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Abstract: A new non-Hermitian E2-quasi-exactly solvable model is constructed con-

taining two previously known models of this type as limits in one of its three parameters.

We identify the optimal finite approximation to the double scaling limit to the complex

Mathieu Hamiltonian. A detailed analysis of the vicinity of the exceptional points in the

parameter space is provided by discussing the branch cut structures responsible for the

chirality when exceptional points are surrounded and the structure of the corresponding

energy eigenvalue loops stretching over several Riemann sheets. We compute the Stielt-

jes measure and momentum functionals for the coefficient functions that are univariate

weakly orthogonal polynomials in the energy obeying three-term recurrence relations.

1. Introduction

In addition to the interesting mathematical aspect of enlarging the set of sl2(C) [1, 2] to

E2-quasi-exactly solvable models [3], the latter type also constitutes the natural framework

for various physical applications in optics where the formal analogy between the Helmholtz

equation and the Schrödinger equation is exploited [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Fur-

thermore, a special case of these systems with a specific representation corresponds to the

complex Mathieu equation that finds an interesting application in nonequilibrium statisti-

cal mechanics, where it corresponds to the eigenvalue equation for the collision operator in

a two-dimensional classical Lorentz gas [14, 15].

Here we are mainly concerned with the extension of quasi-exactly solvable models

[16, 17, 18, 19, 3] to non-Hermitian quantum mechanical systems [20, 21, 22, 23] within the

above mentioned scheme. So far two different types of E2-models have been constructed

in [3, 24] and the main purpose of this manuscript is to investigate whether it is possible

to construct a more general model that unifies the two. We show that this is indeed

possible by combining the two models and introducing a new parameter into the system

that interpolates between the two. In a similar fashion as the previously constructed

models, also this one reduces in the double scaling limit to the complex Mathieu equation.

As that equation is not fully explored analytically this limit provides an important option

http://arxiv.org/abs/1507.00611v1
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to obtain interesting information about the complex Mathieu system. On the other hand,

for some applications it may also be sufficient to study an approximate behaviour for some

finite values of the coupling constants. For that purpose we identify the parameter for

which the general model is the optimal approximation for the complex Mathieu system.

Our manuscript is organized as follows: In section 2 we introduce the general unifying

model involving three parameters. We determine the eigenfunctions by solving the stan-

dard three-term recurrence relations for the coefficient functions and determine the energy

eigenfunction from the requirement that the three-term recurrence relations reduce to a

two-term relation. We devote section three to the study of the exceptional points and their

vicinities in the parameter space. The explicit branch cut structure is provided that ex-

plains the so-called energy eigenvalue loops. In section 4 we compute the central properties

of the weakly orthogonal polynomials entering as coefficient functions in the Ansatz for the

eigenfunctions, i.e. their norms, the corresponding Stieltjes measure and the momentum

functionals. We state our conclusions in section 5.

2. A unifying E2-quasi-exactly solvable model

The general notion [1, 2] underlying solvable Hamiltonian systems is that its Hamiltonian

operators H acting on some graded space Vn as H : Vn 7→ Vn preserves the flag structure

V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn ⊂ . . . A distinction is usually made between exactly and quasi-

exactly solvable, depending on whether the structure preservation holds for an infinite or

a finite flag, respectively. Here we are concerned with the latter. Lie algebraic versions of

Hamiltonians in this context are usually taken to be of sl2(C)-type [1, 2], but as recently

proposed [3, 24], they may also be taken to be of a Euclidean Lie algebraic type, thus

giving rise to qualitatively new structures.

At present two different types of E2-quasi-exactly solvable models were identified

H
(1)
E2

= J2 + ζ2(u2 − v2)2 + 2iζN(u2 − v2), ζ,N ∈ R, (2.1)

H
(0)
E2

= J2 + ζuvJ + 2iζN(u2 − v2), (2.2)

in [3] and [24], respectively. Both Hamiltonians are expressed in terms of the E2-basis

operators u, v and J that obey the commutation relations

[u, J ] = iv, [v, J ] = −iu, [u, v] = 0. (2.3)

Except for H
(0)
E2

at N = 1/4, both Hamiltonians are non-Hermitian, but respect the anti-

linear symmetry [25] PT 3 : J → J , u → v, v → u, i → −i as defined in [10]. For the

particular representation J := −i∂θ, u := sin θ v := cos θ the PT 3-symmetry is simply

PT 3 : θ → π/2− θ, i→ −i, such that the invariant vector spaces over R were defined as

V s
n (φ0) : = span

{

φ0
[

sin(2θ), i sin(4θ), . . . , in+1 sin(2nθ)
]
∣

∣ θ ∈ R,PT 3(φ0) = φ0 ∈ L
}

, (2.4)

V c
n (φ0) : = span {φ0 [1, i cos(2θ), . . . , i

n cos(2nθ)]| θ ∈ R,PT 3(φ0) = φ0 ∈ L} . (2.5)

In order to construct Hamiltonians that preserve the flag structure one needs to identify

the action of the E2-basis operators and its combinations on these spaces as explained in
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more detail in [3]. The behaviour found allowed to identify the Hamiltonians H
(1)
E2

and

H
(0)
E2

in (2.1) and (2.2) as quasi-exactly solvable. The general structure suggests that there

might be a master Hamiltonian that unifies the above Hamiltonians into one preserving the

quasi-exact solvability. We demonstrate here that this is possible and study the properties

of that model.

Thus we introduce the new Hamiltonian

H(N, ζ, λ) = J2 + 2(1− λ)ζuvJ + λζ2(u2 − v2)2 + 2iζN(u2 − v2), λ, ζ,N ∈ R, (2.6)

and demonstrate explicitly that it is indeed E2-quasi-exactly solvable. First we observe

that H(N, ζ, λ) interpolates between the two models in (2.1) and (2.2) by varying λ, since

lim
λ→1

H(N, ζ, λ) = H
(1)
E2

and lim
λ→0

H(2N, ζ/2, λ) = H
(0)
E2
. (2.7)

Furthermore, H(N, ζ, λ) reduces to the complex Mathieu Hamiltonian in the double scaling

limit limN→∞,ζ→0H(N, ζ, λ) = HMat = J2 + 2ig(u2 − v2) for g := Nζ < ∞. We also note

that H†(N, ζ, λ) = H(1−λ−N, ζ, λ), which implies that H(N, ζ, λ) is non-Hermitian unless

2N = 1− λ, with free coupling constant ζ ∈ R.

Given the structure for the vector spaces in (2.4) and (2.5) we now make the follow-

ing Ansätze for the two fundamental solutions of the corresponding Schrödinger equation

HNψN = EψN

ψc
N (θ) = φ0

∞
∑

n=0

incnPn(E) cos(2nθ), and ψs
N (θ) = φ0

∞
∑

n=0

in+1cnQn(E) sin(2nθ), (2.8)

where the PT 3-symmetric ground state is taken to be φ0 = e
i

2
ζ cos(2θ) and the constant

cn is cn = 1/ζn(N + λ)(1 + λ)n−1 [(1 +N + 2λ)/(1 + λ)]n−1 with (a)n := Γ (a+ n) /Γ (a)

denoting the Pochhammer symbol. The constants are chosen conveniently in order to

ensure the simplicity of the to be determined n-th and (n−1)-th order polynomials Pn(E),

Qn(E) in the energies E, respectively. Upon substitution into the Schrödinger equation we

obtain the three-term recurrence relations

P2 = (E − λζ2 − 4)P1 + 2ζ2 [N − 1] [N + λ]P0, (2.9)

Pn+1 = (E − λζ2 − 4n2)Pn + ζ2 [N + nλ+ (n− 1)] [N − (n− 1)λ− n]Pn−1, (2.10)

Q2 = (E − 4− λζ2)Q1, (2.11)

Qm+1 = (E − λζ2 − 4m2)Qm + ζ2 [N +mλ+ (m− 1)] [N − (m− 1)λ−m]Qm−1,(2.12)

for n = 0, 2, . . . and for m = 2, 3, 4, . . . Note that a more generic Ansatz for the unifying

model involving two independent coupling constants µ, λ in the terms µζuvJ+λζ2(u2−v2)2

leads to a four term recurrence relation in which the highest term is always proportional to

µ+2λ− 2. Thus taking this term to zero with the appropriate choice for µ reduces this to

the desired three term relations that may be solved in complete generality as outlined in

[3]. The lowest order polynomials are easily computed in a recursive way. Taking P0 = 1

– 3 –
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we obtain

P1 = E − λζ2, (2.13)

P2 = λ2ζ4 + 2ζ2 [λ− λE +N(λ+N − 1)] + (E − 4)E,

P3 = −λ3ζ6 + λζ4
(

λ(2λ + 3E − 13) − 3N2 − 3(λ− 1)N + 2
)

+ (E − 16)(E − 4)E

−ζ2
[

3λE2 + E
(

2λ2 − 3N2 − 3λ(N + 11) + 3N + 2
)

+ 32(λ+N(λ+N − 1))
]

,

and likewise with Q1 = 1 we compute

Q2 = E − 4− λζ2, (2.14)

Q3 = λ2ζ4 + ζ2
[

λ(15 − 2λ− 2E) +N2 + (λ− 1)N − 2
]

+ (E − 16)(E − 4),

Q4 = −λ3ζ6 + λζ4
[

8 + λ(8λ+ 3E − 38) − 2N2 − 2(λ− 1)N
]

+ (E − 36)(E − 16)(E − 4)

+ζ2
[

−8
(

−12λ2 + 69λ+ 5λN + 5(N − 1)N − 12
)]

+ζ2
[

−3λE2 + 2E
(

(47 − 4λ)λ+N2 + (λ− 1)N − 4
)]

.

In both cases we observe the typical feature for quasi-exactly solvable systems that the

three term relation can be reset to a two-term relation at a certain level. This is due to the

fact that in (2.10) and (2.12) the last term vanishes when m = n = n̂ = −(1 +N)/(1 + λ)

or m = n = ñ = (λ+N)/(1 + λ). Thus when taking N = ñ+ (ñ− 1)λ we find the typical

factorization

Pñ+ℓ = PñRℓ and Qñ+ℓ = QñRℓ. (2.15)

The first solutions for the factor Rℓ are easily found from (2.10) and (2.12) to

R1 = E − 4ñ2 − λζ2, (2.16)

R2 = (E − 4ñ2 − λζ2)(E − 4(ñ + 1)2 − λζ2)− 2ñ(1 + λ)2ζ2. (2.17)

Next we compute the energy eigenvalues Eñ from the constraints Pñ(E) = 0 and

Qñ(E) = 0 for the lowest values of N . For the solutions related to the even fundamental

solution in (2.8) we find

N = 1 : Ec
1 = λζ2, (2.18)

N = 2 + λ : Ec,±
2 = 2 + λζ2 ± 2

√

1− (1 + λ)2ζ2, (2.19)

N = 3 + 2λ : Ec,ℓ
3 =

20

3
+ λζ2 +

4Ω̂

3
e

iπℓ

3 +
1

3

[

52− 12(1 + λ)2ζ2
]

e−
iπℓ

3 Ω̂−1, (2.20)

with Ω̂3 := 35 + 18(λ + 1)2ζ2 +

√

[

3(λ+ 1)2ζ2 − 13
]3

+
[

18(λ + 1)2ζ2 + 35
]2
, ℓ = 0,±2.

For the solutions related to the odd fundamental solution in (2.8) we obtain

N = 2 + λ : Es
2 = 4 + λζ2, (2.21)

N = 3 + 2λ : Es,±
3 = 10 + ζ2λ± 2

√

9− (λ+ 1)2ζ2, (2.22)

N = 4 + 3λ : Es,ℓ
4 =

56

3
+ λζ2 +

4Ω

3
e

iπℓ

3 +
1

3

[

196 − 12(1 + λ)2ζ2
]

e−
iπℓ

3 Ω−1, (2.23)

with Ω3 := 143+ 18ζ2(λ+1)2 +

√

(

3ζ2(λ+ 1)2 − 49
)3

+
(

18ζ2(λ+ 1)2 + 143
)2
, ℓ = 0,±2.

Solutions for higher order may of course also be obtained, but are rather lengthy and

therefore not reported here.
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3. Exceptional points and their vicinities

The special point in parameter space where two real energy eigenvalues viewed as functions

of the coupling constants merge and subsequently split into a complex conjugate pair is

usually referred to as exceptional point [26, 27, 28, 29]. In our system these points can be

computed in an explicit simple and straightforward manner. Using that by definition the

discriminant ∆ equals the product of the squares of the differences of all energy eigenvalues

Ei for 1 ≤ i ≤ n, i.e. ∆ =
∏

1≤i<j≤n(Ei − Ej)
2 one obtains the exceptional points from

the real zeros of ∆(E). For practical purposes one may also exploit the fact [3], that

the discriminant equals the determinant of the Sylvester matrix. This viewpoint has the

advantage that it does not require the computation of all the eigenvalues and is more

efficient when the sole purpose is to find the exceptional points. Thus in our case we have

to find the real zeros of the discriminants ∆c
ñ and ∆s

ñ for the polynomials Pñ(E) and Qñ(E),

respectively. Extracting overall constant factors κ as ∆ = κ∆̃, that do not contribute to

the zeros, we obtain for the lowest values of ñ

∆̃c
2 = ζ̂

2
− 1, (3.1)

∆̃s
3 = ζ̂

2
− 9,

∆̃c
3 = ζ̂

6
− ζ̂

4
+ 103ζ̂

2
− 36,

∆̃s
4 = ζ̂

6
− 37ζ̂

4
+ 991ζ̂

2
− 3600,

∆̃c
4 = ζ̂

12
+ 2ζ̂

10
+ 385ζ̂

8
− 33120ζ̂

6
+ 16128ζ̂

4
− 732276ζ̂

2
+ 129600,

∆̃s
5 = ζ̂

12
− 94ζ̂

10
+ 7041ζ̂

8
− 381600ζ̂

6
+ 6645600ζ̂

4
− 78318900ζ̂

2
+ 158760000,

where we abbreviated ζ̂ := ζ(1 + λ).

There exist many detailed studies about the structures in the coupling constant space

in the vicinity of the exceptional points [30, 31, 32, 33, 34]. It is evident that when tracing

a complex energy eigenvalue E as functions of the coupling constants, λ or ζ in our case,

the corresponding path in the energy plane will inevitably pass through various Riemann

sheets due to the branch cut structure. As a consequence one naturally generates eigenvalue

loops that stretch over several Riemann sheets. This phenomenon is well studied for a large

number of models and we demonstrate here that it also occurs in quasi-exactly solvable

models. The basic principle can be demonstrated with the square root singularity occurring

in Ec,±
2 with branch cuts from (−∞,−1 − 1/ζ) and (1/ζ − 1,∞). The energy loops are

generated by computing Ec,±
2 (λ = λ̃ + ρeiπφ, ζ) for some fixed values of ζ, center λ̃ and

the radius ρ in the λ-plane as functions of φ as illustrated in figure 1(a) and (b). In panel

(a) we simply trace the energy around a point in parameter space that leads to two real

eigenvalues. For a small radius ones reaches the starting point by encircling λ̃ just once.

However, when the radius is increased one needs to surround λ̃ twice to reach the starting

point and when the radius is increased even further one only needs to surround λ̃ once

switching, however, between both energy eigenvalues.

Essentially this structure survives when the two eigenvalues merge into an exceptional

point. However, since the exceptional point is a branch point we no longer have the option

for a closed loop around it produced from only one energy eigenvalue as seen in figure 1(b).

– 5 –



A unifying E2-quasi-exactly solvable model

-4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8
2

2

1

1

0

0

4

3

2

1

0

2
0

2
0

(a) +, 
 -, 
 +, 
 -, 
 +, 
 -, 

Im(E)

Re(E)
-6 -4 -2 0 2 4 6 8 10 12

-12

-8

-4

0

4

8

12

2

3
2

1

1

1

(b) +, 
 -, 
 +, 
 -, 
 +, 
 -, 

Im(E)

Re(E)

20

20
40

40

Figure 1: Energy eigenvalue loops Ec,±
2 (λ̃ + ρeiπφ, ζ) around two real eigenvalues panel (a) and

around an exceptional point panel (b) as functions of φ, indicated by the numbers on the loops, for

fixed value of ζ = 1/2 at λ̃ = 1/10 in (a) and λ̃ = 1 in (b). The energy eigenvalues for ρ = 0 are

distinct in panel (a) as Ec,−
2 = 0.35, Ec,+

2 = 3.70 and coalesce to an exceptional point in panel (b)

as Ec,−
2 = Ec,+

2 = 9/4.
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Figure 2: Energy levels and branch cut structure for Ec,±
2 for fixed ζ = 1/2 as functions of λ. The

branch cuts extend to the left and right from the exceptional points (−∞,−3) and (1,∞).

This behaviour is easily understood from the structure of the branch cuts as depicted

in figure 2. Whereas for small radii it is possible to encircle for instance the point λ̃ = 1/10

without crossing any branch cut, this is not possible when encircling the exceptional point

at λ̃ = 1 where we have to analytically continue from Ec,−
2 to Ec,+

2 when crossing a cut.
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This structure is the same for intermediate radii. For large radii we cross the first cut

already at a half circle turn, such that one returns back to the original value already after

one complete turn.

When more eigenvalues are present the structure will be more intricate. Considering for

instance a scenario with four eigenvalues in the form of two complex conjugate eigenvalues

and an exceptional point, see figure 3(a), we need to perform again at least two turns in

the λ-plane in order to return to the initial position for the energy loops when surrounding

an exceptional point. The two complex conjugate eigenvalues may be enclosed with just

one turn, albeit we require again different energy eigenvalues for this. When enlarging

the radius the loops will eventually merge as depicted in figure 3(b) for a situation with

a degenerate complex eigenvalue and two complex eigenvalues. We observe that for the

given values we have to surround the chosen point at least three times to obtain a closed

energy loop surrounding the indicated centers.
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Figure 3: Energy eigenvalues Ec
4(λ̃+ ρeiπφ, ζ) as functions of φ, indicated by the numbers on the

loops, for fixed value ζ = 1/2 at λ̃ = 9.5284 in (a) and λ̃ = 5.2562 + i9.9526 in (b). The energy

eigenvalues for ρ = 0 in panel (a) are Ec,1
4 = Ec,2

4 = 25.6613, Ec,3
4 = (Ec,4

4 )∗ = 7.1029 + i29.8106

and Ec,1
4 = Ec,2

4 = 37.7449− i8.7611, Ec,3
4 = 9.8103+ i6.7668, Ec,4

4 = −24.0439+ i20.7081 in panel

(b). The radii are ρ = 4.0 and ρ = 8.5 in panel (a) and (b), respectively.

In the same manner as for the simpler scenario one may understand the nature of these

loops from an analysis of the branch cut structure of the energy as seen in figure 4. Tracing

the indicated radii at ρ = 4.0 and ρ = 8.5 in figure 4 produces the energy loops in figure 3

when properly taking care of the analytic continuation at the branch cuts.

As discussed earlier the Hamiltonian H(N, ζ, λ) has the interesting property that in the

double scaling limit it reduces to the complex Mathieu equation for which only incomplete

information is available, especially concerning the locations of the exceptional points. In

comparison with the previously analyzed modelsH
(1)
E2

in [3] andH
(0)
E2

in [24] we have now the

additional parameter λ at our disposal and we may investigate how the complex Mathieu

system is approached. In particular we may address the question of whether there exists a

value λ for which this is optimal. Our numerical results are depicted in figure 5. We find

a similar qualitative behaviour for the other exceptional points, which we do not report

here.
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Comparing the rate of the approach for different values of λ we conclude thatH(N, ζ, λ =

1) is the best approximation to the complex Mathieu system for some finite values of N .
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Figure 4: Energy levels and branch cut structure for Ec,1,2,3,4
2 for fixed ζ = 1/2 as functions of λ.
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If one is exclusively interested in the computation of the exceptional point it is most

efficient to carry out the double scaling limit already for the three-term relation (2.10) and

(2.12) as explained in [3, 24].

1 2 3 4 5 6 7 8 9
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5   = 0.0
  = 0.25
  = 0.50
  = 0.75
  = 1.0
  = 1.25
  = 1.50
  = 1.75
  = 2.0

n

Figure 5: Double scaling limit of limN→∞,ζ→0 H(N, ζ, λ) = HMat to the smallest exceptional point

at ζM = 1.46877 with ∆(n) = ζ0N(n)− ζM , N(n) = (n+ 1) + nλ for n = 1, 2, 3, . . ..

4. Weakly orthogonal polynomials

It is well known from Favard’s theorem [35, 36] that polynomials Φn(E) constructed from

three-term relations in the way mentioned above possess a norm NΦ
n

L(ΦnΦm) = NΦ
n δnm. (4.1)

defined by the action of a linear functional L acting on arbitrary polynomials p in E as

L(p) =

∫ ∞

−∞

p(E)ω(E)dE, L(1) = 1. (4.2)

This norm may be computed in two alternative ways. The simplest way is to multiply

the three-term relation by Φn−1 and act subsequently on the resulting equation with L.

Using the property NΦ
n = L(Φ2

n) = L(EΦn−1Φn) together with (4.1) then simply yields

NΦ
n =

∏n
k=1 bk, where the bk are the negative coefficients in front of Φn−1. Whereas the

first method simply assumes that the functional exist the second method goes further and

actually provides an explicit expressions for the measure. As argued in [37] the concrete

formulae for ω(E) may be computed from

ω(E) =

ℓ
∑

k=1

ωkδ(E − Ek), (4.3)
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where the energies Ek are the ℓ roots of the polynomial Φ(E). The ℓ constants ωk can be

determined by the ℓ equations

ℓ
∑

k=1

ωkΦn(Ek) = δn0, for n ∈ N0. (4.4)

In our case the integer ℓ are determined from N = ℓ + (ℓ − 1)λ and N = (ℓ+ 1) + ℓλ for

the Pℓ(E) and Qℓ+1(E), respectively.

Using the first method we obtain

NP
n = 2ζ2n(1 + λ)2n

(

1−N

1 + λ

)

n

(

λ+N

1 + λ

)

n

, n = 1, 2, 3, ... (4.5)

NQ
n =

1

2(N + λ)(1 −N)
NP

n , n = 2, 3, 4, ... (4.6)

with NP
0 = NQ

1 = 1. Due to the non-Hermitian nature of the Hamiltonian this norm is in

general not positive definite. For instance for N = 4 + 3λ we have

NP
0 = 1, NP

1 = −24ζ2(1 + λ)2, NP
2 = 240ζ4(1 + λ)4, NP

3 = −1440ζ6(1 + λ)6. (4.7)

The exception is the class of models where the Hamiltonian becomes Hermitian, i.e. when

λ = 1 − 2N holds. For this value of λ the expressions in (4.5) and (4.6) become positive

definite

NP
n = 21+2nζ2n(N − 1)2n

(

1

2

)2

n

= 2ζ2(N − 1)2NQ
n . (4.8)

Let us now consider the second method and compute explicitly the measure for a few

examples. For N = 2 + λ and N = 3 + 2λ we solve (4.4) for the even and odd solutions,

respectively, to

ωc
± =

1

2
±

1

2
√

1− (1 + λ)2ζ2
, and ωs

± =
1

2
±

3

2
√

9− (1 + λ)2ζ2
. (4.9)

Computing now (4.1) with (4.2) agrees with (4.5) and (4.6)

NP
0 = L(P 2

0 ) = ωc
+ + ωc

− = 1 (4.10)

NP
1 = L(P 2

1 ) = ωc
+

(

Ec,+
2 − λζ2

)2
+ ωc

−

(

Ec,−
2 − λζ2

)2
= −4ζ̂

2
, (4.11)

NQ
2 = L(Q2

2) = ωs
+

(

Es,+
3 − 4− λζ2

)2
+ ωs

−

(

Es,−
3 − 4− λζ2

)2
= −4ζ̂

2
. (4.12)

Similarly we compute for N = 3 + 2λ

ωc
1 =

1

3
−

(

260− 60ζ̂
2
)

Ω+
(

3ζ̂
2
+ 4

)

Ω2 + 20Ω3

12

[

(

13− 3ζ̂
2
)2

+
(

13− 3ζ̂
2
)

Ω2 +Ω4

] , ωc
2 = χ−2, ωc

3 = χ2, (4.13)

χℓ =
1

3
+

(

3ζ̂
2
− 20Ω + 4

)(

1 + 2e
iπℓ

3

)

36(3ζ̂
2
+Ω2 − 13)

+
4 + 3ζ̂

2
− 20e

iπℓ

3 Ω

12
(

1 + 2e
iπℓ

3

)(

3ζ̂
2
− 13

)

+
(

1− e
iπℓ

3

)

Ω2
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and confirm that

NP
0 = L(P 2

0 ) = ωc
1 + ωc

2 + ωc
3 = 1, (4.14)

NP
1 = L(P 2

1 ) = ωc
1P

2
1 (E

c,0
3 ) + ωc

2P
2
1 (E

c,−2
3 ) + ωc

3P
2
1 (E

c,2
3 ) = −12ζ̂

2
,

NP
2 = L(P 2

2 ) = ωc
1P

2
2 (E

c,0
3 ) + ωc

2P
2
2 (E

c,−2
3 ) + ωc

3P
2
2 (E

c,2
3 ) = 48ζ̂

4

L(P1P2) = ωc
1P1(E

c,0
3 )P2(E

c,0
3 ) + ωc

2P1(E
c,−2
3 )P2(E

c,−2
3 ) + ωc

3P1(E
c,2
3 )P2(E

c,2
3 ) = 0.

Note that the last relation in (4.14) does not follow from the first method.

As the final quantity we also compute the moment functionals defined in [35, 36] as

µn := L(En) =

ℓ
∑

k=1

ωkE
n
k =

n−1
∑

k=0

ν
(n)
k µk, (4.15)

Once again also these quantities can be obtained in two alternative ways, that is either

from the computation of the integrals or directly from the original polynomials Pn and Qn

without the knowledge of the constants ωk. In the last equation the coefficients ν
(n)
k are

defined through the expansion Pn(E) = 2n−1En−
∑n−1

k=0 ν
(n)
k Ek and Qn(E) = 2n−1En−1−

∑n−2
k=0 ν

(n)
k Ek for our even and odd solutions, respectively. For the even solutions with

N = 2 + λ we obtain

µP0 = 1, (4.16)

µP1 = λζ2, (4.17)

µP2 = λ2ζ4 − 4ζ̂
2
, (4.18)

µP3 = λ3ζ6 − 12λζ2ζ̂
2
− 16ζ̂

2
, (4.19)

µP4 = λ4ζ8 − 24λ2ζ4ζ̂
2
+ 16

(

ζ2 − 1
)2
ζ4 − 64ζ̂

2
, (4.20)

and similarly for the odd solutions with N = 3 + 2λ we compute for instance

µQ0 = 1, (4.21)

µQ1 = 4 + λζ2, (4.22)

µQ2 = 16− 4ζ̂
2
+ λ2ζ4, (4.23)

µQ3 = λ3ζ6 − 12
(

λ3 + λ2 + λ
)

ζ4 − 48(2λ2 + 3λ+ 2)ζ2 + 64. (4.24)

Thus H(N, ζ, λ) possesses indeed all the standard features of a quasi-exactly solvable

model of E2-type.

5. Conclusions

Following the principles outlined in [3] we have constructed a new three-parameter quasi-

exactly solvable model of E2-type. One of the parameters can be employed to interpolate

between two previously constructed models. With regard to one of the original motivations

that triggered the investigation of these models, that is the double scaling limit towards
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the complex Mathieu equation, we found that for λ = 1, i.e. H
(1)
E2

, finite values for N

best approximate the complex Mathieu system and mimic its qualitative behaviour. We

provided a detailed discussion of the determination of the exceptional points and the en-

ergy branch cut structure responsible for the intricate energy loop structure stretching

over several Riemann sheets. The coefficient functions are shown to possess the standard

properties of weakly orthogonal polynomials.

Acknowledgments: I am grateful to Kazuki Kanki for making reference [15] available to

me.
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