, 

thus it can be used as a diagnostic marker in the MCI stage. 
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In this paper, the techniques compared can be grouped 

into three categories. In the first category volume analysis 

techniques are being used, and mainly on the hippocam-

pus. The second category, is based on VBM analysis meas-

urements on the cortical surface and specifically on the 

cortical thickness. The methods of the third category in-

cluded features extracted from texture analysis. All the 

studies used automatic classification methods and most of 

them discriminate with high accuracy the normal from AD 

subjects. However, their sensitivity appears to be lower for 

the classification of MCI subjects. Perhaps, if additional 

data from other biomarkers such as CSF or PET can be 

combined with quantitative MRI, the accuracy could im-

prove. Similar results were observed when morphometric 

pattern analysis was used in order to predict the prognostic 

conversion from MCI to AD as the results of shape analy-

sis, were more accurate than volumetric measures. 

The main finding of this study can be summarized as 

follows:  

1. MRI could predict with higher accuracy the time 

to conversion from amnestic MCI to AD, compared to CSF 

biomarkers [29], [30]. 

2. Global hippocampal volume may not be the most 

accurate technique for the prediction of conversion from 

MCI to AD and for the classification of MCI patients. 

Shape analysis appears to be a more sensitive measure than 

volume analysis for the assessment of AD [20], [24]. 

3. Texture analysis is not currently used in clinical 

practice, and there is a lack of research in the assessment 

of AD, using this technique. However, it has a very im-

portant role in image analysis research and may develop 

into a useful clinical imaging tool [22]. 

4. The majority of literature in the assessment of AD 

using medical image analysis is evaluated on images which 

have been acquired with 1.5 Tesla MRI systems. The anal-

ysis needs to be applied on images from 3.0 Tesla MRIs in 

order to investigate if both structure and texture features 

perform differently.  

5. As the structures vulnerable to AD have been 

identified and used for the prediction of conversion from 

MCI to AD, further investigations is required in order to 

evaluate if the same structures can be used to predict the 

onset of cognitive impairment. 
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