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Abstract

Modern design solutions in cable-stayed bridges give a significant importance
to the seismic response in the transverse direction. This work is focused on
the dynamic interaction between the deck and the towers, exploring the key
role of different vibration modes. An extensive parametric analysis is pro-
posed to address the influence of the main span length, the tower geometry,
the cable-system arrangement, the width and height of the deck and the soil
conditions. It is demonstrated that the vibration modes that govern the seis-
mic response of cable-stayed bridges in the transverse direction involve the
interaction between the tower and the deck, but the order of these modes and
the parts of the deck that are affected change with the main span length. It
is also observed that the interaction between the deck and the towers during
the earthquake is maximised if their isolated vibration frequencies are close
to each other, leading to a significantly large seismic demand. Analytical
expressions are proposed to obtain the critical frequencies of the towers for
which these interactions arise, and recommendations are given to define the
tower geometry in order to avoid such problematic scenarios.
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1. Introduction

Cable-stayed bridges represent optimum solutions for an ever expanding
range of spans and usually constitute the backbones of infrastructure net-
works. Their design is governed by the response to dynamic actions such
as wind or earthquakes due to their characteristic flexibility and low damp-
ing [1]. Furthermore, complex modal couplings arise from the interaction
between the towers, the deck and the cable-system and depend upon their
relative stiffness and mass, as well as the frequency content of the excitation
[2, 3]. It is essential to have a clear understanding on these effects in or-
der to ensure the adequate response of the structure under different loading
scenarios.

The vibration of the cables can transfer energy between the deck and the
towers during the earthquake [4] but, depending on the support conditions,
the direct interaction between both members is potentially more significant.
The connection of the deck to the abutments, intermediate piers and (es-
pecially) to the towers affects the response of the whole structure [5]. A
considerable number of works address the influence of the deck-tower con-
nection from the point of view of the static [6, 7] and the seismic response
[8, 9, 10, 11, 12]. The current trend in the design of cable-stayed bridges in
seismic areas is to release the deck from the towers as much as possible in
order to reduce the seismic demand in the towers, which are key elements
for the integrity of the structure [13]. However, the deck needs to be fixed
to the towers in the transverse direction in order to control its deformability
under wind actions (e.g. Rion-Antirion bridge, Greece). Recent studies on
cable-stayed bridges with this type of connection have found that the deck-
tower reaction significantly increases the transverse shear force and bending
moment in the towers, making the transverse component of the earthquake
more demanding than the longitudinal (along-deck) and vertical directions
[14, 15]. Indeed, the damage in the tower of the Chi-Lu bridge tower dur-
ing the Chi-Chi earthquake (Taiwan 1999) can be directly attributed to the
transverse response, and it is arguably the most severe seismic damage ever
reported in a cable-stayed bridge [16]. Unfortunately, studies focused on the
transverse seismic response of cable-stayed bridges are scarce.
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The magnitude of the transverse deck-tower reaction is determined by the
interaction between several bridge components with very different dynamic
properties, i.e. the deck, the towers and the cable-system. Different vibration
modes involving the deformation of one or more of these three components
play an essential role in the seismic response. Cable-stayed bridges below 400
m main span length present important modal couplings between the deck
and the towers that affect the fundamental vibration modes [3]. However, in
long-span bridges the first vibration mode involves exclussively the transverse
flexure of the deck, with little or no interaction with the towers [17]. The
large flexibility, important modal couplings and the typical broad frequency
content of ground motions make the seismic response of cable-stayed bridges
prone to strong high-order mode contributions (up to 25Hz frequency), as
observed in [18]. Code-based seismic analyses typically include as many
vibration modes as needed to activate a certain percentage of the mass of
the bridge, usually 90%. As a result, the relative contribution of different
modes is not clearly considered in the design, which is based on iterative
techniques that rely upon the experience of the designer [7]. Different authors
proposed design techniques to define the cable prestressing forces in order
to meet several requirements [19, 20]. Few works include dynamic actions
in the design procedure. Ferreira and Simoes [21] proposed a formulation
to design a two-dimensional cable-stayed bridge with active control devices
under longitudinal ground motion, without considering the influence of the
tower shape. Calvi et al. [22] presented a conceptual design method that
accounts for the seismic actions as well as the deck and tower configurations
in the longitudinal and transverse directions, recommending further studies
on the seismic response of the towers with transverse struts. Hayashikawa et
al. [23] studied the seismic behaviour of steel towers in which the effect of
the cable-system was simplified with equivalent springs and the interaction
with the deck was ignored. However, the importance of this effect has been
recently observed by [3, 14, 13].

To the best of the author’s knowledge, there are no previous papers fo-
cused on the transverse seismic response of cable-stayed bridges account-
ing for the contribution of different vibration modes and the influence of
the tower shape, among other structural features. This is the scope of the
present work, which presents an extensive numerical analysis in a wide range
of main span lengths, tower shapes, cable-arrangements, deck widths and
distances between the deck and the foundation level. Altogether, a total
of 1050 three-dimensional Finite Element (FE) models are studied. After
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presenting the proposed structures, the vibration modes of the individual
towers and the complete bridges are studied. Two different analysis methods
and modelling techniques are then compared. The Modal Response Spec-
trum Analysis (MRSA) represents the optimum balance between calculation
speed and accuracy (for the purpose of the study), and it is adopted. As
the main span length increases, it is observed that the transverse response
is mainly dominated by higher-order modes that involve different parts of
the deck. The tower geometry, deck width and height significantly influence
the contribution of the governing modes, which allows for optimum designs
aiming to reduce the seismic response. This work also demonstrates that
the seismic response and the interaction between the deck and the tower in
the transverse direction is maximised when their frequencies (calculated sep-
arately) are close to each other, proposing simple analytical expressions to
predict these problematic scenarios.

2. Description of the proposed bridges

The bridges considered in this work have a conventional symmetric con-
figuration with a composite (steel-concrete) girder and two concrete towers.
Figure 1 presents the different tower shapes proposed, the elevation and plan
views, and the keywords employed to refer to the results in the following sec-
tions. The cross-sections of the tower, girder and cable-system are defined
in terms of the main span length (LP ), which also configures the side spans
(LS) and the tower height above the deck (H). A complete description of the
bridge sections and dimensions is available in [3]. Two different semi-harp
cable arrangements have been defined: two Lateral Cable Planes (LCP) or a
single Central Cable Plane (CCP). The deck has a composite (steel-concrete)
cross-section that is constant along the length of the bridge and depends on
the cable-arrangement: (1) LCP models present an open deck cross-section
with two edge I-shape steel girders and a 25 cm thick concrete slab spanning
transversely, (2) the deck in CCP bridges has a U-shape steel girder that
forms with the top slab a closed-box section and provides with additional
torsional resistance. The support conditions of the deck at the abutments
and the towers are depicted in Figure 1. The intermediate piers only con-
strain the vertical movement of the deck. The deck is rigidly connected to the
towers in the transverse direction (Y ), whilst it is released in the longitudinal
(X) and vertical (Z) directions.

The parametric study is based upon the main span length (LP ), which
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completely defines all the elements of the bridge, with the exception of the
width of the deck (B) and the distance between the foundation of the tower
and the deck level (Hi, Figure 1). The main span is modified from 200 to 800
m, each 10 m, considering four different deck widths: B = 20, 25, 30, 35 m
and a conventional value for the deck level (Hi = H/2). In addition, two more
values of Hi are considered for the whole span range: Hi = H/1.5 and Hi =
H/2.5, setting the deck width to B = 25 m. Altogether, 1050 bridge models
are implemented in a general-purpose finite element analysis package [24].
The elastic properties in the studied bridges are defined from the relevant
Eurocodes [25, 26]. No material nonlinearities have been considered.

A number of initial studies were conducted to ensure the accuracy and
suitability of the modelling assumptions:

• The effect of the foundations at the towers in the H-LCP bridges was
initially represented by means of springs, selecting their flexibility based
on the dimensions of the foundation and the soil properties (both rock
and soft soil conditions were considered). It was observed that the vi-
bration modes below 3 Hz, which govern the transverse deck-tower reac-
tion as discussed later, do not involve the movement of the bridge sup-
ports. Consequently, the supports of the towers, piers and abutments
are completely fixed in this work in order to simplify the parametrisa-
tion of the model.

• The influence of the cable-structure interaction was explored in cable-
stayed bridges with different main spans and central cable layouts (Y-
CCP). It was observed that by including multiple elements per cable
(MECS) the transverse deck-tower reaction is decreased by 0, 30 and
25% in bridges with 200, 400 and 600 m main span, respectively, in
comparison with the homologue models with one element per cable
(OECS), in agreement with [27]. The authors propose OECS for this
study in order to facilitate the parametrisation and allow for the anal-
ysis of a large number of models. OECS is considered a valid approach
in this study because the scope is not to achieve the best accuracy
in the deck-tower reaction, but to explore the interaction between the
deck and the towers in a large number of models. This interaction is
not deemed to be affected by the local vibration of the cables due to
their reduced weight.
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3. Modal analysis

The modal analysis of the tower models (in which the deck and the cable-
system are removed) is presented in Figure 2. The fundamental vibration
modes are strongly influenced by the connections between the lateral legs.

The towers with inclined lateral legs connected exclusively above the deck
(i.e. the inverted ‘Y’- and ‘A’-shaped geometries in Figure 1) present vibra-
tion frequencies (ω) that are up to 70% larger than in the rest of the towers.
This is because the transverse movement of the connection point above the
deck is constrained in the transverse direction due to the inclination of the
legs, which is influenced in turn by the ratio between the width of the deck
and the height of the tower (B/H). Consequently, inverted ‘Y’- and ‘A’-
shaped towers will be referred to as ‘stiff towers’. Figure 2 shows that the
transverse displacement of the fundamental mode (φY

1 ) at the connection be-
tween legs in the inverted ‘Y’-shaped tower is almost null in the short-span
bridge (φY

1 ≈ 0 for Y-LCP with LP = 300 m) because of this geometric con-
straint. By increasing the main span, the tower needs to be higher (its height
above the deck is given by H = LP/4.8) but the width of the deck remains
constant since it mainly depends on the number of road lanes. Consequently,
the transverse inclination of the legs (angle α in Figure 1) increases with the
main span length and this effect is found to be stronger than the increment
of the tower cross-sections. This results in larger modal displacements at the
connection between the legs above the deck for longer spans (φY

1 ≈ 0.2 for
for Y-LCP with LP = 800 m). An analogous effect is observed by reducing
the width of the deck. Interestingly, the towers corresponding to bridges
above 400 m span show zero modal displacement at the connection between
the legs in the second-order transverse vibration mode (φY

2 ≈ 0), and not
in the fundamental one, which has an impact on the seismic response of
medium-to-long span bridges as it will be discussed later.

The towers with ‘lower diamond’ configuration (D) present inclined legs
that are connected above and below the deck. These are referred to as ‘flexi-
ble towers’ because the transverse restraint of the above-deck leg connection,
that was apparent in the stiff towers, disappears in the towers with lower
diamond due to the rotation at the connection below the deck (φY

1 ≈ 0.5 for
YD towers with LP = 300 m in Figure 2). This effect will have a significant
influence on the seismic response as well. Analogously, the rotation capacity
of the lower diamond is influenced by the inclination of the lower legs, being
proportional to the geometrical ratio B/Hd (where Hd is the distance be-
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tween the deck and the top of the vertical pier, as it is represented in Figure
1). ‘H’-shaped towers behave as Vierendeel beams in the transverse direction
and are also classified as ‘flexible towers’.
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Figure 2: Fundamental mode shape and angular frequencies (ωt,1 in [rad/s]) of different
tower models. The contour plot represents the normalised modal displacement in the
transverse direction, φY

1 . LCP tower models. Hi = H/2, B = 25 m.

The complete bridge models (including the towers, the cable-system and
the deck) have been also considered in the modal analysis. Cable-stayed
bridges show a characteristic coupling between the transverse flexure and
the torsion of the deck [2, 3]. An additional set of boundary conditions is
included in order to allow only for transverse modes. To this end, the longi-
tudinal displacement (uX) of the towers and the vertical displacement (uZ)
of the deck are constrained. It is observed that the transverse vibration fre-
quencies are not significantly influenced by these boundary conditions. Fig-
ure 3 presents the three governing transverse vibration modes in one of the
proposed models (H-LCP): (i) mode M1 involves the first-order symmetric
flexural response of the main span (LP ), (ii) mode S1 presents a first-order
symmetric wave affecting the side spans (LS), and (iii) mode M2 shows a
second-order symmetric wave in the main span. The transverse vibration
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frequencies associated with these modes strongly decrease by increasing the
main span length (LP ). Scaling LP by a factor of 2.5 results in the trans-
verse vibration frequencies that are 4.4 and 3.4 times smaller in the M1 and
S1 modes, respectively. To explain this result, the transverse response of
the deck can be described by means of a one-span beam with appropriate
boundary conditions that represent the effect of the adjacent spans and the
towers. In these circumstances the transverse vibration frequency is given
by:

ωd,n = A

√
EId
mdL4

(1)

in which n is the order of the vibration mode; L is the length of the deck
involved in the corresponding mode; E is the Young’s modulus of the material
in the deck; Id and md are the transverse second moment of area and the
mass per unit length of the deck, respectively; A is a constant that depends
on the boundary conditions and n.

By increasing the main span length (LP ), Id and md remain almost con-
stant since the width of the deck does not depend on LP and its depth is
almost insensitive to this parameter (especially in LCP arrangements) [28].
Eq. (1) shows that a linear increment of LP would reduce ωd,n quadratically
if we assume that A remains constant, i.e. that the restraint in the deck
from the towers and adjacent spans does not change with LP . However, the
boundary conditions assumed in Eq. (1) are indeed affected by LP . Figure 3
shows that the transverse flexure of the towers interacts with the deck only
for specific span lengths and vibration modes. This effect is related to the
relative flexibility between the deck and the towers.

In the vibration mode M1 the deck of the short-span bridge clearly in-
teracts with the towers in the transverse direction (LP = 300 m, cell A1 in
Figure 3). This is because the vibration frequencies of the first-order vibra-
tion modes of the deck and the towers are similar, and their coupling will
result in significantly large seismic effects (Section 7). The flexibility of the
deck grows much faster with LP than the flexibility of the towers. This is
because the cross-sections of the tower legs need to be increased to resist
the weight of the deck in longer bridges. Consequently, the deck and the
towers do not interact in the fundamental mode (M1) of medium- and long-
span cable-stayed bridges. In this span range, M1 presents no transverse
deformation of the towers (i.e. no deck-tower interaction), and the vibration
frequency is so low (below 1 rad/s for LP = 740 m) that this mode hardly
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from B3 and C3 to improve clarity. M2 is not included for LP = 300 m as it has not been
clearly identified. H-LCP model, B = 25 m, Hi = H/2.

contributes to the seismic demand in terms of forces. Nonetheless, the mode
S1 involves the deformation of a smaller part of the deck (i.e. the side spans,
LS = LP/2.5). Therefore, its vibration frequency is higher than that in M1,
and it is eventually coupled with the second-order vibration mode of the
towers. The mode S1 shows interaction between the deck and the tower in
bridges with medium span lengths (e.g. LP = 460 m, cell B2) and it will
result dominant in the transverse seismic response of structures in this span
range. In very long-span cable-stayed bridges, typically above 700 m main
span lengths, the transverse flexibility of the deck is so large that only the
second-order flexure of the deck in the main span is able to interact with the
second-order mode of the towers (mode M2, model with LP = 740 m, cell
C3 in Figure 3). The main span lengths for which these three modes involve
the strongest deck-tower interaction are referred to as ‘critical’ (LPC) and
are highlighted in Figure 3.
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4. Seismic analysis framework and proposed ground motions

The seismic action is defined by the EN1998-1 [29] horizontal acceleration
spectra in rock (TA) and soft (TD) soil conditions, as shown in Figure 4. The
Peak Ground Acceleration is 0.5 g and the damping ratio is 4% in order to
consider the reduced damping of cable-stayed bridges. Type 1 spectrum
is considered, with large surface-wave magnitude (Ms > 5.5). The same
seismic action is applied at different supports of the bridge, thus ignoring
spatial variability effects.

I1

I2

D = 2 s

E = 6 s

1 (LP=300 m)= 1.7 sY

1 (LP=460 m)
= 3.1 s

Y

A1

A2

Figure 4: EN1998-1 acceleration spectra used in MRSA, and spectra of the artificial
accelerograms in MRHA. I1 and I2 are related to the corner periods TD and TE in
[29]. A1 and A2 refer to the fundamental periods in the H-LCP models (B = 25 m and
Hi = H/2) for two different main spans.

It is important to select carefully the seismic analysis methodology due
to the large number of models considered in this work. The Modal Response
History Analysis (MRHA) is the most accurate method to study the linear
elastic seismic response of cable-stayed bridges [30]. However, it requires the
computation and post-processing of the time-history response of each model
(1050 in total), repeating the analysis for a representative set of ground
motions. Since this study is focused on the peak seismic response, Modal
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Response Spectrum Analysis (MRSA) represents an ideal solution to reduce
the computational time to a reasonable level. The results of MRSA are
validated in this section by considering MRHA as the reference.

In order to study the transverse interaction between the deck and the
towers, the transverse vibration modes need to be isolated from the rest
(in particular the numerous modes with torsional coupling in the deck and
negligible contribution). To this end, the longitudinal movement of the towers
and the vertical movement of the deck are constrained (the resulting models
are referred to as ‘transverse models’). Figure 5 compares the peak deck-
tower reaction (F Y ) resulting from MRSA applied to the transverse models
and MRHA applied to the original models (i.e. without the added constraints
to the tower and deck movements). A total of 12 synthetic accelerograms
are applied synchronously at the bridge supports in the transverse direction
in order to obtain the arithmetic mean (µ) and standard deviation (s) of
the peak deck-tower connection in MRHA. Figure 4 shows how the records
match the target acceleration spectra (for soft soil conditions) in the range of
important vibration frequencies for the structure [0.15,35] Hz. The method
to generate the signals has been discussed elsewhere [15, 30]. The total
deck-tower reaction (F Y

total) in MRHA includes the contribution of all the
vibration modes below 35 Hz, whereas the corresponding result in MRSA
combines the first ten transverse vibration modes (which are typically enough
to exceed the upper frequency limit of 35 Hz). An initial study showed that
the contribution of vibration modes beyond the 10-th transverse mode is
negligible in MRSA.

Figure 5(a) includes the contribution of the governing vibration modes
(M1, S1 or M2, considered separately) to the total deck-tower reaction in
MRSA. In addition, this figure shows that the contribution of mode M1 in-
creases rapidly with LP and it becomes maximum at LPC,M1 = 300 m (Point
A1). At this point the interaction between the tower and the main span of
the deck is maximised. Figures 3 and 4 include the modal shape and the spec-
tral acceleration associated with this case (Point A1), respectively. Points I1
and I2 in Figure 5(a) mark the spans beyond which the contribution of the
fundamental mode to the transverse response decreases faster by increasing
LP . This is directly connected to the shape of the elastic spectrum included
in Figure 4, which shows that I1 and I2 correspond to the corner periods
proposed in EN1998-1 [29].

The total (mean) deck-tower reaction obtained in MRHA is in good agree-
ment with the result obtained in MRSA, as it is shown in Fig. 5(b). The
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main spans for which the maximum deck-tower reaction occurs are also simi-
lar in both types of analysis. However, several vibration modes contribute to
the MRHA results in Fig. 5(b). In order to investigate which is the dominant
mode for LP = 300 m (point A), the corresponding time-history signal of the
deck-tower reaction obtained for one of the accelerograms using MRHA is
expressed in the frequency-domain by means of the Fast Fourier Transform
in Figure 6. The shapes of the most important modes arising from this study
are also presented. Mode M1 is clearly responsible for the increment of F Y

total

in MRHA for the short-span bridge (LP = 300 m). Analogously, the MRSA
and MRHA results in Figures 5 and 6 identify the vibration modes S1 and
M2 as dominant for bridges with medium (LPC,S1 = 420 − 460 m, point B)
and long spans (LPC,M2 = 720 − 740 m, point C), respectively. The higher
the order of the governing vibration mode, the stronger the coupling between
the flexural and torsional responses in the deck in MRHA. This, in addition
to the record-to-record variability in the acceleration spectra of the set of 12
ground motions (Figure 4), hinders the identification of the contribution of
mode M2 to the mean MRHA results in Figure 5(b). Figure 6 also shows
that the most important vibration frequencies for the deck-tower reaction
fall between 0.2 and 1.8 Hz (1.3 and 11.3 rad/s), regardless of the main span
length. This is also observed in Figure 3 for the frequencies of the vibration
modes with maximum deck-tower interaction at the critical main spans. Be-
yond 3 Hz (18.8 rad/s) the vibration modes have no significant contribution
to the deck-tower reaction.

The MRHA and MRSA results have been compared in cable-stayed bridges
with other tower shapes in the entire span range. Figure 7 presents these
results in CCP models (other cases are not included to improve the clarity
in the figure). The difference between the results in both analyses is small
(typically below 10%). MRSA including only transverse modes will be em-
ployed hereafter because the purpose of this study is not to calculate the
magnitude of the deck-tower reaction with great accuracy. Instead, the goal
is to explore how this reaction is affected by the interaction between the deck
and the tower in different vibration modes, and this can be better studied
with MRSA.

5. Multi-modal response

Figure 5(a) shows that the contribution of different vibration modes to
the total deck-tower reaction is strongly influenced by the main span length.

13



Total force:

L P
C
,M

1

3
0
0
 m

A1

B1

M1 S1 

M2 L P
C
,S

1

4
6
0
 m

B2

A2

C2
L P

C
,M

2

7
4
0
 m

B3

C3

A3

I1

I2

(a)

C

L P
C
,M

2

7
4
0
 m

B

L P
C
,S

1

4
6
0
 m

record
Record #05

Record #10

A

L P
C
,M

1

3
0
0
 m

(b)

Figure 5: Peak deck-tower seismic reaction obtained with: (a) MRSA (only transverse
modes included) with relevant mode-shapes presented in Figure 3; (b) MRHA, the gov-
erning mode-shapes for two particular records are included in Figure 6. H-LCP model,
soil TD, Hi = H/2, B = 25 m.

LS LP LS=300m

LS LP=420m LSRange of important
frequencies for FY

Mode M1

Mode M1

Mode S1

Mode M2
Mode S1

LS LP=720m LS

Mode M1

Figure 6: Frequency content of the deck-tower reaction time-history record. Labels A-C
refer to Figure 5(b). The plan view of the most relevant vibration modes is included,
removing the cable-system for illustration purposes.

14



YD-CCP
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Figure 7: Peak deck-tower seismic reaction obtained with MRHA and MRSA (with only
transverse modes included) in CCP models, soil TD, Hi = H/2, B = 25 m.

This is closely related to the interaction between the tower and the deck that
was described in the modal analysis of Section 3. The transverse seismic
response of cable-stayed bridges is dominated by vibration modes whose order
increases with the span. Modes M1, S1 and M2 are dominant for moderate,
medium and long spans, respectively. The total peak force exerted by the
deck in the towers during the earthquake (F Y

total) significantly increases when
the contribution of one of these modes is maximum, which occurs for main
spans close to the critical ones: LPC,k, with k =M1, S1 and M2. In these
cases F Y

total is almost equal to the contribution of the corresponding governing
mode, F Y

k . This is observed in Figure 5(a), in which the maximum modal
contribution is related to the corresponding modal shapes depicted in Figure
3. By increasing the main span length beyond the critical value LPC,k, the
weight of the k-th mode (F Y

k ) on the total response is strongly reduced due
to the difference in the tower and the deck’s flexibility associated with that
mode. However, the next governing mode gains importance. In the border
regions, in which two governing modes have similar participation, the seismic
response is reduced.
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The relative contribution of transverse modes different from M1, S1 and
M2 has been also studied. Only symmetric modes have a significant influence
on the transverse seismic response. This can be explained from the modal
participation factor:

Γn =
φT

nMι

Mn

(2)

where Mn = φT
nMφn is the modal mass; φ is the transverse mode shape; M

is the mass matrix of the structure; ι is the influence matrix that links the
degrees of freedom of the structure with the direction of the earthquake (in
this case only transverse).

Due to the symmetry of the proposed structures, the shape of the trans-
verse vibration modes (φ) is either symmetric or anti-symmetric with respect
to the span centre (point CS in Figure 1). If the n-th mode is anti-symmetric,
Γn = 0 because the modal displacement at the i-th node of the bridge is
φn,i(x) = −φn,i(−x) (x being the longitudinal distance from the span centre,
positive to the right) and the diagonal terms of the mass matrix are always
positive. Consequently, the contribution of anti-symmetric modes to the seis-
mic response is null. This is in agreement with Zerva [31], who observed that
synchronous ground motions with fully correlated waves (such as those con-
sidered in this study) only excite symmetric modes in 2- and 3-span beam
bridges.

6. Influence of structural and ground motion features

6.1. Influence of the ground motion

The peak deck-tower reaction is strongly influenced by the shape of the
design spectrum, defined in turn by the soil properties. F Y

total is scaled up by
a factor of 2 to 3 if the bridge is located on soft soil (TD), in comparison with
the results for foundations on rock (TA). This increment in F Y

total is directly
proportional to the ratio between the TD and TA spectral accelerations in
the range of low frequencies that dominates the response of cable-stayed
bridges (from 0.2 to 1.8 Hz for the deck-tower reaction, according to Figure
6). However, it has been observed that the relative contribution of different
modes is completely insensitive to the foundation soil. Only the seismic
action defined from soft soil conditions (TD) is considered hereafter.

16



6.2. Influence of the tower shape

Figures 8 and 9 present the deck-tower reaction for different tower shapes
in LCP and CCP arrangements, respectively. The results are completed with
Figure 5(a) for the H-LCP bridge.

M1
domain

S1 domain

M
2

do
m

ai
n

Y-LCP

L P
C
,M

1 L P
C
,S

1

3
4
5
 m

7
6
0
 m

2
8
0
 m 5

6
0
 m

TY
6 =1.2 s 

M1 

S1
M2

T1
Increasing
mode 
order

(a)

M1 domain S1
domain

M2
domain

YD-LCP

L P
C
,M

1

L P
C
,S

1

4
3
0
 m

6
3
5
 m

2
8
0
 m

5
2
0
 m

TY
6 = 0.9 s

TY
7 = 1.4 s

TY
1 = 1.7 s

(b)

M1
domain

T1 / S1
domain

A-LCP

L P
C
,M

1

L P
C
,S

1

4
4
0
 m

3
0
0
 m

7
0
0
 m

TY
6 = 1.0 s TY

3 = 2.0 s

(c)

M1
domain

M2
domain

AD-LCP

TY7 = 0.8 s

TY1 = 1.9 s

L P
C
,M

1

L P
C
,S

1 L P
C
,M

2

4
6
0
 m

3
0
0
 m

3
4
0
 m 6

0
0
 m

(d)

Figure 8: Modal contribution to the peak deck-tower seismic reaction in terms of the main
span for LCP bridges: (a) Y-LCP, (b) YD-LCP, (c) A-LCP, (d) AD-LCP. Hi = H/2,
B = 25 m, soil TD. The shape of relevant modes is included (cable-system removed for
illustration purposes) along with their vibration periods TY

n .

The results show that it is possible to extend the range of spans in which
the fundamental mode M1 is dominant (referred to as M1 domain), and to
reduce in turn the domain of S1, by increasing the flexibility of the tower
through the definition of its transverse geometry. This becomes apparent by
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Figure 9: Modal contribution to the peak deck-tower seismic reaction in terms of the main
span for CCP bridges: (a) Y-CCP, (b) YD-CCP. Hi = H/2, B = 25 m, soil TD. The
shape of relevant modes is included along with their vibration periods TY

n .

comparing the M1 domain in the stiff and flexible towers in Figures 8(a) and
8(b), respectively. Figure 8(b) shows that the M1 domain for the YD-LCP
model includes main span lengths up to 430 m, whereas this limit is reduced
to 345 m in the homologue towers without lower diamond (Y-LCP, Figure
8(a)). On the contrary, the width of the S1 domain in bridges with stiff
towers almost doubles the one observed with flexible towers (from 240 to 410
m in the figures included, on average). But more importantly, the maximum
contribution of S1 to the deck-tower reaction significantly increases in bridges
with ‘Y’-shaped towers. This is remarkable in the structures with main spans
ranging between 500 and 600 m: F Y

total is almost two times larger in Y-LCP
and Y-CCP models than in bridges with other towers, as it is observed in
Figures 8(a) and 9(a). In light of these results, inverted ‘Y’-shaped towers
would not be recommended for cable-stayed bridges with medium-to-long
spans located in seismic regions.

A-LCP bridges present reduced deck-tower reactions in comparison with
the homologue Y-LCP models. This is clear when comparing Figures 8(a)
and 8(c) throughout the complete span range, but particularly beyond the M1
domain, reaching a maximum 60% reduction in F Y

total for LP = 500 m. Figure
8(c) shows that the contribution of several modes in A-LCP bridges differs
from the rest of the cases. This is because of the participation of vibration
modes that mainly involve the transverse response of the towers (referred to
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as T1). Mode T1 has only a minor contribution to the total seismic response
in bridges with different tower shapes: it is typically around 5% of the total
deck-tower reaction in bridges with inverted ‘Y’-shaped towers, and 20%
in other models. However, in A-LCP bridges with medium-to-long spans
(beyond 440 m) this mode is dominant as it is coupled with the transverse
flexure of the side and main spans, being referred to as T1/S1 mode in Figure
8(c). Mode S1 can also be identified in A-LCP models, but its participation
is reduced and it is rarely dominant for the span range studied. This is also
observed for ‘A’-shaped towers with lower diamond (see Figure 8(d)). It is
attributed to the transverse connection between the legs at the anchorage
area of ‘A’-shaped towers, where a significant mass is concentrated and a
characteristic transverse rigid body motion is observed in the seismic response
(see Figure 2). This favours the transverse displacement at the level of the
deck in the first-order tower mode and the deck-tower interaction (T1/S1
mode).

6.3. Influence of the cable-system arrangement

The deck-tower reaction is approximately 15% larger in bridges with one
Central Cable Plane (CCP, Figures 9(a) and 9(b)), in comparison with the
homologue models with lateral cable arrangement (LCP, Figures 8(a) and
8(b)). This is partly because the closed-section deck in CCP models is heavier
than the open-section girder of LCP structures (from 10 to 20% in 200 and
800 m span bridges, respectively). In order to isolate the dynamic effect of
the cable-system, the deck-tower reaction in Figure 10(a) is normalised with
respect to the tributary static weight of the deck that contributes to the
tower reaction in the transverse direction:

W Y
trib,S = md

(
LP + LS

2

)
g (3)

where md is the mass per unit length of the deck (including the structural
and non-structural mass); LY

trib,S = (LS +LP )/2 is the tributary static length
of the deck that corresponds to the transverse support at the towers; g = 9.81
m/s2 is the gravitational acceleration.

From the normalised results in Figure 10(a), the differences in the seismic
response due to the cable-arrangement are only appreciable for short spans,
below 350 m. In this span range the vibration mode M1 is dominant and
it increases the deck-tower reaction in CCP models up to 9%, with respect
to LCP bridges. This can be explained by the different configuration of the
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Figure 10: Normalised peak deck-tower seismic reaction in inverted ‘Y’-shaped tower
bridges: (a) influence of the cable arrangement (B = 25 m), (b) influence of the deck
width (B) in the Y-LCP model. Hi = H/2.

cable anchorages along the deck in CCP and LCP models. If the cables are
perpendicular to the deck (as it is the case in CCP models) the transverse
seismic loads coming from the girder can only be transmitted to the tower
through the deck-tower connection (neglecting the small nonlinear geometric
contribution of the cables to the transverse stiffness of the bridge). However,
bridges with two cable planes anchored at the girder edges (LCP) provide
an additional path to transmit the lateral deck loads through the inclined
cable-system to the towers and their foundations. The normalised deck-tower
reaction is almost independent of the cable-arrangement when the dominant
mode is S1 or M2, i.e. for medium-to-large main spans (above 400 m). This
can be also explained in the context of the transverse cable inclination: the
cables are almost vertical in LCP arrangements for large main spans due
to the small B/H ratio, and therefore their configuration is similar to CCP
models. Consequently, by increasing the width of the deck (B) the effect
of the cable arrangement is more significant and affects bridges with longer
span lengths: in the 600 m span bridges with B = 35 m the normalised
deck-tower reaction is 9% larger in Y-CCP than Y-LCP.

Figure 10(a) also shows the dynamic amplification of the deck-tower re-
action with respect to the corresponding static value for short-span bridges
(below 300 m span): i.e. F Y /W Y

trib,S > 1. This ratio decreases monotoni-
cally by increasing the separation distance between towers. Although it is
observed that high-order modes have a dominant role in the seismic response
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of long-span bridges, the overall effect is that in these structures the deck
reaction is significantly smaller than the tributary static weight of the deck
in the towers in the transverse direction, down to 40% for LP = 800 m.

6.4. Influence of the deck width and height: B, Hi

The width of the deck (B) and its distance from the foundation of the
towers (Hi) are typically constrained by the project requirements and, there-
fore, they can hardly be modified by designers. However, it is important to
explore their influence on the seismic response.

Figure 10(b) shows the normalised deck-tower reaction in the Y-LCP
model for different values of B. Any increment of B shifts in a constant
value (∆LP ) the modal contribution curve towards larger main spans (LP ),
increasing the critical span lengths accordingly (LPC,k, with k =M1, S1 and
M2). This is due to the strong (cubic) increment of the transverse flexural
stiffness of the deck (EIY ) with its width, and it is more pronounced the
higher the mode order: ∆LP,M1 < ∆LP,S1 < ∆LP,M2, as it is observed
in Figure 10(b). By increasing B, the normalised modal contribution at
the critical main span usually decreases because the maximum deck-tower
interaction occurs for larger values of LP . The global effect of the variation
of B in the deck-tower reaction depends on the main span due to the ‘bell’
shape of the modal contribution curves. If LP < LPC,k the k-th modal
contribution decreases by increasing B, and vice-versa for LP > LPC,k. After
the combination of different vibration modes, increasing B typically reduces
the normalised deck-tower reaction in the short-span range. Bridges with
inverted ‘Y’-shaped towers are very sensitive to the contribution of mode S1
and, consequently, to any variation of B. These bridges present two distinct
zones of the span range in which the influence of B is opposite, as it is shown
in Figure 10(b): a reduction of F Y down to 60% is observed in the 200 m
span Y-LCP bridge (200 m < LPC,M1) by increasing B from 20 to 35 m,
whereas the same variation in B results in a 42% increment of F Y in the
800 m bridge (800 m > LPC,k, with k =M1, S1 and M2). The other bridge
typologies are less sensitive to changes in B.

It is observed that larger values of Hi generally lead to smaller deck-tower
reactions in the entire span range. However, in AD-LCP bridges F Y is almost
doubled by increasing 66% the tower height. This is attributed to the larger
flexibility of the vertical pier in the lower diamond configuration.
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7. Critical main span lengths and tower frequencies

From the previous discussion it is clear that there is a relationship between
the seismic response of the bridge and the vibration modes of the towers and
the deck. Figures 11 - 13 present the contribution of different modes to
the deck-tower reaction in terms of the ratio between the nth-order vibration
frequencies of the deck (ωd,n) and the tower (ωt,n), obtained separately. These
figures include the results in all the proposed models and distinguish the
tower-shape, but not LP , B and Hi. The results demonstrate that there
is a direct relationship between the deck-tower reaction and their isolated
vibration frequencies. This is satisfied in all the models and allows for design
recommendations that are applicable to a wide range of cable-stayed bridges.
ωd,n can be estimated from Eq. (1), considering that the transverse vibration
of the deck is equivalent to that of a single-span beam with a certain length
and boundary conditions. The specific values for this expression are discussed
below for different modes. FE models of the tower have been employed to
obtain ωt,n.
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Figure 11: Contribution of mode M1 to the peak deck-tower seismic reaction in terms of
the ratio of the tower and deck frequencies: (a) flexible towers, (b) stiff towers. All models.
Soil TD.

Figure 11 presents the contribution of M1 to the deck-tower reaction
(F Y

M1). When the fundamental frequency of the deck is close to that in the
tower, i.e. when ωt,1/ωd,1 = β (typically 0.8 < β < 1.2), the seismic response
is maximised. Analogously, the coupling between the deck and the tower
frequencies is responsible for the increment in the contribution of mode S1,
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Figure 12: Contribution of mode S1 to the peak deck-tower seismic reaction in terms of
the ratio of the tower and deck frequencies: (a) flexible towers, (b) stiff towers. All models.
Soil TD.
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Figure 13: Contribution of mode M2 to the peak deck-tower seismic reaction in terms of
the ratio of the tower and deck frequencies: (a) flexible towers, (b) stiff towers. All models.
Soil TD.
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as shown in Figure 12. In this case, if the first-order vibration of the lateral
spans is close to the second-order vibration of the towers, i.e. ωt,2/ωd,1 = β ≈
1, then F Y

S1 is maximised. Figure 13 shows that the contribution of mode M2
reaches its maximum expression when the second-order symmetric flexure of
the main span is coupled with the second order vibration of the towers, i.e.
ωt,2/ωd,2 = β ≈ 1. This proves that the interaction between the deck and the
towers is maximised, and may lead to large seismic forces, if the vibration
frequencies of both members are similar. This coupling occurs if the main
span of the bridge coincides with the critical lengths: LPC,k, where k =M1,
S1 and M2. Figures 11 - 13 also verify, now for all the studied bridges, that
if the main span length is well above the k-th critical span (LP > LPC,k)
the deck is too flexible to interact with the towers in that vibration mode,
because ωt/ωd > 1. And vice-versa for LP < LPC,k, as ωt/ωd < 1.

The frequency ratio for which the modal contribution is maximum, ωt,n/ωd,n =
β, is biased with respect to the point in which the isolated tower and deck
frequencies coincide exactly (i.e. β 6= 1), especially in mode M1. This is due
to the modification of the vibration modes of the tower and the deck when
both elements are connected. Eq. (1) assumes that the supports of the beam
model, which represent the effect of the tower, are fixed in the transverse
direction. However, when the modal interaction between the deck and the
towers is maximum, the latter move transversely (especially for mode M1,
see cell A1 in Figure 3), which is not captured by Eq. (1). This effect is taken
into account by the parameter β in Table 1. The proposed values of β distin-
guish the shape of the towers and are obtained from the arithmetic average
of the frequency ratios (ωt/ωd) in which the modal contribution is maximum
for different values of B and Hi (although these parameters hardly affect the
frequency ratios). It is observed that β is influenced by the tower geometry,
resulting β < 1 for flexible towers (‘H’-shaped and lower diamond towers)
and β > 1 for stiff towers (with inverted ‘Y’- and ‘A’-shaped geometries).

The critical main span can be estimated from these results and Eq. (1),
by imposing that ωt/ωd = β:

LPC,k ≈ C
√
A 4

√
EIdβ

2

mdω2
t,n

(4)

where k =M1, S1 and M2 is the vibration mode in which the seismic response
is maximised for the corresponding critical main span; C is a constant to take
into account the length of the deck that is involved in the vibration mode,
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i.e. the main span (LP ) or the side span (LS). The values of A, C, β and
n are included in Table 1 for different modes and tower shapes. A depends
on the rotation of the deck at the ends of the beam model, which is included
in Figures 11 - 13. Considering mode M1, the rotation of the deck about
the vertical axis (θZ) is constrained at the tower level due to the negligible
displacement in the side spans. Consequently, ωd is estimated in mode M1 by
considering a beam of length LP that is completely fixed at the ends (‘fixed-
fixed’ conditions). The same beam length and boundaries are employed for
the critical span in mode M2, but adopting the second-order symmetric mode
(n = 2). The situation is different in mode S1 as the side span behaves like
a beam that is pinned at the abutment (where the support bearings allow
for θZ rotations, see abutment A1 in Figure 1) and fixed at the level of the
tower, due to the constraint of the main span.

‘Flexible’ towers ‘Stiff’ towers
Mode H-LCP YD-LCP AD-LCP YD-CCP Y-LCP A-LCP Y-CCP
k =M1 A 22.4 22.4 22.4 22.4 22.4 22.4 22.4

C 1.00 1.00 1.00 1.00 1.00 1.00 1.00
β 0.78 0.68 0.63 0.79 1.21 1.17 1.10
n 1 1 1 1 1 1 1

k =S1 A 15.4 15.4 15.4 15.4 15.4 - 15.4
C LP/LS LP/LS LP/LS LP/LS LP/LS - LP/LS

β 0.96 0.92 * 0.91 1.04 - 1.07
n 2 2 2 2 2 - 2

k =M2 A 120.9 120.9 120.9 120.9 120.9 120.9 120.9
C 1.00 1.00 1.00 1.00 1.00 1.00 1.00
β∗∗ 0.94 0.82 1.00 0.96 1.00 0.97 1.10
n 2 2 2 2 2 2 2

Table 1: Parameters involved in Eqs. (4) and (5) for different bridge models. (*) the
maximum contribution of S1 is observed in a band of frequency ratios β = [0.85, 1.12] in
AD-LCP. (**) β is obtained from a reduced number of cases in M2. The parameters are
not provided for the mode S1 in the bridge A-LCP since it is not governing (see Figure
8(c)).

It is important to note that the critical spans in which the modal contri-
butions are amplified in Eq. (4) are more sensitive to the tower frequency
(affected in turn by the tower geometry) than to the deck stiffness or mass.
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This is very advantageous from the design point of view since the deck prop-
erties are constrained by the project requirements and are difficult to change.
However, the tower shape can be designed to avoid potential couplings with
the deck at regions where ωt/ωd = β. Therefore, the tower vibration fre-
quency should be away from the following three critical frequencies:

ωk
tc,n = AβC2

√
EId
mdL4

P

(5)

where k =M1, S1 and M2. The rest of the parameters are included in Table
1.

Short-span bridges are more likely to be affected by the critical frequency
corresponding to mode M1 (ωM1

tc,1). In the range of medium-to-long span
bridges (400 m < LP < 700 m), the inverted ‘Y’-shaped towers can have
frequencies that are potentially close to ωS1

tc,2, as it has been observed in this
work. In these cases, it would be recommended to connect the tower legs
below the deck in a lower diamond configuration, which reduces the second-
order frequency of the tower below ωS1

tc,2.
Note that expressions (4) and (5) are valid only for conventional cable-

stayed bridges with the arrangement described in Figure 1.

8. Conclusions

This work is focused on the transverse seismic response of more than
1050 cable-stayed bridges with main span lengths ranging from 200 to 800
m. The study explores the contribution of different vibration modes and the
influence of structural and ground motion features on the peak transverse
deck-tower reaction. The Modal Response Spectrum Analysis (MRSA) is
selected after a complete validation procedure, considering the modal time-
history analysis as the reference. The results in time- and frequency-domain
show that the MRSA, when applied to finite element models that only capture
the transverse response, represents accurately the contribution of different
vibration modes to the deck-tower reaction. The main outcomes of this
study are summarised as follows:

• The contribution of transverse vibration modes to the seismic response
is strongly influenced by the main span length. It is maximised for
certain (critical) main spans in which the modal shape involves the
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deformation of both the towers and the deck. The modal contribution
is reduced for main spans above the critical value due to the large
flexibility of the deck with respect to the towers. As a result, the
dynamic response of the deck interacts with the towers in vibration
modes of increasingly higher order. These modes are dominant for long-
span bridges and need to be accounted for in the design and analysis.

• Three different transverse vibration modes that govern the seismic re-
sponse of cable-stayed bridges in different span ranges have been iden-
tified. Short-to-medium span bridges (below 400 m) are dominated by
a vibration mode that involves the first-order transverse flexure of the
deck in the main span and the towers (mode M1). Medium-to-long span
bridges (between 400 and 600 m) are usually governed by the interac-
tion between the side spans and the towers in the transverse direction
(mode S1). Finally, long-span bridges (above 600 m) are strongly in-
fluenced by a transverse vibration mode that involves the second-order
flexural response of the tower and the deck in the main span (mode
M2). Only the symmetric modes have a significant contribution to the
seismic response of symmetric cable-stayed bridge under synchronous
ground motions.

• The contribution of the governing vibration modes has been repre-
sented in terms of the ratio between the deck and the tower vibration
frequencies for all the models, being always maximum when this ratio
falls between 0.8 and 1.2. Analytical expressions are proposed to cal-
culate the critical span lengths and the tower frequencies for which the
transverse seismic response is maximised. These are more influenced by
the tower shape than by the deck properties, which opens the door for
conceptual designs that optimise the tower geometry in order to avoid
potentially catastrophic deck-tower interactions during the earthquake.

• The inclination of the lateral legs of the tower above and below the
deck significantly affects the transverse seismic response of the bridge.
The more inclined the legs above the deck the larger the transverse
stiffness of the tower, which can lead to significant increments of the
seismic response in bridges with main span lengths between 500 and
600 m. By connecting the legs below the deck in a lower diamond
configuration, the transverse stiffness of the towers can be reduced,
which also decreases the seismic demand in medium-span structures.

27



• The inclination of the cable planes is also relevant for the transverse
seismic response of the bridge. The deck-tower reaction is generally
reduced (down to 9%) in bridges below 400 m span with two lateral
cable planes, in comparison with the central cable plane configuration.
This effect is stronger the shorter the span and the wider the deck,
especially in bridges with inverted ‘Y’-shaped towers.

• The seismic deck-tower reaction in long-span bridges is a small fraction
of the corresponding (static) weight of the deck. This suggests that
the effect of the deck on the towers is less problematic in large bridges
than in small bridges (below 300 m span), where significant dynamic
amplifications have been observed.
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