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Buckling of Composite Plate Assemblies using Higher Order

Shear Deformation Theory - An Exact Method of Solution

F. A. Fazzolari1,∗, J. R. Banerjee2, M. Boscolo3

City University London, Northampton Square, London EC1V 0HB, UK

Abstract

An exact dynamic stiffness element based on higher order shear deformation theory and extensive use

of symbolic algebra is developed for the first time to carry out a buckling analysis of composite plate

assemblies. The principle of minimum potential energy is applied to derive the governing differential

equations and natural boundary conditions. Then by imposing the geometric boundary conditions in

algebraic form the dynamic stiffness matrix, which includes contributions from both stiffness and initial

pre-stress terms, is developed. The Wittrick-Williams algorithm is used as solution technique to compute

the critical buckling loads and mode shapes for a range of laminated composite plates including stiffened

plates. The effects of significant parameters such as thickness-to-length ratio, orthotropy ratio, number

of layers, lay-up and stacking sequence and boundary conditions on the critical buckling loads and mode

shapes are investigated. The accuracy of the method is demonstrated by comparing results whenever

possible with those available in the literature.

Keywords: Dynamic Stiffness Method, Composite Plates, Buckling, Stiffened Plates, Wittrick-Williams

algorithm.

1. Introduction

Aerospace structures are generally made up of thin-walled structures such as plates and shells. Such

structures often experience severe loading conditions. A certain load, referred to as critical load when

applied, the structure suddenly changes its equilibrium configuration. This phenomenon is generally

referred to as buckling instability. The topic is a major design consideration and has continued to be an

important area of research because it represents one of the main reasons for aircraft and other structural

failures. Several methodologies have been developed over the years to solve the problem. A simplified

approach to calculate the ith critical load, is to consider the critical load as the load at which more than

one infinitesimally adjacent equilibrium configurations exist that can be identified with the ith bifurcation

point (Euler’s method) [1]. In a linearized structural stability analysis, the determination of the critical

load leads to a linear eigenvalues problem. The bifurcation method can be successfully used particularly

for plates, when the critical equilibrium configuration shows a slight geometry change as the critical
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buckling load is reached. However, as explained by Leissa [2], linearized stability analysis is meaningful,

if and only if, the initial in-plane loading does not produce an out-of-plane deformation. Furthermore,

there are many cases in which Euler’s method may fail, in particular when thin-walled structures like

shells exhibit the snap-buckling phenomenon. In such cases, the most general approach, based on the

solution of the complete equilibrium and stability equations [3, 4] is preferred.

Amongst a wide class of methodologies employed to analyze the elastic stability of advanced composite

structures, the dynamic stiffness method (DSM) is probably the most accurate and computationally effi-

cient option. The DSM based on Lèvy-type closed form solution for plates [5] is indeed an exact approach

to the solution procedure. Wittick [6] laid the groundwork of the DSM for plates. The basic assump-

tion in this work is that the deformation of any component plate varies sinusoidally in the longitudinal

direction. Using this assumption, a stiffness matrix may be derived that relates the amplitudes of the

edge forces and moments to the corresponding edge displacements and rotations for a single component

plate. For the exact DSM, this stiffness matrix is derived directly from the equations of equilibrium

that describe the buckling behavior of the plate. Essentially, Wittrick [6] developed an exact stiffness

matrix for a single isotropic, long flat plate subject to uniform axial compression. His analysis basically

used classical plate theory (CPT). Wittrick and Curzon [7] later extended this analysis to account for

the spatial phase difference between the perturbation forces and displacements which occur at the edges

of the plate during buckling due to the presence of in-plane shear loading. This phase difference was

accounted for by defining the magnitude of these quantities using complex quantities. Wittrick [8] then

extended his analysis further to consider flat isotropic plates under any general state of stress that remains

uniform in the longitudinal direction (i.e., combinations of bi-axial direct stress and in-plane shear). A

method very similar to that described in [6] was also presented by Smith in [9] for the bending, buck-

ling, and vibration of plate-beam structures. Following these developments, Williams [10] presented two

computer programs, GASVIP and VIPAL to compute the natural frequencies and initial buckling stress

of prismatic plate assemblies subjected to uniform longitudinal stress or uniform longitudinal compres-

sion, respectively. GASVIP was used to set up the overall stiffness matrix for the structure, and VIPAL

demonstrated the use of substructuring. Next, Wittrick and Williams [11] reported on the VIPASA

computer code for the buckling and vibration analyses of prismatic plate assemblies. This code allowed

for analysis of isotropic or anisotropic plates using a general state of stress (including in-plane shear).

The complex stiffnesses described in [12] were incorporated in VIPASA, as well as allowances were made

for eccentric connections between component plates. This code also implemented an algorithm, referred

to as the Wittrick-Williams algorithm [13] for determining any buckling load for any given wavelength.

The development of this algorithm was necessary because the complex stiffnesses described above are

transcendental functions of the load factor and half wavelength of the buckling modes of the structure

which make a determinant plot cumbersome and unfeasible. Viswanathan and Tamekuni [14, 15] pre-

sented an exact FSM based upon CPT for the elastic stability analysis of composite stiffened structures

subjected to biaxial in-plane loads. The structure was idealized as an assemblage of laminated plate

elements (flat or curved) and beam elements. Tamekuni, and Baker extended this analysis in [16] con-

sidering long curved plates subject to any general state of stress, together with in-plane shear loads.
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Anisotropic material properties were also allowed. This analysis utilized complex stiffnesses as described

in [12]. The works described in [9, 16, 13] are more or less similar. The differences are discussed in

[11]. Williams and Anderson [17] presented modifications to the eigenvalue algorithm described in [13].

Further modifications presented in [17] allowed the buckling mode corresponding to a general loading

to be represented as a series of sinusoidal modes in combination with Lagrangian multipliers to apply

point constraints at any location on edges. These modifications formed the basis for the computer code

VICON (VIpasa with CONstraints) described in [18]. However, the analysis capability of VICON was

limited to plates analyzed using CPT. Anderson and Kennedy [19] incorporated a first order shear de-

formation plate theory (FSDT) into VICONOPT. A numerical approach to obtain exact plate stiffnesses

that include the effects of transverse shear deformation was presented by them in [19]. It is worth noting

that DSM has been extensively researched by Banerjee [20, 21, 22, 23, 24, 25], amongst a few others

for modal analysis of structures idealized by beam elements based on Euler/Bernoulli, Timoshenko and

associated coupled beam theories. The current paper is partly motivated by these earlier investigations

and the most important contribution made by the authors here is the inclusion of the higher order shear

deformation theory (HSDT) and the use of a systematic symbolic procedure, for the first time, when

developing the DS matrix for laminated composite plates for buckling analysis. This useful extension is

of considerable theoretical and computational complexity as will be shown later. The research is par-

ticularly relevant when analysing thick composite plates for their buckling characteristics. It should be

recognised that Reddy and co-authors [26, 27, 28] have used HSDT for composite plates in a different

context without resorting to the development of the DSM. From a historical prospective HSDT, can be

essentially traced back to third order plate bending theory originally proposed by Vlasov [29] in the late

fifties. His theory was substantiated and extended to laminated composite plates many years later by

Reddy [26] using a variational approach. This is sometimes referred to as Vlasov-Reddy theory (VRT).

Further improvements of this theory can be found in the work of Jemielita [30, 31]. Recently, for the

analysis of anisotropic plates and shells, an advanced hierarchical trigonometric Ritz formulation (HTRF)

based on refined variable kinematics 2D and quasi-3D plate/shell theories has been proposed by Fazzolari

and Carrera for mechanical [32, 33, 34, 35, 36, 37] and multifield [38] problems. Inclusion of HSDT in

the DSM framework will enable buckling analysis of plates with moderate to high thickness-to-width

ratio, in an accurate and computationally efficient manner. The usefulness of HSDT becomes apparent

when analysing composite structures idealized by plates, particularly of thicker dimension, because fiber

reinforced composites have generally very low shear modulii. Extensive results which include validation

and assessment of the effects on critical buckling load of significant parameters such as the thickness to

width (or length) ratio, orthotropy ratio, number of layers, stacking sequence and boundary conditions,

have been obtained, examined and discussed.

2. Theoretical formulation

2.1. Displacement field and governing differential equations

In the derivation that follows, the hypotheses of straightness and normality of a transverse normal

after deformation are assumed to be no longer valid for the displacement field which is now considered
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to be a cubic function in the thickness coordinate, and hence the use of higher order shear deformation

theory (HSDT). This development is in sharp contrast to earlier developments based on CPT and FSDT

and no doubt a significant step forward. The deformation pattern through thickness of the plate is shown

in Fig. 1. A laminated composite plate composed of Nl layers is considered in order to make the theory

sufficiently general. The integer k is used as a superscript denoting the layer number which starts from

the bottom of the plate. The kinematics of deformation of a transverse normal using both first order

and higher order shear deformation are shown in Fig. 1. After imposing the transverse shear stress

homogeneous conditions [39, 40] at the top/bottom surface of the plate, the displacements field are given

below in the usual form:

u (x, y, z, t) = u0 (x, y, t) + z φx (x, y, t) + c1 z
3

(

φx (x, y, t) +
∂w0 (x, y, t)

∂x

)

v (x, y, z, t) = v0 (x, y, t) + z φy (x, y, t) + c1 z
3

(

φy (x, y, t) +
∂w0 (x, y, t)

∂y

)

w (x, y, z, t) = w0 (x, y, t)

(1)

where u, v, w are the plate displacement components of the displacement vector,

η =
{

u v w
}T

(2)

c1 = − 4
3h2 whereas u0, v0, w0 are the displacement components defined on the plate middle surface Ω

in the directions x, y and z. The principle of minimum potential energy is now applied. The variational

statement at multilayer level is:
Nl
∑

k=1

δΠk = 0 (3)

where Πk is the total potential energy for the kth layer of the composite plate. The first variation can

be expressed as:

δΠk = δUk + δV k (4)

where δUk is the virtual potential strain energy, δV k is the virtual potential energy due to external

loadings, and assume the following form:

δUk =

∫

Ωk

∫

zk

(

δε
kT

σ
k
)

dΩk dz, δV k =

∫

Ωk

∫

zk

(

δεnl
xx σ̃x0

+ δεnl
yy σ̃y0

)

dΩk dz (5)

the stresses, σ and the strains, ε vectors are expressed as follows:

σ =
{

σxx σyy τxy τxz τyz

}T

, ε =
{

εxx εyy γxy γxz γyz

}T

(6)

σ̃x0
and σ̃y0

denote the in-plane initial stresses. The non-linear strains εnlxx and εnlyy are approximated

with the Von Karman’s non-linearity:

εnlxx =
1

2
(w, x)

2
εnlyy =

1

2
(w, y)

2
(7)

The subscript T signifies an array transposition and δ the variational operator. Constitutive and geo-

metrical relationships are defined respectively as:

σk = C̃
k
εk ε = D η (8)

where C̃
k
is the plane stress constitutive matrix and D is the differential matrix (see Appendix A for

details). Substituting Eq. (8) into the Eq. (5) and imposing the condition in Eq. (3), the equations of
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motion are obtained after extensive algebraic manipulation as:

δu0 : A11 u0,xx + A12 v0,yx + A16 (u0,yx + v0,xx) +B11 φx,xx +B12 φy,yx +B16 (φx,yx + φy,xx) + E11 c2 φx,xx

+ E11 c2 w0,xxx + E12 c2 φy,yx + E12 c2 w0,yyx +E16 c2 φx,yx + E16 c2 φy,xx + 2E16 c2 w0,xyx +A16 u0,xy

+ A26 v0,yy + A66 (u0,yy + v0,xy) +B16 φx,xy +B26 φy,yy +B66 (φx,yy + φy,xy) + E12 c2 (φx,xy + w0,xxy)

+ E26 c2 (φy,yy +w0,yyy) + E66 c2 (φx,yy + φy,xy + 2w0,xyy) = 0

δv0 : A16 u0,xx + A26 v0,yx + A66 (u0,yx + v0,xx) +B16 φx,xx +B26 φy,yx +B66 (φx,yx + φy,xx) + E16 c2 φx,xx

+ E16 c2 w0,xxx + E26 c2 φy,yx + E26 c2 w0,yyx +E66 c2 φx,yx + E66 c2 φy,xx + 2E66 c2 w0,xyx +A12 u0,xy

+ A22 v0,yy + A26 (u0,yy + v0,xy) +B12 φx,xy +B22 φy,yy +B26 (φx,yy + φy,xy) + E12 c2 (φx,xy + w0,xxy)

+ E22 c2 (φy,yy +w0,yyy) + E26 c2 (φx,yy + φy,xy + 2w0,xyy) = 0

δw0 : A44 (φy,y + w0,yy) + A45 (φx,y + w0,xy) +D44 c1 (φy,y + w0,yy) +D45 c1 (φx,y + w0,xy)

+ A45 (φy,x + w0,xy) + A55 (φx,x + w0,xx) +D45 c1 (φy,x + w0,xy) +D55 c1 (φx,x + w0,xx)

+D44 c1 (φy,y + w0,yy) +D45 c1 (φx,y + w0,xy) + F44 c
2

1 (φy,y + w0,yy) + F45 c
2

1 (φx,y + w0,xy)

+D45 c1 (φy,x + w0,xy) +D55 c1 (φx,x + w0,xx) + F45 c
2

1 (φy,x +w0,xy) + F55 c
2

1 (φx,x + w0,xx)

− E11 c2 u0,xxx − E12 c2 v0,xxy −E16 c2 (u0,xxy + v0,xxx)− F11 c2 φx,xxx − F12 c2 φy,xxy

− F16 c2 (φx,xxy + φy,xxx)−H11 c
2

2 (φx,xxx + w0,xxxx)−H12 c
2

2 (φx,xxy + w0,xxyy)

−H16 c
2

2 (φx,xxy + φy,xxx + 2w0,xxxy)− 2E16 c2 u0,xxy − 2E26 c2 v0,xyy − 2E66 c2 (u0,xyy + v0,xxy)

− 2F16 c2 φx,xxy − 2F26 c2 φy,xyy − 2F66 c2 (φx,xyy + φy,xxy)− 2H16 c
2

2 (φx,xxy + w0,xxxy)

− 2H26 c
2

2 (φy,xyy + w0,xyyy)− 2H66 c
2

2 (φx,xyy + φy,xxy + 2w0,xxyy)− E12 c2 u0,xyy − E22 c2 v0,yyy

− E26 c2 (u0,yyy + v0,xyy)− F12 c2 φx,xyy − F22 c2 φy,yyy − F26 c2 (φx,yyy + φy,xyy)

−H12 c
2

2 (φx,xyy + w0,xxyy)−H22 c
2

2 (φy,yyy + w0,yyyy)− 2H26 c
2

2 (φx,yyy + φy,xyy + 2w0,xyyy)

= Ñx0
w0,xx + Ñy0 w0,yy

δφx : B11 u0,xx +B12 v0,yx +B16 (u0,yx + v0,xx) +D11 φx,xx +D12 φy,xy +D16 (φx,yx + φy,xx)

+ F11 c2 (φx,xx + w0,xxx) + F12 c2 (φy,yx + w0,yyx) + F16 c2 (φx,yx + φy,xx + 2w0,xyx)

+B16 u0,xy +B26 v0,yy +B66 (u0,yy + v0,xy) +D16 φx,xy +D26 φy,yy +D66 (φx,yy + φy,xy)

+ F16 c2 (φx,xy + w0,xxy) + F26 c2 (φy,yy + w0,yyy) + F66 c2 (φx,yy + φy,xy + 2w0,xyy)

+ E11 c2 u0,xx + E12 c2 v0,yx + E16 c2 (u0,yx + v0,xx) + F11 c2 φx,xx + F12 c2 φy,xy + F16 c2 (φx,yx + φy,xx)

+H11 c
2

2 (φx,xx + w0,xxx) +H12 c
2

2 (φy,yx + w0,yyx) +H16 c
2

2 (φx,yx + φy,xx + 2w0,xyx)

+ E16 c2 u0,xy + E26 c2 v0,yy + E66 c2 (u0,yy + v0,xy) + F16 c2 φx,xy + F26 c2 φy,yy + F66 c2 (φx,yy + φy,xy)

+H16 c
2

2 (φx,xy +w0,xxy) +H26 c
2

2 (φy,yy + w0,yyy) +H66 c
2

2 (φx,yy + φy,xy + 2w0,xyy)

− A45 (φy + 2w0,y)−A55 (φx + 2w0,x)− 2D45 c1 (φy + 2w0,y)− 2D55 c1 (φx + 2w0,x)

− F45 c
2

1 (φy + 2w0,y)− F55 c
2

1 (φx + 2w0,x) = 0

(9)
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δφy : B16 u0,xx +B26 v0,yx +B66 (u0,yx + v0,xx) +D16 φx,xx +D26 φy,xy +D66 (φx,yx + φy,xx)

+ F16 c2 (φx,xx + w0,xxx) + F26 c2 (φy,yx + w0,yyx) + F66 c2 (φx,yx + φy,xx + 2w0,xyx)

+B12 u0,xy +B22 v0,yy +B26 (u0,yy + v0,xy) +D12 φx,xy +D22 φy,yy +D26 (φx,yy + φy,xy)

+ F12 c2 (φx,xy + w0,xxy) + F22 c2 (φy,yy + w0,yyy) + F26 c2 (φx,yy + φy,xy + 2w0,xyy)

+ E16 c2 u0,xx + E26 c2 v0,yx + E66 c2 (u0,yx + v0,xx) + F16 c2 φx,xx + F26 c2 φy,xy + F66 c2 (φx,yx + φy,xx)

+H16 c
2

2 (φx,xx + w0,xxx) +H26 c
2

2 (φy,yx + w0,yyx) +H66 c
2

2 (φx,yx + φy,xx + 2w0,xyx)

+ E12 c2 u0,xy + E22 c2 v0,yy + E26 c2 (u0,yy + v0,xy) + F12 c2 φx,xy + F22 c2 φy,yy + F26 c2 (φx,yy + φy,xy)

+H12 c
2

2 (φx,xy + w0,xxy) +H22 c
2

2 (φy,yy + w0,yyy) +H26 c
2

2 (φx,yy + φy,xy + 2w0,xyy)

− A44 (φy + 2w0,y)− A45 (φx + 2w0,x)− 2D44 c1 (φy + 2w0,y)− 2D45 c1 (φx + 2w0,x)

− F44 c
2

1 (φy + 2w0,y)− F45 c
2

1 (φx + 2w0,x) = 0

The natural boundary conditions are:

δu0 : Nxx = A11 u0,x +B11 φx,x + E11 c2 φx,x + E11 c2 w0,xx +A12 v0,y +B12 φy,y + E12 c2 φy,y + E12 c2 w0,yy

+ A16 u0,y + A16 v0,x +B16 φx,y +B16 φy,x + E16 c2 φx,y +E16 c2 φy,x + 2E16 c2 w0,xy

δv0 : Nxy = A16 u0,x +B16 φx,x + E16 c2 φx,x + E16 c2 w0,xx +A26 v0,y +B26 φy,y + E26 c2 φy,y + E26 c2 w0,yy

+ A66 u0,y + A66 v0,x +B66 φx,y + E66 c2 φy,x + E66 c2 φx,y + E66 c2 φy,x + 2E66 c2 w0,xy

δw0 : Qx = H11 c
2

2 φx,xx +H11 c
2

2 w0,xxx + E11 c2 u0,xx + F11 c2 φx,xx + E12 c2 v0,yx + F12 c2 φy,yx

+H12 c
2

2 φy,yx +H12 c
2

2 w0,yyx + 2E16 c2 u0,xy + 2F16 c2 φx,xy + 2H16c
2

2 φx,xy +E16 c2 u0,yx

+E16 c2 v0,xx + F16 c2 φx,yx +H16 c
2

2 φx,yx +H16 c
2

2 φy,xx + 2H16 c
2

2 w0,xxy + 2E26 c2 v0,yy

+ 2F26 c2 φy,yy + 2H26c
2

2 w0,yyy + 4H66c
2

2 w0,xyy + 2H26 c
2

2 φx,yy + 2H26 c
2

2 φy,xy + 2E66 c2 u0,yy

+ 2E66 c2 v0,xy + 2F66 c2 φx,yy + 2F66 c2 φy,xy − 2D45 c1 φy − 2D45 c1 w0,y − F45 c
2

1 φy

− F45 c
2

1 w0,y −A55 φx −A55 w0,x −D55 c1 φx − 2 c1 w0,x − F55 c
2

1 φx − F55 c
2

1 w0,x

Mxx = D11 φx,x +H11 c
2

2 φx,x +H11 c
2

2 w0,xx +B11 u0,x +E11 c2 u0,x + 2F11 c2 φx,x + F11 c2 w0,xx

+ F11 c2 w0,xx +B12 v0,y +D12 φy,y + F12 c2 φy,y + F12 c2 w0,yy + E12 c2 v0,y + F12 c2 φy,y +H12 c
2

2 φy,y

+H12 c
2

2 w0,yy +B16 u0,y +B16 v0,x +D16 φx,y +D16 φy,x + F16 c2 φx,y + F16 c2 φy,x + 2F16 c2 w0,xy

+E16 c2 u0,y + E16 c2 v0,x + F16 c2 φx,y + F16 c2 φy,x +H16 c
2

2 φx,y +H16 c
2

2 φy,x + 2H16 c
2

2 w0,xy

δφy : Mxy = D16 φx,x +H16 c
2

2 φx,x +H16 c
2

2 w0,xx +B16 u0,x +E16 c2 u0,x + 2F16 c2 φx,x + F16 c2 w0,xx

+ F16 c2 w0,xx +B26 v0,y +D12 φy,y + F26 c2 φy,y + F26 c2 w0,yy + E26 c2 v0,y + F26 c2 φy,y +H26 c
2

2 φy,y

+H26 c
2

2 w0,yy +B66 u0,y +B66 v0,x +D66 φx,y +D66 φy,x + F66 c2 φx,y + F66 c2 φy,x + 2F66 c2 w0,xy

+E66 c2 u0,y + E66 c2 v0,x + F66 c2 φx,y + F66 c2 φy,x +H66 c
2

2 φx,y +H66 c
2

2 φy,x + 2H66 c
2

2 w0,xy

(10)
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δφx : δw0,x : Pxx = H11 c
2
2 φx,x +H11 c

2
2 w0,xx +E11 c2 u0,x + F11 c2 φx,x + E12 c2 v0,y + F12 c2 φy,y +H12 c

2
2 φy,y

+H12 c
2
2 w0,yy +E16 c2 u0,y + E16 c2 v0,x + F16 c2 φx,y + F16 c2 φy,x +H16 c

2
2 φx,y +H16 c

2
2 φy,x

+ 2H16 c
2
2 w0,xy

where the suffix after the comma denotes the partial derivative with respect to that variable and

(Aij , Bij , Dij , Eij , Fij , Hij) =

Nl
∑

k=1

∫

zk

C̃k
ij

(

1 z, z2, z3, z4, z6
)

dz

(I0, I1, I2, I3, I4, I6) =

Nl
∑

k=1

∫

zk

ρk
(

1 z, z2, z3, z4, z6
)

dz

(11)

are laminate stiffnesses and rotatory inertial terms, respectively with i and j varying form 1 to 6. The

in-plane loadings can be defined as Ñx0
= λNx0

and Ñy0
= λNy0

, where Nx0
, Ny0

are the initial in-plane

loadings and λ is a scalar load factor, c1 has already been defined (see Eq. (1)) and c2 = − 4
h2 .

2.2. Dynamic stiffness formulation

Once the equations of motion and the natural boundary conditions, i.e., Eqs. (9) and (10) above are

obtained, the classical method to carry out an exact buckling analysis of a plate consists of (i) solving

the system of differential equations in Navier or Lèvy-type closed form in an exact manner, (ii) applying

particular boundary conditions on the edges and finally (iii) obtaining the stability equation by eliminat-

ing the integration constants [41, 42, 43, 44]. This method, although extremely useful for analysing an

individual plate, it lacks generality and cannot be easily applied to complex structures assembled from

plates for which researchers usually resort to approximate methods such as the FEM. In this respect, the

dynamic stiffness method (DSM), which is, in many ways, analogous to FEM has no such limitations and

importantly it always retains the exactness of the solution even when applied to complex structures. This

is because once the dynamic stiffness matrix of a structural element is obtained from the exact solution

of the governing differential equations and it can be offset and/or rotated and assembled in a global

DS matrix in the same way as the FEM. This global DS matrix thus contains implicitly all the exact

critical buckling loads of the structure which can be computed by using the well established algorithm of

Wittrick-Williams [13].

A general procedure to develop the dynamic stiffness matrix of a structural element is generally summa-

rized as follows:

(i) Seek a closed form analytical solution of the governing differential equations of the structural ele-

ment.

(ii) Apply a number of general boundary conditions in algebraic forms that are equal to twice the

number of integration constants; these are usually nodal displacements and forces.

(iii) Eliminate the integration constants by relating the amplitudes of the harmonically varying nodal

forces to those of the corresponding displacements which essentially generates the dynamic stiffness

matrix, providing the force-displacement relationship at the nodes of the structural element.

Referring to the equations of motion Eqs.(9), an exact solution can be found in Lèvy’s form for symmetric,

cross ply laminates. For such laminates B = E = 0, and C̃k
16 = C̃k

26 = C̃k
45 = 0 and the out-of-plane

displacements are uncoupled from the in-plane ones.
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2.3. Lèvy-type closed form exact solution and DS formulation

The solution of Eqs. (9) related to the out-of-plane displacements is sought as:

w0(x, y, t) =
∞
∑

m=1

Wm(x) eiωt sin(αy), φx(x, y, t) =
∞
∑

m=1

Φxm (x) eiωt sin(αy),

φy(x, y, t) =

∞
∑

m=1

Φym(x) eiωt cos(αy)

(12)

where ω is the unknown circular or angular frequency, α = mπ
L

and m = 1, 2, . . . ,∞. Equation (12) is

the so-called Lèvy’s solution which assumes that two opposite sides of the plate are simply supported

(S-S), i.e. w = φx = 0 at y = 0 and y = L. Substituting Eq. (12) into Eqs. (9) a set of three ordinary

differential equations is derived which can be written in matrix form as follows:











L11 L12 L13

L21 L22 L23

L31 L32 L33





















Wm

Φx

Φy











=











0

0

0











(13)

where Lij (i, j = 1, 2, 3) are differential operators and given by:

L11 = −c21D4
xH11 +D2

x

(

A55 + 2c2D55 + c22F55 + 2α2c21H12 + 4α2c21H66 + λNx0

)

− α2
(

A44 + 2c2D44

+ c22F44 + α2c21H22 + λNy0

)

L12 = D3
x

(

−c1F11 − c21H11

)

+Dx

(

A55 + 2c2D55 + α2c1F12 + c22F55 + 2α2c1F66 + α2c21H12 + 2α2c21H66

)

+ (−c1 F11 − c21 H11)D3
x

L13 = −α
(

A44 + c2(2D44 + c2F44) + α2c1(F22 + c1H22)
)

+D2
x

(

αc1F12 + 2αc1F66 + αc21H12 + 2αc21H66

)

L21 = c1D3
x(F11 + c1H11) +Dx

(

−A55 − c2(2D55 + c2F55)− α2c1(F12 + 2F66 + c1H12 + 2c1H66)
)

L22 = −A55 − c2(2D55 + c2F55) +D2
x

(

D11 + 2c1F11 + c21H11

)

− α2
(

D66 + 2c1F66 + c21H66

)

L23 = Dx

(

−αD12 − αD66 − 2αc1F12 − 2αc1F66 − αc21H12 − αc21H66

)

L31 = −α
(

A44 + c2(2D44 + c2F44) + α2c1(F22 + c1H22)
)

+ αc1D2
x(F12 + 2F66 + c1H12 + 2c1H66)

L32 = αDx(D12 +D66 + c1(2F12 + 2F66 + c1(H12 +H66)))

L33 = −A44 − c2(2D44 + c2F44)− α2(D22 + c1(2F22 + c1H22)) +D2
x(D66 + c1(2F66 + c1H66))

(14)

where Dx = d
dx

and Aij , Bij , Cij , Dij , Eij , Fij , Hij have already been defined in Eq. (11). Expanding

the determinant of the matrix in Eq. (13) the following differential equation is obtained:

(

a1 D8
x + a2 D6

x + a3 D4
x + a4 D2

x + a5
)

Ψ = 0 (15)

where

Ψ = Wm, Φym
, Φxm

(16)

Using a trial solution eλ in Eq. (15) yields the following auxiliary equation:

a1 λ
8 + a2 λ

6 + a3 λ
4 + a4 λ

2 + a5 = 0 (17)

Substituting µ = λ2, the 8th order polynomial of Eq. (17) can be reduced to a quartic as:

a1 µ
4 + a2 µ

3 + a3 µ
2 + a4 µ+ a5 = 0 (18)
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the four roots for the quartic equation are given by:

µ1 = −s1 −
1

2

√

−s5 + s2 −
s8

4
√
s9

− s6
3 a1 s7

− 1

2

√
s9

µ2 = −s1 +
1

2

√

−s5 + s2 −
s8

4
√
s9

− s6
3 a1 s7

− 1

2

√
s9

µ3 = −s1 −
1

2

√

−s5 + s2 +
s8

4
√
s9

− s6
3 a1 s7

+
1

2

√
s9

µ4 = −s1 +
1

2

√

−s5 + s2 +
s8

4
√
s9

− s6
3 a1 s7

+
1

2

√
s9

(19)

where

s1 =
a1
4 a2

, s2 = −4 a3
3 a21

+
a22
2 a21

, s3 = 2 a3 − 9 a2 a3 a4 − 72 a22 a5 + 27 a22 a5 + 27 a1 a
2
4,

s4 = a23 − 3 a2 a4 + 12 a1 a5, s5 =
1

a1

(

s3 +
√
s3 − 4 s4
32

)

1
3

, s6 =
√
22

3
s4, s7 =

√
32

3
s5 a1,

s8 =

(

a2
a1

)3
4 a2 a3
a21

− 8 a4
a1

, s9 = s5 +
s2
2

+
s6

3 s7 a1

(20)

The explicit form of the polynomials coefficients aj (j = 1, 2, 3, 4, 5) are given in Appendix B. Some

pair or pairs of complex roots may occur when computing µj (j = 1, 2, 3, 4), but the amplitude of the

displacements Wm (x) , Φxm
(x) , Φym

(x) are all real, whilst the associated coefficients can be complex.

As complex roots always occur in conjugate pairs, the associated coefficients will also occur as conjugates.

The solution of the system of ordinary differential equations in Eq. (13) can thus be written as:

Wm (x) = A1 e+µ1 x +A2 e−µ1 x +A3 e+µ2 x +A4 e−µ2 x

+A5 e+µ3 x +A6 e−µ3 x +A7 e+µ4 x +A8 e−µ4 x

Φxm
(x) = B1 e+µ1 x +B2 e−µ1 x +B3 e+µ2 x +B4 e−µ2 x

+B5 e+µ3 x +B6 e−µ3 x +B7 e+µ4 x +B8 e−µ4 x

Φym
(x) = C1 e+µ1 x + C2 e−µ1 x + C3 e+µ2 x + C4 e−µ2 x

+ C5 e+µ3 x + C6 e−µ3 x + C7 e+µ4 x + C8 e−µ4 x

(21)

where A1 −A8, B1 −B8, C1 − C8, are three sets of integration constants. The sets of constants are not

all independent. Only one set of eight constants are needed to relate each set. Constants B1 − B8 are

chosen to be the independent base. By substituting Eqs. (21) into (13) the following relationships are

obtained using symbolic computation:

A1 = δ1 B1, A2 = −δ1 B2, C1 = γ1 B1, C2 = −γ1 B2

A3 = δ2 B3, A4 = −δ2 B4, C3 = γ2 B3, C4 = −γ2 B4

A5 = δ3 B5, A6 = −δ3 B6, C5 = γ3 B5, C6 = −γ3 B6

A7 = δ4 B7, A8 = −δ4 B8, C7 = γ4 B7, C8 = −γ4 B8

(22)
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where

δi = −
[

− A55α
2D22 − 2A55c2D44 − 2α2c2D22D55 − 4c22D44D55 − α4D22D66 − 2α2c2D44D66 − 2A55α

2c1F22

− 4α2c1c2D55F22 − 2α4c1D66F22 − A55c
2

2F44 − 2c32D55F44 − α2c22D66F44 − α2c22D22F55 − 2c32D44F55

− 2α2c1c
2

2F22F55 − c42F44F55 − 2α4c1D22F66 − 4α2c1c2D44F66 − 4α4c21F22F66 − 2α2c1c
2

2F44F66

− A55α
2c21H22 − 2α2c21c2D55H22 − α4c21D66H22 − α2c21c

2

2F55H22 − 2α4c31F66H22 − α4c21D22H66 − 2α2c21c2D44H66

− 2α4c31F22H66 − α2c21c
2

2F44H66 − α4c41H22H66 − A44

(

A55 + 2c2D55 + c22F55 + α2(D66 + 2c1F66 + c21H66)
)

+ A44(D11 + c1(2F11 + c1H11))µ
2

i +
(

A55(D66 + c1(2F66 + c1H66)) + 2c2(D11D44 +D55D66 + c1(2D44F11

+ 2D55F66 + c1D44H11 + c1D55H66)) + c22(D11F44 +D66F55 + c1(2F11F44 + 2F55F66 + c1F44H11 + c1F55H66))

− α2(D2

12 −D11(D22 + c1(2F22 + c1H22)) + 2D12(D66 + c1(2F12 + 2F66 + c1(H12 +H66))) + c1(4F12(D66 + c1F12)

−D22(2F11 + c1H11) + c1(8F12F66 + 2D66H12 − 2F11(2F22 + c1H22) + c1(−2F22H11 +H12(4(F12 + F66) + c1H12)

− c1H11H22 + 4F12H66 + 2c1H12H66))))
)

µ2

i − (D11 + c1(2F11 + c1H11))(D66 + c1(2F66 + c1H66))µ
4

i

]

/
[

α2(D12 +D66 + c1(2F12 + 2F66 + c1(H12 +H66)))µi

(

A44 + 2c2D44 + c22F44 + α2c1(F22 + c1H22)

− c1(F12 + 2F66 + c1H12 + 2c1H66)µ
2

i

)

− µi

(

A55 + 2c2D55 + c22F55 + α2c1(F12 + 2F66 + c1H12 + 2c1H66)

− c1(F11 + c1H11)µ
2

i

)(

A44 + c2(2D44 + c2F44) + α2(D22 + 2c1F22 + c21H22)− (D66 + 2c1F66 + c21H66)µ
2

i

)]

γi =
[

α
(

A44A55 + 2A55c2D44 + 2A44c2D55 + 4c22D44D55 + A44α
2D66 + 2α2c2D44D66 + A55α

2c1F22 + 2α2c1c2D55F22

+ α4c1D66F22 + A55c
2

2F44 + 2c32D55F44 + α2c22D66F44 + A44c
2

2F55 + 2c32D44F55 + α2c1c
2

2F22F55 + c42F44F55

+ 2A44α
2c1F66 + 4α2c1c2D44F66 + 2α4c21F22F66 + 2α2c1c

2

2F44F66 + A55α
2c21H22 + 2α2c21c2D55H22 + α4c21D66H22

+ α2c21c
2

2F55H22 + 2α4c31F66H22 + A44α
2c21H66 + 2α2c21c2D44H66 + α4c31F22H66 + α2c21c

2

2F44H66 + α4c41H22H66

+
(

A55(D12 +D66)− A44(D11 + c1(2F11 + c1H11))− 2c2(D11D44 −D55(D12 +D66) + c1(2D44F11 −D55F12 + c1D44H11

+ c1D55H66)) + c22(−D11F44 + (D12 +D66)F55 − c1(2F11F44 − F12F55 + c1F44H11 + c1F55H66)) + c1(A55(F12 − c1H66)

+ α2(−D11F22 +D12(F12 + 2F66 + c1(H12 + 2H66)) + c1(2F
2

12 −D11H22 − 2F11(F22 + c1H22) + F12(4F66 + 3c1H12

+ 4c1H66) + c1(H12(2F66 + c1H12)−H11(F22 + c1H22) + 2c1H12H66))))
)

µ2

i + c1(D11(F12 + 2F66)−D12(F11 + c1H11)

−D66(F11 + c1H11) + c1(D11(H12 + 2H66) + c1H11(−F12 + c1H66) + F11(2F66 + c1(H12 + 3H66))))µ
4

i

)]

/
[

µi

(

A44A55 − A44α
2D12 +A55α

2D22 + 2A55c2D44 − 2α2c2D12D44 + 2A44c2D55 + 2α2c2D22D55 + 4c22D44D55

− A44α
2D66 − 2α2c2D44D66 − A44α

2c1F12 + α4c1D22F12 − 2α2c1c2D44F12 + 2A55α
2c1F22 − α4c1D12F22 + 4α2c1c2D55F22

− α4c1D66F22 + A55c
2

2F44 − α2c22D12F44 + 2c32D55F44 − α2c22D66F44 − α2c1c
2

2F12F44 + A44c
2

2F55 + α2c22D22F55

+ 2c32D44F55 + 2α2c1c
2

2F22F55 + c42F44F55 + 2α4c1D22F66 + 2α4c21F22F66 + α4c21D22H12 + α4c31F22H12 + A55α
2c21H22

− α4c21D12H22 + 2α2c21c2D55H22 − α4c21D66H22 − α4c31F12H22 + α2c21c
2

2F55H22 + A44α
2c21H66 + 2α4c21D22H66

+ 2α2c21c2D44H66 + 3α4c31F22H66 + α2c21c
2

2F44H66 + α4c41H22H66 −
(

A55(D66 + c1(2F66 + c1H66)) + c22(D66F55

+ c1(F11F44 + 2F55F66 + c1F44H11 + c1F55H66)) + 2c2(c1D44(F11 + c1H11) +D55(D66 + c1(2F66 + c1H66)))

+ c1(A44(F11 + c1H11) + α2(−F12(D12 + 2c1F12)− 2D12F66 +D22(F11 + c1H11) + c1(−4F12F66 + F11(2F22 + c1H22)

−D12(H12 + 2H66) + c1(2F22H11 −H12(3F12 + 2F66 + c1H12) + c1H11H22 − 4F12H66 − 2c1H12H66))))
)

µ2

i

+ c1(F11 + c1H11)(D66 + c1(2F66 + c1H66))µ
4

i

)]

(23)

10



with i = 1, 2, 3, 4. The procedure leading to Eqs. (22) and (23) must be undertaken with sufficient care,

because if wrong equations are chosen from Eq. (21) to obtain the relationship connecting different sets

of constant, numerical instability can occur. When Eqs. (22) are substituted into Eqs. (21) a solution in

terms of only 8 constants can be formulated for Wm (x), Φxm
(x) and Φym

(x), respectively. Thus

Wm (x) = B1 δ1 e
+µ1 x −B2 δ1 e

−µ1 x +B3 δ2 e
+µ2 x −B4 δ2 e

−µ2 x

+B5 δ3 e
+µ3 x −B6 δ3 e

−µ3 x +B7 δ4 e
+µ4 x −B8 δ4 e

−µ4 x

Φxm
(x) = B1 e+µ1 x +B2 e−µ1 x +B3 e+µ2 x +B4 e−µ2 x

+B5 e+µ3 x +B6 e−µ3 x +B7 e+µ4 x +B8 e−µ4 x

Φym
(x) = B1 γ1 e

+µ1 x −B2 γ1 e
−µ1 x +B3 γ2 e

+µ2 x −B4 γ2 e
−µ2 x

+B5 γ3 e
+µ3 x −B6 γ3 e

−µ3 x +B7 γ4 e
+µ4 x −B8 γ4 e

−µ4 x

(24)

The expressions for forces and moments can also be found in the same way by substituting Eqs. (24)

into Eqs. (10) and using symbolic computation. In this way

Qx (x, y) =
(

eµ1 x (B1 +B2 e
−2µ1 x)(A55 +A55 δ1 µ1 + 2 c2 (D55 +D55 δ1 µ1) + c22 (F55 + δ1 F55 µ1)

+ c1 (αγ1 (F12 + 2F66 + c1 H12 + 2 c1 H66)µ1 − µ2
1 (F11 + c1 H11 + c1 δ1 H11 µ1) + α2 (2F66

+ 2 c1H66 + c1 δ1 H12 µ1 + 4 c1 δ1 H66 µ1)))+

eµ2 x(B3 +B4 e
−2µ2 x)(A55 +A55 δ2 µ2 + 2 c2 (D55 +D55 δ2 µ2) + c22 (F55 + δ2 F55 µ2)

+ c1 (αγ2 (F12 + 2F66 + c1 H12 + 2 c1 H66)µ2 − µ2
2 (F11 + c1 H11 + c1 δ2 H11 µ2) + α2 (2F66

+ 2 c1H66 + c1 δ2 H12 µ2 + 4 c1 δ1 H66 µ2)))+

eµ3 x(B5 +B6e
−2µ3 x)(A55 +A55 δ3 µ3 + 2 c2 (D55 +D55 δ3 µ3) + c22 (F55 + δ3 F55 µ3)

+ c1 (αγ3 (F12 + 2F66 + c1 H12 + 2 c1 H66)µ3 − µ2
3 (F11 + c1 H11 + c1 δ3 H11 µ3) + α2 (2F66

+ 2 c1H66 + c1 δ3 H12 µ3 + 4 c1 δ3 H66 µ3)))+

eµ4 x(B3 +B4 e
−2µ4 x)(A55 +A55 δ4 µ4 + 2 c2 (D55 +D55 δ4 µ4) + c22 (F55 + δ4 F55 µ4)

+ c1 (αγ4 (F12 + 2F66 + c1 H12 + 2 c1 H66)µ4 − µ2
4 (F11 + c1 H11 + c1 δ4 H11 µ4) + α2 (2F66

+ 2 c1H66 + c1 δ4 H12 µ4 + 4 c1 δ4 H66 µ4)))
)

sin (αy) = Qx sin (αy)

Mxx (x, y) =
(

eµ1 x(B1 +B2 e
−2µ1 x)(α2 c1 δ1 (F12 + c1 H12) + αγ1 (D12 + c1 (2F12 + c1 H12))− µ1 (D11

+ c1 (2F11 + c1 H11 + δ1 F11 µ1 + c1 δ1 H11 µ1)))+

eµ2 x(B3 +B4 e
−2µ2 x)(α2 c1 δ2 (F12 + c1 H12) + αγ2 (D12 + c1 (2F12 + c1 H12))− µ2 (D11

+ c1 (2F11 + c1 H11 + δ2 F11 µ2 + c1 δ2 H11 µ2)))+

eµ3 x(B5 +B5 e
−2µ3 x)(α2 c1 δ3 (F12 + c1 H12) + αγ3 (D12 + c1 (2F12 + c1 H12))− µ3 (D11

+ c1 (2F11 + c1 H11 + δ3 F11 µ3 + c1 δ3 H11 µ3)))+

eµ4 x (B7 +B8 e
−2µ4 x)(α2 c1 δ4 (F12 + c1 H12) + αγ4 (D12 + c1 (2F12 + c1 H12))− µ4 (D11

+ c1 (2F11 + c1 H11 + δ4 F11 µ4 + c1 δ4 H11 µ4)))
)

sin (α y) = Mxx sin (αy)
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Mxy (x, y) =
(

eµ1x (B1 +B2 e
−2µ1x)(γ1 (D66 + c1 (2F66 + c1 H66))µ1 + α (D66 + c1 (2F66 + c1 H66

+ 2 δ1 F66 µ1 + 2 c1 δ1 H66 µ1)))+

eµ2x (B1 +B2 e
−2µ2x)(γ2 (D66 + c1 (2F66 + c1 H66))µ2 + α (D66 + c1 (2F66 + c1 H66

+ 2 δ2 F66 µ1 + 2 c1 δ2 H66 µ2)))+

eµ3x (B1 +B2 e
−2µ3x)(γ3 (D66 + c1 (2F66 + c1 H66))µ3 + α (D66 + c1 (2F66 + c1 H66

+ 2 δ3 F66 µ3 + 2 c1 δ3 H66 µ2)))+

eµ4x (B1 +B2 e
−2µ4x)(γ4 (D66 + c1 (2F66 + c1 H66))µ4 + α (D66 + c1 (2F66 + c1 H66

+ 2 δ4 F66 µ1 + 2 c1 δ4 H66 µ4)))
)

cos (α y) = Mxy cos (α y)

Pxx (x, y) =
(

eµ1 x (−B1 +B2 e
−2µ1 x) (α2 c1 δ1 H12 + α γ1 (F12 + c1 H12)− µ1 (F11 + c1 H11 (1 + δ1 µ1)))+

eµ2 x (−B1 +B2 e
−2µ2 x) (α2 c1 δ2 H12 + α γ2 (F12 + c1 H12)− µ2 (F11 + c1 H11 (1 + δ2 µ2)))+

eµ3 x (−B1 +B2 e
−2µ3 x) (α2 c1 δ3 H12 + α γ3 (F12 + c1 H12)− µ3 (F11 + c1 H11 (1 + δ3 µ3)))+

eµ4 x (−B1 +B2 e
−2µ4 x) (α2 c1 δ4 H12 + α γ4 (F12 + c1 H12)− µ4 (F11 + c1 H11 (1 + δ4 µ4)))

)

sin (α y) = Pxx sin (αy)

(25)

At this point, zero boundary conditions are generally used to eliminate the constants when using the

classical method which establishes the stability equation for a single individual plate. By contrast, the

development of the dynamic stiffness matrix entails imposition of general boundary conditions in algebraic

form and widens the possibility of the analysis of multi-plate systems. In order to develop the dynamic

stiffness matrix, the following boundary conditions are applied next.

x = 0 : Wm = Wm1
, Φxm

= Φx1
, Φym

= Φy1
, Wm,x

= Wm1,x

x = b : Wm = Wm2
, Φxm

= Φx2
, Φym

= Φy2
, Wm,x

= Wm2,x

x = 0 : Qx = −Qx1
, Mxx = −Mxx1

, Mxy = −Mxy1
, Pxx = −Pxx1

x = b : Qx = Qx2
, Pxx = Pxx2

, Mxy = Mxy2
, Pxx = Pxx2

(26)

By substituting Eq. (26) into Eq.(24), the following matrix relations for the displacements are obtained:

















W1

Φx1

Φy1

W1,x

W2

Φx2

Φy2

W2,x

















=

















δ1 −δ1 δ2 −δ2 δ3 −δ3 δ4 −δ4

1 1 1 1 1 1 1 1

γ1 −γ1 γ2 −γ2 γ3 −γ3 γ4 −γ4

f1 −f1 f2 −f2 f3 −f3 f4 −f4

δ1 eb µo1 −δ1 e−b µo1 δ2 eb µo2 −δ2 e−b µo2 δ3 eb µo3 −δ3 e−b µo3 δ4 eb µo4 −δ4 e−b µo4

eb µo1 −e−b µo1 eb µo2 −e−b µo2 eb µo3 −e−b µo3 eb µo4 −e−b µo4

γ1 eb µo1 −γ1 e−b µo1 γ2 eb µo2 −γ2 e−b µo2 γ3 eb µo3 −γ3 e−b µo3 γ4 eb µo4 −γ4 e−b µo4

f1 eb µo1 −f1 e−b µo1 f2 eb µo2 −f2 e−b µo2 f3 eb µo3 −f3 e−b µo3 f4 eb µo4 −f4 e−b µo4

































B1

B2

B3

B4

B5

B6

B7

B8

















(27)

where

fi = δi µi; with i = 1, 2, 3, 4

Equations (34) and (27) can be written as

δ = AC (28)
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By applying the same procedure for forces and moments, i.e. substituting Eq. (26) into Eq.(25) the

following matrix relations are obtained:

















Qx1

Mxx1

Mxy1

Pxx1

Qx2

Mxx2

Mxy2

Mxx2

















=

















Q1 Q1 Q2 Q2 Q3 Q3 Q4 Q4

T1 −T1 T2 −T2 T3 −T3 T4 −T4

−I1 −I1 −I2 −I2 −I3 −I3 −I4 −I4

L1 −L1 L2 −L2 L3 −L3 YL −L4

Q1 eb µo1 −Q1 e−b µo1 Q2 eb µo2 −Q2 e−b µo2 Q3 eb µo3 −Q3 e−b µo3 Q4 eb µo4 −Q4 e−b µo4

−T1eb µo1 T1e−b µo1 −T2eb µo2 T2e−b µo2 −T3eb µo3 T3e−b µo3 −T4eb µo4 T4e−b µo4

I1eb µo1 I1e−b µo1 I2eb µo2 I2e−b µo2 I3eb µo3 I3e−b µo3 I4eb µo4 I4e−b µo4

−L1eb µo1 L1e−b µo1 −L2eb µo2 L2e−b µo2 −L3eb µo3 L3e−b µo3 −L4eb µo4 L4e−b µo4

































B1

B2

B3

B4

B5

B6

B7

B8

















(29)

where

Qi = −A55(1 + δiµoi)− 2c2(D55 +D55δiµoi)− c22(F55 + δiF55µoi)− c1(αγi(F12 + 2F66 + c1H12

+ 2c1H66)µoi − µ2
oi(F11 + c1H11 + c1δiH11µoi) + α2(2F66 + 2c1H66 + c1δiH12µoi + 4c1δiH66µoi))

Ti = α2c1δi(F12 + c1H12) + αγi(D12 + c1(2F12 + c1H12))− µoi(D11 + c1(2F11 + c1H11

+ δiF11µoi + c1δiH11µoi))

Ii = γ1(D66 + c1(2F66 + c1H66))µoi − α(D66 + c1(2F66 + c1H66 + 2δiF66µoi + 2c1δiH66µoi))

Li = c1(α
2c1δiH12 + αγi(F12 + c1H12)− µoi(F11 + c1H11(1 + δiµoi))) with i = 1, 2, 3, 4

(30)

Equation (29) can be written as

F = RC (31)

By eliminating the constants vector C form Eqs. (28) and (31) the dynamic stiffness matrix is formulated

as follows:

K = RA−1 (32)

or more explicitly

K =









































sqq sqm sqt sqh fqq fqm fqt fqh

smm smt smh −fqm fmm fmt fmh

stt sth fqt −fmt ftt fth

shh −fqh fmh −fth fhh

Sym sqq −sqm sqt −sqh

smm −smt smh

stt −sth

shh









































(33)
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Finally the dynamic stiffness matrix related to the force and displacement vectors can be written as

follows:






























Qx1

Mxx1

Mxy1

Pxx1

Qx2

Mxx2

Mxy2

Pxx2































=































sqq sqm sqt sqh fqq fqm fqt fqh

smm smt smh −fqm fmm fmt fmh

stt sth fqt −fmt ftt fth

shh −fqh fmh −fth fhh

Sym sqq −sqm sqt −sqh

smm −smt smh

stt −sth

shh





























































W1

Φx1

Φy1

W1,x

W2

Φx2

Φy2

W2,x































(34)

which in compact matrix form:

F = KD (35)

The above dynamic stiffness matrix will now be used in conjunction with the Wittrick-Williams algorithm

[13] to analyze composite simple and stiffened plates for their buckling behavior based on HSDT. Explicit

expressions for each element of the DS matrix were obtained via symbolic computation, but they are far

too extensive and voluminous to report here. The correctness of these expressions was further checked

by implementing them in a MATLABr program and carrying out a wide rage of numerical simulations.

2.4. Assembly procedure, boundary conditions and similarities with FEM

Once the DS matrix of a laminate element has been developed, it can be rotated and/or offset if

required and thus can be assembled to form the global DS matrix of the final structure. The assembly

procedure is schematically shown in Fig. 2 which is similar to that of FEM. Although like the FEM, a

mesh is required in the DSM, it should be noted that unlike the former, the latter is not mesh dependent

in the sense that additional elements are required only when there is a change in the geometry of the

structure. A single DS laminate element is enough to compute any number of its buckling loads to

any desired accuracy, which, of course, is impossible in the FEM. However, for the type of structures

under consideration DS plate elements do not have point nodes, but have line nodes instead. Also no

change in the geometry along longitudinal direction is admitted. This assumption is in addition to the

assumed simple support boundary conditions on two opposite sides. The other two sides of the plate

can have any boundary conditions. The application of the boundary conditions of the global dynamic

stiffness matrix involves the use of the so-called penalty method. This consists of adding a large stiffness

to the appropriate position on the leading diagonal term which corresponds to the degree of freedom

of the node that needs to be suppressed. It is thus possible to apply free, simple support and clamped

boundary conditions on the structure by penalizing the appropriate degrees of freedom. Note that in

accordance with the notation and sign convention used in Fig. 2 for simple support boundary condition

V , W and Φy have to be penalized whereas for clamped boundary condition U , V , W , Φy, Φx, W,x

have to be penalized. Clearly for the free-edge boundary condition no penalty will be applied. Because

of the similarities between DSM and FEM, DS elements can be implemented in FEM codes and thus the

accuracy of results can be increased substantially.
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2.5. Application of the Wittrick-Williams Algorithm

In order to compute the critical buckling loads of a structure by using the DSM, an efficient way

to solve the eigen-problem is to apply the Wittrick and Williams algorithm [13] which has featured in

literally hundreds of papers. For the sake of completeness the procedure is briefly summarized as follows.

First the global dynamic stiffness matrix of the final structure K∗ is computed for an arbitrarily chosen

trial critical buckling load λ∗. Next, by applying the usual form of Gauss elimination the global stiffness

matrix, is transformed into its upper triangular K∗
△

form. The number of negative terms on the leading

diagonal of K∗
△

is now defined as the sign count s(K∗) which forms the fundamental basis of the

algorithm. In its simplest form, the algorithm states that j, the number of critical buckling loads (λ) of

a structures that lie below an arbitrarily chosen trial buckling load (λ∗) is given by:

j = j0 + s(K∗) (36)

where j0 is the number of critical buckling loads of all single strip elements within the structure which are

still lower than the trial buckling load (λ∗) when their opposite sides are fully clamped. It is necessary

to account for this clamped-clamped critical buckling loads because exact buckling analysis using DSM

allows an infinity number of critical buckling loads to be accounted for when all the nodes of the structures

are fully clamped.(i.e. in the overall formulation K δ = 0, these critical buckling loads correspond to

δ = 0 modes.) Thus j0 is an integral part of the algorithm and is not a peripheral issue. However, j0 is

usually zero and the dominant term of the algorithm is the sign-count s(K∗) of Eq. (36). One way of

avoiding the computation of troublesome j0 is to split the structure into sufficient number of elements so

that the clamped-clamped buckling loads of an individual element in the structure are never exceeded.

Once s(K∗) and j0 of Eq. (36) are known, any suitable method, for example, bi-section technique can be

devised to bracket any critical buckling load within any desired accuracy. The mode shapes are routinely

computed by using the standard eigen-solution procedure in which the global dynamic stiffness matrix is

computed at the critical buckling load and the force vector is set to zero whilst deleting one row of the DS

matrix and giving one of the nodal displacement component an arbitrarily chosen value and determining

the rest of the displacements in terms of the chosen one.

3. Results ans Discussion

A preliminary validation of the critical buckling load analysis for moderately thick (a/h = 10) simply-

supported cross-ply square plates uniaxially loaded in the x direction is carried out and the results are

shown in Table 1 for different orthotropy ratos. The dimensionless critical buckling load, obtained using

HSDT within the framework of the DSM are in excellent agreement when compared with the 3D elasticity

solution and the results also lead to the same findings of the classical Lèvy-type closed form solution.

Note that for all practical purpose, it is only the first buckling load that matters. Therefore only the first

critical loads is presented in this paper. As expected the percentage error, with respect to the 3D elasticity

solution, increases when increasing the orthotropic ratio. In Table 2 the dimensionless critical buckling

load for the same case study of Table 1 is computed but taking into account the effects of the length-

to-thickness and orthotropy ratios and boundary conditions (see Fig. 3). At a fixed length-to-thickness
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ratio, the dimensionless critical buckling load increases when increasing the orthotropic ratio for all the

considered boundary conditions. A similar behavior can be observed when varying the length-to-thickness

ratio but by fixing the orthotropic ratio. Understandably, the largest dimensionless critical buckling load

is given by the boundary condition S-C-S-C and the lowest by S-F-S-F. In Table 3 the results are given

for composite plates that are uniaxially loaded in the y direction, instead of the x direction for different

values of length-to-thickness and orthotropy ratios. The dimensionless critical buckling load is generally

lower for all the boundary conditions but for for the case with one or two sides free, namely, S-S-S-F and

S-F-S-F, it decreases significantly. The biaxial compression effect is examined and the results in Table

4 show as expected, a notable reduction in the critical buckling load, with respect to the uniaxial load

considered along x and y axes, respectively. In Table 5, results for moderately thick plate (a/h=10) with

the effect of the in-plane ratio (L/b) are presented for different values of orthotropy ratio. As can be seen

from this table, the critical buckling load decreases when increasing the in-plane ratio, independently for

all boundary conditions.

3.1. Buckling analysis of cross-ply composite stiffened plates

A particular feature of the DSM is that it allows the buckling analysis of stiffened plates in an exact

sense. Two different stiffened composite plate configurations shown in Fig. 5 and Fig. 6 respectively, are

analyzed and the results are discussed in this section. The geometrical parameters of the two stiffened

composite plates are given below:

1. First stiffened composite plate configuration (Figure 5)

b = 1m; L = 1m; b1 = 0.20m; b2 = 0.5m; b3 = 0.10m; t1 = 0.10m; t2 = 0.20m;

2. Second stiffened composite plate configuration (Figure 6)

b = 1m; L = 1m; b1 = 0.15m; b2 = 0.5m; b3 = 0.20m; t1 = 0.10m; t2 = 0.20m;

In addition to the above stiffened panels, a simple uniform panel of thickness 0.002 m and with the same

of the dimensions has also been analyzed for comparative purposes. In Fig. 7 the dimensionless critical

buckling load for different boundary conditions are shown against the length-to-thickness ratio for the

two stiffened composite plates alongside the results of the simple panel of uniform thickness. The panels

were loaded in the x direction. As can be seen from the figure, the introduction of the stiffeners increases

the buckling loads very considerably, particularly for thin composite plates. On the contrary, when thick

composite plates are analyzed the increase is not so prominent. Clearly, the results are dependent on

the applied boundary conditions. Indeed, in the case of S-S-S-S boundary condition the use of stiffeners

increases the critical buckling load for both of the stiffened plate configurations. By contrast, using a

S-C-S-C boundary condition does not affect the critical buckling load so significantly. It is interesting to

note that the relative advantages of using the first or the second stiffened composite plate configurations

depend on the applied boundary conditions, although the differences in the dimensionless buckling loads

between the two configurations are sometimes rather small. In particular, when applying S-S-S-S, S-S-

S-C and S-C-S-C boundary conditions, the first stiffened composite plate configuration leads to higher

buckling load. Whilst, applying S-S-S-F, S-F-S-F and S-C-S-F the highest buckling loads are reached

with the second stiffened panel configuration. Finally in Figs. 8-10 the representative mode shapes
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corresponding to simple composite plates, first and second configurations of stiffened composite plates

are respectively shown. When presenting modes, square symmetric cross-ply plates made of five layers

and uniaxially loaded along the y direction are considered. It is now possible to provide an overview

of how the mode shapes change when changing the geometrical characteristics of the composite plate

assemblies. It should be noted that the mode shape of a S-S-S-S simple composite plate of uniform

thickness related to its critical buckling load is made up of two half-waves in the x direction and one

in the y direction. On the contrary, in either of the two stiffened composite plates the mode shape is

characterized by only one half-wave in both direction x and y. Other changes in the mode shapes related

to different boundary conditions can be observed in the same figures. The results are particularly useful

when controlling the mode shapes which generally have significant impact on response.

4. Concluding Remarks

An exact dynamic stiffness theory for composite plate elements using higher order shear deformation

theory is developed for the first time using the principle of minimum potential energy and symbolic

algebra to carry out buckling analysis in an exact sense. The theory is implemented in a computer

program to carry out buckling analysis of complex composite structures modelled as plate assemblies.

The proposed theory is a significant refinement over other dynamic stiffness theories using classical plate

theory and/or first order shear deformation theory. The developed DSM model is particularly useful

when analyzing thick composite plates with moderate to high orthotropic ratios for which the FEM

may become unreliable. A detailed parametric study has been carried out by varying significant plate

parameters and boundary conditions. The results have been critically examined and the theory has been

assessed using existing theories. Two different stepped composite plate configurations have been analyzed

for their stability behavior. Based on the computed results the following conclusions can be drawn:

• The exact HSDT plate element has been shown to be extremely accurate in terms of results and

computational efficiency when carrying out buckling analysis of composite plate assemblies.

• The exact HSDT plate element provides a significant refinement over to the FSDT element partic-

ularly when thick plate with a high orthotropy ratio are analyzed.

• The boundary conditions affect conspicuously the buckling modes.

• Stiffeners, if properly introduced increase the buckling load considerably.

• The buckling load of stiffened composite plates change prominently with respect to the simple

composite plate depending on the stiffeners position and on the applied boundary conditions.
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Tables

Table 1: Dimensionless uniaxial buckling load (along x direction) Ncr = N̄cr
b2

E2 h3 , for simply supported cross-ply square

plates with b/h = 10, E1/E2 = open, G12/E2 = G13/E2 = 0.6, G23/E2 = 0.5, ν12 = ν13 = 0.25.

Stacking Sequence Models E1/E2

[0◦/90◦/90◦/0◦] 3 20 40

3D-Elasticity [45] 5.304 ∆†
3D

% 15.019 ∆3D% 22.881 ∆3D%

Classical Lèvy’s solution HSDT 5.393 (1.68) 15.298 (1.86) 23.340 (2.01)

FSDT 5.399 (1.79) 15.351 (2.21) 23.453 (2.50)

CLPT 5.754 (8.48) 19.712 (31.2) 36.160 (58.0)

DSM HSDT 5.393 (1.68) 15.298 (1.86) 23.340 (2.01)

† ∆3D% = ω̂−ω̂3D

ω̂3D
× 100.
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Table 2: Dimensionless uniaxial buckling load (along x direction) Ncr = N̄cr
b2

E2 h3 , for simply supported cross-ply square

plates, stacking sequence [0◦/90◦/90◦/0◦] and E1/E2 = open, G12/E2 = G13/E2 = 0.6, G23/E2 = 0.5, ν12 = ν13 = 0.25.

Uniaxial Compression (UA-C)

b/h

E1/E2 BCs 2 5 10 25 50 100

3 S-S-S-S 1.9557 4.5458 5.3933 5.6928 5.7384 5.7499

S-S-S-F 1.5912 3.3640 4.3496 5.4623 6.2621 6.8168

S-S-S-C 1.9821 5.4309 7.1169 7.8176 7.9304 7.9592

S-F-S-F 1.5839 3.2200 4.1087 5.1745 6.0137 6.7261

S-C-S-F 1.5954 3.3805 4.3651 5.4686 6.2624 6.8599

S-C-S-C 2.0555 6.8502 10.273 12.012 12.314 12.392

10 S-S-S-S 2.2810 7.1554 9.9406 11.209 11.420 11.473

S-S-S-F 2.0267 5.1516 6.9540 8.6366 9.7745 10.536

S-S-S-C 2.3426 8.3895 14.133 17.865 18.587 18.778

S-F-S-F 2.0040 4.5982 6.0871 7.9721 9.8185 11.836

S-C-S-F 2.0746 7.1554 7.0981 9.0614 10.724 12.305

S-C-S-C 2.5134 9.9930 20.515 30.068 32.273 32.878

20 S-S-S-S 2.5689 9.4219 15.298 18.825 19.482 19.654

S-S-S-F 2.3144 6.7586 9.8649 12.398 14.130 15.513

S-S-S-C 2.6643 10.376 20.977 31.075 33.495 34.166

S-F-S-F 2.2874 5.8285 8.1129 10.893 13.785 17.359

S-C-S-F 2.4425 7.0390 10.416 13.613 16.334 19.282

S-C-S-C 2.9945 11.723 28.670 52.336 59.682 61.870

40 S-S-S-S 3.0749 11.997 23.340 33.131 35.347 35.953

S-S-S-F 2.6827 8.7789 14.723 19.374 22.292 24.982

S-S-S-C 3.1136 12.301 29.414 54.096 62.190 64.645

S-F-S-F 2.6558 7.5209 11.386 15.744 20.251 26.398

S-C-S-F 2.9731 9.4057 15.987 21.955 26.517 31.952

S-C-S-C 3.5992 13.357 37.045 87.668 110.86 118.82
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Table 3: Dimensionless uniaxial buckling load (along y direction) Ncr = N̄cr
b2

E2 h3 , for simply supported cross-ply square

plates, stacking sequence [0◦/90◦/90◦/0◦] and E1/E2 = open, G12/E2 = G13/E2 = 0.6, G23/E2 = 0.5, ν12 = ν13 = 0.25.

Uniaxial Compression (UA-C)

b/h

E1/E2 BCs 2 5 10 25 50 100

3 S-S-S-S 1.7611 4.5458 5.3933 5.6928 5.7384 5.7499

S-S-S-F 0.9288 1.4363 1.5677 1.6136 1.6219 1.6247

S-S-S-C 1.8052 5.0418 7.0967 8.0978 8.2713 8.3164

S-F-S-F 0.6575 0.9484 1.0136 1.0338 1.0369 1.0377

S-C-S-F 1.0287 1.7630 2.0138 2.1123 2.1309 2.1371

S-C-S-C 1.8552 5.3906 8.0926 9.6793 9.9819 10.062

10 S-S-S-S 1.8421 6.0365 9.2387 10.877 11.161 11.234

S-S-S-F 1.0769 1.9529 2.2269 2.3238 2.3402 2.3452

S-S-S-C 1.9124 6.4505 10.676 13.497 14.069 14.222

S-F-S-F 0.8416 1.4919 1.6799 1.7416 1.7508 1.7531

S-C-S-F 1.2723 2.6410 3.2331 3.4805 3.5247 3.5380

S-C-S-C 1.9998 6.9366 12.551 17.665 18.940 19.301

20 S-S-S-S 1.9042 7.2304 12.728 16.249 16.923 17.100

S-S-S-F 1.1977 2.5793 3.1263 3.3311 3.3647 3.3741

S-S-S-C 2.0019 7.6623 14.591 20.721 22.214 22.634

S-F-S-F 0.9876 2.1487 2.5906 2.7494 2.7737 2.7798

S-C-S-F 1.4691 3.6342 4.8200 5.3662 5.4629 5.4902

S-C-S-C 2.1313 8.2008 16.897 27.735 31.291 32.391

40 S-S-S-S 1.9744 8.5588 18.034 26.395 28.285 28.801

S-S-S-F 1.3172 3.5410 4.7817 5.3152 5.4037 5.4272

S-S-S-C 2.1210 8.9972 20.099 33.690 37.996 39.317

S-F-S-F 1.1294 3.1544 4.2674 4.7367 4.8124 4.8317

S-C-S-F 1.5871 5.0774 7.6226 9.0324 9.2956 9.3669

S-C-S-C 2.3293 9.5963 22.614 44.455 54.516 58.136
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Table 4: Dimensionless biaxial buckling load Ncr = N̄cr
b2

E2 h3 , for simply supported cross-ply square plates, stacking

sequence [0◦/90◦/90◦/0◦] and E1/E2 = open, G12/E2 = G13/E2 = 0.6, G23/E2 = 0.5, ν12 = ν13 = 0.25.

Biaxial Compression (BA-C)

b/h

E1/E2 BCs 2 5 10 25 50 100

3 S-S-S-S 1.1023 2.2729 2.6967 2.8464 2.8692 2.8750

S-S-S-F 0.7380 1.1497 1.2769 1.3521 1.3852 1.4067

S-S-S-C 1.1933 2.9361 3.8771 4.2793 4.3446 4.3614

S-F-S-F 0.6667 0.9694 1.0398 1.0645 1.0700 1.0724

S-C-S-F 0.7982 1.3461 1.5636 1.7234 1.8048 1.8605

S-C-S-C 1.3088 3.8427 5.7863 6.8039 6.9824 7.0288

10 S-S-S-S 1.2983 3.5777 4.9703 5.6045 5.7098 5.7368

S-S-S-F 0.8614 1.5689 1.8270 1.9946 2.0841 2.1516

S-S-S-C 1.3940 4.4697 7.6189 9.7570 10.177 10.289

S-F-S-F 0.8433 3.5777 1.6939 1.7622 1.7749 1.7794

S-C-S-F 0.9938 2.0208 2.5026 2.9029 3.1589 3.3695

S-C-S-C 1.5359 5.4652 9.8391 13.602 14.490 14.737

20 S-S-S-S 1.4291 4.7109 7.6492 9.4124 9.7410 9.8271

S-S-S-F 0.9639 2.0760 2.5673 2.8809 3.0531 3.1949

S-S-S-C 1.5490 5.5364 11.204 18.325 16.920 18.717

S-F-S-F 0.9876 2.1483 2.5978 2.7668 2.7959 2.8048

S-C-S-F 1.1486 2.7954 3.7130 4.4580 4.9542 5.4076

S-C-S-C 1.7409 6.6190 15.867 29.452 33.783 35.082

40 S-S-S-S 1.5757 2.8554 11.670 16.566 17.673 17.976

S-S-S-F 1.0707 15.582 3.9151 4.5807 4.9204 5.2192

S-S-S-C 1.7588 6.7056 15.582 29.298 33.968 35.400

S-F-S-F 1.1290 4.7504 4.2561 4.7504 4.8338 4.8566

S-C-S-F 1.3103 3.9332 5.8466 7.3603 8.3119 9.2536

S-C-S-C 2.0693 7.7486 20.486 49.045 62.622 67.338
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Table 5: Dimensionless uniaxial buckling load (along x direction) Ncr = N̄cr
b2

E2 h3 , for simply supported cross-ply square

plates, stacking sequence [0◦/90◦/90◦/0◦] and E1/E2 = open, G12/E2 = G13/E2 = 0.6, G23/E2 = 0.5, ν12 = ν13 = 0.25

and b/h = 10.

Uniaxial Compression (UA-C)

BCs

E1/E2 L/b S-S-S-S S-S-S-F S-S-S-C S-F-S-F S-C-S-F S-C-S-C

3 0.5 18.183 12.767 19.233 12.776 12.794 21.724

1 5.3933 4.3495 7.1169 4.1087 4.3651 10.273

2 2.8193 0.9613 4.8157 1.4112 1.6563 8.1889

3 2.4587 0.4922 4.4819 0.8937 1.2931 7.8872

10 0.5 28.622 18.999 29.988 19.095 19.232 28.622

1 9.9406 6.9540 14.133 6.0871 7.0981 20.515

2 6.9366 1.3132 11.576 2.0381 3.3398 18.337

3 6.5724 0.7331 11.259 1.4060 2.9245 18.074

20 0.5 37.688 25.547 38.880 25.650 25.796 41.504

1 15.298 9.8649 20.977 8.1129 10.416 28.670

2 11.650 1.7286 17.929 2.6008 5.4332 26.143

3 11.270 0.9827 17.609 1.8724 4.9325 25.888

40 0.5 47.531 34.730 47.734 34.765 34.798 48.892

1 23.340 14.723 29.414 11.386 15.987 37.045

2 18.414 2.4441 25.291 3.4376 9.0464 33.705

3 17.982 1.3694 24.928 2.5440 8.3704 33.416
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Figure 1: Kinematic descriptions of FSDT and HSDT for a multilayered plates.
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Figure 2: Direct assembly of dynamic stiffness elements.
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Figure 4: Laminated composite plate under in-plane loadings.
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Figure 5: 1st stiffened composite plate configuration.

Figure 6: 2nd stiffened composite plate configuration.
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(a) S-S-S-S (b) S-S-S-F

(c) S-S-S-C (d) S-F-S-F

(e) S-C-S-F (f) S-C-S-C

Figure 7: Dimensionless uniaxial buckling loads Ncr = N̄cr
b2

E2 h3 along the x direction varying the length-to-thickness

ratio for simple and stiffened cross-ply plates, stacking sequence [0◦/90◦/0◦/90◦/0◦], step ratio t2/t1 = 2 and E1/E2 = 5,

G12/E2 = G13/E2 = 0.6, G23/E2 = 0.5, ν12 = ν13 = 0.25.
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(a) Ncr = 17.025, S-S-S-S
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(c) Ncr = 19.086, S-S-S-C
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(d) Ncr = 4.3424, S-F-S-F
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(e) Ncr = 6.7430, S-C-S-F
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Figure 8: First buckling modes of simple cross-ply plates, lamination scheme [0◦/90◦/0◦/90◦/0◦] under uniaxial compression

along the y direction, length-to-thickness ratio b/h=10 and orthotropic ratio E1/E2=25.
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(a) Ncr = 27.767, S-S-S-S
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(b) Ncr = 8.9501, S-S-S-F
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(c) Ncr = 31.086, S-S-S-C
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(d) Ncr = 8.7727, S-F-S-F
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(e) Ncr = 10.769, S-C-S-F
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(f) Ncr = 33.907, S-C-S-C

Figure 9: First buckling modes for the first stiffened cross-ply plate configurations Fig. 5, lamination scheme

[0◦/90◦/0◦/90◦/0◦] under uniaxial compression along the y direction, length-to-thickness ratio b/h=10 and orthotropic

ratio E1/E2=25.
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(b) Ncr = 9.3288, S-S-S-F
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(c) Ncr = 29.371, S-S-S-C
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(d) Ncr = 8.9209, S-F-S-F
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(e) Ncr = 11.373, S-C-S-F
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(f) Ncr = 32.012, S-C-S-C

Figure 10: First buckling modes for the second stiffened cross-ply plate configurations Fig. 6, lamination scheme under

[0◦/90◦/0◦/90◦/0◦] uniaxial compression along the y direction, length-to-thickness ratio b/h=10 and orthotropic ratio

E1/E2=25.
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Appendix A. Laminate Geometric and Constitutive Equations

The geometric relation for a lamina in the local or lamina reference system can be written as:






εxx

εyy

γxy

γyz

γxz






=







Dx 0 0

0 Dy 0

Dy Dx 0

0 Dz Dy

Dz 0 Dx







[

u

v

w

]

(A.1)

and in terms of the functional degrees of freedom:






εxx

εyy

γxy

γyz

γxz






=









Dx 0

(

c1 z3
)

Dxx

(

z + c1 z3
)

Dx 0

0 Dy

(

c1 z3
)

Dyy 0

(

z + c1 z3
)

Dy

Dy Dx

(

c1 z3 Dxy + c1 z3 Dyx

) (

z + c1 z3
)

Dy

(

z + c1 z3
)

Dx

0 0

(

1 + 3 c1 z2
)

Dy 0

(

1 + 3 c1 z2
)

0 0

(

1 + 3 c1 z2
)

Dx

(

1 + 3 c1 z2
)

0















u0

v0

w0

φx

φy






(A.2)

where Dx and Dy are the derivatives in x and y respectively and c1 = − 4
3 h2 . The constitutive equations

in the lamina reference system can be written, in terms of reduced stiffness coefficients, as:






σ1

σ2

τ12

τ23

τ13






=







C̃11 C̃12 0 0 0

C̃12 C̃22 0 0 0

0 0 C̃66 0 0

0 0 0 C̃44 0

0 0 0 0 C̃55













ε1

ε2

γ12

γ23

γ13






(A.3)

where the C̃ij are expressed in terms of stiffness coefficients Cij , as:

C̃11 = C11 −
C2

13

C33

=
E1

1− ν12ν21
, C̃12 = C12 −

C13 C23

C33

=
ν12E2

1− ν12ν21
, C̃22 = C22 −

C2
23

C33

=
E2

1− ν12ν21

C̃44 = C44 = G23, C̃55 = C55 = G13 C̃66 = C66 = G12

(A.4)

where E1 is the elastic modulus in the fibre direction, E2 the elastic modulus in perpendicular to the

fibre, ν12 and ν21 = ν12 E2/E1 the Poisson’s ratios, G12 = G13 and G23 the shear modulus of each single

orthotropic lamina. If the lamina is placed at an angle θ in the laminate or global reference system, the

equation need to be transformed as follows:

C11 =C̃11C4 + 2(C̃12 + 2C̃66)S2C2 + C̃22S4

C12 =(C̃11 + C̃22 − 4C̃66)S2C2 + C̃12(S4 + C4)

C16 =(C̃11 − C̃12 − 2C̃66)SC3 + (C̃12 − C̃22 + 2C̃66)S3

C22 =C̃11S4 + 2(C̃12 + 2C̃66)S2C2 + C̃22C4

C26 =(C̃11 − C̃12 − 2C̃66)S3C + (C̃12 − C̃22 + 2C̃66)SC3

C66 =(C̃11 + C̃22 − 2C̃12 − 2C̃66)S2C2 + C̃66(S4 + C4)

C44 =C̃44C2 + C̃55S2

C55 =C̃44S2 + C̃55C2

C45 =(C̃55 − C̃44)CS

(A.5)

where C = cos (θ) and S = sin (θ). This leads to the constitutive equation for the k-th lamina in the

laminate or global reference system:
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σyy
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C11 C12 C16 0 0

C12 C22 C26 0 0

C16 C26 C66 0 0

0 0 0 C44 C45
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(A.6)

that in compact form can be written for each k-th lamina as:

σk = C
k
εk (A.7)
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Appendix B. Polynomial Coefficients

The polynomial coefficients are following defined:

a1 = c21 (F
2
11 −D11 H11)(D66 + c1 (2F66 + c1 H66))

a2 = −c21
(

A44 + α2D22

)

F 2
11 + 2α2c21D12F11F12 − α2c21D11F

2
12 + 2α2c31F11F

2
12 − 2α2c31F

2
11F22 + 4α2c21D12

F11F66 − 4α2c21D11F12F66 − 4α2c21D11F
2
66 − 8α2c31F11F

2
66 +A44c

2
1D11H11 − α2c21D

2
12H11 + α2c21D11D22H11

− 2α2c21D12D66H11 − 2α2c31D12F12H11 − 4α2c31D66F12H11 − α2c41F
2
12H11 + 2α2c31D11F22H11 − 4α2c41F12F66

H11 − 4α2c41F
2
66H11 + 2α2c21D11D66H12 + 2α2c31D12F11H12 + 4α2c31D66F11H12 − 2α2c31D11F12H12 + 2α2c41F11

F12H12 + 4α2c41F11F66H12 − α2c41D11H
2
12 − α2c41F

2
11H22 + α2c41D11H11H22 + 4α2c21D11D66H66 + 4α2c31D12F11

H66 + 8α2c31D66F11H66 − 4α2c31D11F12H66 + 2α2c41D12H11H66 + 4α2c41D66H11H66 − 2α2c41D11H12H66 + A55D11

(D66 + c1(2F66 + c1H66)) + c22
(

D11D66F55 + 2c1D11F55F66 + c21
(

−F 2
11F44 +D11F44H11 +D11F55H66

))

+ 2c2
(

−c21D44F
2
11 +D11

(

c21D44H11 +D55

(

D66 + 2c1F66 + c21H66

)))

+ (D11 + c1(2F11 + c1H11))(D66 + c1(2F66 + c1H66))λNx0
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2
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2
2F44λNx0 + 2c32D55F44λNx0 + α2

c22D66F44λNx0 + α2c22D22F55λNx0 + 2c32D44F55λNx0 + 2α2c1c
2
2F22F55λNx0 + c42F44F55λNx0 + 2α4c1

D22F66λNx0 + 4α2c1c2D44F66λNx0 + 4α4c21F22F66λNx0 + 2α2c1c
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− 2D12(D66 + c1(F12 − c1H66))
)

+A55λNx0 + c2(2D55 + c2
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