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Abstract

In this paper we develop a model of an order-driven market where traders set
bids and asks and post market or limit orders according to exogenously fixed rules.
Agents are assumed to have three components to the expectation of future asset
returns, namely-fundamentalist, chartist and noise trader. Furthermore agents
differ in the characteristics describing these components, such as time horizon,
risk aversion and the weights given to the various components. The model devel-
oped here extends a great deal of earlier literature in that the order submissions
of agents are determined by utility maximisation, rather than the mechanical unit
order size that is commonly assumed. In this way the order flow is better related
to the ongoing evolution of the market. For the given market structure we analyze
the impact of the three components of the trading strategies on the statistical
properties of prices and order flows and observe that it is the chartist strategy
that is mainly responsible of the fat tails and clustering in the artificial price data
generated by the model. The paper provides further evidence that large price
changes are likely to be generated by the presence of large gaps in the book.
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1 Introduction

Traders willing to trade in electronic markets can either place market orders, which are
immediately executed at the current best listed price, or they can place limit orders.
Limit orders are stored in the exchange’s book and executed using time priority at a
given price and price priority across prices. A transaction occurs when a market order
hits the quote on the opposite side of the market.

In the last few years several order driven microscopic models have been introduced to
explain the statistical properties of asset prices, we cite in particular Bottazzi et al.
(2005), Consiglio et al. (2003), Chiarella and Iori (2002), Daniels et al. (2002), Li Calzi
and Pellizzari (2003), Luckock (2003), Raberto et al. (2001), and Gil-Bazo et al. (2005).
See also Slanina (2007) for a recent overview.

The aim of Chiarella and Iori (2002) was to introduce a simple auction market model
in order to gain some insights into how the placement of limit orders contributes to
the price formation mechanism. The impact on the market of three different trading
strategies: noise trading, fundamentalism and chartism were analyzed. It was shown
that the presence of chartism plays a key role in generating realistic looking dynamics,
such as volatility clustering, persistent trading volume, positive cross-correlation between
volatility and trading volume, and volatility and bid-ask spread.

While several microstructure models have been able to generate price trajectories that
share common statistical properties with real asset prices, few studies have so far inves-
tigated the properties of generated order flows and of the order book itself. Recently, the
empirical analysis of limit order data has revealed a number of intriguing features in the
dynamics of placement and execution of limit orders. In particular, Zovko and Farmer
(2002) found a fat-tailed distribution of limit order placement from the current bid/ask
(with an exponent around 1.49). Bouchaud et al. (2002) and Potters and Bouchaud
(2003) found a fat-tailed distribution of limit order arrival (with an exponent roughly
equal to 0.6, smaller than the value observed by Zovko and Farmer) and a fat-tailed
distribution of the number of orders stored in the order book (with exponent of about
0.3).

In order to build a model that can incorporate these recent empirical findings of limit
order data, we here extend the original model of Chiarella and Iori (2002) in two main
respects. First, agents apply different time horizons to the different components of their
strategies; longer time horizons for the fundamentalist component and shorter horizons
for chartist and noise trader component. Second, agents are not constrained to merely
submit orders of size one, but rather submit orders given by an asset demand function
determined in the traditional economic framework of expected utility maximisation. In
this way the ongoing evolution of the market feeds back into the asset demands of
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the different agents. We simulate our model and compare its qualitative predictions
for different strategies of our population of traders. We show in particular with the
introduction of chartist strategies into a population of utility optimizing traders that
our model is not only capable of generating realistic asset prices, fat tails and volatility
clustering but, is also capable of reproducing the empirically observed regularities of
order flows.

The analysis of order book data has also added to the debate on what causes fat tailed
fluctuations in asset prices. Gabaix et al. (2003) put forward the proposition that
large price movements are caused by large order volumes. A variety of studies have
made clear that the mean market impact is an increasing function of the order size,
in contrast Farmer et al. (2004) have shown that large price changes in response to
large orders are very rare. Furthermore these authors have also shown that an order
submission typically results in a large price change when a large gap is present between
the best price and the price at the next best quote (see also Weber and Rosenow (2005)
and Gillemot et al. (2005)). We show in section 3 that in the model proposed in this
paper large returns are also mostly associated with large gaps in the book.

The paper is structured as follows; in section 2 we model the fundamentalist, chartist
and noise trader components of expectations and the way in which agents form their
demands for the risky asset. In section 3 we undertake a number of simulations of the
model under our choice of the asset demand function to determine how well the empirical
facts referred to earlier are reproduced. Section 4 concludes and suggests some avenues
for future research. The appendices contain a number of technical derivations.

2 The Model

We assume that all agents know the fundamental value pf
t of the asset, which we take

to follow a geometric Brownian motion. Agents also know the past history of prices. At
any time t the price is given by the price at which a transaction, if any, occurs. If no
new transaction occurs, a proxy for the price is given by the average of the quoted ask
aq

t (the lowest ask listed in the book) and the quoted bid bq
t (the highest bid listed in the

book): so that pt = (aq
t + bq

t )/2, a value that we call the mid-point. If no bids or asks
are listed in the book a proxy for the price is given by the previous traded or quoted
price. Bids, asks and prices need to be positive and investors can submit limit orders at
any price on a prespecified grid, defined by the tick size ∆.

The demands of each trader for the risky asset are assumed to consist of three compo-
nents, a fundamentalist component, a chartist component and a noise induced compo-
nent. The weights applied to these various components will vary in ways to be described
below. At any time t a trader is chosen to enter the market. The chosen agent, i, forms
an expectation about the spot return, r̂i

t,t+τ i, that will prevail in the interval (t, t + τ i),

where τ i is the agent’s time horizon. Agents use a combination of fundamental value
and chartist rules to form expectations on stock returns, so that

r̂i
t,t+τ i =

1

gi
1 + gi

2 + ni

[
gi

1

1

τf
ln(pf

t /pt) + gi
2r̄

i
t + niεt

]
, (1)
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where the quantities gi
1 > 0 and gi

2 > 0 represent the weights given to the fundamentalist
and chartist component respectively. In addition, we add a noise induced component εt,
with zero mean and variance σε to agent’s expectations with weight ni > 0. The initial
term in Eq. (1) normalises the impact of the three trading strategies. The quantity τf is
the time scale over which the fundamentalist component for the mean reversion of the
price to the fundamental is calculated. Finally, the average r̄i

t gives the future expected
trend of the chartist component based on the observations of the spot returns over last
τ i time steps. That is,

r̄i
t =

1

τ i

τ i∑
j=1

rt−j =
1

τ i

τ i∑
j=1

ln
pt−j

pt−j−1
, (2)

where rt and pt = pt−1 exp(rt) are, respectively, the spot return and the spot price at
time t.

Observe that a pure fundamentalist trading strategy has gi
2 = ni = 0, a chartist trading

strategy has gi
1 = ni = 0, whilst for a noise trading strategy gi

1 = gi
2 = 0. We assume that

the degree of fundamentalism, chartism and noise trading will be spread across agents,
so we model the trading weights as random variables independently chosen. For agent i
the weights are chosen according to the realizations of the set of Laplace distributions,

Prob(gi
1) =

1

σ1

exp(−gi
1/σ1), Prob(gi

2) =
1

σ2

exp(−gi
2/σ2),

and

Prob(ni) =
1

σn
exp(−ni/σn),

for gi
1, g

i
2 and ni ≥ 0. The average and variance of these densities depend on the values

of σ1, σ2 and σn. So that: E[gi
1] = σ1 with variance σ2

1 , E[gi
2] = σ2 with variance σ2

2 and
E[ni] = σn with variance σ2

n.

The future price, pi
t+τ i , expected at time t + τ i by agent i is given by

p̂i
t+τ i = pt exp(r̂i

t,t+τ iτ i), (3)

where we recall that pt is the current price at time t. It is common to assume that the
time horizon of an agent depends on its characteristics. Fundamentalist strategies are
typically given much greater weight by long term institutional investors who have longer
time horizons, whilst day traders have shorter time horizons and give more weight to
chartist rules. Hence we choose the time horizon τ i of each agent according to1

τ i =

[
τ
1 + gi

1

1 + gi
2

]
, (4)

where τ is some reference time horizon.

Once the agent has formed its own expectation of the future price, it has to decide
whether to place a buy or a sell order and choose the size of the order. We assume that

1The notation [x] refers to the value obtained by rounding up to the next highest integer.
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agents are risk averse and maximize the exponential utility of wealth function2

U(W i
t , α

i) = −e−αiW i
t , (5)

where the coefficient αi measures the relative risk aversion of agent i. We assume that
those agents giving greater weight to the fundamentalist component are more risk averse
than those giving more weight to the noise trader and chartist components. This effect
is captured by setting

αi = α
1 + gi

1

1 + gi
2

, (6)

where α is some reference level of risk aversion.

We next define the portfolio wealth of each agent as

W i
t = Si

tpt + Ci
t , (7)

where Si
t ≥ 0 and Ci

t ≥ 0 are respectively the stock and cash position of agent i at
time t. The optimal composition of the agent’s portfolio is determined in the usual
way by trading-off expected return against expected risk. However the agents are not
allowed to engage in short-selling. The number of stocks an agent is willing to hold in
its portfolio at a given price level p depends on the choice of the utility function. For
the CARA utility function assumed here the optimal composition of the portfolio, that
is the number of stocks the agent wishes to hold is given by

πi(p) =
ln(p̂i

t+τ i/p)

αiV i
t p

, (8)

where V i
t is the variance of returns expected by agent i, the agent’s relative risk aversion

αi is given by Eq. (6), and the agent’s investment horizon τi is defined in Eq. (4). We
note that Eq. (8) is independent of wealth, which obviates the need to keep track of the
wealth dynamics of each individual agent. If the amount πi(p) is larger (smaller) than the
number of stocks already in the portfolio of agent i then the agent decides to buy (sell).
Eq. (8) can be derived on the basis of mean-variance one-period portfolio optimization.
Appendix A shows how to obtain this equation from the utility function (5) following a
similar approach to that of Bottazzi et al. (2005). We estimate V i

t as the variance of
past returns, estimated by each agent as

V i
t =

1

τ i

τ i∑
j=1

[rt−j − r̄i
t]

2, (9)

where the average spot return r̄i
t is given by Eq. (2).

In order to determine the buy/sell price range of a typical agent, we first estimate
numerically the price level p∗ at which agents are satisfied with the composition of their
current portfolio, which is determined by

πi(p∗) =
ln(p̂i

t+τ i/p∗)

αiV i
t p∗

= Si
t . (10)

2We recall that this utility function belongs to the CARA (constant absolute risk aversion) class.
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Position Type of order Volume

pm < p < aq
t BUY Limit order si = πi(p) − Si

t

aq
t ≤ p < p∗ BUY Market order si = πi(aq

t ) − Si
t

p = p∗ No order placement
p∗ < p ≤ bq

t SELL Market order si = Si
t − πi(bq

t )
bq
t < p ≤ pM SELL Limit order si = Si

t − πi(p)

Table 1: Summary of the trading mechanism of a typical trader i with a random price
level p limited between the value pm given by Eq. (11) and the value pM = p̂i

t+τ i . The
current quoted best ask and best bid are aq

t and bq
t respectively.

Eq. (10) admits a unique solution with 0 < p∗ ≤ p̂i
t+τ i since Si

t ≥ 0 given that short
selling is not allowed. Agents are willing to buy at any price p < p∗ since in this price
range their demand is greater than their holding. While agents are willing to sell at any
price p > p∗ since then their demand is less than their holding. Note that agents may
thus wish to sell even if they expect a future price increase. If we select p = p∗ agents
decide to do nothing.

As we want to impose budget constraints we need to restrict ourselves to values of
p ≤ p̂i

t+τ i = pM to ensure π(p) ≥ 0 and so rule out short selling. Furthermore to ensure
that an agent has sufficient cash to purchase the desired stocks, the smallest value of
p = pm we can allow for agent i is determined by its cash position (see Eq. (7)), and so
is given by the condition

pm

(
πi(pm) − Si

t

)
= Ci

t . (11)

Again one can easily show that this equation also admits a unique solution with 0 <
pm ≤ p̂i

t+τ i since Si
t , C

i
t ≥ 0. Indeed, comparing Eqs. (10) and (11) it can be easily

proven that 0 < pm ≤ p∗ ≤ p̂i
t+τ i . We represent the typical agent’s buy/sell price range

graphically in Fig. 1.

Having determined that the possible values at which an agent can satisfactorily trade
are in the interval [pm, pM ], we next consider how the nature of the agent’s order is
determined. Agents randomly draw a price p from the interval [pm, pM ] and if p < p∗

they submit a limit order to buy an amount

si = πi(p) − Si
t ,

while if p > p∗ they submit a limit order to sell an amount

si = Si − πi(p).

However if p < p∗ and p > aq
t the buy order can be executed immediately at the ask.

An agent in this case would submit a market order to buy an amount

si = πi(aq
t ) − Si

t .

6



Similarly if p > p∗ and p < bq
t the agent would submit a market order to sell an amount

si = Si
t − πi(bq

t ).

If the depth at the bid (ask) is not enough to fully satisfy the order, the remaining
volume is executed against limit orders in the book. The agent thus takes the next best
buy (sell) order and repeats this operation as many times as necessary until the order is
fully executed. This mechanism applies under the condition that quotes of these orders
are above (below) price p. Otherwise, the remaining volume is converted into a limit
order at price p. If the limit order is still unmatched at time t + τ i it is removed from
the book.

The essential details of the trading mechanism are summarized in Table 1, showing how
it depends on the price level p, the “satisfaction level” p∗, the best ask aq

t and the best
bid bq

t .

3 Simulation Analysis

In this section we analyze, via numerical simulations, various properties of prices, or-
der flows and the book implied by the model of section 2. In the simulations we have
considered (in succession) three kinds of trading rules, noise trading only (black), fun-
damentalism and noise trading only (red), and, fundamentalism, chartism and noise
trading (green). We set the number of agents at NA = 5000. Agents are initially as-
signed a random amount of stock uniformly distributed on the interval S0 ∈ [0, NS] and
an amount of cash C0 ∈ [0, W ]. In the following simulations we choose NS = 50 and
W = NS pf(0). We also fix τ = 200, ∆ = 0.0005, σε = 10−4, σn = 1, and α = 0.1. We
choose the fundamental value to be a random walk with initial value pf(0) = 300, zero
drift and and volatility σf = 10−3. We run the simulations with a large set of values
σ1 and σ2 ranging from 0 to 30 in order to study the impact of different fundamentalist
and chartist components on price, order flows and the book.

The results reported here are the outcome of simulations of 200,000 steps, each of which
we repeat 100 times with different random seeds. To test the robustness of the results we
have repeated the simulations varying the parameter set within a small neighborhood of
those used here. We have found that the qualitative features reported below are fairly
robust to such variations.

3.1 Price and Returns

Our main aim in this section is to gain some insights into the details of the price for-
mation in the model. Figure 2 displays sample paths of the price under very different
assumptions concerning the trading strategies used. In the first path (left hand side) the
trading strategy only has a noise trading component and, as we might expect, the fun-
damental price has nothing to do with the current price generated by the double auction
market. However, once we include the fundamentalist component, the auction market is
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no longer operating independently of the fundamental and we observe in the centre plot
that the market arrives at a price that follows closely the fundamental price pf . Finally,
the right hand plot shows how the addition of the chartist component to the trading
strategy affects the price evolution. This component accentuates the fluctuations of the
price as evidenced by the numerous extreme movements that are indeed characteristic
of real markets. These simulations would suggest that big jumps in the price are mainly
caused by the chartist component.

Next we analyse the return time series. Figure 3 shows on the left a rather typical path
for the returns generated by the model when noise trader, fundamentalist and chartist
components are all present. On the right side of Figure 3 we represent the decumulative
distribution functions (DDF) defined as the probability of having a change in price
larger than a certain return threshold. In other words, we are plotting one minus the
cumulative distribution function. In this way we observe that fat tail behaviour appears
once chartism is introduced into the trading strategy and increases with σ2. The four
curves correspond to σ1 = 10.00 and σ2 = 0.00 (black), σ2 = 1.20 (red), σ2 = 2.00
(green), σ2 = 2.80 (blue).

To confirm and quantify the robustness of all the above statements we have also com-
puted the Hill tail index, the details of which are explained in Appendix B. Essentially
this index measures the tail exponent (Hill (1975)), the lower it is the fatter the tail of
the DDF. The results are plotted in Figure 4. The left hand plot shows how the inclusion
of the fundamentalist component brings about a fat tail distribution although we do not
see big changes when we increase the fundamentalist weight σ1 in the market. The index
decreases very slowly and takes values between 4.5 and 3.5, while in real markets the tail
index is normally around or even below 3 (Lux (2001), Gabaix et al. (2003)). We also
detect that the right tail (due to positive changes in returns) of the distribution is fatter
(even though the differences are not statistically significant enough) for all values of σ1.
This would be in contradiction with the situation in real markets where the skewness
of the returns is found to be negative indicating that the tail due to negative returns is
fatter than that due to positive returns (Lux (2001)).

We consider the impact of the chartist component on the right hand side plot of Figure 4.
We observe a much clearer pattern when the weight of this component of trading behavior
increases. The tail index diminishes drastically to a value below 3 as we increase the
weight of the chartist component σ2. The second important point to emerge from this
plot is that it provides the consistent negative skewness for the pdf observed in real
markets. The left tail of the distribution (negative returns) is fatter than the right one.
However, increasing the value of σ2 beyond about the value of 2 leads to a reversal of
the skewness property in the pdf, even though the tails become fatter. Clearly, the
parameters of the model need to have a significant chartist component in order that it
exhibit behaviour consistent with empirical observations, but not so big as to lose the
negative skewness between the positive and negative tails of the return pdf.

We now focus on the long memory property of the volatility. We first observe this
property by means of the volatility autocorrelation

Cj =
γ̂j,N

V̂N

=
1
N

∑N
i=j+1

(
Xi − X̄N

) (
Xi−j − X̄N

)
1
N

∑N
j=1

(
Xj − X̄N

)2 , (12)
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where the X1, ..., Xn, ..., XN are the absolute returns |rt| = | ln(pt/pt−1)| over time steps
1 to N . The variable X̄N is the absolute return sample mean over a time window of N
time steps

X̄N =
1

N

N∑
i=1

Xi. (13)

The autocorrelation thus calculates the ratio between the autocovariance and variance
estimators. In Figure 5 (left) we plot the volatility autocorrelation for noise trading
(black), noise trading plus fundamentalism (red) and noise trading plus fundamentalism
and chartism (green) in terms of j and averaging over the whole data set generated
from the simulations. The volatility autocorrelation is non-negligible when we include
the fundamentalist and chartist components in the market for a broader domain. Real
markets show a very long range volatility autocorrelation (Lo (1991)). Nonetheless, our
model only shows very long term memory when the chartist component is activated.
Hence, we not only observe a direct relationship between the chartist component and
large returns but also detect that long memory in the volatility appears to be directly
related to the inclusion of the chartism component.

To better quantify this effect we have studied the long range memory of the volatility
by implementing the modified R/S, or rescaled range, analysis (see Figure 5, right).
Basically, the R/S statistic, introduced by Mandelbrot (1972) is the range of partial
sums of deviations of a time series from its mean, rescaled by its standard deviation.
Lo (1991) has modified the statistic so that its behaviour is invariant for short memory
processes but deviates for long memory process. The modified R/S statistic is defined
as

Qn =
1√

V̂n(q)

[
max
1≤k≤n

k∑
i=1

(
Xi − X̄n

) − min
1≤k≤n

k∑
i=1

(
Xi − X̄n

)]
, (14)

where X1, ..., Xn, ..., XN , are a sample of absolute returns and

V̂n(q) = V̂n + 2

q∑
j=1

ωj(q)γ̂j,n,

with

ωj(q) = 1 − j

q + 1
, q < n.

The term X̄n appearing in Eqs. (14) and given by Eq. (13) is the sample mean over
the time window n. Also note that V̂n and γ̂j,n are the usual sample of variance and
autocovariance estimators of X provided in Eq. (12) but taking only n elements of the
whole sample of size N . The original R/S estimator is recovered by setting q = 0. With
a value of q > 0 the modified Lo estimator allows us to remove the effects of short range
correlations up to the level q and thus focuses on long memory effects in the data. The
relevant quantity to study is the ratio

βn =
ln Qn

ln n
, (15)

where Qn is given by Eq. (14). The value βn �= 1/2 indicates that there is still memory
up to the time scale n. If βn > 1/2 the series has a persistent behaviour (at least up
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to the time scale n), thus being positively correlated. Otherwise, if βn < 1/2, the series
has an anti persistent behaviour, thus being negatively correlated.

The graphs of βn in the right hand panel of Figure 5, with βn > 1/2 for window lengths
up to 800 timesteps, again confirm that the chartist component is an important factor
in the long memory property of return series.

3.2 Book and Order flows

In this section we investigate the impact of fundamentalist and chartist trading profiles
on the order submission strategies and the resulting market book shape.

Figure 6 reveals a higher number, and larger size, of market orders to sell with respect
to market orders to buy, particularly in the case of noise trader strategy only. This
indicates that agents are more likely to demand immediacy in execution, via the use of
market orders, on the sell side of the market.

Figure 7 displays the decumulative distribution function (DDF) of the limit order place-
ment distance from the midpoint, for buy (black) and sell (red) limit orders, with noise
trading (left), noise trading and fundamentalism (centre), and noise trading, fundamen-
talism and chartism (right). We observe that with only noise trading, the DDF appears
to be normally distributed for both buy and sell orders. When the fundamentalist com-
ponent dominates both buy and sell limit orders are placed very close to the midpoint
and the DDF appears to have an exponential decay (this also explains why the price
follows very closely the fundamental price in this case). When the chartist component is
activated more and more limit orders are placed at larger distances from the midpoint
generating a hyperbolic decay for the DDF.

Figure 8 shows the value of the Hill exponent for the distribution of limit order place-
ment from the best bid-ask (right). The estimation of the Hill exponent gives values
comparable with those estimated empirically by Zovko and Farmer (2002) and Potters
and Bouchaud (2003). We then measured the distribution of gap sizes, where the gaps
are defined as the difference between the best price (bid/ask) and the price at the next
best quote (on each side respectively). On the left side of Figure 8 we plot the Hill
exponent for the distribution of the first gap size and show that it decreases with σ2

(this observation, as discussed in the next section, is important in understanding the
origin of large price fluctuations).

The origin of these large gaps can be explained as follows. As seen in Fig. 7 adding the
chartist component induces traders to place orders far from the best bid and the best ask.
The region where orders are placed is in fact four times larger than in the fundamentalist
case. With the same number of orders spread over a broader region of the book, larger
gaps between orders may arise both on the buy and sell side of the book. The chartist
strategies also have a shorter time horizon τ i that makes the book even more dynamic
thus having stronger fluctuations in its shape and eventually creating even more gaps.
Moreover, order submission differs for optimistic and pessimistic traders. An optimistic
trader (p̂i

t+τ i > pt) can choose sell/buy orders at price levels p ≤ p̂i
t+τ i distributed

symmetrically around the the current price pt. A pessimistic trader (p̂i
t+τ i < pt) instead
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typically chooses orders at price levels p < p̂i
t+τ i that are systematically below pt. If the

pessimistic trader chooses an order to sell, the order is very likely to be immediately
executed as a market order (due to the fact that there is a high probability of finding a
matching limit order to buy at a low price). On the other hand, if the trader chooses
an order to buy, it is likely to be a limit order placed at a large distance from the bid.
Figure 9 shows this mechanism. It is this asymmetry between buy/sell orders that is
responsible for generating larger gaps on the buy side of the book and thus the negative
skewness shown in Fig. 4.

Figure 10 displays the book shape3 with noise trading (black), noise trading and funda-
mentalism (red), noise trading fundamentalism and chartism (green). The market depth
is averaged over the entire simulation period. Order placements are given as prices rel-
ative to the midpoint between the best bid and best ask. We observe that the book has
an increasingly more realistic shape with the depth higher toward the best price as the
chartist component σ2 is activated. Chartist strategies also generate longer, power law,
tails in the distributions of orders in the book in qualitative agreement with empirical
findings (Bouchaud et al. (2002)).

In summary, the risk aversion in the CARA utility function (5), has the effect of making
noise traders more impatient when they sell than when they buy. Noise traders prefer to
sell immediately via market orders, and to buy by submitting limit orders at prices lower
than the current quote. The contribution of fundamentalist rules is that of reducing
the imbalance between buy and sell orders of both types, and of concentrating the
distribution of orders around the midpoint, thus creating a more realistic shape of the
book. The effect of chartist rules is that of widening the distribution of limit order
submissions farther away from the midpoint, thus generating fatter tails in the book
and larger gaps between orders, particularly on the buy side of the book.

3.3 What generates large price fluctuations?

Next we address the fundamental question of what generates large price returns, an issue
that has been discussed by several authors including Gabaix et al. (2003), Plerou et al.
(2004), Farmer et al. (2004), Farmer and Lillo (2004), and Lillo and Farmer (2005). We
compute the distribution of returns conditional on the size of incoming market orders.
To this end, we split orders into three groups with approximately the same amount of
orders in each. The first group includes orders for buying or selling less than 15 stocks,
the second group has orders of size between 15 and 30 stocks, and the last group orders
of size larger than 30 stocks. Figure 11 (left) displays the conditional distributions of
returns, given orders of different sizes, and shows the same power law decay, indicating
that large price fluctuations seem to be rather insensitive to order size. In Figure 11
(right) we find instead an almost linear relationship between the Hill exponent of returns
distributions and the Hill exponent of the gap distribution, indicating, as suggested by
Farmer and Lillo (2004), that the presence of large gaps at the best price is what drives
large price changes.

3While the average shape of the book appears to be very smooth, a snapshot of the book at a given
time would show large gaps between orders and several empty price ticks.
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4 Conclusion

In this paper we have set up and analysed a model of a double auction market. Each
agent determines its demand through maximisation of its expected utility of wealth, and
bases its expectation of future return on a fundamentalist, a chartist and a noise trader
component. Agents differ in risk aversion, investment time horizon and the weight given
to the three components of expected return. We have thus extended a number of earlier
models in this literature which allowed agents to only place orders of unit size, so that
the model now incorporates feed back from the ongoing evolution of the market.

We have used a number of statistical tools such as decumulative distribution functions,
the Hill tail index, and the rescaled range statistic to analyse time series simulated
by the model. We find that the chartist component needs to be activated in order
that the generated returns exhibit many empirically observed features such as volatility
clustering, fat tails and long memory. We also find that this approach describes fairly
well a number of recently observed stylized facts of double auction markets, such as the
fat-tailed distribution of limit orders placement from current bid/ask and the fat-tailed
distribution of orders stored in the order book.

Our paper also contributes to the debate on what generates large price changes in stock
markets. Our simulations seem to confirm the picture proposed by Farmer and Lillo
(2004), namely that large returns are driven by large gaps occurring in price levels
adjacent to the best bid and best ask.

Future research could aim to enrich the economic framework of the model. For instance
in place of allowing the weights on the fundamentalist, chartist and noise trader com-
ponents in Eq. (1) to the randomly selected they could be chosen on the basis of some
fitness measure as in Brock and Hommes (1998). A further question of interest would be
to see how the order book and order flow are affected if we assume agents have CRRA
(constant relative risk aversion) utility functions, in which case their asset demands de-
pend on their level of wealth. We know from Chiarella, Dieci and Gardini (2006) that in
this type of modelling framework CRRA and CARA utility functions lead to different
types of dynamics.
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A Demand function and trading mechanism

At the beginning of each trading timestep, the agent constructs its individual demand
function and determines the amount of wealth it would like to invest in the risky asset
for any possible level of the notional transaction price level p. The residual wealth is
invested in a riskless asset with zero interest rate.

For simplicity, in this Appendix we drop the agent superscript i from all variables. The
following procedure for the determination of individual demand functions is understood
to apply to every agent i ∈ {1, · · · , I}. We first assume that the agent’s decision is taken
in terms of a CARA (Constant Absolute Risk Aversion) class as given by Eq. (5)

U(W, α) = − exp(−αW ), (16)

where α is the risk aversion of the agent. The wealth Wt at a given time step is given
by a cash amount Ct and the quantity St of the risky asset whose value is pt. That is:
Wt = Ct + Stpt.

At time t the agent places an order of size S with price level p. The agent takes these
two decisions about size and price level based on its own expected price of the stock at
a time horizon τ (cf. Eqs. (3) and (4)) and the maximization of its own expected utility
function at horizon τ . Assuming the CARA class utility function (16), the invertor’s
expected utility at time t + τ is given by

Ût+τ = Et [− exp (−αWt+τ )] , (17)

where Et [·] stands for the expected mean conditional to the information available at
time t, right before placing the order, with current price level pt. The wealth at time
t + τ (assuming the order is executed at the price p before t + τ) is given by

Wt+τ = Wt + Stpρt+τ ,

where ρt+τ = pt+τ/p − 1 is the return from t to t + τ , and the wealth is proportional to
ρt+τ . As a zero order approximation, the agent’s expectation for future returns are taken
to be Gaussian where future return is assumed to be ρt+τ = pt+τ/p − 1 � ln(pt+τ/p).
This assumption allows us to write Eq. (17) as

Ût+τ = − exp (−αEt [Wt+τ ] + α2Vt [Wt+τ ] /2),

where Vt [·] stands for the conditional variance. Since Et [Wt+τ ] = Wt + StpEt [ρt+τ ] and
Vt [Wt+τ ] = S2

t p
2Vt [ρt+τ ], we get

Ût+τ = U(Wt) exp
(−αStpEt [ρt+τ ] + α2S2

t p
2Vt [ρt+τ ] /2

)
. (18)

At time t+ τ the agent expects that the price will be p̂t+τ (cf. Eq. (3)) and the expected
return thus reads Et [ρt+τ ] = ln(p̂t+τ/p). However, our model does not specify any
expectation mechanism for the return variance. For this reason we take Vt [ρt+τ ] = Vt as
the historical one calculated over a certain time window as shown in Section 2 in Eq. (9).

Differentiating the expected utility function (18) with respect to St gives

d

dSt
Ût+τ = −Ût+ταp (ln(p̂t+τ/p) − αStpVt) .
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Setting the expression above to zero we determine the optimal amount of stocks, S∗
t =

π(p) the agent wishes to hold in its portfolio at time t for a given price level p, based on
expectations at time horizon τ , namely

π(p) =
ln(p̂t+τ/p)

αVtp
,

which coincides with Eq. (8).

Before going back to the main text, it is worth mentioning that Bottazzi et. al (2005)
give a similar analysis but with the hypothesis that the expected utility function reads

Ût+τ = Et [Wt+τ ] − 1

2
αVt [Wt+τ ] . (19)

This is simply a function depending linearly on the expected return and its variance
(see also Brock and Hommes (1998), Hommes (2001) and Kirman and Tessyiere (2002).
By neglecting higher moments one is in practice assuming Gaussianity in the agent’s
expectations, as we do.

B Hill estimator

In order to quantify the fat tails of our distribution of returns we estimate the Hill
tail index (Hill (1975)). The Hill estimator is a maximum likelihood estimator of the
parameter β of the Pareto law F (x) ∼ 1/xβ for large x, where F (x) denotes the return
pdf. Because of its simplicity the Hill estimator has become the standard tool in most
studies of tail behaviour of economic data.

To compute the Hill tail index, the sample elements are put in descending order: xn ≥
xn−1 ≥ · · · ≥ xn−k ≥ · · · ≥ x1 where n is the length of our data sample and k is
precisely the number of observations located in the tail of our distribution. Hence, the
Hill estimator obtains the inverse of β as

γ̂H(n, k) =
1

β̂H (n, k)
=

1

k

k∑
i=1

[ln xn−i+1 − ln xn−k] . (20)

The main difficulty with this procedure is to choose the optimal threshold k�. If we
take k too small we may have too few statistics, while if we include too large a data set
inside the tail then the estimator increases because of contamination with entries from
more central parts of the distribution. There are many techniques aimed at finding this
optimal cut-off (see for instance Lux (2001)). All of them agree that the optimal k� is
defined as the number of order statistics minimizing the mean squared error of γ̂H(n, k)
defined in Eq. (20). However, the optimal sample fraction is not easy to infer from this
assertion and one of the most common ways to perform the estimation in the literature
is by a bootstrapping technique (again see Lux (2001)).

In our case, we have evaluated the Hill tail index for a fixed threshold taking 5% of the
data. While this choice does not necessarily provide the optimal cut-off, this is the value
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commonly taken in the literature (see e.g. Lux (2001)). We have carried out the Hill
estimator procedure to estimate the right and the left tail exponents of both the return
and also the absolute return time series.

The estimated tail index γ̂ = 1/β̂ given by Eq. (20) is obtained for every simulation
we ran. It can be shown that (γ̂ − γ)

√
k is asymptotically normal with zero mean and

variance γ2 where γ = 1/β (see Lux (2001) for more details). The confidence level of
being inside the interval of one unit of mean squared error is 67%, being inside the
interval of two units of mean squared error is 95%, and being inside the interval of three
units of mean squared error is 99.7%.

All these properties allow us to give the error of our measurement and its degree of
confidence. The output of our simulations gives the average of the Hill tail index over
all the path simulations and its standard deviation. The estimation should converge to
the ”true” Hill tail index in accordance to the Central Limit Theorem. Hence, as the
number of simulations increases

〈γ̂〉 ≡ 1

N

N∑
i=1

γ̂i → γ,

and

σ2
γ =

1

N(N − 1)

N∑
i=1

(γ̂i − 〈γ̂〉)2 ,

where N is the total number of simulations and i is the index for each simulation. So
that we obtain as the confidence band for γ,

〈γ̂〉 ± σγ√
N

,

and if one wants to focus on the tail index this reads

1

〈γ̂〉 ±
σγ

〈γ̂〉2√N
.
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p̂t+τ = pM

π(p)
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Figure 1: Determination of the buy/sell price range of a typical agent (the superscript
i has been suppressed here). The curve labelled π(p) graphs Eq. (8) with the dashed
section representing negative (short position) demand. The upper limit of the price
range is pM where the positive (long position) demand comes to zero. The minimum
limit pm is determined by the agent’s current wealth holding. The price p∗ that separates
the buy/sell regions is determined by the agent’s current holding, St, of stock.

19



1000 1200 1400 1600 1800 2000
time

150

200

250

300

pr
ic

es

1000 1200 1400 1600 1800 2000
time

270

280

290

300

310

pr
ic

es

1000 1200 1400 1600 1800 2000
time

270

280

290

300

310

pr
ic

es

Figure 2: Price (black) and fundamental value (red) with only noise trading (left, σ1 =
0.00, σ2 = 0.00), noise trading and fundamentalism (center, σ1 = 10.00, σ2 = 0.00) and
noise trading, fundamentalism and chartism (right, σ1 = 10.00, σ2 = 1.20).
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Figure 3: (Left) Return time series with noise trader, fundamentalist and chartist
(σ1 = 10.00, σ2 = 1.20) components all present. (Right) The decumulative distribu-
tion function of the absolute returns with σ1 = 10.00 and σ2 = 0.00 (black), σ2 = 1.20
(red), σ2 = 2.00 (green), σ2 = 2.80 (blue).

21



5 10 15 20
sigma_1

2

2.5

3

3.5

4

4.5

5

5.5

6

hi
ll 

ex
po

ne
nt

s

1 1.5 2 2.5 3
sigma_2

0.5

1

1.5

2

2.5

3

3.5

hi
ll 

ex
po

ne
nt

s
Figure 4: Hill exponents of the left (black) and right (red) tails of the returns distribution
as a function of σ1 with σ2 = 0.00 (left) and as a function of σ2 with σ1 = 10.00 (right).
Vertical spreads depicts the error bars for the Hill exponent which are evaluated across
100 repetitions of the simulations with different random seeds.
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Figure 5: (Left) Volatility autocorrelation decays for noise trading (black, σ1 = σ2 =
0.00), noise trading and fundamentalism (red, σ1 = 10.00, σ2 = 0.00) noise trading
fundamentalism and chartism (green, σ1 = 10.00, σ2 = 1.20). (Right) The modified R/S
exponent for absolute returns on the left side in terms of the time window. We here
represent the exponent βn for several trading weights and filter the short term memory
for a number of time steps q = 20 (cf. Eq. (14)).
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Figure 6: The decumulative distribution function (not normalized) of market order
size for buy (black) and sell (red) orders with noise trading (left), noise trading and
fundamentalism (centre), and noise trading, fundamentalism and chartism (right). The
value of the parameters are the same as in Figure 5.
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Figure 7: The decumulative distribution function of limit order placement distance from
the midpoint for buy (black) and sell (red) orders with noise trading (left), noise trading
and fundamentalism (centre), and noise trading, fundamentalism and chartism (right).
The value of the parameters are the same as in Figure 5.
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Figure 8: (Left) Hill exponent of the first gap distribution for σ1 = 10.00 and different
values of σ2. (Right) Hill exponent of the order placement distribution for for σ1 = 10.00
and different values of σ2.
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Figure 9: (Left) The role of the CARA demand function (5) in the order placement
decision when pM = p̂i

t+τ i < pt and for a given snapshot of the book. (Right) The role of
the CARA demand function (5) in the order placement decision when pM = p̂i

t+τ i > pt

and for a given snapshot of the book. The figures at the bottom show a typical pattern
of the limit order book at a given time in a simulation. Buy orders placed in the book are
represented as positive volume, while sell orders placed in the book are represented as
negative volume. The top figures are particular instances of Figure 1. The intersections
determine the three different price levels pm, p∗ and pM for the case of optimistic trader
(pM > pt) (right) and pessimistic trader (pM < pt) (left).
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Figure 10: The book shape (on log-log scale) with noise trading (black), noise trading
and fundamentalism (red), noise trading fundamentalism and chartism (green). The
book has a more realistic shape with the depth higher toward the best price and fat tails
appearing as the chartist component σ2 is activated. The value of the parameters are
the same as in Figure 5.
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Figure 11: (Left) Conditional returns for different trading volume: size < 15 (black),
15 < size < 30 (red), size > 30 (green), for σ1 = 10 and σ2 = 2.0. (Right) The tail index
of the first gaps versus the tail index of returns for σ1 = 10 and different values of σ2.
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