Phantoms never die: living with unreliable population data

Andrew J. G. Cairns,
Heriot-Watt University, Edinburgh, UK

David Blake,
Cass Business School, London, UK

Kevin Dowd
Durham University Business School, UK

and Amy R. Kessler
Prudential Retirement, Newark, USA

[Received December 2014. Revised October 2015]

Summary. The analysis of national mortality trends is critically dependent on the quality of the population, exposures and deaths data that underpin death rates. We develop a framework that allows us to assess data reliability and to identify anomalies, illustrated, by way of example, using England and Wales population data. First, we propose a set of graphical diagnostics that help to pinpoint anomalies. Second, we develop a simple Bayesian model that allows us to quantify objectively the size of any anomalies. Two-dimensional graphical diagnostics and modelling techniques are shown to improve significantly our ability to identify and quantify anomalies. An important conclusion is that significant anomalies in population data can often be linked to uneven patterns of births of people in cohorts born in the distant past. In the case of England and Wales, errors of more than 9% in the estimated size of some birth cohorts can be attributed to an uneven pattern of births. We propose methods that can use births data to improve estimates of the underlying population exposures. Finally, we consider the effect of anomalies on mortality forecasts and annuity values, and we find significant effects for some cohorts. Our methodology has general applicability to other sources of population data, such as the Human Mortality Database.

Keywords: Baby boom; Cohort–births–deaths exposures methodology; Convexity adjustment ratio; Deaths; Graphical diagnostics; Population data

1. **Introduction**

The field of stochastic mortality modelling has seen rapid growth in recent years, building on the early work of Lee and Carter (1992). Different strands of research have emerged in demography (e.g. Hyndman and Ullah (2007)), in statistical methodology (e.g. Brouhns et al. (2002), Czado et al. (2005), Girosi and King (2008) and Li et al. (2009)) and in the development of new models. The development of models, in particular, has seen rapid progress since the early 2000s, driven by emerging risk management applications in the pensions and life insurance industries.
Model development has been driven by the need to have a more accurate description of the underlying pattern of mortality improvements. Examples include multifactor models (e.g. Cairns et al. (2006, 2009) and Hyndman and Ullah (2007)), allowance for cohort (year-of-birth) effects (e.g. Willets (2004) and Cairns et al. (2009)) and multipopulation models (e.g. Li and Lee (2005), Cairns et al. (2011) and Börger et al. (2014)).

The great majority of studies that are concerned with modelling build on the assumption that the underlying population data (typically deaths and exposures) are accurate. Some researchers have highlighted unusual patterns of mortality among some other birth cohorts, but they focused on finding explanations for these effects, rather than questioned the accuracy of the underlying data. For example, the 1918, 1919 and 1920 cohorts in England and Wales (EW) males exhibit unusual characteristics (e.g. Cairns et al. (2009)) which have been attributed to a combination of lifelong frailty effects linked to the end of the First World War and the devastating Spanish flu epidemic. Further discussion of these effects can be found in Richards (2008), who speculated, additionally, that the real cause of the 1919 cohort effects is the misestimation of the exposure to risk due to an uneven pattern of births during the year. This line of reasoning is developed further in Section 2.

Two types of data are needed by mortality modellers: first, death counts \(D(t, x) \), by calendar year \(t \) and age \(x \) (typically age \(x \) last birthday) (in some countries deaths are further subdivided by year of birth); second, exposures (a measure of the underlying population) \(E(t, x) \), again frequently available by calendar year and individual year of age. We define \(P(s, x) \) as the number of people aged \(x \) last birthday at exact time \(s \) (so year \(t \) runs from exact time \(t \) to \(t + 1 \)). Typically this quantity is calculated only once per year rather than continuously. In EW, for example, the Office for National Statistics (ONS) estimates the mid-year population \(P(t + \frac{1}{2}, x) \), for integer \(t \). The ONS then calculates crude death rates by dividing death counts by mid-year population estimates, i.e. \(m(t, x) = D(t, x) / P(t + \frac{1}{2}, x) \). More commonly, the crude death rate is defined as

\[
m(t, x) = D(t, x) / E(t, x)
\]

(1)

where

\[
E(t, x) = \int_0^1 P(t + s, x) \, ds
\]

(2)

is the central exposed-to-risk function: the mean of the population aged \(x \) last birthday during year \(t \) (see, for example, Wilmoth et al. (2007)).

EW is typical of many countries in which population figures are estimates based on data from a variety of sources, primarily decennial censuses. Censuses are affected by uncertainty in the extent of underenumeration. In addition, between censuses, the estimation of net migration at individual ages is difficult (net migration being defined as the number of immigrants minus the number of emigrants).

Following the 2011 census, the ONS published revisions to the 2001–2011 intercensal population estimates (Office for National Statistics, 2012a, b). Between ages 40 and 85 years these revisions were relatively modest (no more than about 3%). However, for males aged above 90 years revisions were much more significant with downward revisions to population estimates of about 15% with matching upward revisions to published death rates. For younger adult males, there were also significant revisions which were, most likely, the result of adjustments for migration. At the highest ages, migration is very modest and so is unlikely to be the main reason for the change. It is more likely that the population at ages 80 years and older was slightly
These revisions have an effect on our predictions of future rates of mortality at particular ages. Such predictions, necessarily, rely on a projection model. But, in general, revisions to the historical data will have three types of effect on mortality forecasts: the base table (with obvious changes at high ages); the central trend or improvement rate (resulting in modest changes); uncertainty around the central trend (negligible changes).

Importantly, the 2011 population revisions were not a one off. Revisions of a similar magnitude after the 2001 census can be inferred from a comparison of current ONS historical population tables with the original population data for 2000 published by the ONS (Office for National Statistics, 2002a).

It was these censal revisions to the population data that led to the wider study of data errors that we conduct in this paper. Some of these errors might be labelled bias terms where elements of the underlying methodology systematically induce positive or negative errors as discussed later in the paper. However, in most cases, there is no systematic bias, either positive or negative, so we shall use the all-encompassing term error in the rest of the paper. It is, of course, inevitable that there will be errors in both population and (to a lesser extent) deaths data, and that the magnitude of these will vary from country to country. What we seek to do in this study is to analyse population and deaths data in as objective a manner as possible

(a) to identify potential anomalies or errors in the data,
(b) to provide tools for the early identification of emerging anomalies and
(c) to provide a methodology for ‘cleaning’ the data before embarking on a mortality modelling exercise.

Understanding and quantifying errors are important for various stakeholders with interests in population mortality forecasts, forecasts of subpopulation mortality, calibration of multipopulation mortality models, assessment of levels of uncertainty in mortality forecasts, the calculation of life insurer liabilities and economic capital, annuity pricing, pension plan buy-out pricing, the assessment of basis risk in longevity hedges and the effectiveness of hedges and hedging instruments.

In Section 2, we discuss in detail how errors might arise in deaths, population and exposures data, and we propose a new methodology, which we call the cohort–births–deaths (CBD) exposures methodology, for calculating exposures data by using births data at the monthly or quarterly frequency. The CBD methodology is also used to improve the calculation of mid-year population estimates based on census data. In Section 3, we develop some model-free graphical diagnostics that allow us to identify anomalies in population data. We find that the more significant anomalies can usually be linked to unusual patterns of births. We propose a Bayesian, model-based approach in Section 4 for quantifying errors in exposures data by using uninformative priors. Section 5 looks at the effect of these error adjustments on mortality forecasts and annuity valuation. We provide further discussion and proposals for future work in Section 6.

2. Data issues: deaths; population; exposures

In this section, we review the reliability of the building blocks of the death rate \(m(t, x) = \frac{D(t, x)}{E(t, x)} \). We shall start with a brief discussion of death counts, before moving on to population estimates and their relationship with exposures. We shall discuss how a detailed knowledge of birth patterns can help to explain some of the errors that might arise in practice.
2.1. Deaths

Published death counts in EW, and in many other countries, $D(t, x)$, measure the number of deaths registered in calendar year t of people aged x last birthday at the date of death. In general, these statistics are generally accepted as accurate, but there are some issues that need to be noted.

In any given year, the total number of deaths, $\sum_x D(t, x)$, can also be regarded as accurate: it is extremely difficult for any death to go unreported in EW. But, it is possible for there to be an error in the reported age at death (for example, the informant does not know for sure the age of the deceased). To combat this, death registrars might carry out some cross-checking at the point of registration where this is possible and afterwards on government databases (Office for National Statistics, 2013). Cross-checking is not always possible (e.g. for immigrants) leaving open the possibility for errors to creep in and, where checks are not carried out, there might be biases towards certain ages being recorded. For example, if the deceased was thought to be ‘about’ age 80 years, then the age at death is reported as age 80 years. This is known as age heaping and can occur in both deaths and census counts (see, for example, Vaupel et al. (1998)).

We have assumed in the analyses that follow that these potential errors are not material in the EW data. However, we revisit this assumption towards the end of the paper.

Deaths are typically registered very quickly, with 95% of registrations in 2013, for example, corresponding to occurrences in 2013. The remaining 5% relate to deaths at the very end of 2012 plus those delayed by the requirement for an inquest (Office for National Statistics, 2014a).

2.2. Population estimates; exposures; death rates

A potentially greater source of estimation error lies in the central exposed-to-risk function, $E(t, x) = \int_0^1 P(t + s, x)ds$. Since the population is not monitored or estimated continuously, it is not possible to calculate this expression exactly. For example, in EW, the ONS publishes only mid-year population estimates and then uses the approximation $E(t, x) \approx P(t + \frac{1}{2}, x)$. (Other countries publish estimates of population on January 1st each year and employ the equally simple approximation $E(t, x) \approx \frac{1}{2}\{P(t, x) + P(t + 1, x)\}$.) In contrast with the ONS, the Human Mortality Database (HMD) adopts a more sophisticated approach to exposures, as documented in appendix E (equation E10) of Wilmoth et al. (2007). However, the arguments that are applied here to identify the shortcomings of the simpler mid-year approximation can be adapted to the HMD approach.

Errors in $E(t, x)$ can occur in the following ways.

(a) Type 1: mid-year population estimates can be inaccurate. Typical reasons for this in EW would be no central and universal population register, censuses are 10 years apart and suffer from underenumeration problems, ages might be misreported at census dates and ages or dates of birth might be transcribed or scanned incorrectly.

(b) Type 2: the estimation of migration flows from year to year between censuses is difficult. For many countries, the reason for this is that there is no systematic counting, at all points of entry, of people entering and/or leaving the country especially by age. In some cases, relevant borders might not be policed, including the border between EW and other parts of the UK.

(c) Type 3: deaths from year to year might be miscounted. For example, a death might be attributed to the wrong cohort.

(d) Type 4: the assumption that $E(t, x) = P(t + \frac{1}{2}, x)$ might be a poor approximation at some ages.

(e) Type 5: the method used to derive mid-year population estimates from census data might be inaccurate at some ages.
Errors of type 1, 2 and 3 are well known, are difficult to reduce except at considerable cost and lead to periodic revisions to population data, especially after decennial censuses. Errors of types 4 and 5 are less widely known and we shall argue in this section that the current methodology for estimating exposures can be improved on if we have access to monthly or quarterly births data.

Census errors and migration errors can be either positive or negative and, _ex ante_, in the absence of other information, we take the view that one is as likely as the other.

2.2.1. Propagation of general errors through time

It is clear that, once errors in population counts arise, they will persist through time with the associated birth cohort, i.e. the errors follow the cohort as it ages.

First, assume that mid-year population counts, deaths and migration are accurate. Then,

\[P(t + \frac{1}{2}, x + 1) = P(t + \frac{1}{2}, x) - d(t + \frac{1}{2}, x) + M(t + \frac{1}{2}, x) \]

where \(d(t + \frac{1}{2}, x) \) is the number of individuals in the cohort who die between \(t + \frac{1}{2} \) and \(t + \frac{3}{2} \), and \(M(t + \frac{1}{2}, x) \) is the corresponding net migration into the cohort.

Second, suppose that there is an error in the initial population count, but accurate deaths and net migration figures in the following year. Then we have the identity

\[\hat{P}(t + \frac{3}{2}, x + 1) = \hat{P}(t + \frac{1}{2}, x) - \hat{d}(t + \frac{1}{2}, x) + \hat{M}(t + \frac{1}{2}, x) \]

where \(\hat{P}(s + \frac{1}{2}, y) = P(s + \frac{1}{2}, y) + \varepsilon_P(s + \frac{1}{2}, y) \) is the initial, erroneous population count and \(\varepsilon_P(s + \frac{1}{2}, y) \) is the error in the population count. If deaths and net migration figures are accurate, then it is straightforward to see that \(\varepsilon_P(t + \frac{1}{2}, x) = \varepsilon_P(t + \frac{3}{2}, x + 1) \), i.e. the error at time \(t + \frac{1}{2} \) follows the cohort.

Third, the _reported_ death counts \(\hat{d}(t + \frac{1}{2}, x) \) and net migration \(\hat{M}(t + \frac{1}{2}, x) \) are themselves subject to errors and so

\[\varepsilon_P(t + \frac{3}{2}, x + 1) = \varepsilon_P(t + \frac{1}{2}, x) + d(t + \frac{1}{2}, x) - \hat{d}(t + \frac{1}{2}, x) - \hat{M}(t + \frac{1}{2}, x) + \hat{M}(t + \frac{1}{2}, x) \]

At younger ages, errors in net migration figures from year to year will tend to dominate, but, at higher ages, the error in the population count at time \(t + \frac{1}{2} \) will dominate until such time as the population counts are subject to revision (e.g. at the next census). We call the overestimated population ‘phantoms’. This is because phantoms never die (at least between periodic revisions), i.e. if we overestimate the population, then the \(\varepsilon_P(t + \frac{1}{2}, x) \) phantoms persist through time, whereas members of the true population die off.

Fig. 1 illustrates this in a stylized way. The cohort has been overestimated by 200 at the time of the census at time 0. The extra 200 form a growing percentage of the total over the next 10 years until the time of the next census. Additionally, the reported death rate (_actual_ deaths divided by the _overestimated_ population) will be lower than the true death rate, and the relative error in the reported death rate will grow over the 10 years.

After 10 years (the final column in Fig. 1), there is a further census and it is estimated that the cohort is rather smaller (the dark grey bar) than the time 10 post-censal estimate (the black and light grey bars), although the revised estimate is likely still to differ from the true value. The question then arises: _how do we accommodate this change in population estimates at time 10?_ If the required adjustment is \(A \) at time 10, then the ONS (Office for National Statistics, 2002b; Duncan _et al._, 2002) adjusts the previous 9 years in a simple linear fashion by cohort. Let
Fig. 1. Stylized representation of the changing cohort size between censuses at times 0 and 10: ■, true cohort size; □, additional phantoms; △, (time 10) revised cohort size at the time 10 census

$P(s + \frac{1}{2}, x + s)$ be the post-censal estimates and $P_1(s + \frac{1}{2}, x + s)$ the intercensal estimates with $P_p(10\frac{1}{2}, x + 10) - P_1(10\frac{1}{2}, x + 10) = A$. We then define $P_1(s + \frac{1}{2}, x + s) = P_p(s + \frac{1}{2}, x + s) - As/10$ for $s = 1, \ldots, 10$.

Implicit within this procedure is the assumption that the census measure at time 0 was correct. But the stylized example presented in Fig. 1 suggests that, in some circumstances, the ONS’s method only partly fixes the problem. Furthermore, the stylized example is more likely to be representative of reality (if exaggerated) for the oldest ages than at younger ages. At younger ages, it is very likely that errors at time 10 are simply due to the difficulties in estimating net migration.

Phantoms arise in situations where the population has been overestimated. A positive number of phantoms might normally be the result of either census errors, an overestimate of net migration and, to a much lesser extent, an underestimate of deaths. As discussed in the following sections, they can arise because of types 4 and 5 errors. A population can equally, and for the same reasons, be underestimated. This gives rise to “trolls”: people who exist but are not counted. Their existence is due to a different combination of types 1–5 errors. In later sections, we suggest how types 4 and 5 errors can be estimated, but we do not try to estimate the remaining balance between error types 1, 2 and 3.

2.2.2. Census to mid-year shift

The next potential error concerns the census to mid-year shift. In EW, censuses occur every 10 years on variable dates in the spring (contrasting with a fixed date of April 1st for US censuses). This issue is illustrated in Fig. 2. Suppose, for example, that the census occurs at time T_c and the middle of the same year is, say, $T_c + \omega_c$. At $T_c + \omega_c$, we wish to estimate the population aged x last birthday. This will consist of a mixture of people aged x and $x - 1$ last birthday at the time of the census. $P(T_c + \omega_c, x)$ will consist of those aged x at time T_c who did not have a birthday between T_c and $T_c + \omega_c$ (Fig. 2, group B), plus those aged $x - 1$ at time T_c who did have a birthday between the census and the middle of the year (group C). $P(T_c + \omega_c, x)$, therefore,
Living with Unreliable Population Data

Fig. 2. Population progression between a census date T_c and the middle of the year, $T_c + \omega_c$

consists of appropriate proportions of $P(T_c, x)$ and $P(T_c, x - 1)$, adjusted for deaths and net migration between T_c and $T_c + \omega_c$.

In 2001, the ONS used the assumption that birthdays were spread evenly throughout the year at all ages (Duncan et al., 2002). On this basis, a proportion ω_c of those aged $x - 1$ at the census would reach their xth birthday before June 30th, 2001, and a proportion $1 - \omega_c$ aged x would remain aged x. The 2001 census was on April 29th, so, for that year, $\omega_c = 62/365$. As a consequence

$$P(T_c + \omega_c, x) = \omega_c P(T_c, x - 1) + (1 - \omega_c) P(T_c, x) - \text{deaths} + \text{net migration}.$$

The assumption of an even distribution of births is reasonable for most birth cohorts when birth rates were reasonably stable from year to year. However, for a few cohorts, this assumption results in a very poor approximation.

Our analyses in Section 3 indicate that the ONS used different assumptions in the other census years including 2011. (This has been confirmed by the ONS (ONS seminar, December 9th, 2014).) In particular, in 2011, exact dates of birth were used rather than an assumed uniform distribution of birthdays.

2.2.3. The cohort–births–deaths exposures methodology

We now propose an alternative approach that refines the even distribution of births assumption. Our underlying hypothesis is simple: at any point in time t, the pattern of birthdays at age x will reflect the actual pattern of births x years earlier. At older ages, the relative proportions across a single age need to reflect intervening mortality. The accuracy of the assumption will depend on the proportion of the population at a given age who are counted in the EW birth statistics in the relevant year of birth, and on any differences between the average birth patterns of immigrants and those born in EW.

In Fig. 3, we plot quarterly birth registrations from 1890 to 1990. Two features are apparent: a clear seasonal pattern that persists to recent times, and significant fluctuations in birth rates over time. In particular, sudden jumps occur in birth rates after the First and Second World Wars, and we argue below that these jumps can have an effect on how mid-year population estimates should be derived from census data.
We can use the births data to estimate what proportion of those aged \(x - 1 \) at the time of the census will reach their next birthday before June 30th, and what proportion of those aged \(x \) at the census will still be \(x \) on June 30th. This can be used to answer the following question prospectively: out of those aged \(x - 1 \) and \(x \) at the time of the census, how many are due to be (i.e. ignoring deaths) aged \(x \) last birthday on June 30th? (We assume here that quarterly or monthly birth counts are the same as the reported registration counts. The Spanish flu epidemic will have caused an upsurge in death registrations which in turn might have delayed birth registrations.)

We then compare these CBD-based estimates for each age \(x \) with the uniform distribution of birthdays used by the ONS in 2001.

To simplify the discussion very slightly let us assume that the 2001 census took place right at the end of April, to allow us to focus on months of birth only. As an example, let us look at males born between May 1918 and April 1920 who were thus aged 82 or 81 years at the time of the 2001 census. Table 1 shows the number of births over specified months in 1918–1920 corresponding to groups A–D in Fig. 2. At the time of the 2001 census, 72,114 were aged 82 years and 115,545 were aged 81 years (Office for National Statistics, 2002c). If we make no allowance for deaths or migration, the mid-year population estimates for age 82 years under the ONS and CBD methodologies would be respectively

\[
\frac{10}{12} 	imes 72\,114 + \frac{2}{12} 	imes 115\,545 = 79\,352
\]

and

Table 1. Numbers of births by birth months from May 1918 to April 1920

<table>
<thead>
<tr>
<th>Group</th>
<th>Birth months</th>
<th>Number of births</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>May–June 1918</td>
<td>113475</td>
</tr>
<tr>
<td>B</td>
<td>July 1918–April 1919</td>
<td>524566</td>
</tr>
<tr>
<td>C</td>
<td>May–June 1919</td>
<td>99174</td>
</tr>
<tr>
<td>D</td>
<td>July 1919–April 1920</td>
<td>752725</td>
</tr>
</tbody>
</table>
The figures 72,741 (CBD) and 79,352 (ONS) make the assumption that there are no deaths or net migration between the census and June 30th. The ONS-published mid-year population at age 82 years in 2001 of 78,615 includes adjustment for deaths and net migration between the census and June 30th, and so, under the CBD methodology, we would propose to multiply the ONS mid-year population estimate of 78,615 by 72,741/79,352, giving a revised population estimate of 72,065 for age 82 years on June 30th, 2001.

The calculation for age 82 years (which we denote the ‘1919’ cohort) in mid-2001 reveals the greatest significant difference. For other cohorts, the difference between the CBD and ONS uniform distribution of deaths assumptions in the 2001 mid-year population estimates is illustrated in Fig. 4 (the broken red line). Although the 1919 cohort stands out, the 1920 cohort also has a large difference. There appear to be significant differences between the methodologies used for cohorts born during and after the Second World War; there was a sharp baby boom in 1947; see Fig. 3. At most other ages, the difference is at most ±1%. However, at high ages, e.g. age 80 years, an error of 1% in a census year can grow to three times that over the next 10 years (see Fig. 1), so even these modest errors are potentially important and deserve our attention.

The CBD methodology can be refined further by adjusting the number of births in Table 1 for mortality between the exact date of birth and the current measurement date. This would have the effect of reducing slightly the proportion of 82-year-olds at the census date who were born in May–June 1918. This is illustrated in Fig. 4 (the thin grey curve) by using a stylized Gompertz pattern of mortality. It can be seen that adjusting for mortality has little effect at younger ages and only just starts to become noticeable among the oldest cohorts that are plotted.

We conclude that the CBD methodology is robust relative to the mortality assumption. However, as already remarked, the CBD methodology makes no allowance for migration. The approach is likely to be less accurate if immigrants form a significant proportion of the population at certain ages, and if the pattern of births for these immigrants is significantly different from EW births. However, for ages 40 years and above, the proportion of immigrants into EW in the 2011 census ranged from 18% (ages 40–44 years) down to 10% (85 years and above)
older), suggesting that migration is unlikely to distort the CBD methodology too much (source: http://www.nomisweb.co.uk/census/2011 country-of-birth tables). As a check on this conjecture, the pattern of birth dates recorded in the 2011 census could be reconciled against the original birth rates.

2.2.4. \(P(t + \frac{1}{2}, x) \approx E(t, x) \): how good is this approximation?
The true exposures are \(E(t, x) = \int_0^1 P(t + s, x) ds \) (equation (2)), but, since the ONS publishes only mid-year population estimates, it, in common with many other agencies, makes the assumption that \(E(t, x) = P(t + \frac{1}{2}, x) \), leading to \(m(t, x) = D(t, x)/P(t + \frac{1}{2}, x) \). So how good is this approximation? The answer lies in the degree of non-linearity (and, in particular, the degree of convexity) of the underlying continuous population function \(P(t + s, x) \). The approximation will be quite good if the function \(P(t + s, x) \) is reasonably linear in the interval \(0 < s < 1 \). However, if \(P(t + s, x) \) is non-linear, then there could be a significant difference between \(P(t + \frac{1}{2}, x) \) and the true \(E(t, x) \).

We can investigate readily how this approximation works in practice by using births data to estimate the population aged 0 at any point in time. Let \(\hat{P}(t, 0) \) represent the population at time \(t \) aged 0 last birthday, assuming no deaths and net migration. Although infant mortality was high in the early 20th century (approximately 1 in 10 died in their first year, mostly very soon after birth), the pattern of mortality changes much more slowly over time relative to the variation in birth rates that we seek to analyse here. Additionally, we only make use of age 0 exposures relative to the mid-year population counts. The resulting ratios will be relatively insensitive to the underlying rates of infant mortality, provided that these change slowly over time.

\(\hat{P}(t, 0) \) can be calculated quarterly or monthly (depending on the granularity of births data) and is, simply, the sum of the births in the preceding 12 months and is shown over the period 1910–1925 in Fig. 5 (Fig. 5(a), continuous black curve). The mid-year population estimates at age 0 assuming no deaths or net migration are shown as crosses. The equivalent exposure estimates are \(\hat{E}(t, 0) = \int_0^1 \hat{P}(t + s, 0) ds \) and these are approximated by using Simpson’s rule.

Fig. 5. (a) Relationship between age 0 population and exposure estimates (--- \(\hat{P}(t, 0) \); +, mid-year \(\hat{P}(t + \frac{1}{2}, 0) \); \(\circ \), exposures \(\hat{E}(t, x) \)) and (b) convexity adjustment ratio \(\text{CAR}(t - x) = \hat{E}(t - x, 0)/\hat{P}(t + \frac{1}{2} - x, 0) \), as a function of year of birth \(t - x \)
based on the quarterly $\tilde{P}(t + s, 0)$. These exposure estimates are shown in Fig. 5(a). Mostly the $\tilde{E}(t, 0)$ (the grey diamonds) are very close to the mid-year $\tilde{P}(t + \frac{1}{2}, 0)$ (crosses). However, where there is significant non-linearity, differences can be quite striking. And the most significant non-linearities and, hence, differences occur when there is a sudden baby boom, e.g. at the end of 1919.

Irregular patterns of birth convert into similar patterns of birthdays in later years and so we argue that the relationship between the mid-year population estimate at age x and exposures should be approximately the same as it was at age 0 for the same cohort. We, therefore, propose a convexity adjustment ratio to be applied to mid-year population estimates $P(t + \frac{1}{2}, x)$, namely

$$E(t, x) = P(t + \frac{1}{2}, x) \frac{\tilde{E}(t - x, 0)}{\tilde{P}(t + \frac{1}{2} - x, 0)}$$

where we call $\text{CAR}(t - x) = \tilde{E}(t - x, 0) / \tilde{P}(t + \frac{1}{2} - x, 0)$ the convexity adjustment ratio for the $t - x$ birth cohort. The convexity adjustment ratio is plotted in Fig. 5(b). As we can see, the convexity adjustment ratio is generally close to 1 (meaning that the assumption that $E(t, x) = P(t + \frac{1}{2}, x)$ is a reasonable approximation). But in a few years (1919, 1920, 1946 and 1947) there is a significant deviation from 1. And these deviations coincide with periods when there were rapid changes in birth rates around the end of the First and Second World Wars.

2.2.5. **High age methodology**

The ONS mid-year population estimates give population counts at individual ages up to age 89 years and then a single number each for males and females for age 90 years and above. Death counts are available for individual ages above 90 years. The ONS uses the Kannisto–Thatcher methodology (an adaptation of the extinct cohort methodology; see Thatcher *et al.* (2002)) to calculate population estimates for individual ages up to age 104 years (Office for National Statistics, 2014b).

The Kannisto–Thatcher methodology attempts to estimate exposures at individual ages from limited underlying data and, therefore, gives rise to the possibility of errors. In particular, we shall investigate in the following sections the possibility that there are discontinuity errors at the age 89–90 years boundary where the high age methodology kicks in.

3. **Graphical diagnostics and signature plots**

In this section, we outline and illustrate a variety of graphical diagnostics that are designed to help to verify the quality of the data or to identify where anomalies might lie. The use of a graphical diagnostic might contain the following elements: first, a hypothesis that concerns some characteristics of the underlying data; second, a specified way of plotting some aspect of the data; third, if the hypothesis is true, then the plot should exhibit a recognizable structure or pattern; fourth, if the plot does not exhibit the expected structure, then the type of deviation might provide us with pointers on how the underlying hypothesis might be varied or help to identify particular types of problem with the data.

3.1. **Graphical diagnostic 1**

Hypothesis 1. Crude death rates by age for successive cohorts should look similar.

The diagnostic that we shall employ to test visually this hypothesis is to plot the curve of
Fig. 6. Cohort death rates by age for (a) the 1907–1911 cohorts, (b) the 1927–1931 cohorts and (c) the 1917–1921 cohorts (the right-hand end point for each curve corresponds to 2011; ONS (revised EW males data up to 2011)) and cohort death rates by age for (d) the 1907–1911 cohorts relative to the 1909 cohort, (e) the 1927–1931 cohorts relative to the 1929 cohort and (f) the 1917–1921 cohorts relative to the 1919 cohort.
crude death rates for each cohort against age. Since we wish to compare cohorts (as required in the hypothesis), we compare, for each cohort, the curve of death rates with its four nearest neighbours.

Examples are presented in Figs 6(a)–6(c) centred on the 1909, 1929 and 1919 birth cohorts. Both Fig. 6(a) (1909) and Fig. 6(b) (1929) exhibit the expected pattern: namely that each of the five curves in each plot all follow a consistent upward trend that is close to linear. Each curve exhibits a certain amount of randomness as age increases. This reflects

(a) random variation in the number of deaths given the true underlying death rate (known as Poisson-type risk) and
(b) randomness in the period effects that drive improvements in the underlying death rates.

Poisson risk is likely to be most significant at high ages because of the small expected number of deaths. However, in Figs 6(a)–6(c) this is really only a problem above age 95 years: below this age, the underlying shape and relative position of each curve are very clear.

In Fig. 6(a), the curves almost lie on top of each other across the full range of ages. In Fig. 6(b) the curves are virtually parallel, but the positions of the five curves reflect a greater rate of improvement in mortality rates between these cohorts (see also Fig. 6(e)). This greater rate of improvement between cohorts born around 1930 is well known (see, for example, Willets (2004)). These plots are typical of most birth cohorts.

Now contrast the 1909 and 1929 cohorts with the 1919 cohort (Fig. 6(c)). As a graphical diagnostic, this plot does not exhibit the characteristics that we would expect to see. Instead, we can see that the full black curve for the 1919 cohort after about age 75 years bends away from and below its neighbours, pointing to anomalies with this cohort. We shall discuss this in more detail later, but we just remark here that the pattern is consistent with the emergence of phantoms in the 1919 cohort exposures over the period between the censuses of 1991 (when the 1919 cohort was age 72 years) and 2001: in other words, the problem with the 1919 cohort began in 1991. Thereafter, the existence of the phantoms (who never die) causes the curve to drift lower still relatively to its neighbours (see Fig. 4).

Fig. 6 also displays death rates for adjacent cohorts relative to each other, i.e. a plot of the ratio \(\frac{m(t + s + k, x + s) - m(t + s, x + s)}{m(t + s, x + s)} \) against age \(x \), where \(m(t + s, x + s) \) represents the death rates over time for the central cohort in each plot. Figs 6(a)–6(c) are, perhaps, better when the underlying death rates are consistent with the hypothesis. Plotting the ratios in Figs 6(d)–6(f) is better where the pattern of death rates is not consistent with the hypothesis. Specifically, in Fig. 6(f), centred on the 1919 cohort, we can see more easily that the trends change direction at about age 72 years. Additionally, Fig. 6(f) suggests that death rates for the 1919 cohort might have been out by as much as 20% by the time that the cohort reached their late 80s.

3.2. Graphical diagnostics 2A and 2B

Hypothesis 2. Underlying log-death-rates are approximately linear within each calendar year.

As a starting point, we calculate how far individual groups of observations (three consecutive ages within a calendar year) deviate from linearity as measured by using the empirical concavity function

\[
C(t, x) = \log\{m(t, x + t)\} - \frac{1}{2}\left[\log\{m(t, x + t - 1)\} + \log\{m(t, x + t + 1)\}\right].
\]

We then plot this in two ways.

(a) Diagnostic 2A: plot \(C(t, x) \) by cohort, i.e. \((x_0 + s, C(t_0 + s, x_0 + s)) \) for the \(t_0 - x_0 \) birth cohort.
If the hypothesis is true, the concavity function should stay close to zero without exhibiting any systematic bias above or below zero.

Some typical results for graphical diagnostic 2A are plotted in Fig. 7. The pattern that is exhibited in the plot for the 1924 cohort is consistent with the hypothesis: the dots are randomly above and below zero. However, the plots for the 1920, 1919 and 1947 cohorts all contain structure that is not consistent with the hypothesis. So we consider next what the irregular patterns tell us about the underlying data.

The 1919 and 1920 cohort plots each contain two specific effects. Before 1991, the plots are level but are consistently above (1919) or below (1920) the zero line. After 1992, both plots suddenly start to drift at a steady rate. The shift up or down before 1991 is consistent with our earlier discussion in Section 2.2.4, where we argued that mid-year population estimates were not always good approximations to the true exposures for some cohorts. In the 1919 and 1920 cohort plots, we have added a horizontal broken line which makes an allowance for this effect. The adjustment means that, up to 1991, the plots of the empirical concavity function now look more reasonable. However, the positioning of the broken line in both cases could be improved suggesting that other factors are at play beyond the proposed convexity adjustment ratio. However, up to 1991, both plots are consistent with a systematic bias in the estimate of cohort exposures.

After 1992, both plots drift steadily down or up. This is consistent with the introduction of phantoms into the 1919 cohort and trolls into the 1920 cohort from 1992 onwards. We infer from this that the methodology for shifting from a census to the mid-year population estimate that was discussed in Section 2.2.2 was applied at the time of the 2001 census but not in previous census years. Furthermore, the apparent inconsistencies that were revealed in 2001 as a result of applying this methodology then led the ONS to backfill by cohort over the period 1992–2001 to provide a smoother progression of population estimates between the 1991 and 2001 censuses. In other words, the ONS, having introduced an error in 2001, unknowingly exacerbated the problem by spreading the error back to 1991. This will be discussed further when we consider graphical diagnostic 3 below.

The plot for the 1947 cohort is generally more dispersed. The reason for this is that those in the cohort are younger and, therefore, the underlying death counts are much smaller and more random. However, we can still see that the dots are biased below zero, to an extent that is consistent with a requirement to apply the convexity adjustment ratio as indicated by the horizontal broken line.

We move on to graphical diagnostic 2B and plot the empirical concavity function in two dimensions in the form of a heat map in Fig. 8. Apart from some obvious structural features, we can also see greater randomness at the high ages and low ages caused by low death counts. We could normalize the empirical concavity by dividing by its standard error. We do not report the results, but the effect is to reduce the noise that is observable in Fig. 8 at both low and high ages, while leaving the remaining structure clearly visible.

If the hypothesis about linearity in the log-deaths-rates were true, then the heat map should essentially be completely random apart from some auto-correlation between cells within each calendar year as a result of the common contributors to, for example, \(C(t, x) \) and \(C(t, x + 1) \). Although Fig. 8 contains plenty of randomness, it also contains significant structure. The clear diagonals reflect the cohort biases, as, for example, with the 1919, 1920 and 1947 cohorts, as well as one or two others. But there are other structural elements that are new. For example, there is evidence of clear horizontal traces. In most cases, these horizontal bands are consistent with small biases in the reporting of age at death. In general, these bands tend to be more prominent.
Living with Unreliable Population Data

Concavity

CBD adjustment for uneven births using Cohort Adjustment Ratio

Emerging phantoms in 1919 cohort

Fig. 7. Empirical concavity function, $C(t + s, x + s)$ plotted against year $t + s$ for birth cohorts $t − x$ (a) 1924, (b) 1919, (c) 1920 and (d) 1947, calendar years 1992–2011.

towards the left, suggesting that the reporting of age at death has become steadily more accurate as time progresses.

The horizontal bands around age 90 years suggest that deaths reported at age 90 and 91 years are too low rather than too high. Furthermore, this band is consistent across all years. So we need to look for an alternative explanation to bias in the reporting of age at death. Instead, we recall the fact that exposures at age 90 years and above are calculated by using the Kannisto–Thatcher methodology instead of the standard census and intercensal methodologies that were used at all ages up to 89 years. Our simple graphical diagnostic suggests that the current way in which the Kannisto–Thatcher methodology is employed potentially introduces a small but systematic bias around age 90 years.

3.3. Graphical diagnostic 3

Hypothesis 3. Changes in cohort population sizes should match closely the pattern of reported deaths.

Recall that we have two types of data: death counts $D(t, x)$, and mid-year population estimates
P(t + \frac{1}{2}, x). We shall now define the decrement
\[\hat{d}(t + 0.5, x) = P(t + 0.5, x) - P(t + 1.5, x + 1) \]
which equals the sum of the deaths from the cohort aged x last birthday at time \(t + \frac{1}{2} \), denoted by \(d(t + \frac{1}{2}, x) \), less net migration \(M(t + \frac{1}{2}, x) \). At high ages, net migration will be modest compared with deaths and so \(\hat{d}(t + \frac{1}{2}, x) \) will be approximately equal to \(d(t + \frac{1}{2}, x) \). It is natural, therefore, to compare \(\hat{d}(t + \frac{1}{2}, x) \) with the reported death counts. However, four different reported death counts contribute to the inferred decrement \(\hat{d}(t + \frac{1}{2}, x) \) (namely \(D(t, x) \), \(D(t, x + 1) \), \(D(t + 1, x) \) and \(D(t + 1, x + 1) \)).

The graphical diagnostic compares these related measures and is constructed as follows for the \(t - x \) cohort.

(a) Plot (the full dots) \(\hat{d}(t + \frac{1}{2}, x) \) CAR \((t - x) \), where \(\text{CAR}(t - x) = E(t - x, 0)/P(t + \frac{1}{2} - x, 0) \) (see Section 2.2.4) to adjust for differences between the mid-year population and the exposures.

(b) Plot (the black and blue curves respectively) \(D(t, x) \) and \(D(t + 1, x + 1) \) with no adjustment.

(c) Plot (the green curve) \(D(t, x + 1)E(t - x, 0)/E(t - x - 1, 0) \), to adjust for different birth rates for different cohorts.

(d) Plot (the red curve) \(D(t + 1, x)E(t - x, 0)/E(t + 1 - x, 0) \) (likewise to adjust for different birth rates for different cohorts).

Fig. 9 shows typical examples of how the plot should look if the hypothesis is true. Specifically, the black dots and the four curves for the reported deaths should all follow each other quite closely. (It is not necessary to be able to distinguish between the four curves. Their similarity is one of the keys to why this diagnostic is effective.) This is, indeed, the case, indicating that the adjustment for unequal births is about right. Without this adjustment, some curves would be significantly higher or lower than the central case. The similar shape for each curve links to hypothesis 1 underpinning graphical diagnostic 1. At younger ages and earlier years, the decrements \(\hat{d}(t + \frac{1}{2}, x) \) are rather more variable, reflecting year-to-year variations in net migration.
Closer inspection reveals some unusual effects that indicate that there are issues with the population data. For example, for the 1914 and 1916 cohorts, the decrement at age 90 years is significantly and systematically below where we would expect it to be. This provides support for our conclusions under graphical diagnostic 2B that the alternative methodology for estimating exposures at age 90 years and above needs revision. For the 1914 cohort, for example, the
Fig. 10. As for Fig. 9 for (a) the 1919 cohort, (b) the 1947 cohort and (c) the 1947 cohort (additionally, (a) and (b) use the revised ONS data published in 2012 for years 1961–2011; (c) uses the post-2001 censal ONS data for 1961–2010): $\hat{d}(t + \frac{1}{2}, x)$; $D(t, x)$; $D(t + 1, x)$; $D(t, x + 1)$; $D(t + 1, x + 1)$

decrement at age 90 years is about 1500 below where it should be. The mid-year population at age 90 years is 24,842 and so the excess of 1500 equates to 6% of the cohort size at that age. This again is consistent with our conclusions after graphical diagnostic 2B.

The plots in Fig. 10 show examples where the plot is more obviously not consistent with the hypothesis. For the 1919 and 1947 cohorts, we can see that, in the years 1992–2001 inclusively (the grey bar), the dots are significantly and systematically below (1919) or above (1947) the
reported curves of deaths. The 1919 cohort and upper 1947 cohort plots (Figs 10(a) and 10(b) respectively) are based on the intercensal population estimates as revised after the 2011 census. Now compare Fig. 10(b) with the lower 1947 plot (Fig 10(c)) based on the post-2001 censal population estimates. Differences exist only in the years 2002–2010, and we can see that the intercensal values (Fig. 10(b)) have been subjected to what appears to be a parallel shift down relative to the original post-censal values (Fig. 10(c)). This shift down suggests that the previous error over the 1992–2001 period has been subjected to a reversal following the 2011 census, as we have previously discussed.

Similar patterns of parallel shifts exist for other cohorts including 1920, 1944, 1945 and 1946, among others. However, the 1992–2001 and 2002–2010 cohort shifts are not always similar to the 1947 cohort shifts.

These parallel shifts up and down are consistent with the following sequence of events.

(a) The census to mid-year population adjustments up to 1991 seem to have produced reasonable results. The methodology that was used is not reported.
(b) The methodology for adjusting from census to mid-year that was outlined in Section 2.2.2 was applied in 2001.
(c) Differences between the resulting mid-year population estimates and the post-1991 censal population estimates were then backfilled evenly over the years 1992–2001, producing the signature parallel shift down or up.
(d) The census to mid-year methodology applied in 2011 might have changed back, but it is difficult to establish from the data, as those in the older 1919 and 1920 cohorts are now above age 90 years and subject to the methodology for 90 years and older for estimating mid-year populations.
(e) Adjustments in 2011 attributable to those born in the 1940s might be due to post-censal errors in assumed net migration.

The method of backfilling that was employed by the ONS in 2001 (Duncan et al., 2002) is illustrated in a stylized way in Fig. 11. It produces a signature plot for graphical diagnostic
for the 1919 cohort (Fig. 6): the build-up of phantoms over the years 1992–2001 causes death rates for the 1919 cohort to drift downwards relative to neighbouring cohorts.

For the 1919 cohort, the difference between the CBD census to mid-year methodology and the methodology that was employed by the ONS amounted to 9.1% (Fig. 4) or a potential error of about 6600 people. If this error did not exist in 1991 and was spread evenly over the years 1992–2001 then the adjustment would be 660 per year: this is entirely consistent with the magnitude of the parallel shift that we observe in Fig. 10(a) for the 1919 cohort.

3.4. Summarizing remarks
The combination of these three graphical diagnostics reveals that significant anomalies remain in the EW males population data and how it is used to construct crude death rates. Furthermore, although the three diagnostics are qualitatively different, they produce consistent findings.

The 1919 and 1920 cohorts have been known for a considerable time to have unusual patterns of mortality. The graphical diagnostics indicate that the anomalies are the result of unusual patterns of births and its interaction with the methodology that is employed in any given census year to produce mid-year population estimates.

The three diagnostics produce a stronger set of conclusions than would be possible by using only one. Sometimes an anomaly will reveal itself clearly in only one of the three diagnostics and might go unobserved in the other two.

4. Model-based analysis of historical population data

In Section 3, our use of a variety of graphical diagnostic tools allowed us to identify a number of anomalies in the EW males population data. However, these tools do not allow us to quantify how big the individual anomalies are. To overcome this, we propose a methodology that allows us to quantify the individual errors and outputs a revised set of exposures that we believe is as free from anomalies as possible.

The methodology that we propose uses only given sets of exposures and deaths data. Here, exposures have been equated to mid-year population estimates as employed by the ONS; alternative methodologies for calculating exposures have been proposed (e.g. the HMD; Wilmoth et al. (2007)) that derive exposures from population and deaths data in a more sophisticated way. In addition, it would be possible to exploit monthly or quarterly births data as we did in our discussion of graphical diagnostic 2. However, we seek to develop an approach that can be applied to a wide variety of data sets, many of which will not have births data in addition to mid-year population and deaths data.

4.1. Underlying modelling assumptions

In seeking to model errors in exposures, we shall be guided by three assumptions.

Assumption 1. Death counts are accurate.

Assumption 2. Exposures are subject to errors, and errors following cohorts are correlated through time.

Assumption 3. Within each calendar year the curve of underlying death rates is ‘smooth’.

On the basis of these assumptions, we adjust exposures to achieve a balance between assumptions 2 and 3. To make these adjustments, we need to translate these assumptions into a model for the errors in the exposures.
4.2. Model for errors in exposures

We summarize here the main characteristics of the model proposed, with further details provided in Appendix A. We use the following definitions and notation:

(a) \(\hat{E}(t, x) \) are ONS published exposures;
(b) \(E(t, x) \) are the corresponding true but unobservable exposures;
(c) \(D(t, x) \) is the corresponding death count (assumed accurate);
(d) \(m(t, x) \) is the true, but unobservable, death rate;
(e) \(\epsilon(t, x) = \log \{ E(t, x) \} \), with a priori mean \(\hat{\epsilon}(t, x) \);
(f) \(Y(t, x) = \log \{ m(t, x) \} \);
(g) \(\phi(t, x) = \epsilon(t, x) - \hat{\epsilon}(t, x) \).

The \(\hat{\epsilon}(t, x) \) are chosen so that the a priori mean of \(E(t, x) \) equals \(\hat{E}(t, x) \): in other words, we assume that there are no systematic biases in the ONS estimates.

Conditionally on \(m(t, x) \) and \(E(t, x) \), deaths \(D(t, x) \) have a Poisson distribution with mean and variance equal to \(m(t, x) E(t, x) \). Assumption 2 led us to model each \(\phi(t + s, x + s) \), for fixed \((t, x) \), as an auto-regressive AR(1) process. Assumption 3 (after some experimentation) led us to model, for fixed \(t \), the \(Y(t, x) \) as an auto-regressive integrated moving average ARIMA(0,3,0) process with low variance innovations. With a low variance, the choice of model means that quadratic curvature is acceptable in terms of ‘smoothness’. The choice of process for \(Y(t, x) \) is discussed further in Appendix A.2.

Our use of a Bayesian framework brings several advantages. As described above, it provides a natural setting in which we can build in our prior beliefs about the error structure. The model plus data then allow us to estimate the true exposures, as well as provide a full posterior distribution for the true exposures, the true death rates and the associated process parameters. This can then be used to make mortality forecasts that incorporate uncertainty in exposures in a very straightforward way.

The latent state variables and process parameters are estimated by using Markov chain Monte Carlo (MCMC) methods and the Gibbs sampler (see Appendix A). This produces a vector-valued Markov chain \(M(i) \) under which, for each \(i \), \(M(i) \) records a single drawing of the latent state variables \(\phi_i(t, x) \) and \(Y_i(t, x) \) from the posterior distribution. This means that, not only can we obtain a point estimate of each error in the exposures, but the Markov chain also gives us additional information about how much uncertainty there is around these point estimates of the errors.

Fig. 12 provides a heat plot of the posterior means of the errors, \(\phi(t, x) \). Blue indicates that the true exposures are lower than the ONS estimates; green and yellow indicate that exposures need to be adjusted upwards. Mostly the errors are quite small. However, we have highlighted some (but not all) regions of the plot where errors are significantly different from zero and consistently positive or negative. Most of these significant regions lie on diagonals that follow specific cohorts. The 1919 and 1886 cohorts exhibit the strongest negative errors, whereas the strongest positive errors are for the 1900 cohort, with others associated with individual cohorts born in the 1940s, 1950s and 1960s. The pattern of errors for the 1919 and 1920 cohorts are entirely consistent with the conclusions that we drew from Section 3. Whereas those in the earlier cohorts are either extinct or close to being so, those in the younger cohorts are still large in number, so any measurement errors that are associated with them will be materially significant.

The Bayesian analysis was repeated with exposures that had been adjusted for the uneven pattern of births by using the convexity adjustment ratio, as outlined in Section 2.2.4. The result of this is shown in Fig. 13. The most obvious effect is that the significant negative errors for
Fig. 12. Heat plot of the posterior mean of the exposures error function $\phi(t, x)$: exposures are assumed to be equal to the mid-year population estimates.

Fig. 13. Heat plot of the posterior mean of the exposures error function $\phi(t, x)$: exposures are assumed to be equal to the mid-year population estimates multiplied by the convexity adjustment ratio.

the 1920 cohort and positive errors for the 1919 cohort up to the early 1990s have now been eliminated. However, other errors, although modified, persist. For example, for the 1919 cohort in the last 15 years, errors are still significant and, from our investigation in Section 3, these errors can be attributed to a change in census to mid-year methodology in 2001. For the younger cohorts, the more extreme errors observable in Fig. 12 have been mitigated slightly, but clearly there are additional problems with the population estimates for some of these cohorts. Adjusting
for these types of error is less easy, since, at least in some cases, they reflect changes from time to time in methodology. In contrast, the convexity adjustment ratio provides a straightforward, objective and constant adjustment to the exposures for each cohort. Further, a key feature of this section is that the simple model for errors and the Bayesian methodology provides us with an objective procedure for estimating the true exposures that was missing from Section 3.

Fig. 12 also exhibits some persistent but small negative errors around ages 90 and 91 years that are consistent with the concavity function in Fig. 8. It confirms observations in Section 3 that there are some modest issues that need to be addressed in the high age methodology for estimating population and exposures above age 90 years. The band around age 90 years is the only one that persists across all years.

5. Effect of exposure errors on future mortality projections and annuity calculations

We next consider what the influence of these errors is on future mortality contingent problems. We shall compare two cases: model-based forecasts using the unadjusted ONS exposures data (2012 revisions), and model-based forecasts using adjusted exposures data outlined in Section 4, incorporating uncertainty in the estimated exposure errors.

By way of example, we use the following model (model M7 in Cairns et al. (2009)):

\[
\logit\{q(t, x)\} = \kappa^{(1)}(t) + \kappa^{(2)}(t)(x - \bar{x}) + \kappa^{(3)}(t)\{(x - \bar{x})^2 - \sigma_X^2\} + \gamma^{(4)}(t - x) \tag{4}
\]

where the mortality rate \(q(t, x)\) is assumed to be equal to \(1 - \exp\{-m(t, x)\}\), \(x = x_0, \ldots, x_1\), \(\bar{x} = (x_1 - x_0)/2\) is the mean age, \(\sigma_X^2 = n^{-1} \sum_x (x - \bar{x})^2\), the period effects \((\kappa^{(1)}(t), \kappa^{(2)}(t), \kappa^{(3)}(t))\) are assumed to follow a multivariate random walk and the cohort effect \(\gamma^{(4)}(t - x)\) is assumed to be an AR(1) process independent of the period effects.

For \(N\) stochastic scenarios incorporating uncertainty in \(\phi(t, x)\) were generated. In Fig. 14, we compare mortality fan charts for unadjusted (green) and adjusted (grey) exposures data. Broadly speaking, the fans are quite similar in terms of central trajectory and spread. The similar spread indicates that parameter uncertainty in the adjusted exposures is not that large compared with uncertainty in future period and cohort effects. However, in terms of the detail, the grey fans are quite smooth, whereas the green fans are relatively lumpy. This lumpiness is linked to the estimated cohort effect (Fig. 15). Specifically, the blips that are associated with the progress through time of the 1919 and 1947 cohorts (Fig. 14) correspond to jumps in the fitted cohort effect in model (4). The cohort effect is shown in Fig. 15. The red curve with dots shows the cohort effect by using the unadjusted exposures data. Mostly this is fairly smooth, but there are extreme jumps associated with the 1919 and 1947 cohorts. When the model is refitted to adjusted exposures data, the fitted cohort effect ceases to have these extreme jumps (see, for example, the full yellow curve). Otherwise the fitted cohort effect has a level of smoothness similar to that before.

5.1. Annuity values and cohort effects

Although the modelling of mortality rates is of interest in its own right, the real significance is that the results provide a fundamental building block for other mortality-linked quantities, both demographic and financial. An example that combines both is an annuity of £1 per annum from the end of year \(t - 1\) (exact time \(t\)) payable annually in arrears to a male aged exactly \(x\) at the end of year \(t - 1\). The expected present value of this annuity is

\[
a(t, x) = \sum_{s=1}^{\infty} (1 + r)^{-s} E\{S(t, s, x) | M_t\} \tag{5}
\]
Fig. 14. Mortality fan charts for ages 64, 74, 84 and 94 years for the stochastic mortality model (equation (4)) (•, historical data and forecasts (90% prediction interval) by using the unadjusted ONS exposures data; –, adjusted exposures): grey fans up to 2010, adjusted exposures incorporating parameter uncertainty; grey fans after 2010, mortality forecasts by using adjusted exposures data with parameter uncertainty; the forecasts use data from 1991 to 2010.

Fig. 15. Cohort effect $\gamma^4(c)$ for the stochastic mortality model (equation (4)) by using unadjusted (–) and adjusted (——) exposures data: —, 90% credibility interval (bounded by the 5–95% quantiles of the posterior distribution) for $\gamma^4(c)$; –, a typical realization of $\gamma^4(c)$ from the posterior distribution.

where

$$S(t, s, x) = \prod_{j=0}^{s-1} \{1 - q(t + j, x + j)\}$$

is a survivor index that represents the proportion of males aged x at exact time t who survive.
Table 2. Mean of annuity present values PV for various cohorts from the end of 2010, assuming that $r = 2\%$, and using unadjusted and adjusted exposures†

<table>
<thead>
<tr>
<th>Age x (years)</th>
<th>Cohort</th>
<th>PV, unadjusted</th>
<th>PV, adjusted</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean (%)</td>
<td>Standard deviation (%)</td>
<td>Mean (%)</td>
</tr>
<tr>
<td>63</td>
<td>1948</td>
<td>17.40</td>
<td>2.2</td>
<td>17.32</td>
</tr>
<tr>
<td>64</td>
<td>1947</td>
<td>17.00</td>
<td>2.3</td>
<td>16.74</td>
</tr>
<tr>
<td>65</td>
<td>1946</td>
<td>16.12</td>
<td>2.4</td>
<td>16.14</td>
</tr>
<tr>
<td>92</td>
<td>1919</td>
<td>3.04</td>
<td>4.2</td>
<td>2.91</td>
</tr>
</tbody>
</table>

†Age is the age at the end of 2010. Standard deviations of $PV = \sum_{t=1}^{\infty} \frac{1}{(1 + r)^t} S(t,s,x) | M_t$ for t the end of 2010 by using unadjusted exposures are also presented (as a percentage of the mean). Mean present values are shown before and after adjustment of the exposures.

Fig. 16. Comparison of changes in the estimated cohort effects versus changes in annuity prices. Change in cohort effects; distribution of the difference between the estimated cohort effect $\gamma^{(4)}(c)$ before and after the adjustment of the exposures; effect of the adjustment to exposures on annuity values for different cohorts at the end of 2010 using $r = 2\%$ as the interest rate.

to exact time $t + s$, and M_t represents the mortality information that is available at time t. An interest rate of $r = 2\%$ has been assumed.

Annuity values, calculated for the end of 2010, are tabulated in Table 2 for selected cohorts. Mean values are presented by using both unadjusted and adjusted exposures data, along with the standard deviation of the random present value of the annuity (per £1 of annuity for a large population). We can see that, whereas the 1919 cohort has the largest proportional change, the 1947 cohort has the largest absolute change, reflecting the fact that those in this cohort will live much longer after 2010. In contrast, the effect of uncertain survivorship for this cohort is more distant and so its effect is dampened by the discount factor.
The 1919 cohort is the most interesting visually in much of our analyses. However, for the majority of pension plans and annuity providers, cohorts of people born in the 1940s and 1950s for whom we also detect significant (although smaller than the 1919) anomalies should be of most concern from a financial perspective. Additionally, although price effects are currently modest, we should nevertheless take account of them and monitor the development of the anomalies over time.

Finally, consider the effect on annuity values and its relationship to the effect on cohort effects. In Fig. 16, we show, as a grey fan, the difference between the cohort effects after and before adjustment (the grey fan minus the red curve with dots in Fig. 15), to demonstrate the effect of the adjustment on cohort effects. Generally the differences are quite smooth and centred close to zero. However, there are some significant jumps in Fig. 16 that are associated with the 1919 and 1947 cohorts. We then compare these differences with the effect on annuity values (the full purple curve in Fig. 16). To illustrate this, Fig. 17 shows, by reference to cohort survivorship fan charts, why the annuity price changes by so much. Over a period of only 8 years, the proportion of survivors is more than 10% lower by using the adjusted exposures. From Fig. 16, we can see that the effect on annuity values is strongly correlated, as we would expect, with the effect on cohort effects.

6. Conclusions

The 2011 census revisions to EW population estimates by the ONS drew attention to the possibility that there are widespread errors in how population data are measured and reported in many countries. In particular, we have discovered that an uneven pattern of births within a given calendar year is a major cause of errors in population and exposures data. Different countries or agencies might derive population and exposures in different ways. But, however they do this, the estimates will be subject to potentially significant errors, unless they take into account monthly or quarterly births data.

We have developed a range of methodologies to help to identify specific errors in population, exposures and deaths data:
(a) graphical diagnostics providing a powerful model-free toolkit for identifying anomalies in the form of signature plots;
(b) a Bayesian framework enabling the size of these anomalies to be quantified;
(c) two-dimensional diagnostics enabling the detection of small systematic errors in exposures and deaths of less than 1%.

Apart from analysis of historical data, our recommendation is that these methodologies should be used annually as an early warning system for the detection of emerging anomalies in data.

Our analysis using these methodologies has shown that errors remain in ONS population data. We have developed the CBD exposures methodology which can be used to explain many of the bigger errors. The first component was the convexity adjustment ratio which can be used to explain how persistent cohort-related errors arise when exposures are equated to mid-year population estimates. The second component was the improved methodology for deriving mid-year population estimates in census years from census data. Other errors were identified but only partially explained by the CBD exposures methodology. In addition, anomalies in death rates have been identified that we believe are due to potential small biases in the reported age at death, and use of the Kannisto–Thatcher high age methodology resulting in a discontinuity at age 90 years.

Collectively, these errors can make substantial differences, particularly in respect of cohorts that are still sufficiently large to have a significant financial effect, an example being the 1947 cohort within an annuity portfolio.

The same sources of errors—with possible variants—will apply to other countries. Some countries are similar to EW in that they derive their population data from periodic (typically decadal) censuses. As one example, data collection in the USA shares similar characteristics and reveals similar anomalies to those for EW. Many other countries, however, have compulsory systems of registration, which means that both deaths and population counts are more accurate, even if they are not completely error free. Nevertheless, there is still the potential for errors to be introduced when the crude death rates are calculated. As an example, a country might publish accurate start-of-year population data. But, if the central exposed-to-risk function involves taking an arithmetic average of the population at the beginning and end of each year (possibly with further adjustments as in the HMD methods protocol; Wilmoth et al. (2007)), then errors can be introduced as a result of an uneven pattern of births. The implication of all this is that definitions of published data need to be read carefully and published numbers that are exact should be used wherever possible, and population figures that are derived from these (possibly by other agencies) should be used with caution.

The graphical diagnostics and Bayesian quantification of errors can be just as easily applied to assess the quality of data for other countries. This includes the rich and extensive HMD. The HMD, as outlined earlier, processes data provided by national statistics agencies in a standardized way that does not make use of monthly or quarterly births data. Although there is no space here to report on individual analyses, we can remark that many countries exhibit similar and some alternative patterns of anomalies to those in the EW data.

Acknowledgements

We thank the ONS for providing the deaths and population data and for providing feedback at an extended in-house seminar (particularly Julie Jefferies, Angele Storey, Steve Smallwood, Adrian Gallop, Julie Mills and Jo Zumpe), Stephen Richards for providing the births data and for contributing the idea that the 1919 birth cohort anomaly might be connected to births, and Andrew Hunt for comments on an earlier version of the paper. We also thank seminar participants at the US Social Security Administration (particularly Steve Goss, Karen Glenn, Michael Morris...
and Alice Wade), the Institutional Investor Breakfast Meeting, Harvard Club of New York City (particularly Peter Nakada), the United Nations Population Directorate (particularly Kirill Andreev) and the Continuous Mortality Investigation (particularly Jon Palin). Finally, we thank the Associate Editor and two referees for their detailed and very helpful suggestions to improve the paper. Cairns acknowledges financial support from Netspar under project LMVP 2012.03.

Appendix A: Modelling uncertainty in exposures

We assume that, for each t and x, $E(t, x) / \hat{E}(t, x)$, the ratio of true to published exposures, has a log-normal distribution with mean 1, i.e. there is no a priori reason to assume that the ONS would deliberately overestimate or underestimate exposures. The logarithm of the latent death rates, $Y(t, x) = \log \{ m(t, x) \}$, is assumed to have an underlying smoothness across ages in a given calendar year t.

A.1. Model for the propagation of errors in exposures

Recall that $\epsilon(t, x) = \log \{ E(t, x) \}$ and $\tilde{\epsilon}(t, x) = \log \{ \hat{E}(t, x) \}$. Define $\phi(t) = (\phi(t, 1), \ldots, \phi(t, n_x))^\prime$ to be the vector of errors in year t. $\phi(t)$ is assumed to follow a vector auto-regressive process of order 1, $\text{VAR}(1)$. Thus, for $t = 2, \ldots, n_y$, $\phi(t) = A \phi(t - 1) + \sigma_\phi Z_\phi(t)$, where the $Z_\phi(t)$ are independently and identically distributed standard multivariate normal random vectors of dimension $n_x \times 1$, $\sigma_\phi > 0$ is a scalar and the auto-regression matrix A is $n_x \times n_x$ with elements $A_{ii} = \theta$, $A_{i, i-1} = \theta$ for $i = 2, \ldots, n_x$ and $A_{ij} = 0$ otherwise. We define V_ϕ to be the covariance matrix of $\phi(t)$ given $\phi(t - 1)$. It follows that V_ϕ is diagonal with the constant σ_ϕ^2 down the diagonal.

$\phi(1)$ is assumed to have the stationary distribution of $\phi(t)$. Thus, $\phi(1)$ has a multivariate normal distribution with mean vector 0 and covariance matrix V_ϕ, and is independent of the $Z_\phi(t)$ for $t > 1$. If we let v_{ij} for $i, j = 1, \ldots, n_x$ represent the elements of V_ϕ, then, for the given structures for A and V_ϕ, we have $v_{ii} = \sigma_\phi^2 / (1 - \theta^2)$ for all i, $v_{ij} = \sigma_\phi^2 / (1 - \theta^2) \theta^{|i-j|-1}$ for all i and $j > i$, and $v_{ij} = v_{ji}$ for all i and $j < i$.

Samples of the $\phi(t)$ drawn from the MCMC output produce estimates of the $Z(t)$ which are consistent with the independently and identically distributed standard multivariate normal assumption.

A.2. Model for the underlying log-death-rates

Individual years are treated in isolation and we assume that $Y(t, x) = 3 Y(t, x - 1) - 3 Y(t, x - 2) + Y(t, x - 3) + \sigma_Y Z_Y(t, x)$, where the $Z_Y(t, x)$ are independently and identically distributed standard normal random variables. Thus, for a given t, $Y(t, x)$ is an ARIMA(0,3,0) process, giving locally quadratic predictions plus noise proportional to σ_Y.

The motivation for using an ARIMA model is to assess in-sample roughness in the underlying $Y(t, x)$, and it is not intended as a means of modelling $Y(t, x)$ beyond the range of ages in the data set. The choice of an ARIMA(0,3,0) model provides a convenient way of penalizing deviations from a locally quadratic shape. The log-likelihood for year t (see equation (7) in Appendix A.3) is equivalent to a roughness penalty of $\sum_{x=1}^{n_x} \{ Y(t, x) - 3 Y(t, x - 1) + 3 Y(t, x - 2) - Y(t, x - 3) \}^2 / \sigma_Y^2$, where the inverse of the ARIMA volatility σ_Y^2 takes the role of the smoothing parameter. We choose σ_Y to be small, so that, for each t, the observed process $Y(t, x)$ follows a smooth path that is locally as close as possible to a quadratic curve. The choice of an ARIMA(0,3,0) model (locally quadratic smoothness) was preferred to an ARIMA(0,2,0) model (locally linear smoothness) because the former resulted in a much greater degree of robustness in the exposures errors relative to the choice of minimum age.

Samples of the $Y(t, x)$ drawn from the MCMC output produce estimates of the $Z_Y(t, x)$ that are consistent with the independently and identically distributed standard normal assumption.

A.3. Model for deaths

For each t and x, and given $\phi(t, x)$ and $Y(t, x)$, we assume that death counts $D(t, x)$ are conditionally independent and have a log-normal distribution, i.e. $d(t, x) = \log \{ D(t, x) \}$ has a normal distribu-
tion with mean $\mu_D(t, x)$ and variance $S_D(t, x)$. The log-normal distribution is used for computational purposes as an alternative to the usual Poisson distribution for $D(t, x)$. As such we equate the mean and variance of the log-normal distribution to the mean and variance of the matching Poisson distribution: both $\exp\{\hat{\epsilon}(t, x) + \phi(t, x) + Y(t, x)\}$. Thus, $\mu_D(t, x) = \hat{\epsilon}(t, x) + \phi(t, x) + Y(t, x) - \frac{1}{2}S_D(t, x)$. Additionally, since the mean and variance are equal, we have $\exp\{S_D(t, x)\} - 1 = 1/\exp\{\hat{\epsilon}(t, x) + \phi(t, x) + Y(t, x)\}$ or $S_D(t, x) \approx 1/E[D(t, x)|\phi(t, x), Y(t, x)]$, which is an approximation that will be more accurate if the mean $E[D(t, x)|\phi(t, x), Y(t, x)]$ is large. We can note that, for each (t, x), $\phi(t, x) + Y(t, x)$ is used twice in the mean and variance but, where the number of deaths is relatively large, proximity of $d(t, x)$ to its mean is the main driver of the likelihood function around $d(t, x)$, with the coupled changes in $S_D(t, x)$ having very little effect. As a consequence we choose to fix $S_D(t, x)$ rather than to set it at $1/E[D(t, x)|\phi(t, x), Y(t, x)]$, which is an approach that facilitates the use of the Gibbs sampler outlined later in this appendix. Furthermore, we propose an empirical Bayes approach as an appropriate mechanism for fixing $S_D(t, x)$. Thus, we replace $E[D(t, x)|\phi(t, x), Y(t, x)]$ by the observed deaths, $D(t, x)$, i.e. $S_D(t, x) = 1/D(t, x)$.

For larger expected numbers of deaths across all ages, this will provide a good approximation to the true posterior distribution. It is important, nevertheless, to verify that the proposed use of empirical Bayes methods does not distort or bias the estimation procedure to any significant extent for this particular population size. We experimented, therefore, with three variants. The first two variants used $S_D(t, x) = C/D(t, x)$ where $C = 0.5$ and $C = 2$. The third used $S_D(t, x) = 1/D(t, x)$ where $D(t, x)$ was equated to the posterior mean of $E(t, x)$ $\exp\{Y(t, x)\}$ by using the MCMC output from the original run. In all three cases, the differences between the posterior distributions for the $\phi(t, x)$ were very small. However, we stress again that the approximation would work less well if the numbers of deaths are much smaller.

Apart from the time series structures that were specified above, the matrices of latent state variables, Y and ϕ, are assumed to have uninformative, uniform prior distributions on $(-\infty, \infty)^{n_x \times n_x}$. Additionally, we set the process parameters exogenously as $\sigma_Y = 0.01$, $\sigma_Y = 0.02$ and $\theta = 0.9$. Now $\sigma_Y = 0.01$ reflects our desire for a high degree of smoothness in $Y(t, x)$, $\sigma_Y = 0.02$ reflects the revisions that we have seen in the ONS exposures data and $\phi = 0.9$ reflects the strong persistence of errors in the exposures data. Estimated exposure errors have been tested for sensitivity to these three parameter settings and the results have been found to be robust.

The log-likelihood for our model is

$$f(\phi, Y | d, \hat{E}) = f_1(d | Y, \phi, \hat{E}) + f_{2A}(\phi(1)) + \sum_{i=2}^{n_y} f_{2B}(\phi(t)) + f_3(Y)$$

where

$$f_1(d | Y, \phi, \hat{E}) = -\frac{1}{2} \sum_{t=1}^{n_y} \left(d(t) - Y(t) - (\hat{\epsilon} - \hat{\phi}(t)) + S_D(t)^{-1}(d(t) - Y(t) - \hat{\epsilon} + \hat{\phi}(t)) \right) + \text{constant},$$

$$f_{2A}(\phi(1)) = -\frac{1}{2} \phi(1)'V_{00}^{-1}\phi(1) + \text{constant},$$

$$f_{2B}(\phi(t)) = -\frac{1}{2} (\phi(t) - A\phi(t-1))'V_{\phi}^{-1}(\phi(t) - A\phi(t-1)) + \text{constant}$$

and

$$f_3(Y) = -\frac{1}{2} \sum_{t=1}^{n_y} \frac{1}{\sigma_Y^2} Y(t)' \Delta Y(t) + \text{constant}.$$

In these equations,

$$\Delta = \begin{pmatrix} 1 & -3 & 3 & -1 & 0 & \cdots & \cdots \\ 0 & 1 & -3 & 3 & -1 & 0 & \cdots \\ \vdots & 0 & 1 & -3 & 3 & -1 & \cdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \cdots & \cdots \\ 0 & 1 & -3 & 3 & -1 & \cdots & \cdots \end{pmatrix}$$

(which is an $n_y - 3 \times n_y$ matrix), d is the matrix of the logarithms of the deaths, $D(t, x)$, $S_D(t, x)$ is a diagonal matrix whose elements are $D(t, x)^{-1}$ for $x = x_1, \ldots, x_{n_x}$ and A, V_{ϕ} and V_{00} are defined in Appendix A.1.
Since \(Y \) and \(\phi \) have uniform prior distributions, the log-likelihood (6) is equal to the log-posterior density. The posterior distribution for the combination \((Y, \phi) \) can be seen to be multivariate normal. However, the dimension of the state space \((2n_xn_y) \) is very large, and so identifying the mean and covariance matrix \(\Sigma_y \) for the posterior is computationally almost impossible. Instead, we adopt an MCMC approach using the Gibbs sampler as a proposal distribution. The MCMC algorithm proceeds as follows.

(a) Let \(Y(t)^{C} \) represent all elements of \((Y, \phi) \) apart from the vector \(Y(t) \), and \(\phi(t)^{C} \) represent all elements of \((Y, \phi) \) apart from the vector \(\phi(t) \).

(b) For \(t = 1, \ldots, n_y \), the conditional posterior for \(Y(t) \), given \(Y(t)^{C} \), is multivariate normal, with mean \(\mu_y \equiv \mu\{Y(t)^{C}\} \) and covariance matrix \(H_y^{-1} \equiv H\{Y(t)^{C}\}^{-1} \) where

\[
H_y = S_D(t)^{-1} + \frac{1}{\sigma_y^2} \Delta' \Delta, \\
\mu_y = H_y^{-1} S_D(t)^{-1} (d(t) - \hat{\epsilon}(t) - \phi(t)).
\]

(c) The conditional posterior distribution for \(\phi(1) \), given \(\phi(1)^{C} \), is multivariate normal with mean \(\mu_{\phi}\{1, \phi(1)^{C}\} \) and covariance matrix \(H_{\phi}\{1, \phi(1)^{C}\}^{-1} \), where

\[
H_{\phi} = S_D(1)^{-1} + A^\prime V_{\phi}^{-1} A + V_{\phi}^{-1}, \\
\mu_{\phi} = H_{\phi}^{-1} \left\{ S_D(1)^{-1} (d(1) - \hat{\epsilon}(1) - Y(1)) + A^\prime V_{\phi}^{-1} \phi(2) \right\}.
\]

(d) The conditional posterior distribution for \(\phi(t) \), given \(\phi(t)^{C} \), for \(t = 2, \ldots, n_y - 1 \), is multivariate normal with mean \(\mu_{\phi}\{t, \phi(t)^{C}\} \) and covariance matrix \(H_{\phi}\{t, \phi(t)^{C}\}^{-1} \) where

\[
H_{\phi} = S_D(t)^{-1} + V_{\phi}^{-1} A + A^\prime V_{\phi}^{-1}, \\
\mu_{\phi} = H_{\phi}^{-1} \left\{ S_D(t)^{-1} (d(t) - \hat{\epsilon}(t) - Y(t)) + V_{\phi}^{-1} A \phi(t - 1) + A^\prime V_{\phi}^{-1} \phi(t + 1) \right\}.
\]

(e) The conditional posterior distribution for \(\phi(n_y) \), given \(\phi(n_y)^{C} \), is multivariate normal with mean \(\mu_{\phi}\{n_y, \phi(n_y)^{C}\} \) and covariance matrix \(H_{\phi}\{n_y, \phi(n_y)^{C}\}^{-1} \) where

\[
H_{\phi} = S_D(n_y)^{-1} + V_{\phi}^{-1}, \\
\mu_{\phi} = H_{\phi}^{-1} \left\{ S_D(n_y)^{-1} (d(n_y) - \hat{\epsilon}(n_y) - Y(n_y)) + V_{\phi}^{-1} A \phi(n_y - 1) \right\}.
\]

References

