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Abstract

There is a wealth of literature on the role of short-range interactions between low-level orientation-tuned filters in the
perception of discontinuous contours. However, little is known about how spatial information is integrated across more
distant regions of the visual field in the absence of explicit local orientation cues, a process referred to here as visuospatial
interpolation (VSI). To examine the neural correlates of VSI high field functional magnetic resonance imaging was used to
study brain activity while observers either judged the alignment of three Gabor patches by a process of interpolation or
discriminated the local orientation of the individual patches. Relative to a fixation baseline the two tasks activated a largely
over-lapping network of regions within the occipito-temporal, occipito-parietal and frontal cortices. Activated clusters
specific to the orientation task (orientation.interpolation) included the caudal intraparietal sulcus, an area whose role in
orientation encoding per se has been hotly disputed. Surprisingly, there were few task-specific activations associated with
visuospatial interpolation (VSI.orientation) suggesting that largely common cortical loci were activated by the two
experimental tasks. These data are consistent with previous studies that suggest higher level grouping processes -putatively
involved in VSI- are automatically engaged when the spatial properties of a stimulus (e.g. size, orientation or relative
position) are used to make a judgement.
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Introduction

Since Hubel and Wiesel [1] discovered that individual cells in

the occipital cortex are sensitive to the onset of individual bright or

dark bars with a specific orientation much progress has been made

in the characterisation of receptive field (RF) anatomy, circuitry

and physiology. (See [2] for review). However, some 40 years later,

it is still not clear how contour segments in disparate regions of the

visual field are perceptually integrated. This ‘linking’ of informa-

tion is a critical intermediate stage in the perception of visual form

[3] and has lead to the notion of an ‘association field’ [4,5] that

integrates information from neighbouring filters tuned to similar

orientations (see Field and Hayes [6] and Hess and Field [7] for

reviews). However, as well as being able to ‘bridge the gaps’ within

discontinuous contours, the human visual system is capable of

interpolating a path or trajectory in the absence of explicit local

orientation cues, a process referred to here as visuospatial

interpolation (VSI) [8,9].

As an example of VSI, the collinearity of dots or Gaussian blobs

(e.g. vernier acuity) can be judged with some degree of accuracy,

even with a large separation of the stimulus elements (Figure 1,

middle frame). The fact that performance with widely separated

targets is relatively unimpaired when patches of different spatial

frequency [10], orientation [11], colour [11] or contrast polarity

[12,13: Fig. 4.12] are used, or when irrelevant ‘distracters’ are

placed between the targets [9] suggests that simple linear filters

alone are not capable of carrying out the computation. Unless one

assumes that relative position is implicitly encoded in patterns of

activation within early topographic maps [3] one must hypothesise

the existence of a second stage to the computation that either

integrates information from low level filters [14,15,9,16,13] or

endogenously generates ‘virtual contours’ between the stimulus

elements [3,16]. Candidate regions for this second stage to the

process of VSI are therefore the posterior parietal cortex, which

has been implicated in spatial processing [17–21] and visual

feature binding [22], and the occipito-temporal cortex, which is

thought to underlie global integration of local signals [23–25] and

the perception of subjective / virtual contours [26–29].

To examine higher level correlates of VSI, functional magnetic

resonance imaging (fMRI) was used to measure brain activity

whilst human observers performed a visuospatial task involving

interpolation across space: a three-element alignment task

[8,10,30] in which judgements of collinearity were made using

Gabor patches (see Figure 1). Brain activation evoked by such VSI

(relative to a low-level fixation baseline) was compared with that

evoked by two other blocked tasks that used identical stimuli:

observers performed a simultaneous orientation discrimination (a

spatial task that lacks an interpolation component; [31]), and a

sensorimotor control task in which observers passively viewed the

stimulus and alternately pressed left and right keys on successive
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trials. Analysis was focused on the occipito-parietal and occipito-

temporal cortices, areas associated with spatial processing and

local feature integration.

Results

Anatomical regions are defined in MNI coordinates (following

normalisation of each participant’s data to the ICBM-152

template), which closely approximates to the space described by

Talairach and Tournoux [32]. Where coordinates are given for

clusters of activity common to two or more tasks they denote those

taken from the interpolation versus fixation contrast. If coordinates

from previous studies are provided, the letters ‘MNI’ or ‘TAL’

(appearing in parenthesis) indicate whether they are in MNI or

Talairach space respectively. Details from all contrasts are

provided in the accompanying tables (Tables 1 & 2) and figures;

note that in the figures task-specific / common activations

(Figures 2, 3 and 4) are presented separately from de-activations

(Figure 5).

Psychophysical performance during scanning
Observers were clearly able to perform the tasks successfully

inside the scanner: the average performance was 82.4%, only

marginally less than the prediction based on offline performance

(84%). As the data were found to be normally distributed (all

Ps.0.9; one-sample KS test) performance on the two tasks were

compared in an independent samples t-test. Performance in the

interpolation (8365.7%) and orientation (81.764.6%) tasks did

not differ significantly (t(16) = 0.5, P = 0.63). Thus, task difficulty

was matched between the two main conditions.

Fixation analysis
To determine whether observers were able to maintain fixation

throughout the experiment gaze direction was monitored using an

infrared video-based eye tracker. Reliable eye position data were

only available for 6 out of the 9 observers scanned. This was due to

technical difficulties in tracking the corneal reflection when

corrective lenses were used in the scanner and an equipment

failure during one session. For the data gathered both the

amplitude and frequency of saccades were found to be normally

distributed (P.0.8 and P.0.5 respectively; one-sample KS test). A

factorial ANOVA of saccade amplitude with condition as one

factor (3 levels: interpolation, orientation and sensorimotor

control) and saccade direction as a second factor (2 levels:

horizontal and vertical) showed no significant effects of condition

(F(2,30) = 1.14, P.0.33) or saccade direction (F(1,30) = 0.21,

P.0.65). A similar analysis of saccade frequency failed to show

any effects of condition (F(2,30) = 1.63, P.0.21) or direction

(F(1,30) = 0.84, P.0.77). Thus, fixation accuracy was the same for

the two main tasks and the sensorimotor control task.

Task conditions versus fixation (Table 1)
Areas activated for the comparison of each of the experimental

conditions (versus fixation) for the group random effects analysis

Figure 1. Stimulus presentation sequence. Each trial lasted 2015 ms and consisted of: a central fixation (260 ms) period, followed by the
presentation of the stimulus (130 ms) and a second fixation period (260 ms) before a response period (1365 ms) in which the observers (Os) had to
give a left or right key press response. Os fixated centrally throughout each trial, although the central fixation point temporally disappeared with the
appearance of the stimulus. The stimulus consisted of three Gabor patches (3 cpd, s= 0.43): two flanking patches forming a 45u reference line and a
central target patch. Time flows from right to left. Interpolation task: Os judged whether the central target was offset above and to the left or below
and to the right of the 45u reference line. Orientation task: Os judged whether the carrier grating of the central target patch was oriented clockwise or
anticlockwise relative to the carrier orientation of the flankers. Sensorimotor control task: Os maintained fixation during stimulus presentation and
alternately pressed left and right keys on successive trials.
doi:10.1371/journal.pone.0004585.g001

Visuospatial Interpolation
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are listed in Table 1; corresponding statistical parametric maps

overlaid on anatomical brain images are shown in Figure 2. In

addition, the % BOLD signal change (relative to fixation) is

presented for selected activated clusters along with time-locked

average responses (Figure 3). Eyes-open fixation represents the

most suitable baseline with which to compare the 3 experimental

conditions, as the oxygen extraction fraction (OEF) is relatively

uniform across the brain in this state [33]. It is worth mentioning

that whilst activity was not identified in primary visual areas at the

group level (Figure 3), this is likely to reflect the fact that: (1) the

stimuli used were relatively small, spatially jittered and presented

for a brief duration (130 ms), and (2) the data presented have been

stereotactically normalised and averaged across multiple observers.

In the parietal cortex a large swathe of bilateral activity was

evident along the intraparietal sulcus (IPS); this was specific to the

two tasks of interest – VSI and orientation discrimination. In

contrast, this pattern of activity was not seen in the sensorimotor

control condition (Figure 2 and Figure 3B). Elsewhere in the

parietal cortex there was bilateral activation of the post-central

gyrus (GPoC), which most probably corresponds to the primary

somatosensory cortex (S1), as well as in the occipitoparietal sulcus

(PO Su). Bilateral activity in these areas (relative to fixation) was

Table 1. Experimental conditions versus fixation.

Region Interp..fixation Orient..fixation Sens..fixation

x y z (Z) x y z (Z) x y z (Z)

Parietal PPC L 242 239 39 (4.3) 236 248 51 (3.5) ns

R 30 251 48 (4.3) 27 242 45 (4.4) ns

GPoC L 251 227 42 (4.4) 251 227 45 (4.1) 248 224 39 (4.3)

R 39 233 45 (3.4) 48 230 39 (3.2) ns

PO Su L 227 269 21 (3.3) ns ns

R 30 266 27 (3.6) 30 263 30 (3.9) ns

Temporal LO L 248 278 0 (3.3) 245 278 26 (3.5) 245 278 3 (3.6)

R 42 263 23 (3.7) 48 275 29 (3.2) 48 269 3 (3.7)

LOa R 45 257 212 (3.2) 42 257 212 (3.8) ns

Frontal M1 L 233 218 63 (4.1) 230 215 57 (4.1) 233 221 60 (3.9)

FEF L 236 26 57 (4.4) 233 0 63 (4.5) 242 29 57 (4.4)

R 27 23 60 (4.5) 30 23 57 (4.6) 30 23 57 (3.7)

SEF M 0 6 57 (4) 23 9 51 (3.9) 0 6 54 (4.3)

The MNI coordinates and Z scores of peak activity are shown for activated clusters from the group random effects analysis (see Methods) in the parietal, temporal and
frontal lobes along with the putative anatomical / functional regions involved. A threshold of P,0.001 (uncorrected) is used in accordance with our prior experimental
hypotheses (see Introduction). PPC, posterior parietal cortex; GPoC, post-central gyrus; PO Su, parieto-occipital sulcus; LO, dorsal caudal subdivision of the lateral
occipital complex (LOC); LOa, anterior ventral projection of the LOC; M1, primary motor area; FEF, frontal eyefield; SEF, supplementary eyefield; L, left hemisphere; R,
right hemisphere; Interp., interpolation; Orient., orientation discrimination; Sens, sensorimotor control.
doi:10.1371/journal.pone.0004585.t001

Table 2. Direct comparisons of experimental conditions.

Region Interpolation.orientation Orientation.interpolation

x y z (Z) x y z (Z)

Parietal PPC L ns 230 254 54 (3.8)

R ns 24 251 54 (3.15)

h cIPS L ns 212 269 54 (4.03)

R ns 12 266 54 (3.5)

PostCG L 248 215 57 (4) ns

Temporal FFG L 233 281 215 (3.8) 242 263 212 (3.8)

InfOG L 233 293 26 (3.1) ns

R 39 284 0 (3.4) ns

Frontal FEF L ns 227 29 54 (4.4)

R ns 36 23 57 (3.9)

The MNI coordinates and Z scores of peak activation are shown for critical clusters in the parietal, temporal and frontal lobes from the group random effects analysis
(see Methods) along with the putative anatomical / functional regions involved. A threshold of P,0.001 (uncorrected) is used in accordance with our prior experimental
hypotheses (see Introduction). h cIPS, human caudal intraparietal sulcus; PPC, posterior parietal cortex; PostCG, post-central gyrus; FFG, fusiform gyrus; infOG, inferior
occipital gyrus; FEF, frontal eyefield; L, left hemisphere; R, right hemisphere.
doi:10.1371/journal.pone.0004585.t002
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also limited to the orientation and interpolation tasks - with the

exception of the occipitoparietal sulcus in which activity was

lateralised to the right hemisphere for the orientation task. In fact,

parietal activity in the sensorimotor control condition was

restricted to the left somatosensory cortex, which is probably

associated with contralateral button presses. Thus, the parietal

cortex (other than motor association areas) appears only to have

been engaged during performance of an active task. These may

represent general effects of attention or specific computations

associated with the task, or indeed a combination of both. Finally,

one site in the occipital / parietal cortex -the cuneus / precuneus

(215 290 30; 6 278 33) - was deactivated in all conditions

relative to fixation. This corresponds to a well documented

component of the default network [33–35]. See Figure 5B.

Task-related activation was also found in two distinct areas in a

portion of the occipito-temporal cortex. These locations are similar

to those associated with previous reports of sub-divisions of the

lateral occipital complex (LOC), an area in the ventral stream

sensitive to form and shape that is likely to support the process of

object recognition [36]. See Figure 3A. These areas may represent

the dorsal caudal subdivision (LO: 248 278 0; 51 272 23) and a

more anterior ventral projection (LOa: 45 257 212). The

corresponding coordinates cited by Grill-Spector and colleagues

[37] are: 24165 mm, 27766 mm and 367 mm (x-, y- and z-

coordinates; TAL) and 23865 mm, 25066 mm and

21765 mm for the left LO and LOa respectively. It is worth

noting however that activity in the caudal region reported here

(the putative area LO) also overlaps with previous reports of the

human motion processing complex h MT+/V5 [38].

In the frontal cortex we observed activation (relative to fixation)

associated with the interpolation and orientation tasks and the

sensorimotor control condition in the left pre-central gyrus,

Figure 2. Experimental conditions compared to fixation. Clusters activated (relative to fixation) from the random effects group analysis
[P,0.001 (uncorrected); see Table 1 for activated foci] are shown for each condition: (A) interpolation, (B) orientation and (C) sensorimotor control
on rendered images of a standard brain [Montreal Neurological Institute (MNI)]. Note the lack of posterior parietal activity in the sensorimotor control
condition (C) compared to the extensive activations in the two task conditions (A&B), which is focused along (though not restricted to) the
intraparietal sulcus. Ringed in red is a region of the occipito-temporal cortex (possibly the lateral occipital complex) that is present in all three
conditions, and though only shown in one hemisphere here, was actually activated bilaterally (see Table 1).
doi:10.1371/journal.pone.0004585.g002

Visuospatial Interpolation

PLoS ONE | www.plosone.org 4 February 2009 | Volume 4 | Issue 2 | e4585



possibly associated with motor activity in the primary motor cortex

(M1) related to the participants button presses. In addition, there

was activity in regions that correspond to previous reports of the

frontal eyefields (FEFs: [39,40]) and supplementary eyefields (SEF:

[41]), again evident in all three conditions (Figure 3C).

Direct comparisons between interpolation and
orientation tasks

The contrasts of interpolation versus orientation and orientation

versus interpolation highlighted a number of task-specific

activations (Figure 4; Table 2), as well as extensive task-specific

de-activations (Figure 5A). These could be distinguished by

plotting the % BOLD signal change (relative to fixation) for each

condition, and will be discussed separately. Considering the

contrast of interpolation versus orientation first (Figure 4A & 4B),

no voxels in the PPC were significantly activated. The only area of

activation in the entire parietal cortex was in fact restricted to the

post-central gyrus (PostCG) of the left hemisphere, probably

corresponding to the somatosensory cortex. Exactly why the two

tasks differ with respect to activity in this area is unclear, as the

number of button presses was identical in the two tasks. In the

occipito-temporal regions of the ventral stream, activations were

limited to several small foci of activity (1–2 voxels in size) in the

inferior occipital gyrus (infOG) and fusiform gyrus (FG).

Consequently, outside of the somatosensory cortex, there is little

evidence for localised activity specific to the VSI condition.

In addition to these limited task-specific activations associated

with the process of VSI, there were many clusters to emerge from

the contrast of interpolation versus orientation that represented

deactivations (relative to fixation) in the orientation condition.

Recent studies have highlighted cortical deactivations as genuine

phenomena that may reflect reductions in neuronal activity

[42,43]. To visualise these, levels of activity relative to fixation

were plotted from several activated clusters defined by the contrast

of interpolation versus orientation (Figure 5A). Areas deactivated

in the orientation condition (relative to fixation) included the

angular gyrus (239 263 30; 54 266 30), a cluster in the left

parietal cortex (224 236 57), the right mid occipital gyrus (45

Figure 3. Experimental conditions compared to fixation. Clusters activated (relative to fixation) in the random effects group analysis are
shown here for all conditions [left column; threshold of P,0.001 (uncorrected); see Table 1 for activated foci] along with plots of % BOLD signal
change relative to fixation (centre column; group data) and the corresponding averaged time-series (right column) for the following key activated
regions: (A) an occipito-temporal (OT) region, (B) the intraparietal sulcus (IPS), and (C) frontal eye fields (FEFs). Plots represent activity combined for
each cluster across the two hemispheres relative to fixation. For the intraparietal sulcus (B) clusters of activity were divided into three groups
bilaterally, generating three sub-regions of interest (red arrows) moving from posterior regions of the IPS towards more anterior regions. In the plot
the posterior region is shown in bright yellow, the middle region in black and the more anterior region in light yellow / grey. The z coordinate (MNI) is
given for each horizontal slice shown. Conditions: [Inter, interpolation; Orient, orientation; Sens, sensorimotor control]. *** P,0.001 (one-way ANOVA
with Tukey’s post hoc analysis).
doi:10.1371/journal.pone.0004585.g003

Visuospatial Interpolation
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281 15) as well as extensive areas of the temporal cortex that ran

from the posterior regions of the middle temporal gyrus (245 218

26; 66 212 26) to the anterior (245 6 233; 54 3 233). In

addition, deactivation was found bilaterally in the primary

auditory cortex as defined anatomically by Heschl’s gyrus (240

222 10; 40 222 11). This is in agreement with previous studies

that have shown auditory and / or middle temporal gyrus

deactivations during tasks that involve visual imagery [44], passive

visual stimulation [45], visual attention [46], face and location

matching [47] and perhaps most interestingly, during a study of

perceptual discriminations based on orientation and size [20].

In the contrast of orientation versus interpolation (Figure 4C &

4D), a very different pattern emerged. There were two bilateral

foci of differential activation in the parietal cortex. The first pair

was more posterior and medial (Figure 4D red arrows) and most

probably relates to the human caudal intraparietal sulcus (h cIPS).

Regions in the human cIPS and posterior IPS have previously

been implicated in the visual processing of orientation in reaching

and grasping studies [19], as well as several purely perceptual

experiments involving visual priming to object rotations ([48]: 213

272 38; 25 274 35; TAL), surface orientation discriminations on

the basis of texture gradients ([49]: 216 268 57; 20 267 58;

MNI), object orientation matching ([19]: 34 252 44; TAL), object

rotation discriminations of 2D and 3D shapes ([20]: 20 264 58; 20

270 50; TAL), as well as grating orientation discriminations ([50]:

216 272 52; 16 268 60; TAL / [51]: 224 258 48; 22 258 48;

TAL). Thus, it would seem that even for a purely perceptual task,

orientation processing invokes activity within the dorsal stream /

PPC, and more specifically, within the posterior regions of the IPS.

Furthermore, a study showing that a region within the IPS is

activated both by visual and tactile orientation tasks ([52]:30 254

56; MNI) suggests that regions of the PPC may underlie

multisensory processing of orientation.

In contrast, activity in the ventral stream was limited to a single

site in the left fusiform gyrus (Figure 4C). The fusiform / inferior

temporal gyri have previously been implicated in orientation

discriminations, although these usually tend to involve bilateral

activity ([50]:252 260 212; 48 264 212; TAL / [51]: 228 276

216; 38 270 216; TAL / [53]: 250 268 216; 56 258 214;

TAL) or lateralisation to the right hemisphere ([31]: 40 262 212;

TAL / [54]: 40 262 12; TAL). One possible reason why activity in

this condition was lateralised to the left hemisphere is that it may

have reflected a need to attend to the local orientation of the Gabor

patches in the orientation condition as opposed to the global

orientation defined by their relative position [55,56]. Additional

activation was seen bilaterally in the FEFs. Since the tasks did not

differ with respect to performance levels or patterns of fixation it is

unlikely that this is a general effect of attention or eye movements.

Figure 4. Task-specific activations. Activated clusters for the two critical contrasts: (A&B) interpolation versus orientation and (C&D) orientation
versus interpolation are shown from the random effects group analysis [P,0.001 (uncorrected); see Table 2 for full list of activated foci]. In (A) small
activated clusters (1–2 voxels in size) are seen in the left fusiform gyrus and left inferior occipital gyrus. In (B) activations are seen in the right inferior
and right middle occipital gyri. However, the middle occipital gyrus cluster (upper cluster) is not due to activity in the interpolation condition but a
de-activation in the orientation condition relative to fixation. (See text and Figure 5 for information on task-specific deactivations). In the orientation
versus interpolation contrast activations are seen in an anterior region of the left fusiform gyrus (C), and bilaterally in the frontal eyefields [red arrow-
heads (D)] and caudal regions of the intraparietal sulcus [red arrows (D)]. MNI coordinates are given for each slice presented.
doi:10.1371/journal.pone.0004585.g004

Visuospatial Interpolation
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Discussion

This study was designed to examine the neural correlates of

VSI, and more generally, to shed light on the mechanisms

involved in the encoding of relative position. Observers used

identical stimuli to perform a three-element alignment task

[8,10,30] that involved a process of spatial interpolation and an

orientation discrimination task that required no explicit processing

of target position. Relative to fixation both tasks activated an

extensive network of areas within occipito-temporal, occipito-

parietal and frontal cortices, reflecting a high degree of

commonality between the two. This was to be expected: both

conditions required observers to maintain fixation, view identical

coherent stimuli, distribute their attention across multiple sub-

regions of the stimulus, make a decision and map sensory input on

to a motor response. In contrast, activation differences between

the two conditions should reflect the unique and specific demands

of the tasks, as patterns of fixation, spatial attention and task

difficulty were controlled for.

Activations specific to the orientation discrimination task were

seen in areas including caudal regions of the IPS (cIPS), a putative

homologue of the monkey cIPS [57,58], which contains neurons

selective to binocular disparity [59] and orientation under a range

of different conditions. (See Sakata et al. [60] for a review). The

cIPS/PPC has been implicated in mental rotation [61,62], the

processing of object orientation during reaching and grasping [19]

and orientation discrimination / classification of 2D / 3D shapes,

graspable objects and surfaces [19,20,49,48,63–65]. In an attempt

to accommodate these findings within the duplex model of vision,

which maps vision for action and vision for perception on to the

dorsal and ventral streams respectively [66–68] it has occasionally

been claimed that the PPC (a dorsal stream area) is sensitive only

to the orientation of graspable objects [48,69,64]. However, the

data reported here do not support this view; instead, they

contribute to a growing body of evidence that suggests the PPC

is involved in orientation processing independent of stimulus type

[51,50,52,70] and may even integrate orientation information

from multiple sensory modalities [52].

Surprisingly, once deactivations in the orientation condition

were accounted for (relative to fixation), there was little evidence

for task-specific activations associated with the process of VSI

(VSI.orientation). However, Altmann et al. [71] provide

Figure 5. Deactivations relative to fixation. Clusters of relative activation / deactivation from the random effects group analysis [see Table 2 for
foci; P,0.001 (uncorrected) threshold] are shown along with plots of % BOLD signal change relative to fixation (centre column; group data) and the
corresponding averaged time-series (right column) from the following contrasts: (A) interpolation versus orientation and (B) fixation versus all
conditions. Several clusters of relative activity in the interpolation versus orientation contrast were found to be due to de-activations in the
orientation condition (% BOLD signal change relative to fixation). Significant clusters include the primary auditory cortex bilaterally (A1: red ring) and
the middle temporal gyrus bilaterally (GTm: red arrows). For the GTm, clusters of activity were divided into three groups bilaterally, generating three
sub-regions moving from posterior, through central and on towards more anterior regions (yellow, black and light yellow / grey plots respectively).
The only region showing deactivations (relative to fixation) in all conditions was a large midline cluster pertaining to the pre-cuneus / cuneus (Cu: red
arrow-head), a well-documented component of the ‘default network’. (See text for details). Conditions: [Interp, interpolation; Orient, orientation; Sens,
sensorimotor control]. ** P,0.01; *** P,0.001 (one-way ANOVA with Tukey’s post hoc analysis).
doi:10.1371/journal.pone.0004585.g005

Visuospatial Interpolation
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comparable evidence to suggest that whilst common regions in the

ventro-temporal and lateral occipital regions are involved in both

object identification and orientation classification, stronger

responses were consistently associated with the orientation task.

In contrast, not a single cortical site showed elevated activation

during the object identification task [71]. These findings are of

particular relevance to the data reported here as object

identification is a high-level task that is likely to include VSI as

an early grouping process [72]. However, as the authors [71] go

on to discuss, the absence of task-specific activations in a direct

contrast between closely matched tasks of this kind may be

interpreted two different ways: firstly, the same cortical areas may

undertake the computations involved in both judgements. Hence,

no distinct region will be highlighted in a direct contrast between

the two. Alternatively, it is possible that both tasks are

automatically performed when the observer is presented with an

object, or in the case of our own stimuli, a coherent stimulus that

may be integrated to form a Gestalt [73]. In this way, distinct

cortical networks may in fact underlie the two tasks, whilst still

remaining hidden in direct contrasts between them.

There is considerable evidence to suggest that when observers

attend to the spatial properties of a stimulus (e.g. orientation, size

or shape), higher level (semantic / global) processing of the image

is engaged automatically [74–78]. Thus, in a series of perceptual

matching tasks using line drawings of objects and animals, Boucart

and colleagues have shown that when matches are made on the

basis of the spatial properties of the stimulus there is a semantic

interference effect. For example, response times on orientation

judgements are either facilitated or inhibited depending on

whether the reference or distracter are semantically related to

the target, even though this information is irrelevant to the task

[75,78]. Further, the effect is seen irrespective of whether the

orientation judgement is based on the principal axis of the stimulus

(judgement of global form), or on a shorter line segment within the

stimulus (judgement of local form; [77,78]). In contrast, this

interference effect is eradicated if judgements are made on overall

stimulus colour or luminance (i.e. basic surface properties; [75]).

Further, they have shown that areas within the occipitotemporal

cortex, which are associated with perceptual grouping, shape

analysis and semantic processing, are activated during an

orientation classification task [79,80,53].

Automatic engagement of high-level ventral stream areas during

spatial judgements of a stimulus is consistent with the data

reported here; thus, extensive occipitotemporal activations were

found in both experimental conditions. In fact, robust occipito-

temporal activations were even reported when observers passively

viewed the stimulus (sensorimotor control condition). However, in

the absence of attentional engagement it is possible that observers

performed one of the other tasks (orientation discrimination or

VSI) during this condition, despite specific instructions not to do

so. Further, as parietal areas were also activated in the two

experimental conditions we are unable to rule out the possibility

that dorsal stream areas may also be involved in the process of

VSI. However, taken together, these data and observations suggest

that the absence of task-specific activations in the VSI task

(VSI.orientation) may reflect the fact that when observers are

encouraged to make judgements of local orientation only, cortical

regions associated with the perceptual organization of local

stimulus elements into global shapes (in which VSI plays a role;

[23–25]) are automatically engaged [79,53,71].

In conclusion, we have shown that judgements of relative

orientation and stimulus collinearity activate a similar / over-

lapping network of brain regions that incorporate both dorsal and

ventral stream areas. In addition, our results provide only limited

evidence for any specific brain regions activated during VSI over and

above those regions implicated in judgements of stimulus orientation.

Although evidence from previous studies are consistent with an

interpretation of these data in terms of an automatic engagement of

global grouping processes in both experimental conditions future

studies are needed to rule out the possibility that task-specific

activations were not seen during VSI because the two sets of

computations involved were supported by distinct cell populations

that lay beyond the spatial resolution of the imaging technique

employed. To begin to tease apart these two hypotheses more

sophisticated experimental paradigms such as fMRI-adaptation [81]

and / or dual interference tasks will have to be employed. In parallel,

the use of transcranial magnetic stimulation may be useful in

determining which cortical activations are critical, and which merely

incidental, to the process of visuospatial interpolation [82].

Materials and Methods

Nine volunteers aged between 19 and 37 years (6 male, 3

female) with normal or corrected to normal visual acuity took part

in the study. Seven were right-handed and 2 were left-handed

according to the Edinburgh handedness inventory. Each gave

informed written consent to participate in accordance with the

Helsinki Convention and National Institutes of Health (NIH)

guidelines for human subject experiments. The experiment was

approved by the Institute of Neurology and National Hospital for

Neurology and Neurosurgery Joint Ethics Committees.

Stimuli
All stimuli were generated in MATLAB (The MathWorks,

Natick, MA) using the Psychophysics Toolbox [9,83] and projected

onto a gamma-corrected backlit projection screen (spatial resolution

8006600, temporal resolution 60 Hz). Observers lay supine in the

MRI scanner and viewed stimuli at 61 cm via an angled mirror

mounted on the head coil. The stimulus consisted of three Gaussian-

windowed sinusoidal gratings (Gabor patches) presented at a

Michelson contrast of 72% and a mean luminance equal to the

background grey (10 cd/m2). At the correct viewing distance, these

patches had a spatial frequency (s.f.) of 3 cycles per degree (cpd); the

standard deviation of the Gaussian envelope was 0.43u.
The centroids of the two outer patches were always positioned

5.1u from fixation, with one in the upper right quadrant and the

other in the lower left, thus forming a reference axis that fell 45u to

vertical. The central target was presented about fixation. This

design was used instead of a vertical or horizontal alignment in

order to minimise the availability of an internal cardinal axis

representation as a cue to the tasks. The carrier gratings of the two

outer (flanking) patches were always iso-oriented and presented

randomly from trial to trial at 10u, 210u, 20u or 220u relative to

vertical. The orientation of the flanker gratings was thus always

incongruent with the orientation of the reference axis. The relative

position and orientation of the central target patch was manipulated

for each observer according to their individual thresholds (see below

for details). In addition, the position of the whole stimulus (two

flanking patches and one target) was randomly jittered as a rigid

structure in the x- and y- planes on each trial by anywhere up to

0.36u, above and to the left, or below and to the right of the fixation

point. The extent of this jitter was determined from pilot studies to

be sufficient to abolish the relative position of the fixation point as a

reliable cue to perform the interpolation task.

Tasks and experimental design
In a block design paradigm observers performed one of three

tasks:
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(1) A three-element alignment task [10,30] (interpolation condi-

tion) using three Gabor patches - see Figure 1, middle frame.

Observers judged whether the central target was offset above

and to the left or below and to the right of an implicit line

connecting the centroids of the two flankers (outer patches).

The two offsets were presented in a pseudo-random sequence

with equal probability.

(2) A simultaneous orientation discrimination task. Observers had

to judge whether the carrier grating of the central target patch

was oriented clockwise (CW) or anticlockwise (ACW) relative

to the carrier orientation of the flankers. The two orientations

were presented in a pseudo-random sequence with equal

probability.

(3) A sensorimotor control task. Observers had to maintain

fixation during stimulus presentation and alternately pressed

left and right keys on successive trials.

Identical stimuli were used for all three experimental conditions:

a task irrelevant spatial offset was presented in the orientation

discrimination condition, and similarly, an irrelevant orientation

cue was presented in the interpolation condition. See Figure 1 for

details on the time-course of each trial. Note that on each trial

(duration 2015 ms) the visual stimulus was presented only very

briefly (130 ms), thus reducing the likelihood of eye movements.

Observers fixated centrally throughout and responded with a key

press within a 1365 ms time window after the stimulus had been

extinguished. Responses were given by right-hand key presses with

the exception of one participant who used his left hand.

A block design paradigm was used in which blocks of the

experimental conditions (interpolation, orientation and sensori-

motor control) were interleaved with blocks of a low-level fixation

baseline - a central fixation spot presented against a background

grey of 10 cd/m2. Each block consisted of 16 trials.

Across all three conditions the stimulus structure was identical -

only the task instructions differed; these were cued at the end of

each fixation block by a short text string presented centrally at

fixation. To ensure that levels of attention were matched across the

two experimental tasks the target offset and rotation relative to the

flankers was defined by each individual’s thresholds, which were

measured offline using standard psychophysical procedures (see

below).

Psychophysical measurement of thresholds
Individual interpolation and orientation thresholds were

measured outside the scanner using a setup that matched

conditions inside the MR scanner as closely as possible

(8006600 images presented at 60 Hz on a gamma corrected

display). The only differences were that outside the scanner stimuli

were presented on a CRT monitor and the average luminance of

the screen was set to 13 cd/m2 (as opposed to 10 cd/m2). In

addition, in contrast to the fMRI experiment the response period

was not of a fixed duration: instead, observers set the pace at

which sequential trials were presented facilitating a relaxed

experimental setting. [Note: prior to scanning sessions individual

observers also practiced the tasks using the precise sequence

timings used inside the scanner. In these practice sessions the

restricted response times used (1365 ms) were found to be of

sufficient duration for the observers to undertake the tasks

comfortably].

As the orientation of the Gabor patches did not affect

interpolation thresholds, but conversely, orientation thresholds

varied as a function of target offset (as determined from pilot data),

interpolation thresholds were measured first using iso-oriented

target and flankers. Orientation discrimination thresholds were

then measured in a separate block with the target patch offset by

an amount equal to the individual’s interpolation threshold. The

absolute (unsigned) target envelope offset or carrier orientation,

depending on the procedure, were adjusted between sequential

trials using a 2 down 1 up staircase procedure. The sign of the

offset / orientation cue was randomly determined on each trial.

Each experimental run finished after 200 trials were completed.

No feedback with respect to performance was given. The first run

was considered a practice session, and the last 2 runs were used for

the analysis. Data were fitted with a cumulative normal function

and the threshold calculated as the mean of the 2 values of sigma

obtained (1 per run). This corresponded to a performance level of

84%. Finally, observers practiced the precise sequence to be used

in the scanner to ensure that they were comfortable with the

procedure.

Scanning details
A 3T Siemens Allegra head scanner with standard head coil was

used to acquire all functional and structural data. A standard high

resolution EPI sequence (matrix 1286128, field of view 192 mm,

in-plane resolution 363 mm, slice thickness 2 mm with a 1 mm

gap, TE 65 ms, TR 2340 ms) was used to acquire 36 slices

positioned to optimise coverage of the occipital and parietal lobes.

High resolution T1-weighted structural images (16161 mm) were

also acquired.

Observers performed 6 functional scan runs (7.72 minutes each)

in a single scanning session. Each run comprised of experimental

blocks (16 trials of a single condition) lasting 32.76 sec each (14

volumes) interleaved with 18.7 seconds of fixation (8 volumes).

Each of the 3 experimental conditions (interpolation, orientation

and sensorimotor control) was presented twice in a single run in a

counterbalanced order. The order in which the experimental

conditions were presented was reordered between scan runs and

between observers. An additional 5 volumes (11.7 seconds) were

acquired at the start of each scan run to ensure that the brain had

reached steady state magnetisation.

fMRI data analysis
Image processing and statistical analyses were carried out using

SPM5 (The Wellcome Trust Centre for Neuroimaging, UCL,

http://www.fil.ion.ucl.ac.uk/spm). The first 5 images from each

experimental run were discarded. The remaining images were

realigned to the first image to compensate for head movements,

spatially normalised to an EPI template provided with SPM-5 [the

ICBM-152, as defined by the Montreal Neurological Institute

(MNI)], and spatially smoothed with an isotropic smoothing kernel

(7 mm full width at half maximum). A linear combination of

regressors representing the time series for each of the 3

experimental conditions (interpolation, orientation and sensori-

motor control) and fixation baseline (fixation) were convolved with

a synthetic haemodynamic response function and its temporal

derivative, creating a box car function. The general linear model

(GLM) was then used to generate parameter estimates of activity at

each voxel, for each condition. Linear contrasts between

regressors, representing the different experimental conditions,

were used to determine activated brain areas by generating

statistical parametric maps of the t-statistic [SPM(t)].

First level (observer-specific) contrasts were constructed for each

of the experimental conditions (interpolation, orientation and

sensorimotor control) compared to fixation baseline (fixation). For

each contrast, a single image was generated, carrying information

about cortical areas engaged during that task relative to baseline.

Further contrasts were made comparing interpolation and

orientation conditions directly (interpolation versus orientation

Visuospatial Interpolation
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and orientation versus interpolation). These first level contrast

images were then used to conduct a second level group random

effects analysis [84,85]. Any inferences drawn from the data could

therefore be generalised to the population from which the

observers were drawn. A threshold of p,0.001, uncorrected for

multiple comparisons, was applied to all contrasts, unless otherwise

stated.

Whole brain analyses were initially performed using both

normalised data (co-registered to the SPM EPI template) and non-

normalised data (co-registered to each participants T1 anatomical

image). As the pattern of results was indistinguishable for

normalised and non-normalised data only the former have been

presented here. In order to visually explore parameter estimates

within activated regions, the MarsBar toolbox (http://marsbar.

sourceforge.net/) was used to extract and average parameter

estimates for display purposes in activated voxels falling within a

sphere (radius 10 mm) centred on peak coordinates of activation

identified in the statistical contrasts.

Eye tracking in the scanner
Eye movements were monitored throughout using an ASL504

LRO infrared video-based MRI compatible eye tracker (Applied

Science Laboratory, Bedford, MA) and analysed in the horizontal

and vertical plane independently using a custom-written Matlab

program. Saccades were defined as any eye movement exceeding a

velocity of 30 degrees per second with an amplitude greater than 1

degree of visual angle and less than 20 degrees. In addition, to

reduce noise artifacts individual eye movements had to be followed

by a fixation period of 50 ms or more to be included in the

analysis.
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