IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Krotsiani, M. (2016). Model driven certification of Cloud service security based on
continuous monitoring. (Unpublished Doctoral thesis, City University London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/15044/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

MODEL DRIVEN CERTIFICATION OF CLOUD
SERVICE SECURITY BASED
ON CONTINUOUS MONITORING

Maria Krotsiani

City University London
Department of Computer Science

School of Mathematics, Computer Science and Engineering

Supervisor: Professor George Spanoudakis

Thesis submitted for the degree of Doctor of Philosophy,

January 2016

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

TABLE OF CONTENTS

TABLE OF CONTENTSooccrrcresessssessssesssssssssessessssessssessssessssssassssassssanas 2
LIST OF FIGURES. ...t crcstresessesmsssassssassessssessssesassesassssassssassssanas 6
LIST OF TABLES ... scrcrcresessssessssssasssssssesssssssssssssssssssssssssssssssssssssssnssssassssassessssessssessssessssssassssassssanas 8
ACKNOWLEDGMENTScoticotrmsesssessssmssesssessssesassssassesass 9
DECLARATION. ... ircstresessessssessssessssessssssssssssssssassssassssassssssssssesssssssssssesssssssssassensssessssenassessssesassesanss 11
ABSTRACT ..ccrcrircsisssessssesssssssessssssssssssssssssssssssssssss sassssassssasssssessssesessssessssssssssssessssessssenassesassesassesasss 12
CHAPTER ONE INTRODUCTION ...cirocrressssessssesssassssassssssnes 13
1.1 OVERVIEW ..ottt sssssssses s sssssssssssssasssssessssssssesssssssssssssssssssssssasssssssssanssssssssassasssessnsasssesssnsans 13
1.2 MOTIVATION AND RESEARCH CHALLENGES.........ccovonsuerinenetnstsssssssssssssssssssssssssssssssasssssssans 13
1.3 OVERALL RESEARCH AIM AND OBJECTIVES.......cccosomeureirnenenssssssssssssssssssssssssssssssssssassssssssans 16
1.4 RESEARCH ASSUMPTIONScvvtirireeuretretresnssssssssssssssssssssssssssssssssssssssassssssssssssssssssssssssssssssasssssssesans 19
1.5 RESEARCH CONTRIBUTIONScocestmetretresnesessssssssssssssssssssssssssssssssssassssssssssssassssssssssssssssssassssssssans 20
1.6 PUBLICATIONS ...oourotiteenetretssesssssssssssssssssssssssssasssssssssansssssssssssassssssnsasesssssnsans 21
1.7 OUTLINE OF THE THESISooosvtiitieeretnetresnessassssssssans 23
CHAPTER TWO LITERATURE REVIEWrrrsssssssssssssssssesssssssssssssssssssssssssssssssssnns 25
225 B 174 03 28 V4 1 O 25
2.2 CERTIFICATION CONCEPT AND CONCEPTUAL MODEL......ccocsueenerrernnenesssssssssssssssssssssssssnns 25
2.3 SECURITY PROPERTIES, THREATS, RISKS AND SECURITY CONTROLS......cc.cecovrrrmrrrerreens 30
2.3.1 SECURITY PROPERTIES........cocosutmiunmeretretnssssssstsssasssssssssssssssassassssssssanes 30
2.3.2 ASSETS OR TARGET OF CERTIFICATIONcccecosurrrurnerrsrssassssssssanss 37
2.3.3 THREATS ..ot eecere s tesass s s sssass s sssass s st asss s s ssssses s sssses st ssssss s ssssss s sssanssessssunssssessunssnssassanes 38
2.3.4 RISKS AND SECURITY CONTROLSceveererritrremerressassssssssssssssssssanss 41
2.3.5 SUMMARY OF SECURITY PROPERTIES, THREATS, AND SECURITY CONTROLS 46
2.4 CERTIFICATION AND CERTIFICATEScesunitnitnneunssassssssssssssssssssanss 48
2.4.1 CERTIFICATION METHODS BASED ON TOCoorrrreererernsenessssssssssssssssssssssssssssssssanes 49
2.4.1.1 SOFTWARE CERTIFICATIONccosuririremerretsssssnssssssssssssssssssssssssssssssssssassssssssasssssssssassssssssanes 50
2.4.1.2 SERVICE CERTIFICATION......eccssteretretssssesssasssssssssssssssssssanes 52
2.4.1.3 CLOUD CERTIFICATIONccosiunmeretretssssesssassssssasssssssssssanes 53
2.4.2 CERTIFICATION METHODS BASED ON EVIDENCE COLLECTION.........cccseovseunetnserneanessnennns 57
2.4.2.1 SELF- ASSESSMENT CERTIFICATION METHODSccceecosuunmrnmenerresnssnssssssssssssssssssssssssssnes 58
2.4.2.2 TPM BASED CERTIFICATION METHODS AND SECURITY CONTROLS........cccceeererrurnnes 58
2.4.2.3 TESTING-BASED CERTIFICATION METHODS AND SECURITY CONTROLS................. 60
2.4.2.4 MONITORING-BASED CERTIFICATION METHODS AND SECURITY CONTROLS......62
2.5 SUMMARY OF CERTIFICATION SCHEMES FOR CLOUD SERVICES........ccccoeeemeumerneerneanessnennns 66

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

2.6 SUMMARY wcccooeevsssessssessessnssssssssssssssssssnsnses 67
CHAPTER THREE BACKGROUND TECHNIQUESirvsrrsessessessessmssessesssssssssssssns 69
3.1 OVERVIEW.occsoisseessnsssssssssssssssssssnsssssssssssssssssnnsssssssssssss 69
3.2 EVENT CALCULUS woocoovvvtssseessessnsssssssssssssssssssssssssssssss 69
3.2.1 OVERVIEW ..oovcsssmnnessesssssssssssessssssssssssssssssessssssssssssssssssesssssssssssssssssnssssssssssssssssssssssssssssssssssssnsssssssssssss 69
3.2.2 SPECIFICATION OF EC FORMULAS wc.....cooovmmmneensssessssssssssss 70
3.3 EVEREST oot ssssssssssseesssssssssssssssssessssssssssssssssssesssssssssssssssssnssssssssssssssssssnsssssssssssssssssnnsssssssssssss 73
3u4 PRISM . e e s e e e e e e e e e e e e e e e e s 78
CHAPTER FOUR MONITORING BASED CERTIFICATION PROCESS AND
IMIODEL.....ciriirerscessssssssesssssssssssmessssssssssssssssssssmsssassasssssmssssssssmsssassssnsssmsssas snsnsssmsssssnssmsssnsessnnssmnsssnnssnnes 82
4.1 OVERVIEWocvossmeenssnssssssssssssssssssssssssssssssssssssnsssssssssssss 82
4.2 MONITORING BASED CERTIFICATION PROCESSccoommennsesssssssssssensssssssssssssssssesssssssssss 82
4.3 CERTIFICATION MODEL FOR MONITORING BASED CERTIFICATEScoommmmensessseenns 86
4.3.1 CERTIFICATION MODEL XML SCHEMA DESCRIPTIONcoommmmmemssessssssssssssessssssssens 87
4.3.1.1 MODEL_ID ELEMENT .csmnoovvovvsssssssssesessssssssssssssssssssssssssssssssssnss 89
4.3.1.2 SIGNATURE ELEMENT ..ccvvvvvvvssessssenesss 89
4.3.1.3 TARGETOFCERTIFICATION (TOC) ELEMENTccooommmmmsessssssssnsssmsssssssssssssssssssssssssssss 90
4.3.1.4 SECURITYPROPERTY ELEMENT ..ccovvvvvtssensssensss 93
4.3.1.4.1 ASSERTION SUB-ELEMENTcceommmrersssssssssmsssessssssssssss 95
4.3.1.4.2 INTERFACEDECL SUB-ELEMENTccoosmmmmmssnesssssssssss 96
4.3.1.4.3 VARIABLEDECL SUB-ELEMENTovmmmmmmmmmsssssssssssmmsssessses 100
4.3.1.4.4 GUARANTEED SUB-ELEMENTessmmnevvvvrvsssmsssnsnssssssssssssssssnssssssssssssssssssnssssssssssssssssssssssssees 102
4.3.1.5 ASSESSMENTSCHEME ELEMENT ..c............oomminmmmmnsssssssssssmssses 122
4.3.1.5.1 EVIDENCESUFFICIENCYCONDITION SUB-ELEMENTcvmmmmmmmmerssssssssssssnnensseseess 123
4.3.1.5.2 EXPIRATIONCONDITION SUB-ELEMENT ..cc..vvvvvrssssmmnsenssssssssssssssssesssssssssssssssassssssssees 129
4.3.1.5.3 CONFLICT SUB-ELEMENTcccoommmmmerssssssssssmsnsssnssssssses 130
4.3.1.5.4 ANOMALIES SUB-ELEMENTceomssmmesssssssssssmsnnsnsssssssssssssmssnssssssssssssssssssnsssssssssssssssassssssssses 132
4.3.1.6 VALIDITYTESTS ELEMENTccooommmerssssssssssssnesssssssssssssssssssssssssssssssssssnsssssssssssssssssssssssssses 134
4.3.1.7 MONITORINGCONFIGURATIONS ELEMENTovvmmmmmmnnnssssssssssssssensssssssssssssssssssssssses 135
4.3.1.8 EVIDENCEAGGREGATION ELEMENTccooosmmmmmemssssssssmmsnssses 137
4.3.1.9 LIFECYCLEMODEL ELEMENT ...cesmmmnesvsevvsssssssnsssssssssssssssssssessses 139
4.3.1.10 STATETRANSITIONMODELTYPEcovmmmmmmmmnnsssssssssmmsses 142
4.3.1.10.1 STATES SUB-ELEMENTccoesmmmmmerssssssssssssnsssssssssssssssssssnssssssssssssssssssnsssssssssssssssssssssssssses 144
4.3.1.10.2 TRANSITIONS SUB-ELEMENTovvvverrsmmmsnsnmsssssssssssssssnssses 151
4.3.1.10.3 LOGICALEXPRESSIONTYPE SUB-ELEMENTccooesmmmmmessssssssmssssnssssssssssssssssnssssssses 153

CHAPTER FIVE CASE STUDIES AND EXAMPLE CERTIFICATION MODELS....161
5.1 OVERVIEW ..ttt st s s s st s 161
5.2 NON-REPUDIATION PROTOCOL FOR CLOUD SERVICES.......ccsunerensenerrernersessessessessssssssssenns 161

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

5.2.1 CERTIFICATION MODEL SPECIFICATIONcoouummmmmmmmmmmmssssssmsssees 167
5.2.1.1 MODEL_ID ELEMENT w.cccoooeeeeeessssssesssees 167
5.2.1.2 SIGNATURE ELEMENT w...ccccoooeneeeesssees 167
5.2.1.3 TOC ELEMENTceointitrisinissinssssnsssssssssssssssssssss s ssnssssnens 167
5.2.1.4 SECURITYPROPERTY ELEMENToooovvvvvvrsssess 169
5.2.1.4.1 INTERFACEDECLR SUB-ELEMENT...............ccoommmmmmmmmmmmmmmmsmssssmsssees 170
5.2.1.4.2 GUARANTEED SUB-ELEMENToooovvvvvvvssess 171
5.2.1.5 ASSESSMENTSCHEME ELEMENToooovvvvvvvssess 176
5.2.1.5.1 EVIDENCE SUFFICIENCY CONDITION ELEMENT ...ocmmmmmmssssssssssssssssesssssssssssssssssssssssess 177
5.2.1.5.2 EXPIRATION CONDITIONooovvvrvsssess 182
5.2.1.5.3 ANOMALIEScuotitiirineessessssensssnssssnssssnsns 182
5.2.1.6 MONITORINGCONFIGURATION ELEMENTccoouummmmmmmmmmmmmssees 184
5.2.1.7 EVIDENCEAGGREGATION ELEMENTcooummmmmmmmmmmmmmmsmsssees 184
5.2.1.8 LIFECYCLEMODEL ELEMENTooovvvvvvvvvssess 185
5.3 E-HEALTH SCENARIO w.cuuuoeeeoeeeeeesssees 189
5.3.1 AUTHENTICATION CERTIFICATION MODEL.......ccouummmmmmmmmmmsmmsmsssess 190
5.3.1.1 GUARANTEED SUB-ELEMENT
5.4 SMART CITIES SCENARIOcooeeesessees
5.4.1 CONFIDENTIALITY CERTIFICATION MODEL.......ccoummmmmmmmmmmmmssssssssssssssssssssssssssssssssssssssess 198
5.4.1.1 GUARANTEED SUB-ELEMENTcocovovvvvvvvvrsssees 198
CHAPTER SIX IMPLEMENTATION......ccrrimrsmrssssssssssmssmssmssmssessssssssesssssssssssssnssnsssssnssnsses 203
6.1 OVERVIEWoooouuuuumuummmmssssssasssssssssssssssssssssssssssss444455555555888 88888 R R RS R SRR SSSS s 203
6.2 ARCHITECTURE ..oooouuuuuuuumuisses 203
0.3 COMPONENTS ..vvvuuuuuuuuussssssssssssssssssssssssssssstsss14444455555558 88888 E R AR RS R SRR SSSSssessssssssssR1 207
6.3.1 CERTIFICATION MANAGERoooossess 207
6.3.2 MONITORING MANAGEReoenerrrssees 210
6.3.2.1 DETAILED EVIDENCE MANAGERcoccoovrrmmmsmssssssssmssssmsssess 212
6.3.2.2 AGGREGATION MANAGERooooesrssees 212
6.3.2.3 MONITOR TRANSLATOR .c..eneenessees 212
6.3.3 CERTIFICATION COMMUNICATOR......oovvvvvvrvrrssess 219
6.3.4 CERTIFICATE GENERATOR / ATTESTATIONccooummmmmmmmmmmssmsmssess 222
6.3.4.1 ANOMALIES MANAGERcoooneeeesrssesssees 224
6.3.4.2 CONFLICTS MANAGER ..c..ccreeeeeeeesnssees 224
6.3.4.3 SUFFICIENCY CONDITION MANAGERocoommmmmmmmsmmssmmmsssees 225
6.3.4.4 LIFE CYCLE MANAGER ... oneeocssees 228
6.3.5 MONITORING MODULE .c..conieeenesssees 230
6.3.6 EVENT CAPTOReeuiissssssssseessees 231
6.3.7 EVENT BUS ..ot nssssens 232
6.3.8 EVIDENCE DATABASE .c.cceeeeeeeeneenesesssees 232

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

6.3.8.1 DETAILED EVIDENCE ..ottt sss st sssssssssssssssssssssssssassssssssssssssasssssssssssssssses 232
0.3.8.2 PRIMITIVE EVENTS ..ottt sttt ss s s ssssss bt bssssasssssssssassas 235
6.3.8.3 AGGREGATED EVIDENCEcoosiirisristrisssss sttt ssssss s ssssssssssssssssssssssssssssassssssssssssssssns 236
6.3.9 CERTIFICATION MODEL DATABASE ..ottt ssssssssssssssssssssssasssssssssssssssssns 238
6.3.10 CERTIFICATES DATABASEovtiiieictisssss st ss s st ssssssssssssssssssssssasssssssssssassssns 238
CHAPTER SEVEN EVALUATION ..occcccsrersssmsssnsssssssssassssssssssns 240
2 I 0 24 0 2 V4 1 D, 240
7.2 EVALUATION METHODOLOGY ...uvsiirisisistsisssasssssssssssssssses 240
7.3 EVALUATION ACTIVITIES.....cosoisiitsisssisssassssssssssssssses 241
7.3.1 SUBJECTIVE EVALUATIONooiisicississsissssss s sssssssssssss s ssssssssssssssssssssssssssssassssssssssssasssses 241
7.3.1.1 SUBJECTIVE EVALUATION METHODOLOGY ...ooesisriersisssns 242
7.3.1.2 ANSWERS OF THE QUESTIONNAIREccceeuritrmrmerretrssssssstsssssassssssssssssssssssassssssesssssssssssaneas 243
7.3.1.3 THREATS TO VALIDITY ..ecovtitistsistsissassssasssssssssassssssssssssssssses 250
7.3.2 VERIFICATION AND FORMAL ANALYSIS ..ootoiriinicssisssssssssssssssssssssssssssssssssssssasssssssssssssssssns 250
7.3.2.1 FORMAL ANALYSIS METHODOLOGY ...coeosisrrisirisssisssssssssssssssssssssssssssssssssssssssasssssssssssssssssns 251
7.3.2.2 PRISM MODEL CHECKING RESULTScccouisiiiisrsinss s sssssssss s ssssssssssssssssassas 255
7.3.2.3 THREATS TO VALIDITY ..ecovtitristsisssisssissasssssssssssssasssssssssssssssses 258
7.3.3 PERFORMANC Eisiiiititis sttt bbbt bbb bbbt bbb bbbt sn b 259
7.3.3.1 PERFORMANCE METHODOLOGY ...cveeirriirrisirisssisssns 259
7.3.3.2 PERFORMANCE RESULTS ...ovtisiitisisisiissssss s sssssssssssssssssssssssssssssassssssssssssssassssssssssssssses 261
7.3.3.3 THREATS TO VALIDITY ..ootttristisesisssassssssssssssssasssssssssssssssses 263
CHAPTER EIGHT CONCLUSION AND FUTURE WORKcocvmmssmemsasssssssssssssssssssssssens 265
8.1 OVERVIEW ..ttt sttt st s bbb bbb bttt bbb ss s s 265
8.2 SUMMARY OF RESEARCH WORKoviiriciisisis s sses 265
£ T 001000 b2 031 018 U 0.\ 266
£ T U 00 0 4 NS 0)1 1 269
8.5 FUTURE WORK ..ottt sss st s st sttt st st sss s sssssassassssassssasssns 270
REFERENCES ... iiictirtrissserssass sesssssssassss senssssssassasssnssssssnssasssassssssns 273
GLOSSARY cootiirervssismss sessasssssssss ssssass esssssssassss senssssssassasssnsssssenssasssnssssssns 288
APPENDIX A: CERTIFICATION MODEL FOR NR...ccccrrmnnmmssmsmsnssssmsssssssssssssssssssssssssssns 290
APPENDIX B: AUTHENTICATION CERTIFICATION MODELc.ccoovnmmimmssmssssasssnssssnens 337
APPENDIX C: CONFIDENTIALITY CERTIFICATION MODEL.....cccouvmmiemmssmsssssssssssnsns 345
APPENDIX D: QUESTIONNAIREoooirrerersensssessssessssessssessssssssssssssssssssssesssssssssssassssassesassssassess 355

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

LIST OF FIGURES

FIGURE 1 — CONCEPTUAL MODEL FOR CLOUD CERTIFICATION......curtrtererrerseesessessessessessssssssssssssssssssssssssssssessessesessensense 27
FIGURE 2 — CLOUD COMPUTING REFERENCE ARCHITECTURE ..covueurereerersessessessessessssssssssssssssssssssssssssssssssessessessessensense 37
FIGURE 3 — EVEREST ARCHITECTURE (SOURCE [218]) etueeureeseusseseessessesssesessessssssessees
FIGURE 4 — DTMC SIMPLE EXAMPLE ...cueueueusesessessessessessessessessessessesssssessesssssessssssssssssssssssssssssssssssssesssssssssssssssssssssssessessessense
FIGURE 5 — CERTIFICATION MODEL SCHEMA ELEMENTS
FIGURE 6 — SIGNATURE ELEMENTceuiuureeasessessessessessessessessessessessessesssssessesssssessssssssessssssssssssssssssssssssssssssssessssssssssssesssssessessense
FIGURE 7 — TARGETOFCERTIFICATION TYPE ..ccueureureureseuresressessessessessessesssssessessssssssssssssesssssssssssssssssssssssesssssssssssssssessessessense
FIGURE 8 — PROVIDESINTERFACE TYPE....cotiereresenressessessessessessessesssssessesssssessessessessessense
FIGURE 9 — REQUIRESINTERFACE TYPE...icsuveetstrerssstseresssssesesssssesssssssssnsssssssensssssssesssssssssssssssssessssssssssssssssasssssssssssssnsssassnens
FIGURE 10 — SECURITYPROPERTY ELEMENT...
FIGURE 11 — ASSERTIONTYPE ..oeuteueeuseseessessessessessessessessessessessessessessessesssssessesssssessssssssesssssssssssssssssssssessssssssessssssssssssssssssessensense
FIGURE 12 — INTERFACE DECLARATION TYPE ..ceueureurenreuresressessessessessessesssssessessssssssssssssssssssssssssssessssssssssssssssssssssssessessensense
FIGURE 13 — VARIABLE TYPE w.ouettieseeeseesesesssssessesssssessssssssessssssssesssssssesnsaes
FIGURE 14 — ASSERTIONFORMULATYPE ...ctuuteeeuessesessessessessessessessessessessessessessessessesssssessesssssessesssssssssssssssssssssssssssssssssssssaes
FIGURE 15 - ASSERTION CONDITION AND ASSERTION ATOMIC CONDITION
FIGURE 16 - EVENT CONDITION TYPE....ceteiusesessessesessessessessessessessessessessessessessessessesssssessesssssesssssssssssssssssessssssssssssssssssssssses
FIGURE 17 — OPERATION TYPE ...ctutrreeeseeseesssssessesssssesssssssssssesssssessssssssssassssssassssses
FIGURE 18 - TIME VARIABLE TYPE AND TIME EXPRESSION TYPE....cirrererrernenreeressessessesssssessesssssesssssssssssssssssesssses
FIGURE 19 - STATE CONDITION TYPE ..coeteieureeesessesessessessessessessessessessessessessessessessessessessesssssesssssssssssessssssssssssssesssssssssssssses
FIGURE 20 — RELATIONALCONDITIONTYPE
FIGURE 21 = OPERAND TYPE ..ooueeeeeeereeseesesssssessesssssessssssssessssssssessssssssessssssssssnsaes
FIGURE 22 — FUNCTIONTYPE ..outeeteeeesseseesssssesssssssssssesssssessssssssessssssssasssaes
FIGURE 23 - SERIESEXPRESSIONT YPE.....ciuieureeesessesessessessessessessessessessessessessessessessesssssessesssssessesssssessssssssssssssssssssssssssssassaes
FIGURE 24 —ASSESSMENTSCHEMETYPE....ctuieeeusessesessessessessessessessessessessessessessessessessessessesssssesssssssssssssssssessssssssssssssssssssssses
FIGURE 25 — EXPECTEDSYSTEMOPERATIONMODEL
FIGURE 26 — EVIDENCESUFFICIENCYCONDITIONTYPE
FIGURE 27 — EXPIRATION CONDITION TYPE ..cuuueureuersessessessessessessessessessessessessessessessessessesssssesssssssssssssssssessssssssssssssssssssssses
FIGURE 28 — CONFLICT TYPE cueuteeeeeeeseseeseesssssessesssssessssssssessssssssessssssasssaes
FIGURE 29 — ANOMALY TYPE ...utittieseeeeeeesessesesessesessessessessessessessessessessessessessessessesssssessesssssesssssssssssssssssessssssssesssssssesssaes
FIGURE 30 — VALIDITY TESTS TYPE ..cutuieeeseseseessessesessessesessessessessessessessessessessessessessessessesssssessesssssesssssssssssssssssessssssssesassses
FIGURE 31 — MONITORING CONFIGURATIONS TYPE......ocereueuresresessessessessessessessessessessesssssessessssssssessssssssssssssssssssssssssssses
FIGURE 32 — INDIVIDUAL MONITOR CONFIGURATION TYPE ...ovueurerreurenrersensessessessessesssssessesssssessesssssessssssssesssssssssssssses
FIGURE 33 — EVIDENCE AGGREGATION TYPE .ovuieiereresessessensessessessessessessessessessesssssessessssssssssssssessssssssessssssssesssssssssssssans
FIGURE 34 - UML DIAGRAM OF LIFE CYCLE MODEL ...curuureueuresressessessessessessessessessessessesssssesssssssssssesssssessssssssessssssssssssses
FIGURE 35 — LIFECYCLEMODEL ELEMENTcuttuieueesesseessessessessessessessessessessessessessessessessssssssssssssessssssssessssssssessssssssssssaes
FIGURE 36 — STATE TRANSITION MODEL TYPE ..oveuteureuseuressessensessessessessessessessessessessessessesssssesssssssssssssssssessssssssssssssssssssssaes
FIGURE 37 — PSEUDO STATE TYPE ..cuveueeeeeesessesessessesessessessessessessessessessessessessessessessessessessesssssessessssssssesssssessssssssessssssssessssses
FIGURE 38 — HISTORY STATE TYPE
FIGURE 39 — ATOMICSTATETYPE ..cieieceeesesesesessesessessesessessessessessessessessessessessessessessessesssssessssssssessessssssssssssssessssssssesssaes
FIGURE 40 — OPERATION REF TYPE ...cottieiesersesessessesessessesessessessessessessessessessessessessesssssessesssssessesssssessssssssessssssssessssssssssssaes
FIGURE 41 — COMPOSITE STATES TYPE ..ttieseresessesesessesessessessessessessessessessessesssssesssssessesssssessssssssessssssssessssssssssssssssssssssses

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

FIGURE 42 — TRANSITION ELEMENT ...cottturersersesessessesessssssesssssessessessessessessessessessessessessessessesssssessesssssessssssssessssssssssssssssesanes
FIGURE 43 — LOGICAL EXPRESSION TYPE ...citiuieeereeseesesesesessessessessessessessessessessessessessessesssssessesssssessssssssessssssssssssssssesases
FIGURE 44 —CONDITION TYPE.....ititrsiureererieressessssesssssesssssssessesssssessessessessessessessessessessessessessesssssessesssssessssssssssssssssssssssssesanes
FIGURE 45 — ARITHMETIC EXPRESSION TYPEcciuieeeseeeeesessessessessessessessessessessessessessessesssssessesssssessssssssssssssssssssssssssssases
FIGURE 46 — NON-REPUDIATION PROTOCOL FOR CLOUD SERVICES....cureueuesresesessessessessesssssesssssssssssssssssssssssssssees
FIGURE 47 — EXAMPLE OF EXPECTED TOC BEHAVIOUR MODELcveeuerenensessensessessessessesssssessessssssssssssssssssssssssees
FIGURE 48 — UML DIAGRAM OF LIFE CYCLE MODELcctuseeesesessessessessessessessessessessesssssessesssssssssssssssssssssssssssssssssses
FIGURE 49 — MONITORING ARCHITECTURE 1..cueuesuersseseessessessessessessessessessessessessessessessessessessesssssessesssssessssssssesssssssssssssssssanes
FIGURE 50 — CERTIFICATION MANAGER.....cstuiererereeseeseeseessessessessessessessessessessessessessessessessesssssessesssssessssssssessssssssssssssssssanes
FIGURE 51 — MONITORING IMANAGERccstumeriereeersesssssessessessessessessessessessessessessessessessessessesssssessssssssssssssssssssssssssssssssssssanes
FIGURE 52 — CERTIFICATION COMMUNICATOR w.cueuereerseseesssssesssssssssssssssssssssssssesanes
FIGURE 53 — CERTIFICATE GENERATOR ...covuiuieeeerseseessessessessessessessessessessessessessessessessessessesssssessesssssessssssssessssssssssssssssesanes
FIGURE 54 — MONITORING IMODULE......csturerneeiesesersessssssssessessessessessessessessessessessessessessessessesssssessesssssessssssssassssssssssssssssssnes
FIGURE 55 — EVENT CAPTOR ..covuturerrisreesersesesssssssessessssssssssssssssssssesssssessessessessessessessessesssssessesssssessesssssesssssssssssssssssssassssssssanes
FIGURE 56 — ANSWERS TO QUESTION 1 .ttiiisiuresinisinssressssssesssesssssssesssesssssssesssesssnssnes
FIGURE 57 — ANSWERS TO QUESTION 2 ..otutiniuressiressesssressssessesssesssssssessssessesssssssssssssssssesssssssnes
FIGURE 58 — ANSWERS TO QUESTION 3 ...otitsiuressnessessresssessesssessssessessssesssnsnssnes
FIGURE 59 — ANSWERS TO QUESTION 4....
FIGURE 60 — ANSWERS TO QUESTION 5 ...ovuiiniuresinessenssresssessssssesssssssesssesssssssssssessnsnssnes
FIGURE 61 — ANSWERS TO QUESTION 6 ..oovuruniuressiriasenssresssessessssesssssssessssessnes
FIGURE 62 - PRISM IMODULES ...etuetiseeerstssessssssssssssssssssssssssssessessessessessessessessessessessessessessessesssssessesssssessssssssssssssssssssssssesanes
FIGURE 63 — PROBABILITIES OF ISSUING CERTIFICATES BASED ON NUMBER
FIGURE 64 — D-DELAY IN EXECUTION OF THE DATABASE CM
FIGURE 65 - AVERAGE THROUGHPUT (I) AND QUERY PROCESSING TIME (II) IN EXECUTING THE RUBIS
BENCHMARK ON MYSQL SERVER WITH AND WITHOUT THE MYSQL AUDIT PLUGINccoovurrerrererrersrnens 262

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

LIST OF TABLES

TABLE 1 - SECURITY PROPERTY CATEGORIES AND ABSTRACT SECURITY PROPERTIEScovueeeereererneeseessessensensens 36
TABLE 2 - THREATS CATEGORIES....ccveeeeeeenseeessessesessenes .41
TABLE 3 - CLOUD RISKS AND SECURITY MECHANISMS ...covvueurernemersessesrersessessessssssssesssss .46
TABLE 4 - COMBINED VULNERABILITIES, THREATS AND SECURITY RISKS IN CLOUDS.. .46
TABLE 5 - CERTIFICATION PROCESSES BASED ON TOCuiiererereerenreesersessessessssssssessssse s ssssssssssssssssssssssssessessessessens 57
TABLE 6 - CLOUD CERTIFICATION BASED ON EVIDENCE COLLECTION ...cvuernieeeserssssersesssssssssssssssssssssssssssssessessessessens 66
TABLE 7 = EC PREDICATES wouuuteuerseseesssssessesssssessesssssesssssssssssssssssssssssssssssssssssssssessessens 71
TABLE 8 — AXIOMS OF EVENT CALCULUS w.eeutuueusessessessessessessessessessessessessessessessessesssssesssessens 71
TABLE 9 - MONITORING TEMPLATE FOR AVAILABILITY eueureureuseeressessessessessessesssssssssssssssssssssssessessssssssssssssssssssssessessessens 75
TABLE 10 = MANAGEMENT AP es e ses s s s s st 208
TABLE 11 — MONITORING MANAGER APT ... es s ssssenns 211
TABLE 12 - CORRESPONDENCES BETWEEN CM ASSERTION SPECIFICATION ELEMENTS AND EC-ASSERTION
... 213
TABLE 13 - ALGORITHM FOR TRANSLATING CM ASSERTIONS INTO EC-ASSERTIONS FORMULAScoceerreereens 216
TABLE 14 — MONITORING AP esse s es s ses s sses s st st ssssesas 219
TABLE 15 — RETRIEVAL APT ..t es s s s ses st 220
TABLE 16- ANOMALIES AND CONFLICTS API ... 221
TABLE 17 — GENERATION AP ..o es s sss s sssssssssssssssssnses 222
TABLE 18 - ALGORITHM FOR PROCESSING BEHAVIOURAL STATE TRANSITION MODELS. ..226
TABLE 19 — ALGORITHM FOR PROCESSING THE LIFE CYCLE MODEL....vreureuneereeressessessessessessssssssessssssssesssssssssssssseens 228
TABLE 20 — MONITORING MODULE AP ... sesss s s sses s sss s ssssenns 230
TABLE 21 — DETAILED EVIDENCE TABLE ...uteuteuieeeesessesessesessessessessessessessessessessesssssessesssssesssssessesssssssssssssssssesssssssssssssesas 232
TABLE 22 — SENDER TABLE....cctettreeseeseseeseessesessssssessessessessessessessessessessessessessessessessesssssessesssssessssssssessssssssesassssssesssssssssssssesas 233
TABLE 23 — RECEIVER TABLE.....cottstererteseeeessessessssessessessessessessessessessessessessessessessessesssssessesssssessssssssessssssssesassssssesssssssssssssesas 234
TABLE 24 — NOTIFIER TABLE ..cctntueeeeseseeeessessesssssessessessessessessessessessessessessessessessessesssssessesssssessssssssessssssssesasssssssssssssssssssesas 234
TABLE 25 - PRIMITIVE EVENTS TABLE ...ettteeesesesesesessessessessessessessessessessessessessessessessesssssessssssssessssssssessssssssesssssesssssssesas 235
TABLE 26 — AGGREGATED EVIDENCE TABLEeuturesesessesessessesessessessessessessessesssssessesssssessssssssessssssssessssssssssssssssssssssesas 236
TABLE 27 — CERTIFICATION MODEL DB ...eeeeeseeeseseseesesessessesessesssssessessssses s sssssssessssssssssssssssssssssesns 238
TABLE 28 — CERTIFICATES DB ..o essessesse s essesssssessesssssessessssssssssssssessssesssssssesssssssesas 239
TABLE 29 - ANSWERS OF THE QUESTIONNAIREcovtsturenisressessssesssresssssssessssesssssssessssesssssssessssesssssssssssssssssssssssssssssssssssssenas 244
TABLE 30 - PROBABILITIES FOR RESANOM, UNRES AND NOANOM ..ceivtrersurtreressrsressssssssessssssrsssssssessssssssssssssssssssssens 256
TABLE 31 - PROBABILITIES OF ISSUING CERTIFICATES BASED ON NUMBER OF SUFFICIENT CONDITION
EVIDENCE ..uututuuetuseesessesssessesssessssssssssessssssesssssssssssssssssssssssssssessssssssssesssessessssssssssesssessssssssssssssassssssssssssssssssesssssssessesasessessnns 256
TABLE 32 - AVERAGE THROUGHPUT AND QUERY EXECUTION TIME WITH AND WITHOUT THE AUDIT PLUGIN
... 263

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

ACKNOWLEDGMENTS

This thesis is a result of a long process, through which I have encountered difficult situations
and some weaknesses of mine. Thus, I would like to thank all the people that supported me

throughout this period.

Firstly, I want to express my sincere gratitude and appreciation to my supervisor, Professor
George Spanoudakis, for his continuous encouragement, support and assistance. He was always
patient, encouraging and really helpful by assisting me through many brainstorming meeting to
solve any issues or difficulties I have encountered. His way of analyzing and expanding thoughts
and ideas was quite painful sometimes, but it was really useful for my work. Without his guidance
and continuous support throughout this period, I would not have been able to finish this thesis. I

am really grateful that I had Professor George Spanoudakis supervising my research.

I would also like to express my sincere appreciation to my second supervisor, Dr. Christos
Kloukinas, for all his insightful comments, his valuable advices, his constant support and his

relaxing way to discuss any issues or difficulties I came across.

Furthermore, I would like to express my sincere thanks to Dr. Evangelia Kalyvianaki for her
valuable support, encouragement and concern, especially in the last phase of the thesis
preparation. I would also wish to thank Dr. Khaled Mahbub and Dr. Luca Pino for their valuable

help, especially during the implementation phase of this thesis.

In addition to the above people, I would like to thank my collegues and friends that I made
over these years, for their support and for the great time we had together. These people include
Spyros Katopodis, Icamaan da Silva, Clara Rubio, Roberta Iacovelli, Dr. Ricardo Contreras and
Dr. Rafael Roque Aschoff. Moreover, I would like also to thank all partners of Cumulus Porject
for our great collaboration, and all members of the Department of Computer Science and the

Technical Support Team (TST) of City University, for their continuous support.

My deepest gratitude goes also to my closest friends for their encouragement, understanding
and patience. So, thank you Anastasia Michali, Evagelia Vasilarou, Dr. Aspasia Simpsi, Christos

Paschos and Liana Kypriotaki.

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Besides all the mentioned people, I would like to express my special thanks and gratitude to
my parents, Eleftheria and Viktor, and my sister Elena, who were always there for me, especially

during my breakdowns. Thank you for your support and love.

Last but not least, I would like to thank Sotirios for his constant support, help and advice
through all these years. He was always there for me, in every difficult situation I have
encountered, by showing understanding and by giving me valuable advices. Without his trust on
my skills and his insistence to push me over my limits, I would have never started this PhD.

Thank you for believing in me.

10

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

DECLARATION

The author grants powers of discretion to the University Librarian to allow this thesis to be
copied in whole or in part without further reference to her. This permission covers only single

copies make for study purposes, subject to normal conditions of acknowledgement.

11

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

ABSTRACT

Cloud Computing technology offers an advanced approach for the provision of infrastructure,
platform and software services without the need of extensive cost of owning, operating or
maintaining the computational infrastructures required. However, despite being cost effective, this
technology has raised concerns regarding the security, privacy and compliance of data or services
offered through cloud systems. This is mainly due to the lack of transparency of services to the
consumers, or due to the fact that service providers are unwilling to take full responsibility for the
security of services that they offer through cloud systems, and accept liability for security

breaches [18]. In such circumstances, there is a trust deficiency that needs to be addressed.

The potential of certification as a means of addressing the lack of trust regarding the security
of different types of services, including the cloud, has been widely recognised [149]. However,
the recognition of this potential has not led to a wide adoption, as it was expected. The reason
could be that certification has traditionally been carried out through standards and certification
schemes (e.g., 1SO27001 [149], ISO27002 [149] and Common Criteria [65]), which involve
predominantly manual systems for security auditing, testing and inspection processes. Such
processes tend to be lengthy and have a significant financial cost, which often prevents small

technology vendors from adopting it [87].

In this thesis, we present an automated approach for cloud service certification, where the
evidence is gathered through continuous monitoring. This approach can be used to: (a) define and
execute automatically certification models, to continuously acquire and analyse evidence
regarding the provision of services on cloud infrastructures through continuous monitoring; (b)
use this evidence to assess whether the provision is compliant with required security properties;
and (c¢) generate and manage digital certificates to confirm the compliance of services with

specific security properties.

12

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Chapter One

INTRODUCTION

1.1 OVERVIEW

This thesis presents a framework that was developed in order to automate the process of the
certification of security properties of cloud services, based on evidence acquired through
continuous monitoring of such services whilst they are in operation. The thesis describes the
research foundations and the architecture that was followed in order to develop the proposed
framework and the way that was implemented. It also provides an evaluation of the proposed
security certification framework based on experimental results, static analysis of properties of the

framework and an evaluation based on views of experts in the field of certification.

The remaining of this chapter provides an overview of the research problem that this thesis
covers, as well as the overall aim of the research and the objectives that were followed to achieve
its aim. Finally, the chapter closes by summarising the main contributions of the thesis and

providing an outline of the remaining chapters of it.

1.2 MOTIVATION AND RESEARCH CHALLENGES

Cloud computing is one of the latest technological trend of recent years, which changed
drastically the way IT services are delivered. Cloud computing provides the possibility to utilise
computational capabilities to offer data, storage, compute and software services, upon demand,
without owning the computational resources used to offer them [174]. The use of cloud services
has been spreading fast over the last few years, formulating a market that is expected to reach a
value of $4.13bn by 2017 [183]. Despite its fast spread, however, the use of cloud services still

raises significant concerns that prevent users to fully adopt them. These concerns are mostly

13

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

related to the security of cloud services, including breaches of integrity, confidentiality
[44][117][133] and privacy of customer data on clouds [61][44][117]; spamming, wrapping and
cross-site scripting attacks [61]; various forms of Denial-of-Service (DoS) attacks resulting in
reduced application and data availability [112][44][125]; and Authentication, Authorization and
Accounting (AAA) vulnerabilities of cloud services [44][117]. Thus, the use of cloud computing
has generated research regarding the security of the data and services that it offers

[112][61][44][80][117].

Researchers have made a significant progress delivering methods and tools for access control
and identity management on cloud systems [10], secure storage protocols (e.g., proof-of-
retrievability [41], proof-of-storage protocols [129]), encryption and key management [150], and
secure virtualisation [156]. However, despite of this work, the security of cloud services is still
not totally guaranteed. This is due to several vulnerabilities of cloud service provision that are
related to the possibility of breaches of integrity, confidentiality and privacy due to multi-tenancy
of services; to the interference between security mechanisms operating at different layers of cloud
services (infrastructure, platform and software services); to the interference between security and
cloud virtualization or optimisation mechanisms (e.g., spreading of DoS attacks due to load
balancing in cloud federations [125]); and due to challenging administrative tasks of the cloud

infrastructure (i.e. maintenance purposes).

Furthermore, the risk arising from these vulnerabilities is increased since there are
dependencies between services at all layers of the cloud stack, such as Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). These layers may also
evolve and interact dynamically, such as when changing the Virtual Machines (VMs), or
configurations of platform services, or deployed software services. These dependencies and their
dynamic changes make it difficult to introduce an appropriate pre-deployment and operation
controls for assessing and guaranteeing the security [44][125], as well as they will require a more
dynamic assessment that could cover changes occurred after the deployment. Moreover, the exact
provision of cloud services is often obscure, making it difficult to assess cloud security through

audit mechanisms.

14

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Under these circumstances, increasing the trustworthiness of cloud services requires a
continuous and transparent assessment of the security of these services. The existing certification
mechanisms, which have been used for this purpose, originate from techniques developed to
certify properties of generic software systems and IT infrastructures as for example techniques
based on the Common Criteria model [118]. Such techniques focus mainly on systems with a
static structure that operate under stable operational conditions and, therefore, they are not
suitable for the cloud systems and services, which can change, dynamically. There has also been
research focusing on the certification of service-based systems, whose structure can change
dynamically [12]. However, even the latter research overlooks the deployment infrastructure and
platform services that are involved in the provision of software services in a cloud and special
cloud conditions that introduce vulnerabilities such as service co-tenancy. Moreover, SOA
certification research [12][13] focuses on the use (as opposed to the production) of certificates
and on certificates produced through pre-deployment testing and/or formal analysis of software

services, without taking into account real and continuous cloud service monitoring data.

To address the limitations of current research with regards to cloud service security
certification, this thesis proposes a novel cloud service certification approach. The proposed
approach automates the assessment of the security properties of cloud services and the creation of
digital certificates for security properties of cloud services, based on continuous monitoring of
cloud services. More specifically, the evidence required for assessing and verifying security
properties is acquired through continuous monitoring of cloud service operations. Hence, the
evidential basis for the assessment of properties is able to cover contextual conditions that might
not be possible to predict, test or simulate through other forms of assessment, which take part

before deploying a cloud service, such as testing or static analysis.

Continuous monitoring is able to capture contextual conditions in cloud service provision,
such as changes in the population of co-tenant services, the deployed virtualization and
optimisation strategies and mechanisms in the cloud and/or network and middleware
configurations in a cloud, which are difficult to take into account in static forms of assessment.
The proposed framework is a “model driven” framework that enables the automation of the
certification process of cloud services, through the definition of certification models. These

models drive fully the execution of the certification process, as they define the assessment rules of

15

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

a specific security property that needs to be assessed, as well as the conditions and the life cycle

of the generated certificates.

1.3 OVERALL RESEARCH AIM AND OBJECTIVES

The overall research aim of the thesis is to address the limitations of the current certification

mechanisms, by:

To develop an integrated framework in order to support a continuous and automated
certification process for security properties of cloud services (infrastructure (laaS),
platform (PaaS) and software application layer services (SaaS)). In the framework that
this thesis proposed, the evidence required for assessing security properties of cloud

services, will be acquired through continuous monitoring of cloud service operations.

In order to achieve the overall aim of this thesis, the following key objectives were pursued:

Objective 1:

Review the literature on cloud security certification and identify gaps and controls

relevant to the overall research aim of the thesis.

This initial objective provides an analysis of the current situation in cloud computing area,
with regards to the security of cloud service provisioning. Moreover it will present related
research and practices that has been already done regarding cloud security and the current
certification and audit approaches for cloud services. These topics define the subject area of this
research and its terminology. The analysis of the related work should describe the different
existing frameworks and highlight the strengths and weaknesses of each approach, in order to

identify the gap that this research intends to fill.

16

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Objective 2:

Investigate different forms of monitoring based certification and develop a language for
defining models to specify how this type of certification should be realised in order to

enable the automation of the certification process.

To address the complexity of interactions of cloud services, we have to define and develop a
model that will be able to certify security properties, by continuously collecting evidence based
on operational monitoring. Monitoring based certification models address the limitations of
current certification processes, which are a way to define all conditions for the certification
process, and the inability to provide continuous certification of cloud services in order to be able
to identify any security breach that might occur immediately and take the proper actions
concerning the issued certificate. Certification based on continuous service monitoring would
increase awareness of the operational context of the certification process that is difficult to

achieve with static certification approaches, such as testing [75].

Consequently, a first step was to define a language for expressing the monitoring rules for a
specific security property of a service, and a model to define all relevant information regarding
the whole certification process. Moreover, a certificate life cycle model was also defined to
address all possible states that a certificate might take, which is based on the continuous
monitoring of cloud service, thus all states and their transactions are defined, as well as the

conditions that need to be met for every transaction or the actions that should trigger.

Objective 3:

Develop a certification infrastructure for automatically generating certificates, and for

providing access to, and managing certificates, driven by monitoring certification models.

To realise monitoring based certification models identified in Objective 2, we have developed

and integrated mechanisms and tools to support:

* The operational monitoring of services in cloud systems;

17

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* The analysis of monitoring data gathered, in order to gather the evidential basis
required for issuing the monitoring-based certificates of different security properties of

cloud services and automatically generate them;

* A language to express the conditions that should be met in order to issue, suspend or

revoke a certificate according to the needs of the authority that handles the certificate;
* The transparency of the evidence and the information about the certificate; and

* The storage, retrieval and management of certificates, to be able to make them

available to cloud providers and cloud customers.

Objective 4:

Evaluation of the proposed certification framework, through certification scenarios based on

and/or inspired from real systems.

To ensure its technical trustworthiness and industrial applicability, our proposed framework
was evaluated according to some use case scenarios, which cover technical and operational
aspects of the overall certification approach. Moreover, the language used to express the life cycle
of the certificate was also evaluated about its accuracy through a model checking process.
Furthermore, an expert survey-based evaluation concerning the way certification models should
be defined was also conducted, as well as an experimental certification process, in order to

evaluate the correctness of the monitoring process.

18

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

1.4 RESEARCH ASSUMPTIONS

In order to conduct this research and develop the proposed approach, the following

assumptions were made, which were used as the starting points and directions for the work:

* The framework for the automated generation of monitoring-based certificate described
as objective 3, makes usage of a monitoring tool called EVEREST to support the
continuous monitoring process of cloud services’ operations. This monitoring tool was
implemented by the Software Engineering Group of City University (a more detailed

description of the tool is given in Chapter 3).

* The received events from the operations of the service to be certified should have a
correct format with all relevant information included to them, in order for the used
monitoring tool to read them and to proceed with the monitoring process. For instance,
each event should have a specific XML format with predefined tabs and operation
names, so that the used monitoring tool can extract the necessary information to

proceed with the monitoring process.

* The proposed monitoring-based certification process allows the certification of cloud
services at run time, and is envisioned as a continuous process based on the
monitoring evidence collected from the monitoring tool, and based a Certification

Model provided by a user, as an XML file.

* The focus of the research is on being able to correctly define assessment rules and
conditions for a security property using an XML- based language in the Certification
Model, and being able to process all this information in conjunction with the

monitoring results, in order to certify a cloud service.

* Finally, all involved parties in the certification process are assumed to be trusted
parties. This means that they should comply with a set of security dispositions to

assure the security of the process.

19

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

1.5 RESEARCH CONTRIBUTIONS

This research aims to develop a novel model driven approach for continuous certification of

cloud service security. The proposed framework provides a monitoring infrastructure that is be

able to continuously monitor security properties of cloud services, tailored to the need of the

relevant user, based on a customisable certification model. Based on the users’ certification

model, it can then process the information and proceed with the generation of the certificates for

the specific cloud service and security property defined.

The main contributions of the research described in this thesis include:

Development of an XML based language for expressing monitoring based certification

models

This contribution aims to provide a novel monitoring based certification process by
introducing certification models for continuous assessment of security properties of
cloud services. In order to achieve this goal, a new XML based language was defined
for the specification of certification models, which enables the automated realization
of certification models for an objective assessment of security properties, using

evidence gathered through continuous monitoring.

Definition of an XML based Assertion Language to express the assertions of the

security property

The new language that we have introduced, allows the definition of security
properties’ assertion rules and assumptions, in a way that can be understood by the
monitor, in order to proceed with the monitoring of the service’s operations and to

produce the relevant monitoring results.

Development of a framework to process the Certification Models and automatically

generate monitoring-based certificates.

This framework allows the processing of the defined certification models and the

generation, or changing of status, of monitoring-based certificates. More specifically,

20

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

it is able to translate the security property assertions, defined in the certification
model, to the EC-Assertion language that the monitor understands, and to process all
conditions defined in the certification model, as well as the monitoring results received
by the monitor, in order to decide and change the status of the certificate based on this

information.

* Evaluation of the approach

This contribution aims to prove the accuracy, the correctness and the performance of
the proposed approach. Different evaluation methods were used in order to prove: i)
the correctness and accuracy of the new language for defining monitoring rules, ii)
that the monitoring process does not cause much overhead for gathering monitoring
results, iii) that statically verifiable models can be defined and checked before they are
put in operation, and iv) the experts’ opinions about defining the proposed certification

model and about the monitoring based certification process.

1.6 PUBLICATIONS

The contributions of this thesis have been also submitted and published to different

conferences. Bellow all published papers are presented.

¢ Krotsiani M., Spanoudakis G., Mahbub K. “Incremental Certification of Cloud
Services”, In Proceedings of the Seventh International Conference on Emerging
Security Information, Systems and Technologies (SECURWARE 2013), Barcelona,
pp- 72-80, 2013 [145].

In this paper, an early version of the certification model and the monitoring-based

certification process was presented and described.

* Kirotsiani M. and Spanoudakis G. “Continuous Certification of Non-Repudiation in

Cloud Storage Services”, In Proceedings of the 13th IEEE International Conference on

21

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Trust, Security and Privacy in Computing and Communications (TrustCom), Beijing,

pp. 921-928, September 2014 [143].

In this paper we described an early version of the certification model and the
certificates’ life cycle, as well as we explained the certification process based on
continuous monitoring. Moreover, we have introduced the definition of the Non-
Repudiation security property in the monitoring language and we introduced the
notion of anomaly in the certification model. We explained possible anomalies that
might occur while certifying the Non-Repudiation security property and the way that

they can be defined in the proposed certification model.

Hudic A., Krotsiani M., Tauber M., Spanoudakis G., Loriinser T., Mauthe A. and
Weippl E. R. R. “A Multi-Layer and Multi-Tenant Cloud Assurance Evaluation
Methodology”, In Proceedings of the 6th IEEE International Conference on Cloud
Computing, Technology and Science (CloudCom 2014), Singapore, pp. 386-393, 2014
[120].

This paper presents a methodology based on Common Criteria, for aggregating
information regarding security properties of individual components of cloud
applications from different layers of a cloud stack, in order to provide an overall and
continuous assurance level evaluation of cloud services.. Our main contribution in this
work was to develop a broader cloud assurance methodology based on the certification

process proposed in this thesis.

Krotsiani M., Spanoudakis G. and Kloukinas C. “Monitoring-Based Certification of
Cloud Service Security”, In proceedings of the On the Move to Meaningful Internet
Systems: OTM 2015 Conferences, Vol. 9415, pp. 644-659, Springer International
Publishing, October 2015 [144].

22

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

In this paper an advanced version of the proposed approach was presented,
incorporating an elaborated scheme for: (i) assessing the sufficiency of evidence for
producing certificates, (ii) defining a life cycle model, and (iii) executing certification
processes according to precisely defined models of them. Moreover, the experimental
evaluation of the monitoring-based certification process was also introduced and
analysed, where the results concerning the performance of the proposed approach was
presented, based on a Protection Profile of Common Criteria and on a case study

involving the certification of the MySQL database server.

1.7 OUTLINE OF THE THESIS

This thesis is organised into eight chapters including this chapter. The rest of the thesis is

structured as followed.

Chapter 2 provides the literature review. The chapter investigates technological frameworks,
mechanisms (controls) and standards for achieving security in the cloud and for certifying cloud
security. A critical review of these is provided and gaps are identified. It also introduces a
conceptual framework for monitoring based certification, and the basic concepts used for the

proposed certification process are defined.

Chapter 3 focuses on the technical background of our research, by describing techniques and
frameworks used for the realisation of the proposed approach. More specifically, it presents the
monitoring framework that our approach is based on, as well as the EC-Assertion language that it
uses. Moreover, the framework used for the evaluation of the proposed framework is also

presented and described.

Chapter 4 presents a high level overview of the proposed certification process based on
continuous monitoring, which is the focus of this thesis. Moreover, it provides a detailed
description of the Certification Model that was developed. More specifically, the definition and

the use of each element and sub-element of the certification model are explained in details.

23

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

In Chapter 5 three examples of the Certification Model are provided, which was explained in
Chapter 4. In particular, the first example provides the certification model for the Non-
Repudiation security property and explains the way to define each element. The other two
examples refer to two case studies, each of which was used as an example to present the

definition of different security properties that were certified.

Chapter 6 provides the implementation of the proposed research, by presenting the architecture
of the certification infrastructure, used for producing monitoring-based certificates, and by
explaining its components and their methods. Moreover, three algorithms that were developed to
support the monitoring based certification process are also presented and explained. These
algorithms refer to i) the translation of the new Assertion language used in the certification model
into the EC-Assertion language that the monitor uses, ii) the handling of the defined expected
behavioural model, which is part of the proposed certification model, and iii) the handling of the

life-cycle model defined in the certification model.

Chapter 7 presents the evaluation of the proposed framework and of the certification model.
More specifically, a survey-based evaluation for the certification model was conducted to
evaluate the correctness and accuracy of the XML based language used for defining the
certification models. Furthermore, a model checking of the life cycle model is presented, as well
as the set up and the results of an experimental evaluation of the proposed framework that was
implemented as a proof of concept for our approach. The experimental evaluation has been based

on a Protection Profile of Common Criteria and a simulated case study.

Finally, Chapter 8 concludes with the summary of the proposed approach that is described in
this thesis and the contributions of the research underpinning it. It also describes the limitations of

the approach, and outlines directions for future work on security certification.

24

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Chapter Two

LITERATURE REVIEW

2.1 OVERVIEW

This chapter provides an overview of the current state of cloud computing in terms of security
and privacy. Its purpose is to give readers the necessary technical background on cloud security

and cloud security certification.

More specifically, section 2.2 covers the technical background on the concept of cloud
security. It also provides a conceptual model, in order to bond all terms of cloud security, in order
to give a better understanding of their associations. Section 2.3 covers the broad area of cloud
security and its relevant elements. Concepts such as threats, vulnerabilities, and security risks
faced in cloud computing, as well as security mechanisms and security properties are being
analysed and discussed. Section 2.4 presents the concept of certification and certificates, in order
to enable readers to understand the relationship of the current research to existing approaches of
cloud certification. Finally, section 2.5 summarises the open issues faced in the current state of

cloud certification, which are the motivations for the current research.

2.2 CERTIFICATION CONCEPT AND CONCEPTUAL MODEL

Cloud computing became a mainstream solution of Information Technology (IT), where
resources and services are provided on demand and on a pay-as-you-go basis [21][22].
Infrastructure, platform and software services, known as Infrastructure as a Service (laaS),
Platform as a Service (PaaS) and Software as a Service (SaaS), respectively, are provisioned to
clients, who can use these resources or services at lower prices and high performance and

flexibility. Cloud Computing has transformed business and government by transforming the way

25

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

of designing and deliver technology and application, into a more efficient way. However, these
advantages have created new security challenges by introducing new security vulnerabilities,
including emerging security issues. These issues are the main reason that discourages cloud users

from adopting these solutions [18].

In recent years, the security research community has worked hard to improve the security of
cloud systems and several solutions have been developed. According to the current research
[18][149][180], checking security properties is greatly facilitated whilst an accredited authority
produces, maintains and manages signed certificates through the certification process. As
Certification Process we can define an activity that takes as inputs the assertions for specific
security properties of a specific cloud service that needs to be certified, in order to produce as an
output a certificate, which will contain all relevant evidence that proves the requested properties,
by means of verification and validation techniques. These certificates are produced concerning
security properties of cloud entities, as well as the evidence supporting such assertions. Security
properties refer to threats that might occur, which are generated by different threat agents, and
they introduce the notion of risk. To mitigate these risks, different security mechanisms are being

designed.

In order to provide a common understanding about the key concepts of cloud security, such as
certification, certificates, security properties, assertion, threats, and risk; we provide a conceptual
model that accumulates all these concepts. This model provides a basic conceptualisation of the
proposed research and related notions, as well as their association. It is an extended version of the
meta-model produced by the University of Milan for the Cumulus Project [69], which integrates
also the Threat-Risk-Asset model introduced in Common Criteria [65], as well as the terms of

Security Compromise, Security Controls and Mitigation.

A shown in Figure 1, there is a Threat Agent entity, who is responsible for generating and
producing Threats, which refer to a Security Property. Consequently, a Threat introduces the Risk
in cloud solutions, which causes a Security Compromise for the Asset. A Security Compromise is
mitigated by the Security Controls developed in the Asset, which are also known as
Countermeasures. The Certification Model assesses this Mitigation, in order to generate and issue

a Certificate that certifies the Target of Certification for the specific Security Property.

26

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Package Diagram Data Conceptual Model ———
'ge Diag l P U Property !_Thrul Agent
Category ——
1.7
i Causes| ¥
Belongs to A
Provides assurance for B> , 1 1 1.
Security Threat
Property |1 <4 Refers to 1
1.0

Contains p |Evidence Based on B Evidence Collection
1 1

D e ! [%1
Refers t
Security Control efers to|F

i 1. Certifies
1 Certification Model Introduce| ¥

- and manages

1.
1 1 Enables| W

1.0 1 1.0 Defines W 0.° 1
Certificate 1 v 1 1 1.0
[Status | [ife G Mitigation Securit; "
Has o T Status | Basedon B [y ife cycle 9 Mitigates B> | 4 4 Causes Risk
1 = contes ¥ | ‘ ‘ N —

1.0 1

Defines

i 1
ifi Certification
" [Cortifier | < Approves
= g - Targotol | s J Assot | qCompromses
:’1.. 1 1 Certification _ct—ﬁ .

Certifies I ‘1

Figure 1 — Conceptual Model for Cloud Certification

Based on this model, the following definitions can be introduced for a better understanding of

the terms used.

Definition 1:

A Certification Model (CM) is a model that defines the way in which it is possible to obtain
assurance on whether a given security property is preserved by an asset, for a given period of
time, generate a certificate to encode information that is necessary for this assurance, and manage

this certificate as evidence regarding the preservation of the property or otherwise accrues.
A certification model defines:
* The asset that is the target of the certification process (i.e., the target of certification),
* The security property of the asset for which assurance is required,

* The evidence that needs to be considered for establishing the necessary assurance of

the asset, and

27

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* The process of generating and updating certificates to express the assurance
regarding the security property for the asset (referred to as “life cycle” model in the

following).

Definition 2:

Security Properties are part of the Certification Model entity in our conceptual model. As
Security Property, we define the security requirement imposed on a cloud service, which is
derived from applicable laws, policies, standards or regulations, that need to be addressed and its

measurements (e.g. sample size, period), in order to obtain the necessary assurance level.

Definition 3:

The term Assertion refers to the formal specification of a security property that is expressed in
a manner allowing the automated assessment of whether the security property that it refers to is

satisfied.

Definition 4:

The Target of certification (ToC) is defined as an asset of a cloud service (e.g. a specific
service operation, a set of service operations, data managed by the service) or an asset that is
required or contributes to the realization of a cloud service (e.g., a virtual machine), which

becomes the subject of certification.

Definition 5:

The term Life Cycle refers to a state chart diagram, used to define all possible states a
certificate can take during its life. It also defines the transactions between different states based on

specified conditions that need to take place.

28

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Definition 6:

As a Threat we can define any possible event that can have a harmful impact to organizational
operations (such as functions, image, or reputation), organizational assets, or individuals, through
an information system via unauthorized access, destruction, disclosure, modification of
information, or denial of service. A threat can also be a potential source to successfully exploit

particular information system vulnerability, or compromising the integrity of software code.

Definition 7:

The term Risk can be defined as the probability of occurrence of an unwanted event and its
negative consequences for the stakeholders [205]. More specifically, ISO 27005 defines risk as
“the potential that a given threat will exploit vulnerabilities of an asset or group of assets and

B

thereby cause harm to the organization,” assessing it in terms the probability of an event to

happen and its consequences [122].

Based on the conceptual model, a CM includes all conceptual entities involved in the
certification process of cloud entities and defines how a certificate is produced, what is its
content, and how it is managed. Apart from the Security Property entity, a CM also includes i) a
Certification Authority entity that approves a Certifier to sign the generated Certificate, ii) an
Evidence Collection entity, iii) a Target of Certification (ToC) entity, and iv) a Life Cycle entity.
Therefore, a certification model should define the security property that needs to be certified
regarding a specific target of certification (ToC) that this property applies to and the way evidence
should be collected assessing a property. A Security Property belongs to a specific Security
Property Category and has one or more Assessments, which define the rules based on which the

validity of the security property is being checked.

According to a certification model that is defined (or endorsed) by a certification authority,
certificates are being produced and signed by a Certifier. Thus, after having defined a CM and

checked the evidence of a ToC for a specific Security Property, a Certificate is generated. Each

29

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Certificate should have a reference to the relevant CM that was generated from, and provide the
Evidence that where used in order to issue it. Moreover, the ToC that it certifies should also be
specified, as well as its Status, which changed according to the Life Cycle defined in the CM.
When the evidence gathered for a certificate is sufficient for verifying the security property
related to it (as determined by the certification model), a certificate could be issued. However,
even after they are issued, certificates can be updated subject to changes in the operational
conditions of the cloud service, which should also be defined in the certification model. All these
possible updates and other key changes in the status of a certificate are defined in the /ife cycle

entity of the Certification Model.

2.3 SECURITY PROPERTIES, THREATS, RISKS AND SECURITY CONTROLS

The key factor to manage risks in cloud computing is to recognise and understand the nature of
security threats that exist. Therefore, in order to facilitate risk-management decisions regarding
cloud adoption, a deep understanding of new threats and vulnerabilities that cloud computing
adds with respect to security issues should first be achieved, as well as the identification of cloud

threats that cause these issues.

2.3.1 SECURITY PROPERTIES

In order to assure customers about the security level that is being provided by a service, a form
of assurance should be given through a commitment made by the cloud providers to their
customers. To achieve this assurance, the security mechanisms, which are used to protect the
cloud services from possible attacks, should be assessed and verified. Thus, the term security
property represents the security requirements imposed on cloud service that should be verified.
These requirements define the set of attributes that specify the details of the definition of the

security property that should be verified, as well as the method to measure it.

Security evaluation mechanisms such as Common Criteria’s “security functional components”

[65] and the control domains of ISO 27002 [122], have taken a more practical approach to define

30

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

a series of security domains. A clear categorisation of security properties based on a classification
scheme was produces in the Cloud Control Matrix (CCM) [59] by Cloud Security Alliance’s

(CSA), that provides a good coverage and a clear taxonomy for security properties.

CCM is a control framework focuses specifically on cloud security. It lists a series of control
objectives on the lower level, which is slightly different from providing security properties, and
on a higher level, the control domains that are defined cover the key areas that are critical to cloud
computing [59]. Moreover, the CCM 1is designed to map also other well-known control
frameworks such as ISO 27001 [122], COBIT [62] or PCI-DSS [186], in order to cover all

possible security risks.

Thus, according to the CCM and to the work done by CSA in the CUMULUS Project [68], the

main security property categories and their corresponding abstract security properties are:

1. Application & Interface Security

This category refer to the security of applications and APIs used in cloud environments, and it

consists of the following abstract security properties:

* Data Integrity. This property checks that data has not been changed, destroyed, or

lost by an unauthorized user or in accidental manner.

* Confidentiality. This property checks that data is not disclosed to system entities

unless they have been authorized to access the data.

* Authenticity. This property checks that the asset is genuine and able to be verified
and be trusted.

* Non-Repudiation. This property checks that an entity cannot deny having
participated in a part or a whole of a data transaction, such as uploading or

downloading data.

31

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* Information flow control. This property checks the possibility to monitor data
exchanges between entities, for the purpose of blocking or alerting about deviations

from the expected behaviour.

* Auditability. This property provides chronological records of system activities in a
sufficient way, in order to enable the examination of the sequence of activities of an

operation, procedure.

2. Infrastructure & Virtualization Security

This category refers to risks that may occur concerning the coordination and maintenance of
the different cloud infrastructures and virtual machines used in cloud computing. The main

abstract security property of this category is:

¢ Tenant Isolation. This property refers to the ability of an asset to keep its tenants

segregated from each other.

3. Interoperability & Portability

This category refers interoperability and portability of cloud services and its abstract security

property is:

* Portability. This property checks if data are usable in different environments, or

different cloud service providers.

4. Security Incident Management, E-Discovery & Cloud Forensics

This category refers to incident management of cloud services. It consists of the following

abstract security properties:

32

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* Incident management quality. Checks the ability of an entity to handle and report

incidents in a proper way.

5. Identity & Access Management

This category refers the way users’ identity, access and privacy are being maintained and

managed. The relevant abstract security properties of this category are:

¢ Identity assurance. This property obtains assurance concerning the identity of users,

through the provision and verification of their credentials.

* Credential security. This property refers to the secure storage of users’ credentials,

which should be protected against external or internal threats.

* Account control. This property refers to the ability af an asset to keep its users’

accounts secure, to protect them from malicious threats.

* Access privacy. This property provides users with access to resources without having

the ability to identify them.

6. Encryption & Key Management

This category refers to the encryption used by the cloud providers and the way they store and
manage the different encryption keys. In this category the relevant abstract security property

is:

* Key management. This property protects the confidentiality and integrity of
cryptographic keys during their whole lifecycle.

33

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

7. Governance & Risk Management

This category refers to the way risks are being handled in a service, and the relevant abstract

security property is:

* Risk control. This property checks the ability of a system to analyse and quantify

external or internal risks.

8. Legal & Standards Compliance

This category refers to the legal compliance of cloud providers and their compliance to

standards. This category consists of the following abstract security properties:

* Location control. This property checks the ability of a system to restrict

geographically the location where data is stored and processed.

* Personal data privacy. This property checks that the disclosure of data related to a
physical person is under the control of that person, in terms of recipients and purpose

of processing.

9. Data Security & Information Lifecycle Management

This category refers to risks concerning data security and the way data is being handled. The

following abstract security properties are relevant to this category:

* Data disposal. This property refers to the ability of an asset to effectively dispose of
data and all its copies/backups.

* Data leakage control. This property refers to the ability of an asset to monitor

breaches of data confidentiality.

* Durability. This property refers to the ability an asset to protect the integrity of stored

information during its whole lifecycle.

34

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

10. Data centre Security

This category refers to threats and risks concerning the physical integrity of an asset. The

relevant abstract security property of this category is:

* Physical Integrity. This property obtains assurance to a physical entity, not to be

bypassed by an unauthorized user.

11. Business Continuity Management & Operational Resilience

This category deals with different types of risks regarding the operational aspect of an asset.

The relevant abstract security properties of this category are:

* Availability. This property refers to the ability of a system or a system resource to be
accessible, usable or operational upon demand, by an authorized user, according to

performance specifications of the system.

* Recovery. This property refers the ability of an asset to return to a secure state, in

case of a failure or a malicious attack.

* Resource control. This property refers to the ability of an asset to control how

resources are being allocated.

12. Change Control & Configuration Management

This category refers to the way cloud provides handle configuration changes and security

policies. It consists of the following abstract security properties:

* Compliance control. This property refers to the ability of an asset to enforce security

policies.

Configuration change control. This property refers to the ability of an asset to monitor and

report configuration changes to customers.

35

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Table 1 summarises all security property categories and their relevant abstract security

properties that were presented.

Table 1 - Security Property Categories and Abstract Security Properties

Security Properties

Security Property Category

Abstract Security Property

Application & Interface Security

Data Integrity

Confidentiality

Authenticity

Non-Repudiation

Information flow control

Auditability

Infrastructure & Virtualization
Security

Tenant Isolation

Interoperability & Portability

Portability

Security Incident Management, E-
Discovery & Cloud Forensics

Incident management quality

Identity & Access Management

Identity assurance

Credential security

Account control

Access privacy

Encryption & Key Management

Key management

Governance & Risk Management

Risk control

Legal & Standards Compliance

Location control

Personal data privacy

Data Security & Information
Lifecycle Management

Data disposal

Data leakage control

Durability

Threat & Vulnerability Management

Vulnerability management quality

Data Centre Security

Physical Integrity

Business Continuity Management &
Operational Resilience

Availability

Recovery

Resource control

Change Control & Configuration
Management

Compliance control

Configuration change control

36

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

2.3.2 ASSETS OR TARGET OF CERTIFICATION

According to definition 4 that we gave in Section 2.2, a Target of Certification is an asset of a
cloud service, such as a specific service operation or a set of service operations, as well as data
managed by the service, or even an asset that is required or contributes to the realization of a

cloud service (such as a virtual machine), which becomes the subject of the certification process.

Based on the cloud computing reference architecture provided by NIST [154] as shown in
Figure 2, an asset or a ToC can be any component of the service orchestration, in any of the three
layers of a could service (SaaS, PaaS, [aaS), the resource control or the physical resource area, as
well as any component of the Cloud Service Management. Moreover, assets can also be humans
or organisations that could be related to a cloud component and contribute with the relevant ToC
for the security realisation. However, these types of assets are not standalone ToCs in the current
research, but they are taken under consideration in case they are associated with another type of

ToC.

/ Cloud Provider \
Service Orchestration Cloud Service ,

[Management
/ Service Layer
Saa$S
PaaS Business Support
laaS "
£ 0
. J — : &
Provisioning / 5 2
Resource Control Configuration a e
Area \
7~ Physical Resource \ -
Area Portability /
Hardware Interoperability
|
| [

Facility
\ 4

o

Figure 2 — Cloud Computing Reference Architecture

37

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

2.3.3 THREATS

As defined in Definition 6, a threat can have a malicious impact to organizational operations of

an asset. Among the most significant security threats associated with cloud computing, is the

tendency to bypass information technology (IT) departments and information officers [57].

According to the “Notorious Nine” report from Cloud Security Alliance (CSA) [57], the most

critical threats identified in the area of cloud computing the last years, are:

1.

Data Breaches, which refer to incidents in which sensitive, protected or confidential

data has potentially been viewed, stolen or used by an unauthorized individual.

Data Loss, which refers to the permanently loss of data. This could be caused due to

malicious attackers, an accidental deletion or even to a physical catastrophe.

Account Hijacking, which refers to attacks such as phishing, fraud, or exploitation of
software vulnerabilities to gain access to users’ credentials and eavesdrop on activities
and transactions, manipulate data, return falsified information, or redirect clients to

illegitimate sites.

Insecure APIs. Cloud providers expose a set of software interfaces or APIs that
customers use to manage and interact with cloud services. These APIs are used to
perform provisioning, management, orchestration, and monitoring. Therefore, the
security concerning authentication, access control, encryption and activity monitoring,
as well as the availability of cloud services depend upon the security of these APIs,
which must be designed to protect the services against both accidental and malicious

attempts.

Denial of Service (DoS), which are designed to disrupt or disable services or
resources, in order to prevent them from delivering traffic to legitimate users. They
aim to make services and resources unavailable to its intended users, such as to

temporarily or indefinitely interrupt or suspend cloud services or applications.

Malicious Insider, which refers to the threat of a current or former employee of an

organization, or any other business partner with authorized access to the organization's

38

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

network, system, or data, who intentionally exceeded or misused that access in a
negative manner affecting the confidentiality, integrity, or availability of the

organization's information or information systems.

7. Abuse of Cloud Services, which refers to the mal-use of the vast amount of computing
power provided by cloud systems. An example could be to use cloud-computing

power to crack an encryption key faster.

8. Insufficient Due Diligence, which refers to cases where some organisations rush to
adopt cloud technologies without understanding the full scope of the undertaking that
might lead to contractual issues over obligations on liability, response, or transparency

by creating mismatched expectations between the cloud provider and the customer.

9. Shared Technology Issues, which refer to threats caused due to the shared technology
that cloud computing offers, such as the hypervisor, a shared platform component, or
an application in a SaaS environment, which expose the entire environment to a

potential of compromise and breach. This threat can affect an entire cloud at once.

Except of these nine threats, there are also some other identified threats known as Injection
attacks, such as SQL injection, command injection or cross-site scripting attacks. This type of
attacks has the intention to inject malicious pieces of code or scripts to be executed in parts of the

services or applications, in order to intercept data [211].

Molner and Schechter tried to classify various threats, which could not only be related to
cyber-attacks, in technical and non-technical threats [175]. Even though technical threats, such as
Denial of Service (DoS) attacks, are more critical, they suggest that non-technical threats are just

as important as the technical ones, and they classify them into the following categories:
1. Contractual Threats

These threats are related to contractual issues when using cloud services, such as
bankruptcy of stakeholders in a provisioning chain, potential switching costs between

providers, or cost-overruns due to attacks that aim to maliciously consume resource,

39

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

such as the abuse of cloud services. This type of threats can cause reduced availability

of cloud services.

2. Jurisdictional Threats

These threats can refer to either i) an indirect legal coercion, such as cases where cease
and desist requests sent to the cloud infrastructure provider; or ii) to direct or indirect
jurisdictional exposure from copyright holders and law enforcement agencies, such as

exposure to “secret searches”.

3. Organisational Threats

This type of threats can be challenging to assess, as they refer to threats that are caused
by human interactions, which cannot be monitored and audited. An authority can
check the application of organisational quality management standards, such as those
related to the ISO 9000 standards, in order to determine if these aspects can be

potentially spotted and addressed.

One of the main benefits that cloud computing offers is the shared tenancy of a physical data
centre infrastructure, such as the ones in public or community clouds. However, shared tenancy
introduces a number of potential new threats and risks, which are explored by Molner and
Schechter [175]. According to the potential restrictions on forensic capabilities caused by
malicious tenants, a threat that is difficult to monitor, audit, or has reduced response capabilities,
may occur. Therefore, the shared tenancy that cloud systems offer can cause a non-technical
threat that is related to the so-called jurisdictional collateral damage. This type of threats concerns
situations where law enforcement agencies may request the shutdown of a data centre, due to a
malicious behaviour of one of its tenants. Finally, specific technical threats from cloud tenants
can be associated with direct breaches, side-channel attacks, denial of resources related to

insecure APIs or resource theft.

40

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

In Table 2 below, all categories of the mentioned threats of cloud computing are summarized.

Table 2 - Threats Categories

Threats

Technical Non -Technical
Data Breaches Contractual
Data Loss Abuse of Cloud Services
Account Hijacking Organisational
Insecure APIs Insufficient Due Diligence
Denial of Service (DoS) Jurisdictional
Shared Technology Issues Malicious Insider
Injection attacks

2.3.4 RISKS AND SECURITY CONTROLS

Risk may rise due to various factors such as the location of the data centres, data security and
integrity, the lack of knowledge and/or misuse of the provided infrastructure, or due to the
governing policies and regulations. In order to resist to an attack caused by a threat agent and
decrease the impact or the probability of a threat to occur, strong security mechanisms are
necessary to detect and avoid the attackers. Cloud computing service providers use various
security measures to ensure that security risks are taken care of, in order to resist to various

malicious attacks.

According to the literature, security risks and their security controls in cloud computing can be
classified in different categories with regards to their objectives. The three main categories of
security controls, based on the security properties they refer to, which are also known as CIA4, are:
1) Confidentiality [205][21][39][50][77][172][184]; 2) Integrity
[205][21][184][234][94]1[107][206]; and 3) Availability [39][172][184][43][61][133][204]. These
main objectives are the most important for the risk assessment process, in order to assure cloud

systems for adoption.

41

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

1. Confidentiality (C)

Confidentiality refers to the protection of personal and sensitive data or information, from
unauthorized access or information disclosure. This includes means of maintaining personal

privacy of users.

Confidentiality and strong authorization and authentication mechanisms are essential for cloud
providers, in order to gain trust from their customers. Unauthorized access, theft of sensitive data
or identification codes (credentials), and the increased number of credentials used by a user,
which can cause the reuse of the same passwords in multiple services [172], can be identified as
main attacks of this category. Consequently, as properties of interest for confidentiality, we can
indicate the authorization of wusers [107][132][52], the security of users’ credentials
[234][110][132] and the restriction to unauthorised access [184][219][220][225]. Credential and
identification mechanisms [172][234], authorization mechanisms [184][107][225], and
cryptographic mechanisms [107][234] should be the targets, in order to evaluate the risk

regarding this objective, and avoid the attacks related to confidentiality.
More specifically, these mechanisms can be further defined as:
a. Authentication Mechanisms

Authentication is the process of uniquely validating a particular entity or individual’s
credentials. In focuses in identifying whether a particular individual has the right to enter a system
or access a secure site. Because the aim of authentication is to prevent unwanted access to
resources, network’s authentication credentials should be kept secure and secret to safeguard this

information [224][52][53][184][110][132].

Most security policies state that to access a service, a user must enter a login ID and password
that are authenticated by a security server [107][166][184][110][132]. To maximise security, one-
time or dynamic can be used or strong password policies that define certain requirements that a
password should meet (length, specific characters to be used or combinations of characters that
are forbidden). Some times a password may be accomplished with the use of a token, which is a
physical or virtual object that store authentication information, such as smartcards or ID badges

[195]. Furthermore, biometrics mechanisms can also be used for authentication, which

42

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

authenticate users based on physical characteristics, such as fingerprint scanners, retina scanners
or hand geometry scanner, as well as voice or facial recognition software [233][195]. Many
systems might also use a multi-factor authentication mechanism, which requires at least two
different authentication factors to be used, thus enhancing the authentication process

[107][166][224][52][53][184][110][132].
b. Authorization Mechanisms

Authorization refers to the process that determines whether a user has the authority to perform
various tasks. It grants users privileges by determining what type of activities, resources, or
services they are permitted to use. Usually, authorization occurs within the context of
authentication. Once a user is authenticated, they may be authorized to access or perform different

types of activities [184][107][110][132][225][52].

2. Integrity (I)

Integrity refers to the protection against improper data modification or destruction from
unauthorized users, in order to ensure the authenticity, validity, quality and security of data or
information. Unauthorized changes and modifications in sensitive data or information [234]
[94][107], loss of consistency due to massive data duplication [184][206], data loss or destruction
and faulty clients that send inconsistent shares to different servers [21] are some of the threats of
this risk category. As a result, the focus should be on data loss or data modifications
[234][94][107], and data validity, quality, and durability of system’s operations [184][234][220].
In order to resist to these threats, a system should have strong authorization [184][107][225],
validity and quality mechanisms, which are important in Cloud computing, in order to ensure

referential integrity is maintained [193].

3. Availability (1)

Availability refers to high-speed and reliable access, storage or use of any required service,

information, or application, at any time and from anywhere users desire. The availability threats

43

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

could be the disruption of network connection or network failures [172], the disruption of data
access or server failures [172], the overcapacity of the cloud [21][184][94][61][204], and the lack
of data backups or insufficient data recovery services [21][133][202]. As a result, the main focus
for the availability is on the reliable access, which should be at any time, the data access in
general [21][220], as well as the overcapacity of the cloud. In order to resist to these threats,
checking access mechanisms [43], cloud capacity measurements [184][94][61], priority of users
mechanisms in case of overcapacity, as well as data recovery and backup services [172][133]

should be properly evaluated.

Another relevant security mechanism concerning the availability risk is the Quality of Service
(Q0S). QoS refers to the ability of a system to optimise performance, by prioritising certain
network traffic, applications or data flows, to ensure a consistent level of performance. In other
words, it measures the performance of a system, such as bandwidth, latency, error rate, uptime,
delay or jitter. Due to the cloud characteristic of rapid elasticity [173][32], cloud services can
migrate across different cloud infrastructures or they can scale up or down, which can
compromise the QoS measures between components of a service, leading to low performance

[209].

Except of these three main categories (CIA), three more categories can be defined to cover

some other types of threats and risks in the cloud. These are:
4. Data Location (DL)

Data location refers to the aspect of cloud computing, in which service providers are not
concentrated in a single location, but instead they are geographically distributed around the globe.
This risk creates unawareness among cloud customers about the exact location of the data centres
[94][117][49][138][119][202]. Moreover, but having distributed data centres users are not in
control over the physical access mechanisms to their data stored in these cloud providers [202].
As a result, this could interrupt investigations within the cloud and makes it difficult to access
some activities of the cloud, where data is not stored in a particular data centre but in a distributed
format [49]. The location of a provider’s data centres or operations can affect risk in different
ways, due to jurisdictional threats, political instability, or actual geographical threats, such as the

possibility of earthquakes in a region or the availability of reliable power sources [49][138][119].

44

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

In order to overcome this risk, according to [49][202], cloud providers should make a proper risk

analysis and gain trust froth their users.

5. Data Segregation (DS)

Data in the cloud is typically in a shared environment together with data from other cloud
users [49][138][119][202][166]. However, data isolation is not always easily achievable in all
cloud environments, because not all data can be segregated according to the users’ needs
[117][49]. Encryption mechanisms are one effective way to achieve data segregation
[234][94][107][57][117], but in some cases it can destroy completely the data, due to an
unwanted accident [224]. A more secure way to use encryption mechanism is by providing some

evidence concerning the encryption schemes that are being used by cloud providers.

6. Accountability (AC)

Accountability measures the resources that users consume. This can include the amount of
system time or the amount of data a user has sent and/or received during a session. Accountability
in cloud computing refers to a set of approaches in order to addresses two main problems: i) the
lack of trust in cloud service providers and the difficulty they face to be compliant across

geographic boundaries, and b) the emphasis on data protection [107][173][76][90].

Accountability can be achieved by logging sessions and usage information. This information is
then audited and used for authorization control, billing, trend analysis, resource utilization, and

capacity planning activities [107][173][76][90].

In the table below, we summarize the risks and their security mechanisms used to overcome

them.

45

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Table 3 - Cloud Risks and Security Mechanisms

Risks Security Mechanisms
- Authentication
Confidentiality (C) Authorisation
Authorisation
Integrity (I) Validity mechanisms
Quality mechanisms
Access control
Availability (A) Capacity measurements
Quality of Service
Data Location (DL) Trust
Data Segregation (DS) Encryption

Accountability (AC)

Audit and logging mechanisms

2.3.5 SUMMARY OF SECURITY PROPERTIES, THREATS, AND SECURITY

CONTROLS

Table 4 gives a summary of the concepts that this section presented and maps them together, in

order to provide a better understanding of their connection.

Table 4 - Combined Vulnerabilities, Threats and Security Risks in Clouds

Security .
Property LRGN L1 Threats Risks
Property
Category
Data Breaches,
Data Integrity Shared Technology Issues, | C, I, A, DS
DoS
Injection Attacks,
Application & .. Shared Technology Issues,
Interface Security Confidentiality Data Breaches, LAC
Malicious Insider
o Data Breaches,
Authenticity N CLA
Account Hijacking

46

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Data Breaches,

Non-Repudiation .. . C LA
Malicious Insider
Information flow Injection Attacks,
Shared Technology Issues, | C, L, A
control
Data Breaches
Injection Attacks,
oy Shared Technology Issues,
Auditability Data Breaches, C I A AC
Malicious Insider
Infrastructure & . Data Breaches, C.1 A, DL,
Virtualization Tenant Isolation hared hnol DS
Security Shared Technology Issues
Interoperability & .-
Portability Portability Shared Technology Issues C,I,A,DL
Security Incident Incident
Management, E- neiden Insufficient Due Diligence,
. ’ management A, AC
Discovery & ualit
Cloud Forensics q y DoS
Account Hijacking,
Identity assurance Abuse of Cloud Services, C, LA
Injection Attacks
Identity & Access | Credential security | Account Hijacking C, LA
Management Account control Data Breaches C, LA
Data Breaches
Access privacy Account Hijacking C, LA
DoS
Data Breaches
Encryption & Key Account Hijacking
Management Key management DoS C, I, A,DS
Abuse of Cloud Services
Gpvemance & Risk control Abuse of Cloud Services C, LA
Risk Management
Location control Data Breaches, C, LA, AC,
Shared Technology Issues DL, DS
Legal & Data Breaches,
Standgrds Personal data Account Hijacking,
Compliance : .. C, LA
privacy Injection Attacks,
Malicious Insider
Data Breaches,
Data Security & | Data disposal Account Hijacking, C1
Information DoS
Lifecycle Data leak Data Breaches,
Management ata feakage Account Hijacking, C 1
control DoS

47

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Data Breaches,
Durability Account Hijacking, C 1
DoS
Threat & Vulnerabilit Injection Attacks
rea ulnerability
Vulnerability management Shared Tec}llmology Issues, I, AC
Management quality Data Breaches,
Malicious Insider
Business ; A5
Continuity Availability Insufficient Due Diligence, A
DoS
Management &
Operational Resource control Data Loss A, AC,DL
Resilience Insufficient Due Diligence T
Compliance control Insufficient Due Dlhgence C LA AC
Change Control & Abuse of Cloud Services
Configuration Conficuration Insecure APIs
Management g Shared Technology Issues | C, L, A, AC
change control R
Injection Attacks

2.4 CERTIFICATION AND CERTIFICATES

Certification of service providers is an essential tool to build trust between them and their
customers. It is a type of industry agreed “compliance” mechanism, through which providers can
be certified in order to demonstrate adherence to particular standards [149]. By using certified
entities, customers can rely on the assessed security properties of an asset, provided that the
certification process that is used for the assertion is able to produce sufficient evidence for the

validity of the specific property.

Hence, certification allows users to formulate a trusted judgment for cloud providers,
according to their compliance with certain policies or standards. The outcome of the certification
process is usually a certificate, which states the cloud providers’ compliance according to an
assessment defined in a certification model. When a certificate claims adhering to certain certified
policies, trust comes from compliance with those same certificate policies. In other words, a
certificate indicates that an issuing certification authority (CA), by following specified policies,

states that a cloud provider adheres to specified policies. An important aspect of certification is

48

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

the transparency of the data produced by the cloud infrastructure and the collected evidence to

certify it, since it make cloud security issues more clear to end users [217].

There are many certification schemes, each of which provides different benefits and
challenges. As mentioned in Section 2.2, a Certification Model (CM) is used as a guideline for the
certification process and includes all conceptual entities involved in the certification process.
Focusing on the type of the asset that needs to be certified, or as we mentioned it the Target of
Certification (ToC), we can define three main categories: i) software certification, ii) service
certification and iii) cloud certification. Moreover, concerning the way evidence is being
collected, there are different ways to achieve it, such as: i) by self-assessment, which includes an
investigation by a third-party authority, or by filling Questionnaires, ii) based on Trusted Platform
Modules (TPM), iii) by conducting tests, or iv) by monitoring. The following sub-chapters
describe these different types of the certification process and give relevant existing work done in

this area.

2.4.1 CERTIFICATION METHODS BASED ON TOC

In this section we provide an overview of the existing research regarding certification
processes based on the type of ToC that needs to be certified. Targets of certification can be either

software, services or cloud services.

Software certification covers a wide range of formal, semi-formal, and informal evaluation
techniques, including formal verification of compliance with explicit safety policies, system
simulation, testing, code reviews and human “sign offs”, or even references to supporting
literature. Subsequently, the certificates can be derived from different types of certification
process based on the mechanism that is being used. However, current certification approaches are
not yet suitable for cases where a high level of dynamism is required [15]. To be more precise, in

their current form, they cannot be used to support and automate run-time security assessment.

Lately, certification process started being an important part in the Service-Oriented
Architecture (SOA) environment, for certifying service functional and non-functional properties

[15][72]. As a continuation of their evolution, certification schemes need to adapt to new

49

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

environment by incorporating the definition of solutions that fits also in the cloud environment, so
as to provide trustworthiness in cloud-based services and applications. Certification of cloud-
based services and applications are similar to SOA certification, as both infrastructures are highly
dynamic. The difference between the two lays in some extra requirements of cloud systems,
which introduce the need to manage and certify the whole cloud-computing stack, including IaaS,

PaaS, SaaS.

2.4.1.1 SOFTWARE CERTIFICATION

Software certification has a long record in the certification research. Software certification has
been initially used for assessing functional properties of software systems. More recently it has

been mainly applied for certifying non-functional properties of software, including security.

The process of the security certification [73] is expensive in terms of time and effort. The first
standard for software security certification was the Trusted Security Evaluation Criteria (TCSEC)
standard by U.S. Department of Defence, commonly referred to as the Orange Book, which was
developed in 1985 (USDoD 1985) [78]. The Orange book was used to design and develop
security requirements, in order to address the communication gap between vendors, evaluators,
and customers [153]. Later on in the Nineties, the demand of software security certification
outside the U.S. lead to the development of other security certifications standards, such as
Information Technology Security Evaluation Criteria (ITSEC) in Europe (ITSEC 1991)[123] and
the Canadian Trusted Computer Product Evaluation Criteria (CTCPEC) in Canada (CSE 1993)
[26]. These national certification schemes are totally independent from each other and as a result,
the cost to certify a software system at an international level has remained very high for a long
time. Thus, in order to fulfil the need of an affordable international software security certification
standard, the Common Criteria (CC) certification standard has been defined. Common Criteria
provides a unified process and a flexible framework, which can be used to specify, design, and
evaluate security properties of different IT products [118]. The main goal of the CC evaluation is
to certify that the security policies claimed by the developers are correctly implemented by the
security functions. In CC, users can specify their security functional and assurance requirements,

vendors can then implement and or make claims about the security attributes of their products,

50

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

and testing laboratories can evaluate the products to determine if they actually meet the vendors’
claims. In other words, Common Criteria provides assurance that the process of specification,
implementation, and evaluation of a computer security product has been conducted in a thorough
and standard manner. An important aspect to consider, which will be also relevant in cloud-based
certification, is the definition of a Certificates Management Scheme (CMS) to find a mean to
extend the validity of a Common Criteria Certificate after the end of the certification process. The
main reasons of loss of the validity of a Common Criteria (CC) certification are: i) the discovery
of new vulnerabilities; ii) the inclusion of new functionalities into the target of evaluation; and iii)
the relevant modifications to the security target (e.g. new security functionalities, changes in

security problem definition).

Another research in this area is the ICSA security certification, which provides a less complex
software certification process [121]. Its goal is to alleviate certification costs that previous
approaches had, to certify software products across multiple versions and configurations, and to
provide a simple, but thorough, security assurance process for network and Internet-related

software products.

The Certification Commission for Healthcare Information Technology (CCHIT) software
certification [46] is a domain-specific certification process, which aimed to provide liability
reduction for healthcare-related software products. The Certification de Sécurité de Premier
Niveau (CSPN) [7] is another solution for a lightweight security assessment proposed by the
Agence Nationale de la Sécurité des Systémes d'Information (ANSSI).

Overall, the goal of software security certification process is to provide the possibility to an
independent authority to determine the reliability and security of software systems, without the
need of using the techniques and tools required for the certification process itself. However, these
methods are more focused on systems with a stable structure that operate under stable operational

conditions, rather than a more dynamic ones, like cloud services.

51

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

2.4.1.2 SERVICE CERTIFICATION

The work done in the field of security certification schemes have mainly focused on solid
software components, as discussed in the previous section, which usually provide human-readable
certificates used during the deployment and installation time. Consequently, the approaches
proposed so far for software security certification could not support a service-based scenario,
since it requires the availability of machine-readable certificates, and their integration within
service selection and composition frameworks [72]. Hence, research started focusing also in the

area of service certification processes.

On the contrary of software certifications mechanisms, the actual state of the art of service
certification mechanisms do not include any standard yet, but the research still continues. The
main challenges faced by service certification research are in a sense preliminary and envisage for
the challenges that also the research in the field of cloud certification will face. Similarly to the
software testing, the artefacts used for supporting service certification can be of two types, either

model proofs or test proofs.

The modelling of systems in the context of web services, including their workflow and their
business processes, demand specific treatment. An industry standard for specifying systems
workflows is the Web Services Business Process Execution Language (WSBPEL) [162], or BPEL
in short. Other industry driven modelling approaches [215][141] are based on the Unified
Modelling Language (UML) [197]. For UML there are also some extensions that enable to a
certain extend the modelling of security properties [128][155] to be provided by the system. One
of the more recent approaches of this type is the AVISPA [25], which was funded by the
European Union in the FET Open program. AVISPA provides the High Level Protocol
Specification Language (HLPSL [51]) and four different analysis tools. One of these tools, the
SAT-based Model Checker [19][66], was recently used to identify a security flaw in the SAML—
based Single—Sign—On protocol for Google Applications [20]. Since AVISPA uses specification
structures focusing on crypto protocols, this approach is currently being extended towards
reasoning for dynamic composition of services within the EU funded project AVANTSSAR [24].
Another approach that has recently been extended has been conducted by Giirgens and Rudolph,

which has been used to find security flaws in a number of key exchange, authentication and non—

52

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

repudiation protocols [109][108]. This approach is supported by the Simple Homomorphism
Verification Tool [99] and has also been applied to analyse certain scenarios based on Trusted
Computing. In the FP7 Project SERENITY [208] their approach was further extended to cover
Ambient Intelligence scenarios that are characterized by dynamic context changes. Though the
research in the field of certification has being adapted for the verification of service-based
systems, using one of the above approaches in the certification process, the respective certificates

will not contain any information regarding the verification outcome.

2.4.1.3 CLOUD CERTIFICATION

Since Cloud Computing has been introduces in the area of IT, the research on certification has
started growing in this field, too. The research done on certification of cloud-based services and
applications is still in an early stage. In the last years many cloud certification schemes have been
defined, but there are still some unresolved issues, such as i) issues related to the adequacy and
complexity of standards; ii) process and administration issues; iii) issues related to transparency

and public communication; and iv) limitations in the assessment process [149].

In a cloud-computing environment, which is a dynamic environment, to reassure the security
compliance is difficult. The cloud is opaque and the cloud providers can have different security
mechanisms in place. Khan et al. [136] envision the usage of certification to fully materialize a
trusted cloud model, which will be able to support security and trustworthiness for cloud-based
services and applications. Heiser and Nicolett [117] have evaluated the cloud security risks and
reached the conclusion that cloud-computing environments share IT risks with any externally
provided service. In addition, they have also indicated some unique cloud attributes that require
risk assessment in areas such as data integrity, recovery and privacy, and an evaluation of legal
issues in areas such as e-discovery, regulatory compliance, and auditing. Finally, they have also

predicted that the certification will become the norm for cloud offerings in the near future.

One requirement for the provision of sustainable Cloud Computing is the ability to certify the
adherence of business processes to regulatory requirements. The business models behind service

technologies like SOA and cloud computing essentially depend on business processes being

53

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

tailored to the individual needs of customers. Accorsi et al. [5] focus on providing business
processes on cloud and preliminary face the problem of automated certification of cloud-based
business processes using a Petri net approach. They state that a key obstacle to the development
of large-scale, reliable cloud computing is the difficulty of timely compliance certification of
business processes operating in rapidly changing cloud environments. Reliable cloud computing
must provide control over business process compliance. In this context, the central task is
certifying business processes for their adherence to regulations. The authors propose the usage of
ComCert [64] as a method of automated compliance certification of business processes, and to
apply it in the cloud environment. ComCert is a tool that auditors can used to check cloud-based
processes for adherence to a set of different compliance requirements, in order to detect
vulnerabilities arising from the control-flow and dataflow perspectives, such as whether all
required activities are included or whether activities happen in the prescribed order. This
approach is based on Petri nets, which are used to decide on the policy adherence of business
processes, by providing an expressive, notation-independent formalism to capture the semantics
of business processes [4]. ComCert can be used for auditability, accountability or portability

security properties.

The Cloud Industry Forum (CIF) [55] provided another work on cloud certification in 2009, to
provide transparency through the certification process and to assist end users in determining
essential information about the provisioning of cloud services, in order to adopt them The CIF
Code of Practice was revised and published in 2010. To claim compliance with the CIF’s Code of
Practice, cloud providers need to conduct an annual self-certification and confirm the successful
results to the CIF, in order to receive the certification “mark”. Optionally, an organisation may
choose the independent certification performed by a CIF-approved certification body. Moreover,
CIF will check and investigate randomly any formal complaint of non-compliance of a provider

against the Code.

COBIT [62] is another approach, the purpose of which is to provide cloud providers with an
information technology (IT) governance model, to facilitate the understanding and management
of the risks associated with IT. It is a control model to ensure the integrity of information and

information systems. COBIT provides globally accepted principles, practices, analytical tools and

54

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

models, in order to increase the trust of information systems. Its criteria are based on quality, trust

and security requirements.

The Federal Risk and Authorization Management Program (FedRAMP) [92] is a government-
wide program that provides a standardized approach for security assessment, authorization, and
continuous monitoring for cloud products and services. It enables cloud providers to obtain a
provisional authorization after undergoing a third-party security assessment. FedRAMP
assessment process uses the FedRAMP requirements, which are compliant with FISMA [91] and
are based on the NIST 800-53 rev3 [180]. In order undergo this assessment, cloud providers
should implement the FedRAMP security requirements on their environment and an approved
third party assessment organization will perform an independent assessment of the cloud system,
in order to provide a security assessment package for review. Then, the FedRAMP Joint
Authorization Board (JAB) will review the assessment package in order to grant a provisional
authorization. Federal Information Security Management Act (FISMA) is a compliant framework
that consists of a set of standards and quality assessment criteria, used to examine the information

security planning conducted by federal government agencies [91].

McAfee Cloud Security Platform [169] is a certification framework that combines also an
automated vulnerability audit. It is designed to provide security measures for clouds and to protect
the communication between cloud user and cloud service providers. It includes audits of existing
security controls and processes, as well as mitigation of vulnerabilities, and reporting of the
security status of the service, by a respected third party. Rather than adopting the unique security
practices and policies of each cloud vendor, McAfee Cloud Security allows businesses to extend

and apply their own access and security policies, by securing all data traffic and data storage.

TRUSTe provides a commercial cloud certification service, called “TRUSTed Cloud Privacy
Certification”, that aims to certify the privacy functionalities supported by service providers
[228]. TRUSTed Cloud Privacy Certification is especially important for service providers that
work in EU and are subject to European Union Safe Harbor Principles in the management of
sensitive data. TRUSTe provides a means to certify compliance with the EU directive on data

protection. It ensures practices, such as type of data collected, data flows, data security measures

55

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

and data usage policies that should meet the program requirement criteria, which are based on

transparency and accountability.

Finally, a most recent certification framework was introduced by CSA for cloud services,
called CSA Security, Trust and Assurance Registry (STAR) [60]. This is a research project that
covers key principles of transparency, auditing, and synchronisation of standards. The CSA Open
Certification Framework [182] will support several tiers, recognizing the varying assurance
requirements and maturity levels of providers and consumers. These will range from three levels
of assurance that the STAR provides from self-assessment to high-assurance specifications that
are continuously monitored. The open certification framework is structured on the following three

levels of trust:

LEVEL ONE: STAR Self-Assessment. In this level cloud providers can either submit the
Consensus Assessments Initiative Questionnaire (CAIQ), or submit a report to indicate their

compliance with CSA Cloud Controls Matrix (CCM) [59].

LEVEL TWO: This level consists of two different types of certification based on the way

evidence is being collected. These types are:

i) CSA STAR Attestation. This type of attestation uses the requirements of an AICPA
(American Institute of Certified Public Accountants) SOC 2 attestation that is being conducted in
accordance with AT section 101 of the AICPA attestation standards, combined with the CSA
Cloud Controls Matrix (CCM) [59].

i) CSA STAR Certification. The second type of this level is a third party assessment that is
being conducted by using the requirements of the ISO/IEC 27001:2005 management systems
standard [122] combined with the CCM [59].

LEVEL THREE: CSA STAR Continuous Monitoring. This level of assurance provides a
monitoring-based certification, in order to automate the current security practices of cloud

providers currently under development. This level is still under development.

Table 5 below summarises the different types of certification process and methods, based on

the type of the Target of Certification (ToC).

56

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Table 5 - Certification Processes based on ToC

Certification based on ToC

Orange Book [78]
ITSEC [123]
CTCPEC [26]
CCJ118]

ICSA [121]

CSPNJ[7]

AVISPA [25]
AVANTSSAR [24]
Services Simple Homomorphism
Verification Tool [99]
SERENITY [208]

ComCert [64]

CIF Code of Practice [55]
COBIT [62]

FedRAMP [92]

McAfee Cloud Security
Platform [169]

TRUSTed Cloud
Certification Platform

[228]
CSA STAR [60]

Software

Cloud Services

2.4.2 CERTIFICATION METHODS BASED ON EVIDENCE COLLECTION

In this section we provide an overview of the existing research regarding the way evidence can
be collected to verify the security property of cloud services for the cloud certification process.
The type of evidence collection can be either i) based on assessments regarding specific standards
or regulations, performed by either the cloud providers or third party authorities, known as self-
assessments ii) based on trusted platform modules (TPM), ii) based on performing tests, or iii)

based on continuous monitoring.

57

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

2.4.2.1 SELF- ASSESSMENT CERTIFICATION METHODS

The majority of the certification schemes for cloud services are based on self - assessment
certification process, which is conducted either from the cloud provider itself or by hiring a third
party accredited certification authority. According to this process, the cloud provider should
provide compliance to specific standards or security requirements that the chosen certification

scheme defines.

As we discussed in the different cloud certification schemes, in the cases where cloud
providers conduct the assessment process by themselves, they should either complete a specific
questionnaire provided by the scheme, such as in the case of CSA STAR Level 1 and Level 2
regarding the CSA STAR Attestation scheme [60], or by completing reports regarding specific
national or international standards, such as the ComCert [64], the CIF Guidance [55], the COBIT
[62], the compliant framework FISMA [91], and the TRUSTe [228].

Moreover, there are cases where certification schemes require the intervention of a third party
accredited authority to provide the assessment, in order to certify the provided services, such as in
the case of FedRAMP scheme [92], CSA STAR Level 2 STAR Certification [60] and McAfee
Cloud Security Platform [169].

2.4.2.2 TPM BASED CERTIFICATION METHODS AND SECURITY CONTROLS

Trusted computing relies on collecting evidence based on TPMs [176] and on related
hardware, which are used to prove the integrity of software, processes or data. Trusted Computing
technologies are well suited to provide proofs of the trustworthiness on the lower level of the
cloud stack, which is the hardware layer. A TPM has the capability of providing secure storage
and basic cryptography primitives (including key generation/storage, encryption and digital
signatures). The TPM is therefore a trusted element that is physically secure and can ensure the

security of a platform [229].

58

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Based on the TPM, the Trusted Computing Group defines a series of functionalities that can be
used to increase the security of different systems. Among these, remote attestation is one of the
core functionalities. The basic idea is to verify that a given platform is trustworthy (i.e. the
platform is in a known and trusted state) before establishing a communication with it. To achieve
this goal, the TPM provides dedicated registers called Platform Configuration Registers (PCR) to
store a platform configuration in the form of a hash value. Depending on the scenario, PCRs can
also be digitally signed [152]. Based on stored PCRs, the remote attestation mechanism allows
changes to a user's computer configuration to be detected by authorized parties (validating parties)

[63].

Krautheim [142] defines a private virtual infrastructure, which can be used to share the
responsibility between users and cloud providers, in order to decrease the overall risk of exposure.
This approach is based on the notion of Virtual Trusted Platform Module (vTPM), which was
introduces by Berger et al. [34]. The vTPM provides storage and cryptographic functions of TPM
for applications and operating systems that run in Virtual Machines (VMs). Boampong and
Wahsheh [38] introduced a work stating that security in cloud systems could be achieved by
enriching cloud with a trusted computing platform (TCP). Based on their work, Santos et al. [203]
introduce the Excalibur. The Excalibur is a system that provides data confidentiality and integrity
by encrypting data according to a customer-defined policy. In this way it guarantees that the

encrypted data can only be decrypted when the configuration matches the used policy.

Cloud Trust Protocol (CTP) is the mechanism that allows users to request and retrieve
information about the cloud provider infrastructure. According to Ardagna et al. [17], in order to
provide assurance in cloud systems and to have balanced security processes and controls between
providers and customers, both introspection and extrospeciton should be taken under
consideration by cloud providers and cloud customers (tenants in general). Introspection is the
capability of a cloud provider to examine and observe its internal processes, whereas
extrospection is the ability of customers and service providers to examine and observe cloud’s
internal processes, involving their activities, data, and applications, for security purposes.
Furthermore, transparency is an essential requirement to support both introspection and
extrospection. Furthermore, Munoz and Mana [178] propose an approach for cloud certification

that combines software and hardware-based certification. Their approach is based on trusted

59

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

computing technology and aims to bridge the gap between cloud certification and trusted

computing.

Finally, Li et al. [151] present the MyCloud, which is an architecture used for privacy
protection based on traditional encryption mechanisms. MyCloud decreases as much as possible
the trusted computing base and the cloud providers’ ability to modify privacy settings, in order to

provide to the clients the ability to configure their privacy protection.

2.4.2.3 TESTING-BASED CERTIFICATION METHODS AND SECURITY CONTROLS

Concerning the test based artefacts, service testing differs from standard testing practices, as
the insecurely nature of web services causes major restrictions to the way testers can interact with
the services during the testing process. Thus, research has mostly focused on addressing the
problem of testing for web services, by assessing the correctness of a service, and by
automatically generating test cases for service verification [28][42]. King and Ganti [137]
introduce the first solution for autonomic self-testing in clouds. They combine an automated test
script for cloud services with a Test Support as-a-Service (TSaaS), in order to provide partial
automated testing activities for remote cloud services. Tsai et al. [230] first propose an approach
by using and extending WSDL standard to cope with web service testing, for service composition
in clouds. Frantzen et al. [98] describe another approach for web service testing, which is based
on the modelling of services as symbolic transition systems. The proposed solution aims to
generate run-time tests suitable for testing the coordination of services. Keum et al. [135]
proposed an approach in the same field, which was based on extended finite state machines, that
enriches WSDL with information about the dynamic behaviour of services to automatically
generate test cases and improve the testing coverage. Salva and Rabhi [201] describe an approach
for testing the robustness of web services, by automatically producing test cases from the WSDL.
The proposed approach verifies the correctness of each operation in the WSDL and their
robustness using so called “hazard values”. Finally, Zech [235] presents a model-driven
methodology, in which tests are generated according to negative requirements, which are derived
from the risk analysis done for a service. Some works have also focused on the definition of

specification-based testing solutions for web services [115][127][164][116][81].

60

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Damiani et al. [73] first study the problem of assessing and certifying the correct functioning
of SOA using security certificates based on signed test cases. A first step in the certification of
SOA and Web Service has been done in 2008 by the US—based Software Engineering Institute
(SEI), which defined a Web service certification and accreditation process for the US Army
CIO/G-6 [207]. This approach was based on a process for certifying web services, which aimed
to assure that implemented web services do not expose the Service Oriented Architecture (SOA)
infrastructure, in which they are deployed in or interacting with, in order to avoid malicious
attacks. Anisetti et al. [15][14] then provide a test-based security certification solution for services
and a first approach to its integration within the SOA environment. This approach proposed a
solution that defined a hierarchy of security properties to be certified, the classes of tests that
could be used to provide the evidence that a set of properties hold for a service, and a matching
approach allowing a user to select a service that satisfies their preferences on service certification.
Moreover, an important work has been also done regarding the certification for the Quality of
Service (QoS) of web services [9]. More approaches, such as [192][194][209], also dealt with
defining extended UDDI services, by supporting QoS metadata in the discovery process.

Unlike traditional approaches, the FP7 Project ASSERT4SOA (Advanced Security Service
cERTificate for SOA 2010) [23][12] has been focusing on formal and test-based certification of
services. It aimed to support new certification scenarios for certifying services and has produced
novel techniques, tools, and an architecture for expressing, assessing, and certifying security
properties for complex service-oriented applications. These applications are composed of
distributed software services that may dynamically be selected, assembled and replaced, and
running within complex and continuously evolving software systems. Moreover, it has developed
a framework for representing and using machine-readable service security certificates, known as

ASSERTS, in service discovery and composition [187][12]

61

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

2.4.2.4 MONITORING-BASED CERTIFICATION METHODS AND SECURITY

CONTROLS

Several approaches have been developed to support the monitoring of software and cloud
services. These approaches support different forms of monitoring, including i) monitoring of
individual software services [161][36], ii) service compositions, iii) workflows or orchestrations
(e.g., [29][30][161][160][100][214][82][83][113][114][177]), iv) infrastructures for service based
systems (e.g., grid and cloud systems [101][179][124][227][106][226][11][2][105][1][26]), V)
service level agreements (SLAs) (e.g. [102][160]), or vi) the context of service based systems
(e.g., [130][8][35][168][199][200][37]). Most of the cloud monitoring systems focus on
performance monitoring without an explicit or adequate focus on security properties (e.g.,
[105][181][104][101][179][103][84][86][6][85]). There are also, however, systems supporting
security monitoring in cloud services (e.g., [218][3][80][79]). Existing approaches can be
analysed and classified with respect to a set of key characteristics. These characteristics are
related to the language that an approach uses in order to express the monitorable properties, the
mode of the monitoring process that it performs (i.e., if it is performed by an external monitor or a
monitor embedded in the monitored system), and whether the approach offers diagnosis (i.e., it
provide the reasons that have caused the violation) and prediction (i.e., it can detect potential

violations of properties or how the value of a monitored property will evolve).

Service monitoring systems have used different types of languages for expressing the
properties that they can monitor, including i) formal temporal logic based languages (e.g.
[161][160][113][114]), ii) state transition based specifications (e.g., [82][83]), iii) arithmetic
specifications (e.g., [36]), iv) assertion languages (e.g., [29][30]), v) modelling languages like
UML (e.g., [100][214]), vi) SQL-like languages (e.g., [130]), and vii) scripting languages (e.g.
[179]). Moreover, some existing systems perform intrusive monitoring (e.g.
[177][130][8][35][168][2][1]). Intrusive monitoring is based on weaving the execution of
monitoring activity within the system that is being monitored, such as checking monitoring
assertions at specific points within the system’s execution code. However, this monitoring
systems have three main disadvantages: (a) they introduce a computational overhead into the
system that is being monitored, (b) they cannot check all types of properties, such as end-to-end

quality of service properties, and (c) they can be disabled by attacks to the very system that they

62

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

are supposed to monitor. Other monitoring systems perform non intrusive monitoring, by using an
external monitor running in parallel with the system that is being monitored (e.g.
[29][30][100][214][82][83][36][113][114][177][226][11][2][105][1]). Non-intrusive monitoring
has several advantages over the intrusive monitoring, as it notably reduces the monitoring
overhead and increases the resilience to attacks upon the system being monitored. However, these
advantages come at a price, as the cost is high for ensuring confidential communication of events
to monitors, for the sensitivity of monitoring to attacks over event communication channels, and
for delays in violation detection [140][231]. Only a few of the monitoring systems developed for
software services offer diagnostic (e.g., [105][232]) and prediction capabilities (e.g.
[168][158][157][232]). Monitors are typically integrated with adaptation mechanisms (e.g.
[177][11][2][130][8][35][199][200][37]) and in the case of cloud systems, adaptation typically

focuses on optimisation of the use of physical and virtual resources (e.g. [103]).

In [80][79], agents positioned at different key points of cloud infrastructure such as VMs of
cloud users, VM hosting systems, and data storage components can detect cloud incidents.
Examples of systems that focus on performance monitoring include NimBus [181], dynaTrace
[105], Ganglia [101], and Nagios [179]. These systems support monitoring of predefined
performance metrics (e.g. CPU/memory utilization, pages served per unit time from a server,
application calls) for virtual machines and/or cloud applications running in them. From these
systems focusing on cloud monitoring, Ganglia [101][167] and Nagios [179] are widely used
systems. Ganglia [101] is an open source distributed monitoring system developed to support
performance monitoring of clusters and grids. It collects a set of built-in performance metrics (for
example CPU, storage and network utilisation metrics) for the different clusters that it monitors
and transmits compact cluster states using a multicast-based listen/announce protocol [167]. It
also supports user-defined metrics related to resource performance. The use of multicast
announcements of the monitoring state of interconnected clusters increases the availability of
Ganglia and its resilience to cluster monitor failures but at the same time makes it more
vulnerable to attacks as the monitoring state of a cluster can be retrieved from any other cluster in
a federation. Nagios [179] is also an open source systems for monitoring IT infrastructure assets
including applications, services, operating systems, network protocols, system metrics and
infrastructure components using a single environment. Nagios can be configured to perform

customised monitoring tasks through shell scripts, executable code in different programming

63

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

languages (e.g. C++, Ruby, Python) and APIs. Its scalability and extensibility have made Nagios
one of the widely used tools for IT infrastructures monitoring. However neither Ganglia nor
Nagios have been developed with a focus on monitoring security properties of clouds. An open
source system that has been developed to support the monitoring of security properties and has
been applied to software and cloud services is EVEREST [218]. EVEREST adopts a formal
language for expressing monitoring properties (based on Event Calculus) that supports the
expression of a wide range of properties including basic security properties such as

confidentiality, integrity and availability.

A recent development in monitoring software and cloud services is the awareness of the
necessity of using monitoring infrastructures that may incorporate multiple and heterogeneous
monitors, and which will be capable to configure themselves dynamically without human
intervention [95][67][106][26]. This is due to the need of providing uninterrupted monitoring
services when the monitoring capabilities, which are available in a service-based system, change
due to dynamic changes in the constituent services of such systems [95][67]. The same
prerequisite appears also in federated cloud systems [26]. To address these needs the SLA@SOI
project has developed a dynamically configurable monitoring infrastructure that can adapt
automatically to changes in the monitoring capabilities that are available in service based systems,
and that can running on cloud systems and perform dynamic SLA monitorability checks
[95][97][103]. The Lattice monitoring system [103] developed as part of the RESERVOIR project
also provides support for monitoring dynamically changing federations of cloud systems.
However, this approach does not support dynamic SLA monitorability checks, as it focuses only
on resource monitoring (CPU, memory and network usage at physical and virtual infrastructure

levels) without support for security properties.

Existing approaches in the field of security certification have focused on concrete software
components and provide human readable certificates. Thus, they cannot support service-based
scenarios that require machine-readable certificates and could support dynamic service selection

and composition [72].

Monitoring has also been used at the hypervisor layer to provide incident detection even if the

operating system of the guest instance is experiencing critical conditions and monitoring agents

64

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

are unable to communicate with monitoring systems. Amazon’s CloudWatch [1] is a system of
this category. Performance monitoring is also a common function of other cloud hypervisors (e.g.,
Xen [31], VMWare [221][198]) whilst there are also approaches focusing on monitoring and
security of cloud hypervisors (e.g., [198][223][213]). In [198], for example, the workload of
virtual machines (VMs) is continually monitored to identify VM security and reliability problems
and to allocate resources to the VM accordingly. In [223][222], a hardware-based approach
provides isolation of access to shared resources, and in [126] hardware protects VMs memory
from unauthorized accesses. The MultiHype architecture [213] allows running multiple

hypervisors on a single platform to eliminate security issues.

Dynamic configuration of the monitoring infrastructure aims to provide uninterrupted
monitoring services when monitoring capabilities that are available in a service-based system or
in a cloud infrastructure change, as a result of dynamic changes in the constituent services of such
systems [95][67]. This need appears in federated cloud systems [54]. This type of monitoring
infrastructure adapts automatically to changes in the monitoring capabilities that are available in
service based systems running on clouds, following dynamic SLA monitorability checks [95][97].
The Lattice monitoring system [103] provides also support for monitoring dynamic changes of
cloud federations. Finally, NIST’s SCAP specifications [143] and Cloud Security Alliance’s

Cloud Trust Protocol [56] provide interfaces for extracting monitoring data from cloud systems.

More work has focused on auditing cloud security. The Cloud Controls Matrix (CCM) of the
Cloud Security Alliance (CSA) [59], for example, contains a comprehensive set of controls to
assess the information security assurance in cloud systems and maps controls to existing
frameworks such as PCI DSS [186] and COBIT [62]. CCM is currently being developed through
the Open Certification Framework (OCM) [182] into a third party certification program.
Moreover, CSA has published the Cloud Audit protocol [58], which provides an automated query
interface to cloud services for audit. However, the most relevant certification scheme based on

continuous monitoring is the CSA STAR Level 3 [60], which is still under development.

65

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

2.5 SUMMARY OF CERTIFICATION SCHEMES FOR CLOUD SERVICES

Table 6 below summarises the different certification schemes for cloud services regarding the
way evidence is being collected for certifying cloud service providers, the Life Cycle Model

defined as well as the security properties that can be certified by each scheme.

Table 6 - Cloud Certification based on Evidence Collection

Summary of Certification Approaches in Cloud Services

Approach ToC Evidence Life Cycle | Security Property Categories
Type Model

ComCert Cloud (Automated) Explicit - Application & Interface Security

[64] Services Inspection (Auditability),

- Interoperability & Portability,
- Legal & Standards Compliance

CIF Code of | Cloud Questionnaire | Explicit - Data Security & Information

Practice Services Lifecycle Management,

[55] - Business Continuity
Management & Operational
Resilience

COBIT [62] | Cloud Inspection Explicit - Governance and Risk

Services Management,

- Identity & Access Management

FedRAMP Cloud Inspection Explicit - Identity & Access Management,

[92] Services - Business Continuity
Management & Operational
Resilience,

- Legal & Standards Compliance

McAfee Cloud Inspection / Explicit -Application & Interface Security,
Cloud Services Monitoring - Identity & Access Management,
Security - Legal & Standards Compliance,
Platform - Data Security & Information
[169] Lifecycle Management,

- Data Centre Security
TRUSTed Cloud Inspection Explicit -Application & Interface Security,
Cloud Services - Encryption & Key Management,
Certification - Legal & Standards Compliance
Platform

66

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

CSA STAR | Cloud Questionnaire | Explicit -Application & Interface Security,
- Level 1 Services - Identity & Access Management,
[60] -Legal & Standards Compliance,
CSA STAR | Cloud Inspection / Explicit - Data Security & Information
- Level 2 Services Questionnaire Llfeqycle Manqgerpent,
[60] -Business Continuity .

— Management & Operational
CSA STAR | Cloud Monitoring Undefined | Resilience
- Level 3 Services
[60]

2.6 SUMMARY

In this chapter the related work done in the area of certification has been presented. There is a
substantial work done for certifying services and different controls have been deployed to collect
evidence to support the transparency of the process. However, according to the literature review,
current certification models for cloud services are not yet fully deployed to handle the effects that
different types of cloud mechanisms used can have on security properties. Moreover, there are not
any clear objective security assessment schemes to express: 1) factors that should be taken into
account for assessing cloud security properties, ii) specific criteria that can be used to assess these
factors, iii) the evidential bases for the assessment of these criteria, and iv) the combination of

assessments for individual criteria into an overall scheme.

Furthermore, there are not yet technical solutions to certify the security and trustworthiness of
cloud-based services and applications, in order to guarantee an appropriate level of assurance,
integrated with existing cloud infrastructure. Finally, the existing certification schemes are not
able to automatically identify appropriate evidence acquisition plans and security assessment

models.

With regards to the monitoring based cloud certification, which focuses on monitoring the
resources (e.g., CPU, memory and network usage) for resource optimisation and elasticity in
security compliance, existing cloud monitoring solutions do not support at all or provided limited

support for this type of assessment in cloud systems.

67

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Thus, based on these limitations of the existing work in the field, this thesis defines a
certification model, in order to enable an objective assessment of security properties using
monitoring solutions for gathering evidence, regarding different factors of cloud security. It will
also provide a single monitoring infrastructure that will be able to monitor security properties and
resources, tailored to the need of users, in order to provide adequate monitoring evidence for the
purposes of the certification process. Finally, it will define a framework that can support an
automated certification process based on continuous monitoring, for certifying cloud-based

services and applications.

68

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Chapter Three

BACKGROUND TECHNIQUES

3.1 OVERVIEW

This chapter provides information about the two frameworks that have been used to support
the development and validation of the monitoring based certification framework introduced in this
thesis, namely the runtime-monitoring framework EVEREST and the probabilistic model-
checking framework Prism [191]. More specifically, our approach will use an event-monitoring
framework, called Everest (EVEnt RESoning Toolkit [218]), which is runtime-monitoring

framework that is based on first order temporal logic language of Event Calculus [210].

Section 3.2 provides a short overview on Event Calculus language and Section 3.3 provides an
extended discussion of the monitoring framework highlighting on the formal specifications it
uses. Finally, Section 3.4 covers the principles of the Prism model checker that underpins our

verification of the certification process.

3.2 EVENT CALCULUS

3.2.1 OVERVIEW

Event calculus (EC) is first order temporal logic language for representing events and their
effects and has been used to represent and reason about the behaviour of dynamic systems [210].

EC is based on first-order predicate calculus [210].

In the following, we give a brief overview of EC, as it provides the logic foundation of the

reasoning processes that underpin EVEREST, i.e., the runtime monitoring system that has been

69

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

used to realise the certification framework that is introduced by this thesis [218][216]. In
particular, EC provides the semantic foundation of EC-Assertion, i.e., the monitoring language of
EVEREST and the language that we have defined in our framework in order to specify security
assertions as part of monitoring based certification models. The monitor that we are using in our
framework, the EVEREST monitor, uses the language that specifies a monitorable property in

terms of events and fluents.

3.2.2 SPECIFICATION OF EC FORMULAS

EC formulas are first order temporal logic formulas expressed in terms of events, fluents and
time points. A fluent is anything whose value is subject to change over time [210]. For instance,
fluents can be conditions regarding the state of a system at a particular instance of time. Fluents
are initiated and terminated by events. An event in EC is something that happens at a specific
instance of time, such an invocation of an operation. It has instantaneous duration and may

change the state of a system.

EC allows the specification of this type of system events, as well as the time when they occur.
It also allows the specification of initialisations and modifications of system that these events
might cause at specific times. The basic predicates that the EC language uses are presented in the

Table 7 and explained below.

To represent the occurrence of events, EC uses the predicate Happens(e,t). This predicate
signifies that an event e occurs at time £. To initiate a fluent is, the EC uses the predicate Initiates
(e.f.t), which means that a fluent f starts to hold after the occurrence of the event e at time 7. The
termination of a fluent is indicated by predicate Terminates(e,f,t), stating that a fluent f ceases to
hold after the occurrence of the event e that occurs at time z. An EC formula may also use the
predicates Initially(f) to state that a fluent f'holds at the start of the operation of a system and the
predicate HoldsAt(ft) that states that a fluent f holds at a specific time ¢. All predicates are

summarised in Table 7.

70

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Table 7 - EC Predicates

Happens(e,t) An event e occurs at time point ¢

Initiates (e,ft) A fluent f'holds after an event e has occurred at time point ¢
Terminates(e,f,t) A fluent f'cease to exist after an event e has occurred at time point t
Initially(f) A fluent f'holds from time 0

HoldsAt(f,t) A fluent f'holds at time point ¢

Event calculus defines a set of axioms that can be used in order to determine when a fluent
holds based on its initiation and termination by the occurrence of different events. These axioms

are listed in Table 8 below.

Table 8 — Axioms of Event Calculus

EC.1: J e t,
Happens(e,t,R(t1,t2))
A Terminates(e,f,t)
= Clipped(t1,f,t2)

EC.2: Je;t
Happens(e,t,R(t1,t2))
A Initiates(e,f,t)
=> Declipped(t1,f,t2)

EC.3: Initially(f)
A ~Clipped(0,f,t)
— HoldsAt(ft)

EC.4: J e t1
Happens(e,t1,R(t1,t2))
A Initiates(e,f,t1)
A Clipped(t1,f,t2)
=> HoldsAt(f,t2)

EC.5: 3 et
Happens(e,t1,R(t1,t2))
ATerminates(e,f,t1)

A 7Declipped(t1,f,t2)
= HoldsAt(f,t2)

71

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

EC.6: HoldsAt(f, t1)
A1 <t2
A ~Clipped(t1,f,t2)
= HoldsAt(f,t2)

EC.7: ~“HoldsAt(f, t1)
A (t1 <12)
A 7Declipped(t1,f,t2)
= 7HoldsAt(f,t2)

The first axiom EC.1 states that a fluent f'is clipped, meaning that it ceases to hold, at some
time point within the time range between ¢/ and ¢2, if an event e occurs at some time point ¢

within this range, which will cause the termination of the fluent f.

The axiom EC.2 states that a fluent f'is declipped, which means that it comes into existence, at
some time point ¢ within the time range between ¢/ to t2, if event e occurs at that time point ¢,

within the range ¢/ and #2, which initialised the fluent f"at time point ¢.

The third axiom EC.3 states that a fluent f holds at the time point ¢, if it was already held at

time 0 and has not been terminated by any event between the time range between 0 and ¢.

The fourth axiom EC.4 states that a fluent f holds at the time point £2, if an event e has
occurred at some time point ¢/ and before the time point 2, which had initiated the fluent f at that

time point ¢/, and f'has not been clipped between this time range between ¢/ and ¢2.

The fifth axiom EC.5 states a fluent /' does not hold at the time point ¢2, if there was an event e
that occurred at some time point ¢/ before #2, which terminated the fluent f'and this fluent has not

been declipped at any time point between the range ¢/ and £2.

The sixth axiom EC.6 states that a fluent fholds at a time point £2, if it was held at time point
t1, where time point ¢/ is before the time point ¢2, and if the fluent f'has not been clipped between

the time range between ¢/ and £2.

The seventh axiom EC.7 states that a fluent f does not hold at a time point £2, if it was not held

at some time point ¢/ before 2 and if f'has not been declipped since then.

72

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

3.3 EVEREST

EVEREST (Event Reasoning Toolkit) is a run-time monitoring framework, which aims to
track the runtime behaviour of a system and to identify whether it satisfies certain properties
required of it. This activity takes the specification of the properties required of a software system
as input and checks whether the traces of events, which are produced by the system at runtime,

are consistent with the properties [218].

There are many reasons why we have selected EVEREST as the underlining system of our
monitoring system. The main reason was because it uses the EC-Assertion language, which is a
powerful language in terms of expressiveness of temporal first order language, and it can be used
to specify a wide range of system propertiecs. Moreover, EC-Assertion provides an explicit
language for expressing time conditions in terms of linear formula constraints. Another reasons
was the ability of EVEREST to express security and dependability properties and its ability to
support the monitoring of events that may have been produced by distributed systems using
different clocks, as discussed in [140]. More work on supporting the checks of monitorability and
dynamic set up of EVEREST monitoring configurations was presented in [67][95], leading us to

have more reasons to use EVEREST for supporting our approach.

EVEREST is an open source system that has the architecture is shown in Figure 3. As
explained in [218], EVEREST is exposed as a service and is used to offer interfaces in order i) to
submit monitoring rules to it for checking, ii) to forward runtime events from the applications that
are being monitored, and iii) to obtain the monitoring results from it. The main three components

of EVEREST are: i) a monitor manager, ii) a monitor, and iii) an event collector.

The monitor manager is responsible for initiating, coordinating and reporting the results of the
monitoring process. In order to do so, it first receives the monitoring rules through the
CheckRules API and then it provides an IMonitor API for obtaining the monitoring results. The
event collector is the component that is responsible for receiving events from the service in order
to then pass them to the monitor manager component. Afterwards, the monitor manager
component forwards these events to the Native Type Generator (NTG) sub-component of the
monitor, which is responsible to translate these events from the XML format to internal Java

objects. After receiving the events from the monitor manager, the monitor checks if they satisfy or

73

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

violate any of the given monitoring rules and it returns the monitoring results to the monitor

manager.

CheckRules SendEvents
Monitoring Service g
Monitor Manager g] | Event Collector g]
Buffer Port
O 4viationDB Deviation DB g]
NTG Port -
IMonitor
Monitor H |
NTG g] Events DB g] Fluents DB g |

Figure 3 — EVEREST Architecture (Source [218])

EVEREST is a general-purpose engine for monitoring behavioural and quality properties of
distributed systems based on events captured from them during the operation of these systems at
runtime. The properties that can be monitored by EVEREST are expressed in an Event Calculus
[210] based language called EC-Assertion, which is a language based on the EC language that

was explained in the previous section.

EVEREST uses two different types of formulas for the monitoring process, namely monitoring
rules and assumptions. The formulas for the monitoring rules express the properties that need to
be checked at runtime and have the form of “body = head”. The meaning of a monitoring rule is
that if its body evaluates to “True”, its head must also evaluate to “True”. EC-Assertion also uses
monitoring assumptions, which have the same form as rules but their meaning is that when their
body evaluates to “True”, their head can be deduced. Thus the formulas for the assumptions are

used in order to derive information about the state of the system that is being monitored based on

74

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

observations of its behaviour and the state of the monitoring process itself. Furthermore, as we
will explain later, assumptions could also be used for the identification of possible anomalous

behaviour or conflicts of the monitoring rules, to detect and prevent possible attacks.

An example of the basic predicates used by EC-Assertion for expressing events and fluents for
the availability security property, and their significance are presented in Table 9, which were also
presented and explained in [145]. Service availability is defined as the ratio of the period during
which a service is unavailable over the total period of monitoring a service. A period of
unavailability is defined as the period between a time point when a call to a service operation is
not served and the next time point in the future at which a call to an operation of the same service
is served. The parametric templates are defined in terms of request and response of events in EC-

Assertion, and there are three fluents specified for the computation of the availability.

Table 9 - Monitoring template for Availability

(Availability Juaer==

AO0.Availability.<Caseld>: Initially(LastServiceMonitoringPeriod(<_Srvld>, systemTime())

A1.Availability.<Caseld>:
Initially(UnavailablePeriods(<_Srvid>, PN, _P[]))

A2.Availability.<Caseld>:

Happens(e(_id1, _Snd, <_Srvld>, Call(_O), <_Srvld>), t1, [t1,t1]) A

-Happens(e(_id2, <_Srvld>, _Snd, Response(_O), <_Srvld>), t2, [t1,t1+<D>]) a

-3 _PN, _ST,: HoldsAt(Unavailable(_PN, <_Srvid>, _ST), t1)) A

3 _PN, _PJ]: HoldsAt(UnavailablePeriods(<_Srvid>, PN, _P[]), t1)) =

Initiates(e(_id1, _Snd, <_Srvld>, Call(_0O), <_Srvid>), Unavailable(_PN+1, <_Srvid>, t1), t1) a
Terminates(e(_id1, _Snd, <_Srvld>, Call(_O), <_Srvld>), UnavailablePeriods(<_Srvid>, PN, _P[]), t1) A
Initiates(e(_id1,_Snd,<_Srvild>,Call(_0O),<_Srvld>),UnavailablePeriods(<_Srvid>,_PN+1, P[]), t1)

A3.Availability.<Caseld>:
Happens(e(_id1, _Snd, <_Srvld>, Call(_O), <_Srvld>), t1, [t1,t1]) A

75

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Happens(e(_id2, <_Srvld>, _Snd, Response(_0), <_Srvid>), 2, [t1,t1+<D>]) A
3 _PNum, _ST: HoldsAt(Unavailable(_PN, <_Srvid>, _ST), t1) =
Terminates(e(_id1, _Snd, <_Srvld>, Call(_O), <_Srvld>), Unavailable(_PN, <_Srvild>, _ST), t1+1)

A4.Availability.<Caseld>:

Happens(e(_id1, _Snd, <_Srvld>, Call(_O), <_Srvld>), t1, [t1,t1]) A

Happens(e(_id2, <_Srvld>, _Snd, Response(_0O), <_Srvid>), t2, [t1,t1+<D>]) A

3 _PN, _ST,: HoldsAt(Unavailable(_PN, <_Srvild>, _ST), t1)) A

3 _PN, _PJ]: HoldsAt(UnavailablePeriods(<_Srvid>, _PN, _P[]), t2)) =

Terminates(e(_id1, _Snd, <_Srvld>, Call(_O), <_Srvld>), UnavailablePeriods(<_Srvid>, PN, _P[]), t2) A

Initiates(e(_id1, _Snd, <_Srvld>, Call(_0O), <_Srvld>), UnavailablePeriods(<_Srvid>, PN, append(_PI],
t1 - ST)), t2)

R.Availability.<Caseld>:

Happens(e(_id1, _Snd, <_Srvld>, Call(_O), <_Srvld>), t1, [t1,t1]) A
Happens(e(_id2, <_Srvld>, _Snd, Response(_0), <_Srvid>), t2, [t1,t1+<D>]) A
3 _PN, _ST, _P []: HoldsAt(Unavailable(_PN, <_Srvid>, _ST), t1)) A
HoldsAt(UnavailablePeriods(<_Srvid>, PN, _P[]), t2) a
HoldsAt(LastServiceMonitoringPeriod(<_Srvid>, _ImsTime), {2)) =
sum(_P[])/ (t2 — _ImsTime) > K

These fluents are:

1. Unavailable(PN, < Srvld>, ST)

This fluent is used to keep track of the unavailability of a service and has three parameters:

o The first parameter (_PN) counts the number of unavailable periods for a monitored

service,

o The second parameter (<_Srvid>) records the unique ID of the monitored service,

and

o The third parameter (S7) records the time point when the service becomes

unavailable.

76

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

2. UnavailablePeriods(<_Srvld>, PN, P[]))

This fluent is used to keep track of unavailable periods of a service and has three

parameters:
o The first parameter (i.e. <_Srvld>) records the unique ID of the monitored service,

o The second parameter (i.e. PN) records the count of unavailable periods of the

monitored service and

o The third parameter (i.e. P[]) records duration of each unavailable period of the

monitored service.

3. LastMonitoringPeriod(<_Srvld>, ImsTime), t2)

The fluent is defined to record the starting time point of the monitoring session and has the

following two parameters:

o The first parameter (i.e. < Srvld>) records the unique ID of the monitored service,

and

o The second parameter (i.e. systemTime()) signifies a standard system call that is
executed by the monitor in order to obtain the current time of the system where the

monitoring service is running.

The assumption A0 and A/ initiate the LastMonitoringPeriod and UnavailablePeriods fluents
for first time. The assumption 42 starts a new period of unavailability when a non-served event
occurs and increases the number of the unavailability periods. The assumption A3 terminates
current period of unavailability for a service, when a served event occurs. The assumption 44
records the length of a terminated period of unavailability. Finally, the rule R checks if the

availability of a service is greater than K.

77

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

In the availability template form, the < Srvid> is the unique identifier of the service that the
availability is checked for, and the <Caseld> that the template is selected for and refers to, is the
unique id of the certificate, which was assigned to EVEREST. It should be noted that EVEREST
would receive primitive call and response events from the service, thus a call to the monitored
service occurred at ¢ is considered to be served if a corresponding response occurs within a
predefined time range between ¢ and ¢+d. The value of d is denoted as <D> in the templates.
During the translation process concrete values of < Srvid>, <Caseld> and <D> are chosen

according to a predefined set of criteria.

3.4 PrRISM

PRISM [146][191] is a probabilistic model checker, i.e., a tool for formal modelling and static
analysis of systems that have random or probabilistic behaviour. It has been used to analyse
systems from many different application domains, including communication and multimedia
protocols, randomised distributed algorithms, security protocols, biological systems and many
others. The reason we decided to use the Prism model checker was mainly because of its ability to
process simulations without probabilities combined with the ability to also model probabilistic
system behaviour. Furthermore, it has an advanced tool support and an extensive documentation
of its use and its theoretical foundations, which facilitated the set up and the execution of the

model checking evaluation of this thesis.
PRISM can build and analyse several types of probabilistic models, such as:
* Discrete-Time Markov Chains (DTMCs)

DTMS are state-transition systems augmented with probabilities. In these systems a discrete
set of states should be defined to represent all possible configurations of the system being
modelled [147]. Moreover, the transitions between states should also be defined, which occur in
discrete time-steps. Every state should have at least one outgoing transition or a self-loop to
represent a final or terminal state, in order to avoid deadlock states. Finally, the probabilities are
also defined, which define the probability of choosing a specific transition between states. This

probability is given by discrete probability distributions.

78

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

The DTMC is a tuple of the form (S, Sivr, P, L), where S is a finite set of states, Spr € S is the
initial state, P: S x S — [0,1] is the transition probability matrix where X,¢cs P(s,s’) = 1 for all s

€S, and L: S — 2*" is a function to label states with atomic propositions [147].

A simple example of this type of probabilistic model is shown in the following figure.

Restart (P =1)

\l
/_/
e Start (P =1) .~ >end (P =0.01)
S B 4
=0.99)
6w
_ S JSUCCESS
Stop (P =1)

Figure 4 — DTMC simple example

As shown in the example, the initial state is Sy. After the first transition called “Start”, which
will always take place because it has probability of occurrence 1, from state Sy to Sy, the process
will try to send a message. From S; there is a probability of 0.01 to wait in case the channel for
sending a message is not ready, and thus the process will wait a step (self-loop at S)), there is a
probability of 0.98 to send a message successfully (move to S;) and stop and a probability of 0.01

to fail sending the message (move to S,) and restart (move back to Sy).

Therefore, according to the DTMC tuple:

D=(S, S\, P, L) AP = {try, fail, success}
S = {s0, sl1, s2, s3} L(s0)=0,
St = 80 L(sD={try},

L(s2)={fail},
L(s3)={success}

79

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* Markov Decision Processes (MDPs)

MDPs extend the DTMC by combining discrete probabilities and non-determinism for
accurate modelling of concurrency [147]. Non-determinism enables the modelling of
asynchronous parallel composition of probabilistic systems, and permits the specification of

certain aspects of a system.

The MDP is a tuple of the (S, siir, Steps, L) where S is the set of states, sy is the initial state,

2AUDIE) §5 the transition probability function where

L is the labelling function, and Steps: S —
Act is a set of actions and Dist(S) is the set of discrete probability distributions over the set of

states S.

* Continuous-Time Markov Chains (CTMCs)

CTMC specify the rates p(s, so) for making a transition from states to sy, with the interpretation
that the probability of moving from s to sy within t time units is 1 — e —p(s, so)*t. It has discrete
state space, continuous time, and exponentially distributed delays. It is usually used to modelling

component lifetimes, inter-arrival times, or biochemical reaction rates.

* Probabilistic Automata (PAs)

PAs probabilistic extension of timed automata and consists of discrete states, real-time clocks,

discrete probability distributions, and non-determinism.

Models are described using the PRISM language, which is a simple, state-based language.
PRISM provides support for automated analysis of a wide range of quantitative properties of
these models. The property specification language incorporates the temporal logics PCTL
(Probabilistic Computation Tree Logic), CSL, LTL and PCTL*, as well as extensions for

quantitative specifications and costs/rewards [191].

80

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

PRISM incorporates state-of-the art symbolic data structures and algorithms, based on BDDs
(Binary Decision Diagrams) and MTBDDs (Multi-Terminal Binary Decision Diagrams)
[148][185]. It also includes a discrete-event simulation engine, providing support for
approximate/statistical model checking, and implementations of various different analysis

techniques, such as quantitative abstraction refinement and symmetry reduction [146].

81

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Chapter Four

MONITORING BASED CERTIFICATION PROCESS AND

MODEL

4.1 OVERVIEW

The aim of this chapter is to provide the reader with a description of the certification
process based on continuous monitoring, and the certification model that needs to be submitted at
the proposed framework. It presents and explains a high level overview of the certification
process based on continuous monitoring and gives definitions to some concepts used.
Moreover, it provides the specification of the proposed Certification Model, which is expressed

in the XML language, thus the XML schema used to describe the CM is presented, as well as all

its elements and sub-elements that need to be defined.

4.2 MONITORING BASED CERTIFICATION PROCESS

The advantages of dynamic software service provision on cloud systems needs to ensure that
the software systems and infrastructures that underpin these services have the appropriate
assurance levels for the intended purpose. A key prerequisite for this assurance is to ensure that
these services and the underlying systems continuously satisfy a set of security properties that are

necessary for this assurance.

A monitoring based certification process is defined as a process where the assessment of a
security property regarding a specific cloud service is based on operational evidence from the
provision of that service gathered through continuous monitoring. The output of this process is a

type of certificates, called monitoring-based certificate. Monitoring-based certificates are digital

82

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

certificates that contain conditions that refer to the actual state of the cloud service at the moment
of the use of the certificate, as opposed to current certifications that can only refer to conditions
verified at the moment of their production. This type of certificates is significant for dynamic
environments like Cloud Computing, which allows a high degree of continuous assurance for the

cloud services and applications, at run time.

An important step towards generating the monitoring based certificates is to specify a
certification model (CM) defining the process of generating and managing digital security
certificates in manner that will enable the automatic execution of this process. As stated in
Chapter 2, a Certification Model (CM) is used to define the process of certifying cloud services,
i.e., the process of assessing continuously whether cloud services satisfy required security

properties, producing certificates asserting that they do so, and managing these certificates.

In line with classic approaches to software certification as described in Section 2.4.1.1, the
production of certification models is the responsibility of certification authorities. Such authorities
can use a certification model to specify processes that reflect their specific technical approach to
certification, business processes (e.g., in as far as the management of certificates is concerned)

and/or industry or other regulatory standards about security properties and their assessment.
To fulfil the above purpose a CM should include:

* The security property that needs to be certified, such as AIS:non-repudiation:non-

repudiation-of-origin, which consists of:

a. the security property category that belongs to, as explained in Section 2.3.1. For
example Non-Repudiation belongs to the Application & Interface Security
property (ALS) category; and

b. the assertion, that defines the formal operational definition of the property that
will be used for monitoring, in this example non-repudiation:non-repudiation-of-

origin

* the ToC that this property applies to, which is the actual service that needs to be
certified,

83

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

e an assessment scheme that determines the evidence that should be taken into account

for assessing a property,
* how frequently this evidence should be checked,
* when the accumulated evidence will be sufficient for issuing the certificate, and

* the certificate life cycle, i.e., the states which a digital certificate may be at (e.g.,

activated, issued, revoked) and how it may transform itself between them, and

* any additional validity checks that will need to be satisfied at different states of the
certification process (e.g., checks that the software components used to collect and
process the evidence acquired for the cloud services have maintained their integrity

during the process, i.e., they have not been tampered with).

Moreover, when defining the security property to be certified, its assertion should also be
defined that states the set of rules concerning the evidence collection for a given security
property. Consequently, we can state that the input for the certification process is: a) the
definition of the Security Property and the specification of its measurements, and b) the Assertion,
which contains attributes to support the evidence collection. However, it needs to be mentioned
that the precise semantics of the Security Property in a CM are determined by the monitoring

rules included.

The assessment scheme is another element of the CM that defines general conditions
regarding the evidence that must be collected, in order to be able to issue and maintain a
certificate, according to the particular certification model that a certifier has defined. These
conditions define the expiry date of the certificate, the frequency of the evidence collection

and conditions regarding possible anomalous behaviour or conflicts.

Finally, the certificate life cycle should also be defined in the CM. A Certificate Life Cycle is
a state chart diagram that defines all possible states a certificate can take during its life. It also
defines the transition between different states that refer to specified conditions of the Assessment
Scheme in the CM. The certificate life cycle will be used as a guideline for the certificate models,

since it will provide basic conceptual entities like revocation and validation. More specifically, a

84

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

certificate may have different states in its life cycle (e.g. Issued, Revoked, Renewed etc.) and
different transitions that lead to these states. Each transition refers to a specified condition that

should be met, which will lead to specific actions concerning a certificate and its behaviour.

In the certification model a certification authority (CA) will be able define its own Certificate
life cycle model, with different number of life cycle states and transitions. For example, when the
evidence gathered for a certificate type is sufficient for verifying the security property related to it
(as determined by the certification model), a certificate that is an instance of this type of CM
could be issued. However, even after they are issued, certificates can be updated subject to
changes in the operational conditions of the cloud service that they are associated with. The
possible updates and any other key changes in the life cycle of monitoring based certificates are

described in a certificates’ life cycle model element.

Since the security and trustworthiness of cloud services requires continuous and transparent
assessment, our approach proposes a monitoring based certification process for cloud services.

This process, in an abstract level description, involves the following main steps:

¢ The submission of a CM from a CA,

* The translation of the Security Property assertion from the XML language used in the

CM into EC-Assertion language of the monitor,

* The extraction and capturing of the evidence about the operation/provision of services

from the cloud infrastructure,

* The continuous communication of this evidence to a monitor that checks the security

property assertions, as specified in the CM,

* The collection of the monitoring results of the security property for the generation of

monitoring based certificates, when the evidence is positive and sufficient,

* The update of certificates status, based on the evidence and the conditions defined in

the CM, and

85

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* The provision of all evidence from the process for auditing purposes, to support the

transparency of the process.

According to the above steps, the certification process starts when a CA requires certifying a
service, by submitting a complete certification model, where all relevant information concerning
the process is being defined. Subsequently, the framework after receiving the CM, it translates the
security property assertions to EC-Assertion formulas to pass them to the EVERST monitoring
tool, to start the monitoring process of the TOC. When the process initiates, the monitor starts
receiving evidence from the TOC, at runtime, and checks them according to the defined assertion
rules and sends the monitoring result to the framework. The framework will then check if the
conditions defined in the CM are satisfied based on the monitoring results that it received from
the monitor, and according to the life-cycle model will update the status of the certificate. For
example, if enough evidence is received and they satisfy the security property rule, then a
certificate is issued. Moreover, all evidence collected by either the monitor or the TOC are stored

in the framework, in case an auditor requires checking them.

4.3 CERTIFICATION MODEL FOR MONITORING BASED CERTIFICATES

In monitoring based certificates, the evidence required for assessing and verifying security
properties is acquired through continuous monitoring of the cloud services’ operations. Hence, the
evidential for such certificates can cover contextual conditions that might not be possible to
predict, test or simulate through other forms of assessment, such as testing or static analysis, that

take place before the deployment of a cloud service.

As with all types of certificates, the process of generating and managing monitoring based
certificates is driven by certification models. The purpose of such models is to define the security
property that needs to be certified, the types and extent of evidence that should be acquired in
order to be able to certify the property, the life cycle of certificates of the given type, and the

agents which will have the responsibility to carry out different parts of the process.

86

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

To enable the definition of certification models for monitoring based certificates, we have
developed an XML schema for specifying all the required elements for generating this type of
certificates. More specifically, the schema provides means for specifying the security property to
be certified, an assertion providing a formal definition of this property, the certification authority
who will sign of the certificate, and the conditions that need to be followed in order to generate or

update the status of the certificates.

4.3.1 CERTIFICATION MODEL XML SCHEMA DESCRIPTION

The top layer of the proposed certification model schema for specifying Monitoring based

certification models is shown in Figure 5:

87

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

® [] CertificationModelType

Model_Id

Type xs:string

fSignature
\Type signatureType

TOC

Type TOCType

CertificationModel
Type CertificationModelType

(SecurityProperty
\Type securityPropertyType

}—@

(AssessmentScheme
\Type As sessmentSchemeType

(ValidityTests
\Type ValidityTestsType

(MonitoringConfigurations
\ Type MonitoringConfigurationsType

(EvidenceAggregation
\Type EvidenceAggregationType

LifeCycleModel ®
Type StateTransitionModelType

Figure 5 — Certification Model Schema Elements

As shown in the figure, above, a CM consists of the following elements:

1. Model Id

2. Signature

3. ToC

4. Security Property
5. Assessment Scheme

6. Validity Tests

88

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

7. Monitoring Configurations
8. Evidence Aggregation

9. Life Cycle Model

Below, each element of the model is explained in details, as well as their meaning and purpose

is defined.

4.3.1.1 MODEL_ID ELEMENT

The first element of the certification model is the Model Id, which represents the unique
identifier of the certification model instance. Model Id is an element of type integer. An example

of model id is shown below:

<Model_Id>1001</Model_Id>

It should be noted that the identifier of the certification model is different from the identifier of
an instance of the model that is used when the model is applied, in order to certify a given

property of a particular ToC.

4.3.1.2 SIGNATURE ELEMENT

Signature is the element in the certification model that represents the signature of the
certification authority that has defined it. This is not a binary signature as current digital
certificates have, but is an element to identify the certifier that is responsible for the validity of the
certificate, which they sign. As shown in the figure below, Signature is an element of type

signatureType and has two sub-elements, which are:

89

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* the Name element, which defines the name of the certifier, and

* the Role element, which defines the role of the certifier. Both sub-elements are of a

type string.
® [] signatureType
Name N
Type xs:strin ©
Signature o . yp SEring 4
Type signatureType ~
Role ®
Type xs:stringJ

Figure 6 — Signature Element

An example of the Signature element is provided below.

<Signature>
<Name>City</name>
<Role>CA</Role>

</Signature>

4.3.1.3 TARGETOFCERTIFICATION (TOC) ELEMENT

The TargetOfCertification (ToC) element describes the cloud service that needs to be certified
by the particular instance of the certification model. ToC is an element of type

TargetOfCertificationType.
As shown in the Figure 7 below, the specification of a ToC includes:

* An attribute, called “id”, which represents the unique identifier of the ToC. This

attribute is mandatory, and

90

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* A sequence of providesinterface and requiresinterface elements. These interface
elements specify sets of operations whose execution and/or results will need to be

monitored during the certification process.
o The providesinterface elements specify the interfaces that the ToC offers itself.

o The requiresinterface elements specify interfaces that the ToC expects an

external entity to have.

® [] TargetOfCertificationType

e Attributes

id
o G
Type xs:string

TOC O
Type TargetOfCertificationType 1. | providesinterface]

&)

Type sla:interfaceDeclrType

0..e requiresinterface
Type sla:interfaceDeclrType

Figure 7 — TargetOfCertification Type

The XML schema for specifying TargetOfCertification elements is given in below:

<xs:complexType "TargetOfCertificationType">
<xsd:sequence>
<xsd:element " "unbounded" "providesInterface"
"sla:InterfaceDeclrType"/>
<xsd:element "o" "unbounded" "requiresInterface”

"sla:InterfaceDeclrType"/>
</xsd:sequence>
<xsd:attribute "id" "xs:string" "required"/>
</xs:complexType>

The two sub-elements of a ToC that specify the interfaces that should be used and are both of
the type InterfaceDeclrType. These are:

91

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

The providesinterface sub-element

As shown in Figure 8, this sub-element includes a sequence of texts and properties
that define the interface that a ToC itself realises. The providesinterface defines what

operations will be invoked.

The requiresinterface element

As shown in Figure 9, this sub-element includes a sequence of i) /D, ii) provider
references (ProviderRef), iii) zero or more FEndpoints and iv) Interfaces. This
element defines the interfaces that the ToC requires from external entities, in order to
be able to realise the functionality that will be monitored during the certification
process. Thus, for these interfaces it is important to specify the endpoint where the

relevant operations can be invoked.

® [] InterfaceDeclrType

p
ID ®
f \Type xs:string

(ProviderRef
\Type xs:string

providesinterface
o—@o
Type InterfaceDeclrType

0. Endpoint
Type EndpointTypeJ

Interface
®
Type InterfaceType

Figure 8 — ProvidesInterface Type

92

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

® [] InterfaceDeclrType

7 ~
D ®
\Type xs:string)
(ProviderRef \®
requiresinterface \Type xs:string)
il InterfaceDeclrT JO O
ype InterfaceDeclrType 0. (Endnaint
Type EndpointTypeJ

_ (Interface
| Type InterfaceType

Figure 9 — RequiresInterface Type

4.3.14 SECURITYPROPERTY ELEMENT

SecurityProperty is the element in the schema that defines the security property that is to be
certified by the specific instance of the certification model. SecurityProperty is an element of type

SecurityPropertyType. As shown in Figure 10, this type has:

* Four attributes, called “SecurityPropertyld”, ‘“SecurityPropertyDefinition”,
“Vocabulary” and “ShortName”, which are used to define the property to be
certified, such as availability, integrity, confidentiality, etc.,

* A sub-element called sProperty of a type propertyType, which is used to define more
concrete the property to be certified, and

* A sub-clement, called Assertion, which is used to provide the definition of the
security property to be certified. Assertion is an element of complex type
AssertionType. To define this type we have created a new XML based language to be
able to express the specification of security properties (e.g., the introduction of multi-

valued variables, event timestamps, forced executions of actions)

The specification of the SecurityProperty element in XML schema is listed below.

93

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<xs:complexType name="securityPropertyType">
<Xs:sequence maxOccurs="1" minOccurs="1">
<xs:element name="sProperty" type="propertyType"/>
<xs:sequence minOccurs="0">
<xs:element name="Assertion" type="AssertionType"/>
</Xs:sequence>
</Xs:sequence>
<xs:attribute name="SecurityPropertyId" type="xs:string" use="required"/>
<xs:attribute name="SecurityPropertyDefinition" type="xs:string"
use="required"/>
<xs:attribute name="Vocabulary" type="xs:string"/>
<xs:attribute name="ShortName" type="xs:string"/>
</xs:complexType>

® [] securityPropertyType

@ Attributes

SecurityPropertyld
: ®
Type xs:string

Type xs:string

Vocabulary
- I@

Type xs:string
SecurityProperty o ShortName ®
Type securityPropertyType Type xs:stringl

sProperty
®
l: Type propertyType
Assertion ®
Type AssertionType

Figure 10 — SecurityProperty Element

SecurityPropertyDefinitionJe

94

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Within a monitoring based certification model, the security property to be certified for TOC is

specified by one or more monitoring rule and zero or more assumptions:

71

Security-property:= MonitoringRule* [“,” MonitoringAssumption]*

In a security property specification, monitoring rules are assertions expressing conditions that
must be satisfied during the monitoring of TOC, whilst monitoring assumptions are assertions,
which are used to record and update state variables indicating the state of TOC during monitoring.
Both monitoring rules and assumptions are expressed as assertions in EC-Assertiont. EC-
Assertiont is an extension of EC-Assertion, i.e., the language for expressing monitoring
conditions in the EVEREST monitoring system [218], which is part of the CUMULUS
framework. EC-Assertion+ is based on Event Calculus [210]. Within it, assertions are formulas of

the form:
Assertion ::= [precondition]* “=" postcondition

The (optional) precondition element in an assertion determines the conditions under which the
assertion should be checked. The meaning of the postcondition element depends on whether the
assertion is a monitoring rule or an assumption. In assertions expressing monitoring rules,
postcondition determines the conditions that are guaranteed to hold (i.e., should be true if the
preconditions are true). In assertions expressing monitoring assumptions, postcondition

determines the states of the system that can be inferred to be true if the preconditions are true.

4.3.1.4.1 ASSERTION SUB-ELEMENT

The AssertionType is used to define the security property that is to be certified by a
Certification Model. It is a complex type as shown in Figure 11. According to this type, an
assertion has a unique /D and is defined through a sequence of guaranteed terms (see sub-element
Guaranteed). A guarantee term defines the conditions that must be monitored at runtime, in order

to come to a conclusion on whether or not a security property is satisfied or violated.

The definition of guaranteed conditions is based on, and refers to, the specification of

interfaces of the cloud services and mechanisms that need to be certified (the ToC). These

95

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

interfaces are specified by the elements InterfaceDeclr, as shown in Figure 11. They may also
make use of one or more variables, which are defined by the VariableDecl elements. Where
necessary, the definitions of such interfaces and variables need also to be specified as part of the

Assertion element.

O] Attributes

1 ID ®
Type xs:string

[] AssertionType |Of 1.0 | InterfaceDecir ®
Type InterfaceDeclrType
0. VariableDeclr
Type variableType

1. 0o | Guaranteed ®
Type AssertionFormulaType

Figure 11 — AssertionType

4.3.1.4.2 INTERFACEDECL SUB-ELEMENT

The specification of an interface declaration (/nterfaceDecl) sub-element, as presented in

Figure 12, consists of:

* The sub-element /D that uniquely identifies the InterfaceDeclr. This ID is a

mandatory sub-element.
* The sub-element ProviderRef that uniquely identifies the party that is obligated to

provide the interface. The ProviderRefis also a mandatory sub-element.

96

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* The sub-element /nterface that defines the interface of the service that needs to be
certified. This sub-element may be one of the following types:
o An inline Interface Specification (/nterfaceSpec),
o An interface reference (InterfaceRef) to an externally located InterfaceSpec,
identified by the UUID attribute 'InterfaceLocation’, or
o A resource type (InterfaceResourceType), denoting a resource as a service

("Resource-as-a-Service")

Interface sub-elements are used in cases where the definition of a security property
relates to operations that belong to the service. For example, the availability of a
service may be required for some of the interfaces that the service offers, but not all
of them. In such cases only the interfaces that the availability property will refer to,

need to be specified.

e Zero or more Endpoint sub-elements. These elements specify the endpoints that
implement the specific interface of the service that need to be certified, and at which
the interface operations can be invoked. Each Endpoint element is specified by:

o A compulsory ID of the endpoint (this /D must be unique within the scope of
the enclosing InterfaceDeclr element),

o A compulsory Location element of type string, which records the address of the
endpoint, and

o A Protocol element specifying the communication protocol required for
invoking the interface operations at the specific endpoint. This can take a value

to denote specific communication protocols, such as SOAP, REST, or SSH.

Endpoint sub-elements indicate where a service can be invoked. For the monitoring based
certification process this information is useful, because it will determine where the monitoring
events should be captured from, in order to acquire the required monitoring evidence to generate a

monitoring based certificate.

97

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

— ®
Type xs:string
ProviderRef
®
Type xs:string

© [EndpointType

D
Type xs:string

Location

Type xs:string

0..ec Endpoint o @
l [InterfaceDeciType |O- | ErdpoiTyne ._‘

Protocol

Type xs:string

© [] InterfaceType

InterfaceRef
Type InterfaceRefType

Interface o . InterfaceSpec ®
Type InterfaceType Type InterfaceSpecType

InterfaceResourceType J

Type InterfaceResourceTypeType

Figure 12 — Interface Declaration Type

The XML schema specification of the InterfaceDeclrType is given below.

<xs:complexType name="InterfaceDeclrType">
<Xs:sequence>
<xs:element maxOccurs="1" minOccurs="1" name="ID"
type="xs:string"/>
<xs:element maxOccurs="1" minOccurs="1" name="ProviderRef"
type="xs:string"/>
<xs:element maxOccurs="unbounded" minOccurs="0
type="EndpointType"/>
<xs:element maxOccurs="1" minOccurs="1" name="Interface"
type="InterfaceType"/>
</Xxs:sequence>
</xs:complexType>

name="Endpoint"

<xs:complexType name="EndpointType">
<Xs:sequence>
<xs:element maxOccurs="1" minOccurs="1" name="ID"

98

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

type="xs:string"/>
<xs:element maxOccurs="1" minOccurs="1" name="Location"
type="xs:string"/>
<xs:element maxOccurs="1" minOccurs="1" name="Protocol"
type="xs:string"/>
</Xxs:sequence>
</xs:complexType>
<xs:complexType name="InterfaceType">
<xs:choice>
<xs:element maxOccurs="1" minOccurs="1" name="InterfaceRef"
type="InterfaceRefType"/>
<xs:element maxOccurs="1" minOccurs="1" name="InterfaceSpec"
type="InterfaceSpecType"/>
<xs:element maxOccurs="1" minOccurs="1"
name="InterfaceResourceType"
type="InterfaceResourceTypeType"/>
</xs:choice>
</xs:complexType>

<xs:complexType name="InterfaceRefType">
<Xs:sequence>
<xs:element name="InterfacelLocation" type="xs:string"/>
</Xxs:sequence>
</xs:complexType>

<xs:complexType name="InterfaceResourceTypeType">
<xs:simpleContent>
<xs:extension base="xs:string"> </xs:extension>
</xs:simpleContent>
</xs:complexType>

<xs:complexType name="InterfaceSpecType">
<Xs:sequence>
<xs:element maxOccurs="1" minOccurs="1" name="Name"
type="xs:string"/>
<xs:element maxOccurs="unbounded" minOccurs="@" name="Extended"
type="xs:string"/>
<xs:element maxOccurs="unbounded" minOccurs="@" name="Operation'
type="operationType"/>
</Xxs:sequence>
</xs:complexType>

99

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

4.3.1.4.3 VARIABLEDECL SUB-ELEMENT

The sub-element VariableDeclr is of type variableType, presented in Figure 13, which can be
used to define variables, in order to express conditions within assertions, for the formal

specification of security properties. As shown in the figure, the variableType has two attributes,

which are the:

* persistent attribute that indicates whether the value of the variable is the same

throughout all instances (like static variables in Java), and the

* forMatching attribute that distinguishes between internal and external variables (i.e.

its value is false for internal variables).

Also, this type consists of the following sub-elements:

* varName that is of type String and signifies the name of the variable; and
* one of the following sub-elements:
o varType of type String with a value element of type String or a value element of
object type; or

o an array element of type arrayType with elements that describe the array

structure.

100

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

© @ Aftributes

persistent
Type xs:boolean @
Default false

forMatching

Type xs:boolean |®
Default true

"

varName
@
Type xs:string
- —&)

[D variableType |O1

varType

Type xs:string
value

Type xs:string

objectValue
Type xs:anyType

O

O

array
(O]
Type arrayType

Figure 13 — Variable Type

The XML schema specification of the variableType is given below.

<xs:complexType name="variableType">
<XS:sequence>
<xs:element name="varName" type="xs:string"/>
<xs:choice>
<XS:sequence>
<xs:element name="varType" type="xs:string"/>
<xs:choice minOccurs="0">
<xs:element name="value" type="xs:string"/>
<xs:element name="objectValue" type="xs:anyType"/>
</xs:choice>
</Xs:sequence>
<xs:element name="array" type="arrayType"/>
</xs:choice>
</Xs:sequence>
<xs:attribute default="false" name="persistent" type="xs:boolean"/>
<xs:attribute default="true" name="forMatching" type="xs:boolean"/>
</xs:complexType>

101

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

4.3.1.4.4 GUARANTEED SUB-ELEMENT

The sub-element Guaranteed is part of the Assertion element. Is of complex type
AssertionFormulaType, as shown in Figure 14, and defines a guarantee that a certain state of

affairs will hold. The AssertionFormulaType has two attributes:

* The attribute /D that is the unique id of the formula, and
* The attribute type that signifies whether the guarantee is
o A future assertion, which is an assertion that needs to be checked against
information that will arise after the occurrence of the events that will trigger the
check of the assertion, or
o A past assertion, which is an assertion that should be checked against
information that exists at the time point when the events that trigger the check

occur.

AssertionFormulaType also contains the following sub elements:

* A list of quantification elements that define the quantifiers for the variables and time
variables, used to specify conditions of the assertion. Two types of quantification
may exist for a variable:

o The existential (exists), or
o The universal (forall),

* An optional precondition element, which is of type AssertionCondition and
determines the conditions under which the assertion should be checked (i.e., the
conditions which if become true should trigger the checking of the assertion), and

* A postcondition element, which is of type AssertionCondition, and determines the
conditions that are guaranteed to hold (i.e. should become true if the preconditions

are true).

102

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

© @ Attributes

D
T tri @
ype xs:string I
~—

type
Type xs:string

© [quantificationType

1.. quantification
: @
Type quantificationType

|D AssertionFormulaType [O9 quantifier]

Type Restriction of xs:string’

precondition

Type AssertionConditionType

postcondition ®
Type AssertionConditionType

Figure 14 — AssertionFormulaType

The XML schema specification of the AssertionFormulaType is presented below.

<xs:complexType "AssertionFormulaType">
<Xs:sequence>
<xs:element "unbounded" "1
"quantification"
"quantificationType"/>
<xs:element "o" "precondition"
"AssertionConditionType"/>
<xs:element "postcondition" "AssertionConditionType"/>
</Xs:sequence>
<xs:attribute "ID" "xs:string" "required"/>
<xs:attribute "type" "Xxs:string" "required"/>

</xs:complexType>

The type AssertionConditionType enables the definition of atomic or complex logical
conditions. This is enabled by the structure of this type, which is shown in Figure 15. More

specifically, according to AssertionConditionType, an element of this type contains:

103

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* An atomic condition of type AssertionAtomicCondition, and

* An optional sequence of a logical operator, which is an element of type

logicalOperationType, which can be either:
o An AssertionCondition element, or

o A timeCondition element.

An AssertionAtomicCondition element has an attribute named conditionID that is the unique id

of the condition (within the assertion that the condition belongs to), and can be of three different

types:

* An event condition, which is of a type eventConditionType,
* A state condition, which is of type stateConditionType, or

* A relational condition, which is of type relationalConditionType.

Event conditions are conditions regarding the occurrence of events related to the ToC that
the assertion, which includes the condition, refers to (e.g., the occurrence of an invocation

(call) of an operation in one of the ToC’s interfaces or a response to such a call).

A state condition is a condition regarding the state of the system that is being monitored at
a given time point (e.g., a condition stating a certain user has already logged in to it or that

the system is TPM enabled).

A relational condition is a condition regarding the value of a variable used in an assertion
(e.g., a condition requiring a variable to have a certain value, or a condition requiring two

variables to have the same value).

104

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

atomicCondition
Type Assert»onAtom»cCondit:onType

| [} AssertionConditionType I operator @
Type IoglcalOperatorType

WrappedCondition .—. assertionCondition] ®

Type AssertionConditionType

timeCondition
Type timeConditionType

© @ Attributes

2 conditionlD
-~ |®
Type xs:string
| [] AssertionAtomicConditionType I eventCondition
Type eventConditionType

@ stateCondition ®
Type stateConditionType

relationalCondition
Type relationalConditionType

Figure 15 - Assertion Condition and Assertion Atomic Condition

The XML schema specification of the AssertionConditionType and

AssertionAtomicConditionType is given below.

<xs:complexType name="AssertionConditionType">
<Xs:sequence>
<xs:element name="atomicCondition"
type="AssertionAtomicConditionType"/>
<xs:element name="WrappedCondition" minOccurs="0"
maxOccurs="unbounded" >
<xs:complexType>
<Xs:sequence>
<xs:element name="operator" type="logicalOperatorType"/>
<xs:choice>
<xs:element name="assertionCondition"
type="AssertionConditionType"/>
<xs:element name="timeCondition"
type="timeConditionType"/>
</xs:choice>
</Xs:sequence>
</xs:complexType>

105

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</xs:element>
</xs:sequence>
</xs:complexType>

<Xs:complexType "AssertionAtomicConditionType">
<xs:choice>
<xs:element "eventCondition" "eventConditionType"/>
<xs:element "stateCondition" "stateConditionType"/>
<xs:element "relationalCondition™

"relationalConditionType"/>
</xs:choice>
<xs:attribute "conditionID" "Xxs:string"/>
</xs:complexType>

Figure 16 presents the event conditions, which are defined as elements of the type
eventConditionType. An event condition is a condition regarding the occurrence of an event that

can be of a type:
* call event that refers to a call of an operation,
* reply event that refers to a response to a call of an operation, or

* execute event that refers to an execution of an operation that must be invoked by the

monitor itself.

106

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

f—® Attributes

© [] eventType

eventlD ®
Type IDVariableType

| [} eventConditionType IO- correlatedEventlD
Type IDVariableType

®

call

Type operationType

reply
Type operationType

event
O v .—‘ @ S}
Type eventType

execute

Type operationType

tVar |®

fromTime ®
Type TimeExpression
toTime

] e
Type TimeExpression

Figure 16 - Event Condition Type

The specification of the eventConditionType in XML schema is listed below.

<xs:complexType name="eventConditionType">
<XS:sequence>
<xs:element maxOccurs="1" minOccurs="1" name="event"
type="eventType"/>
</Xs:sequence>
<xs:attribute default="false" name="negated" type="xs:boolean"/>
<xs:attribute default="false" name="unconstrained"
type="xs:boolean"/>
<xs:attribute default="false" name="recordable" type="xs:boolean"/>
<xs:attribute default="false" name="abducible" type="xs:boolean"/>
</xs:complexType>

<xs:complexType name="eventType">
<Xs:sequence>
<xs:element maxOccurs="1" minOccurs="1" name="eventID"
type="IDVariableType"/>
<xs:element maxOccurs="1" minOccurs="0@" name="correlatedEventID"
type="IDVariableType"/>
<xs:choice maxOccurs="1" minOccurs="0">
<xs:element name="call" type="operationType"/>
<xs:element name="reply" type="operationType"/>
<xs:element name="execute" type="operationType"/>
</xs:choice>
<xs:element name="tVar" minOccurs="0">

107

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<Xs:complexType>
<xs:choice>
<xs:element "timeVar" "timeVariableType"/>
<xs:element "timePeriod" "TimePeriodType"/>
</xs:choice>
</xs:complexType>
</xs:element>
<xs:element "fromTime" "TimeExpression" "e"/>
<xs:element "toTime" "TimeExpression" "e"/>
</Xs:sequence>
</xs:complexType>

An event condition is defined by the following sub-elements:

* An eventID of the type String that identifies uniquely the event of the condition,

* An optional correlatedEventID, which refers to another event that may be related to
this event (e.g., an event representing the response to a call of a ToC operation may
be explicitly correlated with the event that represents the call),

* A choice of elements call, reply or execute that determines whether the event of the
condition is a call, reply or execute event, respectively. All these three types of
events are defined as elements of the type operationType. Elements of this type
define the signature of the operation, which is called, replied to or executed. The
definition of operationType is shown in Figure 17 and is explained below.

* An element #Var that defines the point in time at which the event is expected to
occur. A tVar element can be defined as either

o timeVar element, of type timevariableType, or

o timePeriod element, of type TimePeriodType.

A timeVar element is used when the event is expected to occur at a single instance

of time and is of type timevariableType, which consists of:

o A varName, of type String, for specifying the name of the variable,
o AvarType, of type String, which has fixed value TimeVariable, and
o A value element, of type String, for specifying the value of the variable (i.e., the

time instance at when the relevant event occurs).

108

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

A timePeriod element is defined by two attributes:

o A (time) period, and

o A (time period) unit.

A tVar is defined by a timePeriod element if the event that it is associated with is an

execution event, such as an operation call, that must be executed periodically.

* A time range within which the event must occur. This element consists of two sub-
elements to define the upper and the lower time boundary of the time range. These
elements are:

o The fromTime element that defines the lower boundary of the time range of an
event, and
o The toTime element that defines the upper boundary of the time range of an

event.

The elements fromTime and toTime are both of type TimeExpression (see Figure 18).
A TimeExpression can be defined as a linear function over constants and/or time
variables that have been introduced in the relevant assertion. To enable this, the

definition of a TimeExpression element consists of:

o A time element that is of type timevariableType; and
o An optional expression starting by a time operator, i.e., plusTime, minusTime,

plus or minus.

The plusTime and minusTime operators are of type timevariableType and are used
to introduce further time variables in the time expression. The operators plus and
minus are both of decimal type and are used to introduce constants in the
expression. This structure enables the definition of time expressions such as: t1 +

t2, t1 +t2 + 3.0, t1 + 2.0%.

1 All constant decimal values in a time expression are assumed to express time in nanoseconds.

2The “[* and “]” denote a closed range at the lower and upper boundary respectively, and “(*“ and “)”
denote an open range at the lower and upper boundary respectively.

3 This assertion is specified in XML in Appendix A

* Atos Spain S.A is an international information technology services company that works with clients across the

109

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

interfaceld
®
Type xs:string
Operationld
— &
Type xs:string
operationName
®
Type xs:string

0..cc inputVariable

[e Jo—(@)o

Type variableType

0..c0 OutputVariable
Type variableType

0..c0 fault

Type variableType

Figure 17 — Operation Type

The definition of the operationType as shown in Figure 17, consists of:

* An element called interfaceld that is of type String and denotes the interface that the
operation belongs to,

* An element, called operationld, that is of type String and signifies the unique id of
the operation within the interface,

* An element, called operationName, that is of type String and denotes the name of the
operation,

* Zero or more inputVariable elements, which are of type variableType and define the
input variables (parameters) of the operation,

e Zero or more outputVariable elements, which are of type variableType and define
the output variables (parameters) of the operation, and

e Zero or more fault elements, which are of type variableType and define the fault

variables of the operation.

110

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

varName
Type xs:string

varType

[] timeVariableType O

Type xs:string
Fixed TimeVariable

plusTime

Type timeVariableType

[] TimeExpression

lus
P)

Type xs:decimal

minus

Type xs:decimal

Figure 18 - Time variable Type and Time Expression Type

The XML schema for the operationType, timeVariableType and TimeExpression is given

below.

<xs:complexType name="operationType">
<Xs:sequence>
<xs:element name="interfaceId" type="xs:string"/>
<xs:element name="OperationId" type="xs:string"/>
<xs:element name="operationName" type="xs:string"/>
<xs:element maxOccurs="unbounded" minOccurs="0"
name="inputVariable"
type="variableType"/>
<xs:element maxOccurs="unbounded" minOccurs="0"
name="outputVariable"
type="variableType"/>
<xs:element maxOccurs="unbounded" minOccurs="@" name="fault"
type="variableType"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="timeVariableType">
<Xs:sequence>
<xs:element name="varName" type="xs:string"/>
<xs:element fixed="TimeVariable" name="varType" type="xs:string"/>
<xs:element minOccurs="0" name="value" type="xs:string"/>
</xs:sequence>
</xs:complexType>

111

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<xs:complexType name="TimeExpression">
<Xs:sequence>
<xs:element name="time" type="timeVariableType"/>
<xs:element name="Expression" minOccurs="0">
<xs:complexType>
<xs:choice>
<xs:element name="plusTime" type="timeVariableType"/>
<xs:element name="minusTime" type="timeVariableType"/>
<xs:element name="plus" type="xs:decimal"/>
<xs:element name="minus" type="xs:decimal"/>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

112

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

© [] stateChangeType

event
Type eveniType

© [] stateType_EC

state
Type stateType_EC

initiates. o .
Type stateChangeType

@)o—-= (ammen)o

timeVar
Type timeVariableType

© [] stateChangeType

© [] stateType_EC

terminates o @ - -
Type stateChangeType : . state
Type stateType_EC 1.00
@o—=(ammm)o

timeVar
Type timeVariableType

© [initiallyType
© [] stateType_EC

Aftributes
7k
(@)o—-=(ammen)®

© [] timeVariableType

state
Type stateType_EC

[} stateConditionType O-

varType

Type xs:string
Fixed TimeVariable
value
- ®
Type xs:string

timeVar
Type timeVariableType

© [holdsAtType

© @ Attributes

% negated
e eponen [0

Default false

Built-in primitive type. It defines the boolean values true
and false

© [] stateType_EC

Attributes
s
(@) o—=(ammen)@

© [] timeVariableType

state
Type stateType_EC

varType
Type xs:string
Fixed TimeVariable

timeVar
Type timeVariableType

value
©
Type xs:string

Figure 19 - State Condition Type

113

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

The second type of atomic conditions in an assertion, are the stateConditions. stateConditions
refer to the state of the system that is being monitored in a particular instance of time. A
stateConditions may, for example, be that a particular user ul is successfully logged into a system
with a role rl at a particular instance of time t1. Conditions are expressed by n-ary relations of the
form “relation-name” (argl, ..., argn). In line with Event Calculus, such relations can be set up at
the beginning of the operation of a system or initiated by events that occur at specific time points
during the operation of the system. They can also be terminated by other events. From the time
that a state condition is initiated by an event and until the time that it is terminated by an event,
the condition holds (i.e., it is assumed to be True). In the case of our previous example, the state
condition expressing that the ul has been logged in with role rl, would be expressed by the
relation loggedIn(ul,rl). This condition would be initiated by a logging in event of ul and would

be terminated by a logging out event of ul.

In our assertion language, stateConditions can be specified as instances of the type
stateConditionType. The structure of this type is shown in Figure 19. The stateConditionType
supports the specification of elements expressing the initiation, termination and holding of state

conditions. In particular, a stateConditionType element can be:

* An initiates element that is of type initiatesType and expresses the initialisation of
some state by some event at some time point. The definition of elements of
stateChangeType consists of:

o An event element (i.e., an element of type eventType), which expresses the event
which causes the initialisation of the state value;

o A state element, which expresses a state of the system that is being monitored as
a relation between a list of arguments that have specific values; and

o An eclement timeVar, which expresses the time when the state element was
initialised (¢timeVar is of complex type timevariableType),

* A terminates element that expresses the termination of some state value by some
event. terminates elements are similar with initiates elements in expressing the effect
of an event on the state of a system at a given time point. Thus, they are also defined

as instances of the type stateChangeType,

114

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* A holdsAt element that represents the system state which is true (i.e., holds) at specific
time point. As shown in Figure 19, this element is defined as instance of the type
holdsAtType. According to this type, its definition consists of the following elements:

o A state element that represents the state value (see initiates element above) and
o A timeVar that represents the time when the state is held (this element is of

complex type timevariableType).

Furthermore, this type has an attribute negated, of a type Boolean, that indicates if the

holdsAt element is negated or not, and

* An initially element that represents a state value at the beginning of a monitored
period of system operation. As shown in Figure 19, this element is defined as instance
of the type initiallyType. According to this type, its definition consists of the following
elements:

o A state element that represents the state value (see initiates element above) and
o A timeVar that represents the time when the state is held (this element is of

complex type timevariableType).

The XML schema specification of the stateConditions is provided below.

<Xs:complexType "stateConditionType">
<xs:choice>
<xs:element "initiates" "initiatesType"/>
<xs:element "terminates" "initiatesType"/>
<xs:element "initially" "holdsAtType"/>
<xs:element "holdsAt" "holdsAtType"/>

</xs:choice>
</xs:complexType>

The third type of atomic conditions that may define an assertion, are the relationalConditions.
These conditions enable the specification of transient conditions about the values of variables
used in the assertions (i.e., a condition regarding the relation between values of two variables or a
condition between a variable and a value). We call these conditions transient because they are
checked at the time of the evaluation of an assertion but there is no permanent recording of their

form and truth-value following the completion of the check of an assertion. An example of a

115

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

relational condition is a condition requiring that one of the input variables of an operation, which

has been invoked by a call event, should have a particular value at the time of the invocation.

© [varRelationType

.G
equal . Type operandType
Type varRelationType

operand2
Type operandType
notEqualTo
- ®
Type varRelationType

lessThan ®
@- Type varRelationType
greaterThan
- ®
Type varRelationType
lessThanEguallo ®
I [] relationalConditionType |®®' Type varRelationType
greaterThanEqualTo ®
Type varRelationType
timeVar
i : ©]
Type timeVariableType

Figure 20 — RelationalConditionType

Figure 20 shows the structure of the type of relational conditions, relationalConditionType. As

shown in the figure, relationalConditionType can be one of the following conditions:

* equalto, defining that the operandl should be equal to operand?,

* notEqualTo, defining that the operandl should not be equal to operand?,

* lessThan, defining that the operandl should be less than operand?,

* greaterThan, defining that the operandl should be greater than operand?2,

* lessThanEqualTo, defining that the operandl should be less than or equal to
operand?, and

* greaterThanEqualTo, defining that the operandl should be greater than or equal to
operand?.

116

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

The above relational conditions are expressed by correspondingly named sub-elements of
relationalConditionType. All these alternative sub-elements are instances of the complex type
varRelationType, which defines the two elements involved in the relation, which are the operandl

and the operand?2. These elements are called operands and are of type operandType.

The XML schema specification of the relationalConditionType and thevarRelationType is
given below.
<Xs:complexType "relationalConditionType">

<Xs:sequence>
<Xs:choice>

<xs:element "equal” "varRelationType"/>
<xs:element "notEqualTo" "varRelationType"/>
<xs:element "lessThan" "varRelationType"/>
<xs:element "greaterThan" "varRelationType"/>
<xs:element "lessThanEqualTo" "varRelationType"/>
<xs:element "greaterThanEqualTo" "varRelationType"/>
</xs:choice>
<xs:element "timeVar" "timeVariableType"/>

</xs:sequence>
</xs:complexType>

<Xs:complexType "varRelationType">
<Xs:sequence>
<xs:element "operandl” "operandType"/>
<xs:element "operand2" "operandType"/>

</xs:sequence>
</xs:complexType>

Finally, a relational condition element has also a timeVar element that expresses the time point
at which the relational condition should hold. timeVar elements are expressed as instances of the

type timevariableType, which was discussed above.

117

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

variable ®
Type variableType
operationCall
1 - ®
Type functionType
,expresion
[] operandType |® @- (O]
\Type expresionType

a z 5
eventSeriesExpression J

| Type SeriesExpressionType

P
constant
~—] ®
\Type constantType_EC

Figure 21 - Operand Type

The specification of the OperandType in XML schema is listed below.

<xs:complexType "operandType">
<xs:choice>
<xs:element "variable" "variableType"/>
<xs:element "operationCall"” "functionType"/>
<xs:element "expresion” "expresionType"/>
<xs:element "eventSeriesExpression"
"SeriesExpressionType"/>
<xs:element "constant” "constantType_ EC"/>

</xs:choice>
</xs:complexType>

The definition of relation operands is according to their complex type operandType. As shown

in Figure 21, an operandType element can be defined as:

* A variable element of type variableType.
* A constant element that denotes a constant value (these elements are of type
constantType EC).
* An operationCall element of type functionType. As shown in Figure 22, a
functionType contains the following elements:
o An element, called name, of type String that specifies the name of the function,
o An element, called partner, of type String that signifies the partner service that

will provide the function, and

118

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

o Zero or more argument elements, which may be of one of the following types:
an eventSeriesVariable, a variable element, a constant element or a function
element of functionType.

An operationCall element defines a function that is to be executed by the monitor or
an external party, identified by the partner element of the call. It also defines the
arguments for the specific function, which can be variables that can take different
values during the monitoring process, constants or event series. When a function
operand is encountered during the evaluation of a relational condition, the values of
its arguments are established first, then the function is executed (this may involve
calling an operation in an external party), and the result of the function replaces the
function in the condition prior to its evaluation. If an exception arises during the
execution of the function, the value of it becomes undefined and the relational

condition becomes false.

An eventSeriesExpression element of type SeriesExpressionType, which specifies the

computation over a series of values of some arguments. As shown in Figure 23,

SeriesExpressionType consists of the following elements:

o An eventSeriesCondition element of type AssertionConditionType that signifies
the conditions that produces the series values, and

o A computation element of type valueExpType, which signifies the computation
that should be performed, over the series values. As shown in Figure 23,
computation element contains either an execute element of type operationType

or a function element of type functionType.

119

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

—— @ @ Attributes

name
Type xs:string

partner
z (O
Type xs:string
(" eventSeriesVariable
1 @

\Type variableType

| [] functionType IG)'

,variable
Type variableType
0.0 ~
argument |O G)' p
constant]

\Type constantType_EC

-
\ function
- @
\Type functionType

Figure 22 — FunctionType

The XML schema specification of the functionType is provided below.

<xs:complexType name="functionType">
<Xs:sequence>

<!-- operation restricted to a standard operation (i.e., min, max, avg, median,
mode, stdev, ...) -->
<xs:element name="name" type="xs:string"/>
<xs:element minOccurs="@" name="partner" type="xs:string"/>
<xs:element name="argument" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:choice>

<l-- variable restricted to one of those in the event expression -->
<xs:element name="eventSeriesVariable" type="variableType"/>
<xs:element name="variable" type="variableType"/>
<xs:element name="constant" type="constantType EC"/>
<xs:element name="function" type="functionType"/>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="ID" type="xs:string" use="required"/>
</xs:complexType>

120

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

The event series construct in the language has been introduced to support the succinct
specification of properties that require the detection of complex event patterns occurring
repeatedly within an event stream and, based on the results of this process, compute an aggregate
value. Availability properties based on metrics like mean-time-between-failures or mean-time-to-
repair are examples of such properties. Monitoring the mean-time-between-failures metric, for
instance, would require monitoring a pattern of service consecutive failures and computing the

average of the time difference between consecutive failures.

eventSeriesCondition ®
Type AssertionConditionType

© [valueExpType
| [] SeriesExpressionType I@—.O
computation
—®)
Type valueExpType

Figure 23 - SeriesExpressionType

execute
Type operationType

function
Type functionType

The XML schema specification of the SeriesExpressionType and the valueExpType is given

below.
<Xs:complexType "SeriesExpressionType">
<Xs:sequence>
<xs:element "eventSeriesCondition"
"AssertionConditionType"/>
<xs:element "computation” "valueExpType"/>
</xs:sequence>
</xs:complexType>
<Xs:complexType "valueExpType">
<xs:choice>
<xs:element "execute" "operationType"/>
<xs:element "function” "functionType"/>

</xs:choice>
</xs:complexType>

121

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

4.3.1.5 ASSESSMENTSCHEME ELEMENT

The element AssessmentScheme defines general conditions regarding the evidence that must be
collected in order to be able to issue and maintain a certificate according to the particular
certification model. These conditions are related to the i) sufficiency of evidence collection, such
as the minimum period over which a target of certification must be monitored before a certificate
for the particular property of it can be issued, ii) the expiration date of the instance, and iii) the
absence of conflicting evidence regarding the security property to be certified, or iv) the absence
of anomalous behaviour regarding the security property to be certified. These conditions must be
satisfied, in addition to the guarantee states that are part of the assertion definition of the security

property, for the certificate to be issued.

The definition of the type used for specifying AssessmentScheme elements is shown in Figure

24. As shown in the figure, the specification of an assessment scheme includes a sequence of:
* evidence sufficiency conditions (EvidenceSufficiencyCondition sub-element),
* expiration conditions (ExpirationCondition sub-element),
* conflicts (Conflict sub-element), and

* anomalies (Anomalies sub-element).

These sub elements of an assessment scheme are described below.

122

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

l.& (EvidenceSufficiencyCondition ®
(\Type EvidenceSufficiencyConditionType

1.0 (ExpirationCondition
\Tvpe ExpirationConditionType

| [} AssessmentSchemeType |O—‘O

0. Conflict ®
Type ConflictType

Anomalies ®
Type AnomalyType

Figure 24 —AssessmentSchemeType

The XML schema specification of the AssessmentSchemeType is listed below.

<xs:complexType "AssessmentSchemeType">
<Xs:sequence>
<xs:element "l "unbounded"

"EvidenceSufficiencyCondition"
"EvidenceSufficiencyConditionType"/>

<xs:element "l "unbounded"
"ExpirationCondition"
"ExpirationConditionType"/>

<xs:element "o" "unbounded" "Conflict"
"ConflictType"/>

<xs:element "Anomalies"” "AnomalyType"/>

</xs:sequence>
</xs:complexType>

4.3.1.5.1 EVIDENCESUFFICIENCYCONDITION SUB-ELEMENT

The EvidenceSufficiencyCondition sub-element of the AssessmentScheme element, which is of

a type EvidenceSufficiencyConditionType, is presented in Figure 26. This sub-element is used to
describe conditions regarding the minimum extent of monitoring events or the minimum number

and type of events that need to be monitored, before issuing a certificate.

It has a unique identifier (/d) and defines the conditions of the sufficiency conditions that must

apply to evidence in order to issue a certificate. These conditions can be of three different types,

123

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

which are: i) the MonitoringPeriodCondition, ii) the MonitoringEventsCondition, or iii) the

ExpectedSystemOperationModelCondition.

A) MonitoringPeriodCondition

A condition of this type can be used to define the period that a ToC should be monitored
before a certificate can be issued. Such conditions can be specified according to the
schema shown Figure 26. It should be noted that the security property to be monitored is
determined by the assertions defined as part of the security property element of the
model. The monitoring period defines only for how long these assertions should be

monitored, before the evidence is deemed sufficient and a certificate can be issued.

B) MonitoringEventsCondition

A condition of this type can be used to define the minimum number of monitoring events
that should be gathered before a certificate can be issued. Such conditions can be
specified according to the schema shown in Figure 26. Similarly to the monitoring period
element, the monitoring events condition determines the minimum number of events that

must have been considered to issue a certificate.

C) ExpectedSystemOperationModelCondition

This is an optional condition that can be used to define an expected operation model of
ToC (ETOCB). If such a model is defined, then the gathered evidence will be deemed
sufficient for issuing a certificate only if the actual operation of ToC does not deviate
from this model. Conditions of this kind are defined through a probabilistic state
transition model of the behaviour of ToC and external actors interacting with it. This

probabilistic state transition model describes the probabilities of occurrence of the events

124

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

that ToC should be expected to receive and the probabilities of the responses that it

should be expected to produce.

More specifically, this element is a model that is specified as a deterministic automaton

with expected relative event frequencies of the form:

ETOCB = <States, Events, sinit, PTrans, FinalStates>

In the ETOCB specification:
* States is the (finite) set of TOC states that are critical for the monitoring process;

* FEvents is the set of all possible events the TOC may produce that are of interest to

certification;
* sinit is the initial TOC state;
* PTrans is a finite set of labelled transitions between two states; and

e FinalStates is the set of states where the certification automaton terminates. PTrans

includes elements of the form (os, ds, e, R(lpr, upr)) where
o os is the origin state of the transition,
o ds is the destination state of the transition,
o e s the signature of the event triggering the transition, and

o R(lpr,upr) is the range of the expected relative frequency of undertaking this
transition whilst the system is in os. R(lpr, upr) can be: (Ipr, upr), [lpr, upr),
(Ipr, upr] or [lpr, upr]. The ETOCB model must satisfy some constraints. In
particular: i) e must be an element of Events, i.e., an event denoting the
invocation (or the response produced following an invocation) of an operation
in the provided interface of TOC; ii) the boundaries lpr, upr should satisfy the
conditions: 0 < lpr, upr < 1, and Ipr < upr; and iii) ETOCB must be a

deterministic model.

125

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

connect() [1,1]

A4
S1 =

~
-

delete() (0.0, 0.2) J select() [0.5, 1.0)

update() (0.0, 0.3)

_J | quit()(0.0,0.5)
A4
S2 {final state}

Figure 25 — ExpectedSystemOperationModel

ETOCB defines events that should be seen at different states during the operation of
ToC (i.e., executed operations of the ToC) for the monitoring evidence to be sufficient.
For certifying MySQL server, for example, this evidence should include executions of
select, update, delete, and quit MySQL commands with specific frequencies. ETOCB is
not required to be a complete model of TOC’s behaviour; it only needs to define the

states and events of importance for the property to be certified.

Figure 25 above gives an example of the ETOCB model for a relational DB server. This
model expresses a view about the typical range of the server usage that should be taken

into account in the certification of the server. According to it:

* The first interaction with the ToC should be a connect call to it, as stated by the
event of transition from InitialState to S1, since a connection to the server should
be established before any other query occurs. Also, according to the frequency
range of this transition (i.e., [1,1]), connect calls should be the only initial event in
any monitoring event trace, for the trace to be considered valid for the purposes of

certification.

126

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* Once a connection to the server is established, interactions with it may be requests
for the execution of select(), update(), delete() or quit() operations (i.e., SQL
queries) with expected frequency ranges [0.5, 1.0), (0.0, 0.3), (0.0, 0.2), and (0.0,
0.5), respectively, as indicated by the relevant transitions from S/ to S/ and S2.
These expected frequency ranges require that data retrieval events (select() queries)
will constitute at least half of the interactions with the server but data update() and

delete() queries should also be seen. The model also expresses that:

o It will be sufficient for certification purposes to see an event trace with update
queries up to below 30% and delete queries up to below 20% of all

interactions, and

o Whilst at S7, the user may decide to quit(), according to the transition from S/
to §2). Also, the lpr of the latter transition (i.e., Ipr > 0) reflects that an event
trace must always end with a quit() request for it to be a valid event trace for

certification.

This type of element, since it defines a state transition model, it is of a type

StateTransitionModelType, which is further described in Section 4.3.1.10.

The XML schema representation of the EvidenceSufficiencyConditionType is shown in Figure
26 below.

127

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

(—(9 Attributes

ExpectedSystemOperationModel ®
Type StateTransitionModelType

© [] MonitoringPeriodConditionType

| [} EvidenceSufficiencyConditionType |@<

[©] Attributes

id
Type xs:string

minMonitoredPeriod
]
Type xs:float
periodUnit ®
Type PeriodUnitType

[©] D MonitoringEventsConditionType

MonitoringPeriodCondition]

o—
@J Type MonitoringPeriodConditionType

[©] Attributes

MonitoringEventsCondition

Type MonitoringEventsConditionType)O gyantsho @
Type xs:decimal

Figure 26 — EvidenceSufficiencyConditionType

The XML schema specification of the EvidenceSufficiencyConditionType is presented below.

<xs:complexType name="EvidenceSufficiencyConditionType">
<xs:choice>
<xs:element name="ExpectedSystemOperationModel"
type="StateTransitionModelType"/>
<xs:element name="MonitoringPeriodCondition"
type="MonitoringPeriodConditionType"/>
<xs:element name="MonitoringEventsCondition"
type="MonitoringEventsConditionType" />
</xs:choice>
<xs:attribute name="Id" type="xs:string" use="required"/>
</xs:complexType>

<xs:complexType name="MonitoringPeriodConditionType">
<xs:attribute name="id" type="xs:string" use="required"/>
<xs:attribute name="minMonitoredPeriod" type="xs:float"/>
<xs:attribute name="periodUnit" type="PeriodUnitType"/>

</xs:complexType>

<xs:complexType name="MonitoringEventsConditionType">
<xs:attribute name="eventsNo" type="xs:decimal" use="optional"/>

</xs:complexType>

128

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

4.3.1.5.2 EXPIRATIONCONDITION SUB-ELEMENT

An expiration condition defines when an issued certificate, which has been generated
according to the given certification model, should expire and a new one could be issued by
considering further evidence. This condition is expressed by an element of the certification model
schema, called ExpirationCondition, which is of type ExpirationConditionType. The specification

of ExpirationCondition elements in the XML schema is shown graphically in Figure 27.

[S] Attributes

Id
Type xs:string

absoluteDate
Type xs:date

| [[] ExpirationConditionType |

© [] ElapsedPeriodType

@e

[C] Attributes

period
Type xs:float ‘

elapsedPeriod
Type ElapsedPeriodType

periodUnit ®
Type PeriodUnitType ‘

Figure 27 — Expiration Condition Type

The XML schema for ExpirationConditionType is listed below:

<xs:complexType "ExpirationConditionType">
<XS:sequence>
<xs:choice>
<xs:element "absoluteDate" "xs:date"/>
<xs:element "elapsedPeriod" "ElapsedPeriodType"/>
</xs:choice>
</Xs:sequence>
<xs:attribute "Id" "xs:string"/>
</Xs:complexType>

<xs:complexType "ElapsedPeriodType">
<xs:attribute "period" "xs:float"/>
<xs:attribute "periodUnit" "PeriodUnitType"/>

</Xs:complexType>

129

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

According to the above schema, an expiration condition has a unique identifier (/d) and a

choice of two different ways to define the expiration date within it:

* Asan absoluteDate, which is an element of type date, or
* As an elapsedPeriod, which is an element of type ElapsedPeriodType. An
ElapsedPeriod element can be used when a certificate needs to expire at the end of a
specific period of time from the date that it was issued.
An ElapsedPeriod element expresses this by defining a period of time, as the number
of time units that should elapse following the creation of the certificate, by defining
two attributes,
o the period, which of a type float, and
o the period unit, which is of a type PeriodUnitType and can take values such as

days, months, years etc..

4.3.1.5.3 CONFLICT SUB-ELEMENT

In a certification model conflicts define circumstances that may affect the state of a monitoring
based certificate and the actions that should be taken in order to resolve it. More specifically, a
conflict designates an assessment of the security property associated with the model for a sub
period of the time specified in the certification model, which gives a different result from the
assessment of the same property according to the assertion specified in the model. Thus, conflicts
aim to capture cases where a given security property would not be satisfied if it were to be

assessed over different monitoring aggregation periods.

Consider, for example, the case where a certification model used to certify the availability of a
cloud storage service, within which the assessment of availability is based on average measures of
the service availability taken over periods of one month. The availability of the service may, for
instance, be above 99% if assessed on a monthly basis by certification model whose security
property refers to this period of assessment, but it may be below this threshold if shorter or longer
assessment intervals are considered. A conflict in this case would arise if the availability of the

service may have been found to be less than 99%. Such discrepancies do not necessarily de-

130

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

validate certificates that lead to their suspension or revocation, but may need to be audited by the
certification authority that has signed or will sign the certificate, before confirming the validity of

an existing certificate or allowing a certificate to be issued.

In a CM conflicts are defined by alternative assessment periods for the security property. A
conflict is defined by a conflict element in the certification model schema and is of the type

ConflictType. The definition of ConflictType is shown in Figure 28.

© [] ConflictType

(S] Attributes

conflictid
Type xs:string J

assertionid ‘

Conflict o Type xs:string |
Type ConflictType e

assessmentPeriod ®
Type xs:float J

assessmentUnit
Type Restriction of 'xs:string‘J

Figure 28 — Conflict Type

The specification of the ConflictType in the XML schema is shown below:

<xs:complexType "ConflictType">
<xs:attribute "conflictId" "xs:string"/>
<xs:attribute "assertionId" "xs:string"/>
<xs:attribute "assessmentPeriod" "xs:float"/>
<xs:attribute "assessmentUnit">
<xs:simpleType>
<xs:restriction "xs:string">
<xs:enumeration "nanoseconds"/>
<xs:enumeration "milliseconds"/>
<xs:enumeration "seconds"/>
<xs:enumeration "minutes"/>
<xs:enumeration "hours"/>

</xs:restriction>
</xs:simpleType>
</xs:attribute>
</Xs:complexType>

131

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

According to this type, a conflict element is defined by the following four attributes:

* The conflictld, which is a unique identifier of the conflict element,

* The assertionld that identifies the assertion that the conflict element refers to, and

* The assessmentPeriod that determines the length of the period in time over which the
assessment, whose purpose is to detect conflicts, should be conducted.

* assessmentUnit — this attribute determines the time unit in which the conflict

assessment period is expressed

4.3.1.5.4 ANOMALIES SUB-ELEMENT

Certification models may also need to monitor and gather runtime evidence about i) potential
attacks on ToCs, ii) other suspicious behaviour, or iii) operational conditions related to the
security property, which despite not having caused any violation of the security property of the
model so far, may lead to a violation of this property in the future. In the context of monitoring
based certification models, we refer to these three possible cases as anomalies. Some anomalies
may affect the status of certificates, i.e., they might lead to the suspension or revocation of a

certificate. Other anomalies may only be used for auditing purposes.

The definition of the anomalies that should be monitored as part of a certification model,
should be based on an analysis of whether potential attacks, or the ways in which the behaviour of
different external actors that interact with ToC and the overall operating conditions of the
interaction between ToC and these actors, may affect the satisfaction of the given security

property by the ToC.

To specify the monitoring of anomalies we have introduced the following element, called
Anomalies, as part of the assessment scheme of the monitoring based certification models. The

type of this element is AnomalyType.

The structure of this type is shown in Figure 29 and the part of the XML schema that defines it

is shown below:

132

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

® [] AssertionType

® Attributes

D
Type xs:string

Assertion
[] AnomalyType G)O Lo - © 1.0
Type AssertionType

InterfaceDeclr
Type sla:nterfaceDeclrType

0..c0 VariableDeclr
Type sIa:VariableDecIrTypeJ

1..« | Guaranteed
Type sla:GuaranteedStateType

Figure 29 — AnomalyType

<xs:complexType "AnomalyType">
<XS:sequence>
<xs:element " "unbounded" "Assertion"

"AssertionType"/>
</Xs:sequence>
</xs:complexType>

As shown in the above XML schema specification, an anomaly element is specified by one or
more assertions that are to be monitored. These assertions are specified as elements of
AssertionType, i.e., as normal monitoring conditions that should be checked during the acquisition

of evidence for a monitoring based certificate.

The difference, however, from assertion elements specified as part of the security property
element to be certified, is that the violation of the assertion elements of the security property
element would typically either prevent the issuing of a certificate or lead to the revocation of an
issued certificate. The assertion elements of the anomaly elements on the other hand, are used to
gather monitoring evidence indirectly, which would typically need to be audited by the
certification authority, which issues the certificates of the particular type, before any further
action is taken. The way to treat detected anomalies should be specified in the life cycle model of

the relevant certification model.

133

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

4.3.1.6 VALIDITYTESTS ELEMENT

A certification model may, in addition to the assessment scheme, define some extra
validity tests as preconditions before issuing a certificate of a given type. Validity tests are
optional extra preconditions that might need to be fulfilled before issuing a certificate of a
given type, in addition to the assessment scheme’s conditions. These tests may relate i) to
conditions regarding the cloud infrastructure, in which the service to be certified is deployed
(e.g., requiring that the cloud offers full isolation of virtual machines), ii) to the adherence of
other services’ protocol that the service to be certified may depend on (e.g., requiring that a
storage service, which is used by a SaaS service, implements correctly a proof-of-
retrievability protocol), or iii) to conditions regarding the monitoring infrastructure itself (e.g.,
requiring the integrity of the transmission of monitoring events and results inside the

infrastructure and to external clients of it).

Such conditions are specified by the element validityTests in the certification model schema,
as shown in Figure 30. The specification of validity tests can be based on expressing conditions
regarding Trusted Computing based certificates or other types of certificates regarding ToC and
its operational context, which can confirm the adherence of such entities to required conditions.
For example, a validity test might be that the monitoring components, which have been used to
gather the evidence underpinning a certificate, have integrity and have remained the same
throughput the whole monitoring period. Thus, we expect that validity tests can be expressed as

logical conditions over such certificates and their contents.

[ValidityTests

O | | VvalidityTestsType
Type ValidityTestsType

Figure 30 — Validity Tests Type

134

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

4.3.1.7 MONITORINGCONFIGURATIONS ELEMENT

In Figure 31 the MonitoringConfigurations element is presented, which is used to specify the
list of the monitoring configurations that have been used to collect the evidence for generating

certificates of this type.

® [] MonitoringConfigurationsType

MonitoringConfigurations o .O 0. MonitoringConfiguration ®
Type MonitoringConfigurationsType Type IndividuaIMonitorConfigurationTypeJ

Figure 31 — Monitoring Configurations Type

As shown in Figure 32, each monitoring configuration includes:

* A unique Identifier (/d) as an attribute,
* A list of Components of the monitoring environment,

These components can be of two types:

o sensors, which are components capable of capturing and transmitting primitive

monitoring events, and

o reasoners, which are components capable of analysing events and checking

whether monitoring conditions are satisfied, also known as monitors.

135

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

(® © Attributes

~ Id ®
Type xs:string

l [] IndividualMonitorConfigurationType IG) © [ComponentType

Ri
C .. [Component] @ 5 ®
(Type ComponentType I . E 5

Figure 32 — Individual Monitor Configuration Type

The XML schema for monitoring configuration type is shown below.

<xs:complexType name="IndividualMonitorConfigurationType">
<XS:sequence>
<xs:element maxOccurs="unbounded" name="Component"
type="ComponentType"/>
<xs:element name="ConcreteProperty" type="ec:formulasType"/>
</Xxs:sequence>
<xs:attribute name="Id" type="xs:string"/>
</xs:complexType>
<xs:complexType name="ComponentType">
<Xs:sequence>
<xs:element name="EndPoint" type="xs:string"/>
</xs:sequence>
<xs:attribute default="REASONER" name="type">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="SENSOR"/>
<xs:enumeration value="REASONER"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>

136

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

4.3.1.8 EVIDENCEAGGREGATION ELEMENT

In Figure 33 is presented the EvidenceAggregation element, which defines how often should
the monitoring evidence being checked, in order to update the evidence in the generated

certificate, with new aggregated evidence.

[l | EvidenceAggregationType
Startdate
®

Type xs:date
NumberOfEvents
Type xs:string

© [IntervalsType

[C] Attributes

intervalsTime ®
o Type xs:string

intervalUnits J

EvidenceAggregation
i)o@
Type EvidenceAggregationType

Intervals
Type IntervalsType

Type Restriction of 'xs:string’

FunctionalAggregatorld
o g)
Type Restriction of 'xs:string

IntermediateResults ®
Type xs:boolean

Figure 33 — Evidence Aggregation Type

As shown in the figure, this element consists of the following elements:

* The StartDate of the first aggregation,

e A choice of either:

o A NumberOfEvents, which defines the number of the primitive monitoring

events that should be aggregated, or

o An Interval element, which consists of two attributes:

137

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

» The intervalsTime, which specifies how often should the evidence be

aggregated, and
= The intervalUnit, which declares the unit used to specify the interval time.

* The FunctionalAggregatorld, which defines what type of aggregation should done in

the events, and

* The IntermediateResults element, which is an optional Boolean element that could be
used to specify if there is a need to aggregate evidence between two predefined

aggregation periods, to check the validity of the certificate.

The XML schema specification of the EvidenceAggregationType is given below.

<xs:complexType "EvidenceAggregationType">
<Xs:sequence>
<xs:element "AggregatedResultsInfo">
<xs:complexType>
<xs:attribute "Startdate" "xs:date"/>
<xs:attribute "Timestamp" "xs:date"/>
<xs:attribute "NumberOfEvents" "xs:string"/>
<xs:attribute "intervalsTime" "xs:float"/>
<xs:attribute "intervalUnit">
<xs:simpleType>
<xs:restriction "xs:string">
<Xs:enumeration "nanoseconds"/>
<Xs:enumeration "milliseconds"/>
<Xs:enumeration "seconds"/>
<Xs:enumeration "minutes"/>
<Xs:enumeration "hours"/>

</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>

<xs:element "EventSummary">
<xs:complexType>
<xs:attribute "NumberOfViolations" "xs:string"
"required"/>
<xs:attribute "NumberOfSatisfactions" "xs:string"

"required"/>
</xs:complexType>
</xs:element>

<xs:element "AggregatedValue" "xs:string"/>
<xs:element "o" "FunctionalAggregatorId">
<xs:simpleType>
<xs:restriction "Xxs:string">

138

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<Xs:enumeration "Max"/>
<Xs:enumeration "Min"/>
<xs:enumeration "Average"/>
<Xs:enumeration "Standard Deviation"/>

</Xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element "IntermediateResults"” "Xxs:boolean"/>
</xs:sequence>
</xs:complexType>

4.3.1.9 LIFECYCLEMODEL ELEMENT

The life cycle model (LCM) element in a certification model defines the process by which
certificates can be generated and managed (e.g., monitored, issued, suspended, revoked). LCM is
a compulsory element of a certification model as it enables a certification authority to specify
with full precision the certification process, by defining the different states of certificates that can
be generated by the certification model and which events should change it. During the operation
of the framework, the LCM is used to monitor on-going certification processes, determine the
state at which they are (e.g., collecting monitoring evidence, checking validity conditions prior to
issuing a certificate) and, depending on it, update the state of the certificate that may be generated

by the process.
A life cycle model (LCM) is defined as a state transition model of the form
LCM = <Sinit, States, Trans>

In an LCM, i) States is the finite set of states of it (a state may be an atomic state or a
composite state specified by another embedded LCM); ii) Sinit is the initial state of the process;

and iii) Trans is a finite set of transitions between two states.
Trans includes elements of the form (si, sj, €, g, a) where:
* siis the origin state of the transition;

* sjis the destination state of the transition;

139

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* eis the signature of the event triggering the transition;

* gis guard condition that must be satisfied for the transition to take place; and

* aisaset of actions that should be executed if the transition takes place.

In an LCM, e must be an element of the provided interface of the framework (e.g., the
operation enabling the notification of monitoring events, the operation to be executed if the user

of the framework wishes to suspend or revoke a certificate).

An example of an LCM is shown in Figure 34. The LCM in the figure has an initial state called
Activated and the states InsufficientEvidence, Pre-Issued, Issued, and Revoked. It also has two

composite states: Continuous Monitoring and Issuing.

state machine MonitoringBasedCM [MonitoringBasedCMU

Activated
.— entry / startMonitoring

monitoringEvidence(e:

monitoringEvidence(e: MonitoringResult) / recordMonitoringResult(e:MonitoringResult)

MonitoringResult)
Continuous Monitoring
Insufficient \ _ t_w"'e"' Vi
Evidence (expiration-conditions) retrieveCertificate
when Issuing | | \L
(assertion-satisfied
AND Pre-Issued . -) Issued
sufficiency-conditions - - when (validity-conditions-satisfied)
y-C % entry / CheckValidity Conditions 1 aggregate evidence
Revoked

when (CA revokes certificate)
O entry / stopMonitoring

Figure 34 - UML diagram of Life Cycle Model

According to the model, after a certificate is activated, it moves to the InsufficientEvidence

state, at which the monitoring evidence that is relevant to it starts getting accumulated. When the

140

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

accumulated evidence becomes sufficient according to the EvidenceSufficiencyConditions
specified in the CM, and if there have been no violations of the monitoring rule that defines the
security property (i.e., the security property of the CM is satisfied), the certificate moves to the
state Pre-Issued. At this state, the certification infrastructure will check if the extra validity
conditions for the certificate type (if any) are satisfied and, if they are, the certificate will move to
the state Issued. In this state, any interested party with appropriate authority can retrieve the
issued certificate from the framework. Whilst a certificate is at the Issuing state, monitoring
continues and if a violation of the monitoring rule of the CM is detected, the certificate moves to

the Revoked state at which it will no longer be valid and available.

Thus, the LifeCycleModel element defines all possible states that a certificate could take, from
the time that it will be generated until it will cease to exist, and all the transitions between the
different states, as well as their conditions, which should be references of the predefined
conditions of the AssessmentScheme element of certification model. In Figure 35 the XML schema

of this element is presented.

© [] StateTransitionModelType
InitialState ®
Type PseudoStateType
1. [states
®
Type StatesType
1. | transitions ®
Type TransitionsType
FinalState
- . o——(@)o ®
Type StateTransitionModelType Type PseudoStateType
historyState ®
Type HistoryStateType

0..0 requiresinterface
Type sIa:InterfaceDecIrTypeJ

1.0 [providesinterface ®
Type slainterfaceDeclrType

Figure 35 — LifeCycleModel Element

141

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

4.3.1.10 STATETRANSITIONMODELTYPE

The LifeCycleModel and the ExpectedSystemOperationModelCondition elements define state
transitions models, thus they both are of a type StateTransitionModelType. Figure 36 shows a
graphical representation of the structure of the XML schema that is used to specify state transition

models. According to this type, a state transition model consists of:
* An optional /nitialState,
* An optional FinalState,
* An optional HistoryState,
* A sequence of atomic or composite states,
* The transitions between states,

* One or more provided interfaces, which are sets of operations (or else interfaces) that

are realised by the entity whose behaviour is described by the model, and

* One or more required interfaces, which are sets of operations that the entity, whose

behaviour is described by the model, expects other external interacting entities to have

142

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

| [[] StateTransitionModelType IO

InitialState ®
Type PseudoStateType
© [[] StatesType
© [] StateType

atomicState ®
Type AtomicStateType

compositeState ®
Type Composi(eS(a(eTypeJ

state

states o
Type StateType

Type StatesType

1..e | transitions ®
Type TransitionsType
FinalState ®
Type PseudoStateType
historyState ®
Type HistoryStateType

© [slainterfaceDeclrType

© [] slasoi:AnnotatedType (extension base)

requiresinterface o
Type sIa:InterfaceDecIrTypeJ

0..00

®

®

Interface

1..« | providesinterface ®
Type slainterfaceDeclrType

Figure 36 — State Transition Model Type

The XML schema specification of the StateTransitionModelType is listed below.

<xs:complexType
<Xs:sequence>
<xs:element

minOccurs="1"

name="StateTransitionModelType">

maxOccurs="1" name="InitialState"

type="PseudoStateType"/>

<xs:element

minOccurs="1"

maxOccurs="unbounded" name="states"

type="StatesType"/>

<Xxs:element

minOccurs="1

" maxOccurs="unbounded"

name="transitions"

143

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

"TransitionsType"/>

<xs:element "o" "1 "FinalState"
"PseudoStateType"/>
<xs:element "o" "unbounded"
"historyState"
"HistoryStateType"/>
<xs:element "o" "unbounded"
"requiresInterface”
"InterfaceDeclrType"/>
<!-- interfaces that the LC model provides for (a) realisation of actions

and/or (b) call events that may force transitions -->

<xs:element "o" "unbounded"
"providesInterface"
"InterfaceDeclrType"/>
<l-- interfaces that it requires of external parties e.g., monitor's

interface that will be used by actions starting and ending the monitoring
process -->

</xs:sequence>
</xs:complexType>

<xs:complexType "StatesType">
<Xs:sequence>
<xs:element "l "unbounded" "state"

"StateType"/>
</xs:sequence>
</xs:complexType>

<xs:complexType "StateType">
<xs:choice>
<xs:element "o" "1 "atomicState"
"AtomicStateType"/>
<xs:element "o" "1 "compositeState"

"CompositeStateType"/>
</xs:choice>
</xs:complexType>

4.3.1.10.1 STATES SUB-ELEMENT

The InitialState and FinalState elements are pseudo states, which are used to designate the
initial state of the model and the final state of the model respectively. Both these elements are

specified as instances of the element type PseudoStateType, as shown in Figure 37.

144

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

O] Attributes

e wssiing |0 (Z255ns)
7 xsstrin
|[:] PseudoStateType IO—- Type xs:string 2

Built-in primitive type. The string datatype represents
character strings in XML.

Figure 37 — Pseudo State Type

Pseudo states have only one attribute called stateld that uniquely identifies them within a state

transition model.

A historyState element can be used in the cases where a state transition model is embedded
within another state transition model, or more precisely a composite state of it (see composite
states below). Historic state elements are used to keep a record of the last active atomic state
within the composite state, before a transition was triggered to move the state of the relevant
entity to a state outside the embedded model, where the historic state belongs. Historic state
elements are described as instances of the element type HistoricStateType, which is defined in

Figure 38 below.

O] Attributes

stateld]
[] HistoryStateType |Q—— | TYPE€ Xs:string

refersToStateld
Type xs:string

Figure 38 — History State Type

Apart from the initial, final and historic states, state transition models have also normal states.
At least one of such states must be present in a model. These define periods in the life of the

entity, whose behaviour is expressed by the model and over which the entity, that the state

145

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

transition model is associated with, waits for external events that may make it move from the

particular state and/or take some actions. Normal states can be:
* atomic sates, or

* composite states.

Atomic states are specified by elements, which are instances of the type AtomicStateType. This

type is shown in Figure 39. As shown in the figure an atomic state element is described by the

following attributes:

* A stateld, which uniquely identifies the state within a state transition model,

* A name, which provides the chosen name of the state, and

* A description, which can be used to provide a description of the intended meaning of

the state.

© Attributes

stateld
&
Type xs:string

(—‘ name

Type xs:string

description
Type xs:string

© [StateActionType
[} AtomicStateType |O1

© ' Attributes

executionPoint
Type Restriction of 'xs:string'

@ 0.0 | action o © [ActionType
Type StateActionType
action
Type ActionType

0..0 Operationinvocation ®
Type OperationRefType
0.« assignment ®
Type AssignmentType

Figure 39 — AtomicStateType

146

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

The XML schema representation of the AtomicStateType is presented below.

<Xs:complexType "AtomicStateType">
<Xs:sequence>
<xs:element "o" "unbounded" "action"

"StateActionType"/>
</xs:sequence>

<xs:attribute "stateId" "xs:string" "required"/>
<xs:attribute "name" "xs:string" "required"/>
<xs:attribute "description” "xs:string"/>

</xs:complexType>

Atomic states may also be associated with zero or more actions that must be executed when the
entity is in them (for example update some internal variables, store etc.). Actions are described as
elements of the type ActionType in the certification model specification schema, as shown in
Figure 39. More specifically, an action has an attribute, called executionPoint, which defines
whether the action is executed when the entity enters or exits the state (the fixed values “onEntry”
and “onExit” define which of these two cases applies for an action, respectively). Actions can be

of two kinds:

* They may require the execution of operations in the entity associated with the state
transition model (i.e., an operation that belongs to one of the provided interfaces of
the state transition model) or the invocation of an operation in an external entity (i.e.,
an operation that belongs to one of the required interfaces of the state transition

model). Such actions are specified as operationinvocation elements.

* They may require the assignment of a value to a variable of the entity of the model.

Such actions are specified as assignment elements.

The operationlnvocation actions are specified according to the type OperationRefType. The

graphical representation of this type is shown in Figure 40.

147

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

© Attributes

~ interfaceld
Type xs:string

© [slainvocationType
0 tionRefT
[OperationRefType |O1 Endpoint)@—(' sIasoi:IDType)@

Operation)@—(W7 slasoiDType)O

O invocation o . © [] slasoi:MapldValueExpr
Type slainvocationType

@ [slasoildValueExprEntryType

) >~ o— @[
Parameters O——.O . Entry O—.
(@m)o

Figure 40 — Operation Ref Type

The XML schema representation of the operationRefType is shown below:

<Xs:complexType "OperationRefType">
<Xs:sequence>
<xs:element "l "1 "invocation"

"operationCallType"/>
</xs:sequence>
<xs:attribute "interfaceIld" "xs:string"/>
</xs:complexType>

According to OperationRefType, an operation invocation is described through:

* An attribute, called interfaceld, which refers to the interface that the operation to be

invoked is a member of, and

* An invocation element. This element is specified by

o asub element, called Endpoint, which indicates the endpoint where the operation

should be invoked,

o a sub element, called Operation, which includes the id of the operation to be

invoked, and

148

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

o an (optional list) of Parameter elements, which are used to provide the values for
the different input parameters of the operation to be invoked. These parameters

are indicated by key elements and their values as value elements.

Composite states are specified as instances of the type CompositeState, shown in Figure 41. As
shown in the figure, a composite state element has three attributes, which are the same with the

ones of the atomic transitions, and are the followings:
* A stateld, which uniquely identifies the state within a state transition model,
* A name, which provides the chosen name of the state, and

* A description, which can be used to provide a description of the intended meaning of

the state.
In addition to these attributes, a composite state includes one or more substate elements.

A substate element is described as a state transition model itself, even if this sub-model has
only one single atomic state itself. If a composite state has more than one substate elements, these
elements are assumed to describe separate chunks of behaviour which are executed in parallel
(i.e., AND- or parallel-decomposition). If there is only one substate element S, then the states of
the state transition model that describes S are assumed to be disjunctive substates, (i.e., the entity

can be at only one of these elements at any timepoint).

149

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

[©] Attributes

stateld

; |®

Type xs:string
anl name ®

Type xs:string

description
@

Type xs:string

© [] StateTransitionModelType

| [[] CompositeStateType |9 InitialState ®
Type PseudoStateType

.0 | states
Type StatesType

1
1.. | transitions ®
Type TransitionsType
1.0 [substate FinalState
—@o . o——@)o ¢
Type StateTransitionModelType Type PseudoStateType
historyState ®
Type HistoryStateType

0. requiresinterface
Type sIa:InterfaceDecIrTypeJ

1.0 | providesinterface ®
Type sla:interfaceDeclrType

®

Figure 41 — Composite States Type

The definition of the type CompositeStateType in the certification model schema is provided

below.

<xs:complexType name="CompositeStateType">

<Xs:sequence>
<xs:element minOccurs="1" maxOccurs="unbounded" name="substate"

type="StateTransitionModelType"/>
</xs:sequence>
<xs:attribute name="stateId" type="xs:string" use="required"/>
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="description" type="xs:string"/>
</xs:complexType>

150

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

4.3.1.10.2 TRANSITIONS SUB-ELEMENT

As shown in Figure 42, transitions in state transition models are described by a Transitions
element, which is of a type TransitionsType. This element has one or more sub-elements, which

are of type IndividualTransitionType.

© [} IndividualTransitionType

O] Attributes

Type xs:string

From
Type xs:string

gUt
® ® ®

Type xs:string

IPr
Type xs:float

;

uPr

;

Type xs:float

o 1.0 | transition
TransitionsType —.
= B Type IndividualTransitionTvpe]@

WhenCondition ®
Type LifeCycleEventType
CallEvent ®
Type OperationRefType
ReplyEvent ®
Type OperationRefType

GuardCondition
Type Logica[ExpressionTypeJ

0..« action ®
Type ActionType

Figure 42 — Transition Element

l?

The definition of type IndividualTransitionType in XML schema is shown below:

<xs:complexType "IndividualTransitionType">
<XS:sequence>
<xsd:choice>

<xs:element "o" "1 "WhenCondition"
"LogicalExpressionType"/>
<!-- Trigerring conditions, i.e., conditions whose truth value change will

trigger the transition -->

<!-- Guard conditions, i.e., conditions which must be true for the
transition to be triggered -->

151

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<xs:element "o" " "CallEvent"
"OperationRefType"/>

<!-- a call of an operation of the framework which should force the LC model
interpreter to take the transition, should be restricted to refer to the an
operation in one of the interfaces provided by the life cycle model -->

</xsd:choice>

<xs:element "o" " "GuardCondition"
"LogicalExpressionType"/>
<xs:element "o" "unbounded" "action"

"ActionType"/>
</Xs:sequence>

<xs:attribute "From" "xs:string" "required"/>
<xs:attribute "To" "Xs:string" "required"/>
<xsd:attribute "1Pr" "xs:float"/>

<xsd:attribute "uPr" "xs:float"/>

</Xs:complexType>

Each IndividualTransitionType element consists of:

* An attribute of type String, called From, which references the identifier of the state

that the transition starts from,

* An attribute of type String, called To, which references the identifier of the state that

the transition ends to, and

e Two more attributes to define the range of the expected relative frequency of

undertaking a specific transition. These attributes are:
o [Pr, which is of a type float and is used to define the lower limit of the range, and
o uPr, which is of a type float and is used to define the upper limit of the range.

By using these two attributes the probability of a transition to be taken can be defined,

which is usually used to express the ExpectedSystemOperationModel element of the

152

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

AssessmentScheme element. Thus, a range R(IPr, uPr) can be defined, which can be of

the form (IPr, uPr), [IPr, uPr), (IPr, uPr] or [lpr, uPr] *.

Two types of events can trigger transitions:

* A system condition whose value is changed (such conditions are described by the sub-

element WhenCondition in the above XML schema fragment), or

* A call event sent to the entity whose behaviour is described by the state transition
model (such events are described by the sub-elements and CallEvent of a transition

element).

WhenCondition elements are specified as elements of the type LogicalExpressionType, which

is described in the next sub-section. A call event is specified as an element of OperationRefType.

Furthermore, transitions may have:

* A GuardCondition element, which is an element expressing a condition that must be
true when an event that can trigger the transition occurs for the transition to be taken,

and

* Action elements defining the actions that must be executed and completed before the
transition is taken and the entity whose behaviour is described by the state transition

model reaches the destination state of the transition.

4.3.1.10.3 LOGICALEXPRESSIONTYPE SUB-ELEMENT

A logical expression is defined as a condition, or logical combination of conditions, over the
monitored evidence. Figure 43 shows the structure of the LogicalExpressionType and the

ConditionType.

2The “[* and “]” denote a closed range at the lower and upper boundary respectively, and “(*“ and “)”
denote an open range at the lower and upper boundary respectively.

153

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<xs:complexType name="LogicalExpressionType">
<Xs:sequence minOccurs="1" maxOccurs="1">
<xs:element name="Condition" type="ConditionType"/>
<xs:element minOccurs="0" maxOccurs="unbounded"
name="WrappedExpression" type="WrappedExpressionType"/>
</xs:sequence>
<xs:attribute default="false" name="negated" type="xs:boolean"/>
</xs:complexType>

<xs:complexType name="ConditionType">
<Xs:sequence>
<xs:element name="Operandl" type="RelationalOperandType"/>
<xs:element name="Operand2" type="RelationalOperandType"/>
</xs:sequence>
<xs:attribute default="false" name="negated" type="xs:boolean"/>
<xs:attribute name="relation" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="EQUAL-TO"/>
<xs:enumeration value="NOT-EQUAL-TO"/>
<xs:enumeration value="LESS-THAN"/>
<xs:enumeration value="GREATER-THAN"/>
<xs:enumeration value="LESS-THAN-EQUAL-TO"/>
<xs:enumeration value="GREATER-THAN-EQUAL-TO"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>

The XML schema for the specification of these two elements is shown below.

[S] Attributes

negated
Type xs:boolean (®
Default false
© [] ConditionType

ID LogicalExpressionType [O4 @ © Attributes
Condition
— @ Operandl
Type ConditionType - @
Type RelationalOperandType

Operand2

Type RelationalOperandType

© [] wrappedExpressionType

LogicalOperator
Type Restriction of 'xs:string’

Condition
Type ConditionType

0..00 = WrappedExpression o .
Type WrappedExpressionTypeJ

Figure 43 — Logical Expression Type

154

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

(O] Attributes

negated
Type xs:boolean ®
/' Default false

relation)
Type Restriction of 'xs:string’
| [] ConditionType I@ b g

Operandl]

Type RelationalOperandType
—&)

Operand2
Type RelationalOperandType

(EvidenceRefOperand]

(Type EvidenceRefOperandType
p
Constant

I [] RelationalOperandType | @®
(Type ConstantType
,ArithmeticExpression

\Type ArithmeticExpressionType

Built-in primitive type. The string datatype represents
[] EvidenceRefOperandType character strings in XML.

Base Type xs:string

(O] Attributes

— referencePath]

Type xs:string

Built-in primitive type. The string datatype represents
[] ConstantType character strings in XML.

Base Type xs:string

\—1 type
Type Restriction of 'xs:string'

Figure 44 —Condition Type

155

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

The graphical representation of the ConditionType is presented in Figure 44 above. As shown

in the figure a Condition:

* can be negated by defining the Boolean value of the negated attribute, and

* is defined as a relational operation, by specifying its relation attribute, which can
take values such as equalTo, notEqualTo, lessThan, greaterThan, lessThanEqualTo,
greaterThanEqualTo between two operands (the elements operandl and operand?).

These operands can be evidence reference to:
o operand,

O constants, or

o arithmetic expressions.

An evidence reference operand, of a type EvidenceRefOperandType, can be used to

refer to monitorable evidence specified in the certification model.

Constant operand, of a type ConstantType, can be used to specify a numerical or

string constant value.

The XML schema for the specification of Condition elements is shown below.

<Xs:complexType "ConditionType">
<Xs:sequence>
<xs:element "Operandl” "RelationalOperandType"/>
<xs:element "Operand2" "RelationalOperandType"/>
</xs:sequence>
<xs:attribute "false" "negated" "xs:boolean"/>
<xs:attribute "relation” "required">
<xs:simpleType>
<xs:restriction "Xs:string">
<xs:enumeration "EQUAL-TO"/>
<xs:enumeration "NOT-EQUAL-TO"/>
<Xs:enumeration "LESS-THAN"/>
<Xs:enumeration "GREATER-THAN" />
<xs:enumeration "LESS-THAN-EQUAL-TO"/>
<xs:enumeration "GREATER-THAN-EQUAL-TO" />

</Xs:restriction>
</xs:simpleType>
</xs:attribute>

156

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</xs:complexType>

<xs:complexType
<xs:choice>
<xs:element
<xs:element
<xs:element
</xs:choice>
</xs:complexType>

"RelationalOperandType">

"EvidenceRefOperand" "EvidenceRefOperandType"/>
"Constant" "ConstantType"/>
"ArithmeticExpression” "ArithmeticExpressionType"/>

<xs:complexType
<xs:simpleContent>
<xs:extension
<xs:attribute
</xs:extension>
</xs:simpleContent>
</xs:complexType>

"EvidenceRefOperandType">

"xs:string">

"referencePath" "xs:string" "required"/>

<xs:complexType
<xs:simpleContent>
<xs:extension
<xs:attribute
<xs:simpleType>

"ConstantType">

"xs:string">

"type" "required">

<xs:restriction
<Xs:enumeration
<Xs:enumeration

"xs:string">
"NUMERICAL"/>
"STRING"/>

</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

An example of Condition is shown below. This condition specifies that the value of the

variable nofcalls should be equal than zero.

<Condition>
<evidenceCondition
<Operandl>
<EvidenceRefOperand
"//VariableDeclr/Var/[text()="nofcalls']"/>

"EQUAL-TO">

</Operandl>
<Operand2>
<Constant
</Operand2>
</evidenceCondition>
</Condition>

"NUMERICAL">0@</Constant>

157

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Arithmetic expression operand defines computations over the values of monitorable evidence

in the certification model. The structure of the arithmetic expression is shown in Figure 45.

ArithmeticOperand
Type ArithmeticOperandType

| [] ArithmeticExpressionType I@

0..00 = WrappedArithmeticExpression ‘
Type WrappedArithmeticType |

ArithmeticOperator
Type Restriction of 'xs:string’

I [] WrappedArithmeticType IG)

ArithmeticOperand
Type ArithmeticOperandType

evidenceRefOperand ®
Type EvidenceRefOperandType
Constant

®
Type ConstantType

(S] Attributes

I [] ArithmeticOperandType IG)G)

name
Type Restriction of ‘xs:string‘J

1. @ ArithmeticExpression ®
Type ArithmeticExpressionType

)

Figure 45 — Arithmetic Expression Type
As shown in the figure, an arithmetic expression is defined as a sequence of arithmetic
operands or other nested arithmetic expressions of the type WrappedArithmeticExpressions,

which are connected by arithmetic operators. The arithmetic operators are:
* addition (plus),
* subtraction (minus),
* multiplication (multiply), and
¢ division (divide) operators.
As shown in XML schema, the operands can be:

* evidence reference operands,

158

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

® constants, or
* functions.

A function supports the execution of a complex computation over a series of arguments.
The results of these computations are numerical values that can be used as an operand in
an arithmetic expression. A function has a name and a sequence of one or more
arguments. Each of these arguments may be an arithmetic expression. The currently
supported functions are MIN and MAX, which choose the minimum or maximum value

of these expressions supplied.

The XML schema for the arithmetic expression element is shown below.

<xs:complexType "ArithmeticExpressionType">
<XS:sequence>
<xs:element "ArithmeticOperand” "ArithmeticOperandType"/>
<xs:element "o" "unbounded"
"WrappedArithmeticExpression” "WrappedArithmeticType"/>

</xs:sequence>
</xs:complexType>

<xs:complexType "WrappedArithmeticType">
<Xs:sequence>
<xs:element "ArithmeticOperator">
<xs:simpleType>
<xs:restriction "Xxs:string">
<Xs:enumeration "PLUS"/>

<Xs:enumeration "MINUS"/>

<Xs:enumeration "MULTIPLY"/>
<Xs:enumeration "DIVIDE"/>

</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element "ArithmeticOperand” "ArithmeticOperandType"/>
</xs:sequence>
</xs:complexType>

<xs:complexType "ArithmeticOperandType">
<xs:choice>

<xs:element "evidenceRefOperand" "EvidenceRefOperandType"/>
<xs:element "Constant” "ConstantType"/>

<xs:element "Function">

<xs:complexType>
<XS:sequence "unbounded" >
<xs:element "ArithmeticExpression™

"ArithmeticExpressionType"/>
</Xs:sequence>

159

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<xs:attribute "name">
<Xs:simpleType>
<xs:restriction "xs:string">
<xs:enumeration "MAX" />
<xs:enumeration "MIN"/>

</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
</xs:choice>
</xs:complexType>

An example of logical expression is shown below. This example specifies a logical expression
that checks that the event sufficiency condition (see the first condition in the logical expression) is
satisfied, that no conflict has been detected (see the second condition inside the first nested logical
expression), and that the value of the variable nofcalls is equal to zero (see the condition in the

second nested logical expression).

<LogicalExpression "false">
<Condition>
<evidenceSufficiencyCondition>1011</evidenceSufficiencyCondition>
</Condition>
<LogicalOperator>AND</LogicalOperator>
<LogicalExpression "true"/>
<Condition>
<conflictCondition>1100</conflictCondition>
</Condition>

</LogicalExpression>
<LogicalOperator>AND</LogicalOperator>
<LogicalExpression "true"/>
<Condition>
<evidenceCondition "EQUAL-TO">
<Operandl>
<EvidenceRefOperand
"//VariableDeclr/Var/[text()="nofcalls']"/>
</Operandl>
<Operand2>
<Constant "NUMERICAL">0</Constant>
</Operand2>
</evidenceCondition>
</Condition>
</LogicalExpression>
</LogicalExpression>

160

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Chapter Five

CASE STUDIES AND EXAMPLE CERTIFICATION MODELS

5.1 OVERVIEW

As explained in the previous chapter, a certifier should define a certification model in order to
carry out the assessment and potentially certify a security property for a cloud service. In Chapter
4, we introduced the language (XML schema) for specifying certification models and in this

chapter we give three examples of such models.

The first example is a CM that can be used to assess and certify whether a cloud service
satisfies the security property of non-repudiation. The next two certification models are defined
for systems offering cloud services that have been used as drivers for developing our approach,

namely a health care system and a cloud enabled smart city application.

It should be noted that the CM examples are defined using the XML schema introduced in the
previous chapter with the exception of the model assertions. The latter are provided in the abstract
syntax of EC-Assertion, i.e., the language of the EVEREST monitoring tool, for simplicity as the
full listing of assertions in XML would be long. The full listing of all assertions, however, is

provided in Appendices A, B and C.

5.2 NON-REPUDIATION PROTOCOL FOR CLOUD SERVICES

In our example non-repudiation is a property that refers to non-repudiation of data transfer.
More specifically, it requires that when a data owner or a consumer sends a request to a cloud
provider, to either upload or download data respectively, these transactions should be conducted

in a way such that none of the involved parties could deny having participated in a part or the

161

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

whole of this communication. Several protocols have been proposed so far, in order to realise the
non-repudiation security property, such as [93][111][159][165][236][237]. The basic principle
that underpins these protocols is that along with a data-uploading (downloading) request, the data
owner (consumer) sends a “Non-Repudiation of Origin” (NRO) token, which is the proof of
sending the request. In return, they will expect to receive evidence of “Non-Repudiation of

Receipt” (NRR) from the cloud provider, acknowledging that the specific request was received.

The example certification model that we introduce in this chapter aims to certify the adherence
to a Non Repudiation (NR) Protocol for cloud services, presented in [93] and, therefore, the
preservation of the NR security property by the service. To enable the reader understand this

certification model, we first give an overview of the underpinning NR protocol.

TR

Provider

(C)
.

g E
E o
AHE =5

STy £l8]z
S| e o

Data glzlE | Data |

. | —
[Provider | ol 2| B User (B)

£l © s \

(A) 21512 <&
“3’ g g $Q~// N e

~—%%, o e R AETET SO\

\0’73 é’] N 7 7 &
= ~ NS =< @ 4 %0%
Ra >~ N7 Q,\Q(/ ol ™
9(/ ~ \///70 v ‘9 \~
Cp N S — s \<‘
S ‘\4/ N / 7 &
Rl S »f,, Trusted \¥,° 748
LD s &
’1’ Third ' ec:?

/
arty
\TTP)

Figure 46 — Non-Repudiation Protocol for Cloud Services

This protocol involves four different parties, which are:

* A data owner/provider (4),

162

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* A datauser (B),
* The Cloud Provider (C), and
* A Trusted Third Party (TTP).

These parties interact through three different phases of the protocol, which are shown in Figure

46. These phases are:
* The data upload phase,
* The data download phase, and
* A recovery phase.

Before describing these phases, we provide some basic definitions necessary for understanding

their meaning. Therefore, we have:

NRO: Evidence of Non-Repudiation of Origin, sent by a sender to a receiver. The receiver will

hold this evidence as a proof if the sender denies having sent the message.

NRR: Evidence of Non-Repudiation of Receipt, sent by the receiver to the sender. The sender will

hold this evidence as a proof if the receiver denies having received the message.
fu: Flag indicating the intended purpose of a message M.
I: Unique label chosen by 4 to link all messages.
M: Message sent from a sender to a receiver.
H(M): Hash function applied to message M.
K: Message key defined by the sender.

B;: Group of data users Bi who are authorised to download message M and are capable of

decrypting it.

Seqi: Unique sequence number of each message.

163

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

EGpg(): Group encryption scheme known only to BL group.
Ex(Y): Asymmetric encryption of message Y produced by party X’s public key.
Sx(Y): signature of message Y produced by X’s private key.
The three different phases of the NR protocol are described below.
1 Upload Phase

In this phase the data owner A sends a request to the cloud provider C, for uploading data.
Firstly, A encrypts a message M (i.e., the data) with a key K and generates two different NROs,
the NRO 3 and the NRO,c. The NRO,p will be used by data users B to get the key K and the
S4(H(M)). The K is required to decrypt the M and the Sy(H(M)) to verify the data integrity after
downloading M from C. A encrypts the NRO 45 by using the group encryption scheme EGpg() to
guarantee that only the intended recipients of the B; can have access and decipher NRO 5 and M.
NRO,(is the proof of evidence that 4 sent the request to C and is encrypted with C’s public key.
This step is defined as:

A%C RQSAC = {fRQSAC’ l, A, C, TTP, H(]M), H(BL), Squ, Tg1, T], EGB(NROAB), Ec(NROAc)}

Where:

* T, is the maximum time that the sender will wait for an NRR to RQSc.
* T, is the time of the generation of RQSac.

* NRO4p is an NRO sent from A to B users through C. It is visible to all By recipients,
but not to C itself.

® NROAB = {K9 19 SA(H(M))}
¢ NROuc is an NRO sent from A to C, defined as

° NROAC:{SA(H(M), H(BL), EGB(NROAB), H(l, Seql, Tgl, Tl))}

When C receives a ROS,c it must produce a response to 4. This step is defined as:

164

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

C24: RSPcy = {frsp,, | A, C, TTP, H(M), H(B1), Seq>, To, Ts, E4(NRRca)}
Where:

e Ty is time when data is stored

* Ty is the time of the generation of RSP ac.

¢ NRRc, is the NRR sent from C to A, defined as

* NRRca = {Sc(HM)), Sc(H(l, Seqa, Tgs, Ts, NROxc))}-

2 Download Phase

In this phase, the data user B downloads data from the cloud provider C. To do so, B sends a
request with an NROgc to C. The request should include B’s identity to enable C verify whether
the B is authorised to download the requested data. This is done by checking B’s identity against
the B;, which was received for the M that was sent from the data owner 4. If B is in B;, C will
send the requested data with the encrypted NRO.3 (EGs(NRO 43)) received from A4, along with its

own non-repudiation evidence NRRcp. These exchanges are defined below:
B;2C: ROSpic = {frosy,» i A, C, By, TTP, Seqs, T3, To, Ec(NROgc)}
Where:

* 1=H(A, C,B;, TTP)

¢ NROgc is the NRO sent from B to C, defined as

° NROBC = {SB(H(IU Aa Ca TTP, SQQS, Tg3a T2))}

The response produced by C whilst receiving a download request from B is:
C%Bl RSPCBi = {ﬁQSPCBi, l, A, C, Bi, TTP, H(M, S€CI4, Tg4, EGB(NROAB), EBi(NRRCB)}

Where:

* NRRcg is the NRR sent from C to B, defined as

165

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

NRRcp={Sc(H(M)), Sc(EGs(NROAag)), Sc(H(l, Seqa, Tg4))}.

When B gets the data and the EGp from C, it will obtain the K and H(Data) by decrypting the
NRO4p and will check the integrity of the data and the validity of NRR 3.

3 Resolution of Disputation

This phase refers to the cases where there are some disputations in the communication
between users and the cloud provider. For instance, if 4 does not receive the expected response
from the C, it sends a request to 77P with its identification and the NRO,c. Subsequently, the TTP
will send a request to C that will include the NRO,¢ sent from 4 and its own NROrpcand C should
respond with an NRR7¢ that will include the corresponding NRR4. These exchanges are defined

bellow:
TTP%C RQSTC = {fRQSTC’ l, A, C, TTP, S€Q5, Tg5, T3, Ec(NROAc), Ec(NROTc)}
C%TTP RSPCT = {ﬁgSPCT, l, A, C, TTP, S€Q5, Tg,j, Ts, EA(NRRCA), ET (NRRCT)}

Where:

* Tj;is the maximum time that the sender will wait for an NRR to RQSc.
* Tgs (Tge) is the time of the generation of RQStc (RSPcr).
* Tsis the time when data was stored by C.

* NROrc is the NRO sent from the TTP to C to resolve a disputation regarding an
uploading session of A, defined as NROr={St(H (1, A, C, TTP, Seqs, Tgs, Ts,
Ec(NROac)))}-

* NRRcris sent from C to TTP, defined as

NRRcr ={Sc (H (I, Seqs, Tgs, NRRca))}.

166

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

5.2.1 CERTIFICATION MODEL SPECIFICATION

In the following, we provide definitions of all the individual elements of the NR certification
model. For simplicity reasons we focus on only one of the three phases, i.c., the upload phase. It
should be noted, however, that the specification of CM model elements for the other two phases

of the NR protocol is analogous.

5.2.1.1 MODEL_ID ELEMENT

The first element of the CM is the unique identifier of the specific CM. In the current example,
the CM has the value “cm:id:monitoring:0001”. The format selected is to define except of

the Id, also its type that is “monitoring” in our example.

<Model_Id>cm:id:monitoring:0001</Model Id>
5.2.1.2 SIGNATURE ELEMENT

As explained in the previous chapter, each CM should provide the information regarding the
certification authority (CA) that defines and then signs the generated certificates. In the current
example the signature of the certifier is defined as “City” and its role is “CA”, as shown below.
<Signature>

<Name>City</name>

<Role>CA</Role>
</Signature>

5.2.1.3 ToC ELEMENT

The ToC element defines the target of certification of the certification model. As explained in
the previous chapter, it consists of an attribute and two sub-elements that refer to the interfaces

that are either provided or required.

The example below illustrates how this element should be defined. It shows that the TOC has

an ID “id1001” provides an interface with the name “cloudinterface” that has three operations,

167

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

namely rgsac, rgsbc and rgstc, which are the requests that can be made in each of the three
different phases of the NR protocol. Each of these operations gets as inputs data of a type ur/ and
the rsqac has also a second input ¢ of the type url. These inputs are external variables
(forMatching = true) and their value will not be the same throughout all instances (persistent =

false). The XML example for the ToC is provided below

<TOC "idiee1">
<providesInterface>
<ID>001</ID>
<ProviderRef>providere0l</ProviderRef>
<Interface>
<InterfaceSpec>
<Name>cloudinterface</Name>
<Operation>
<interfaceId>c</interfaceld>
<OperationId>id@e01</OperationId>
<operationName>rqsac</operationName>
<inputVariable "false" "true">
<varName>data</varName>
<varType>url</varType>
</inputVariable>
<inputVariable "false" "true">
<varName>t</varName>
<varType>url</varType>
</inputVariable>
</Operation>

<Operation>
<interfaceId>c</interfaceld>
<OperationId>id@e02</OperationId>
<operationName>rqsbc</operationName>
<inputVariable "false" "true">
<varName>data</varName>
<varType>url</varType>
</inputVariable>
</Operation>

<Operation>
<interfaceId>c</interfaceld>
<OperationId>id@@03</OperationId>
<operationName>rqstc</operationName>
<inputVariable "false" "true">
<varName>data</varName>
<varType>url</varType>
</inputVariable>
</Operation>
</InterfaceSpec>

168

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</Interface>
</providesInterface>
</TOC>

5.2.14 SECURITYPROPERTY ELEMENT

The definition of the Non-repudiation (NR) security property in the NR certification model is
given by the following XML security property element:

<SecurityProperty "0001"
"AIS:non-repudiation:non-repudiation-of-origin”
"CSA"
"AIS:non-repudiation:non-repudiation-of-origin">
<sProperty "http://www.cumulus-project.eu">
<propertyPerformance>
<propertyPerformanceRow>
<propertyPerformanceCell "verified">true
</propertyPerformanceCell>
</propertyPerformanceRow>
</propertyPerformance>
<propertyParameterList/>
</sProperty>

<Assertion "AS@01">
<InterfaceDeclr> .. </InterfaceDeclr>
<VariableDeclr> .. </VariableDeclr>
<Guaranteed> .. </Guaranteed>
</Assertion>
</SecurityProperty>

As shown in the above listing,, the attributes of the security property that defines NR are:
* The “SecurityPropertyld = 0001,

e The definition of the property, or in other words its name

’

“SecurityPropertyDefinition = AIS:non-repudiation:non-repudiation-of-origin”,

* The vocabulary used to define the property, which in our case we used the

vocabulary defined by the Cloud Security Alliance “Vocabulary=CSA”, and

* A short version of its name “ShortName=AIS:non-repudiation:non-repudiation-of-

’

origin’.

169

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

The following sub-elements concerning the assertion of the security property, which has an Id

= AS001, are defined in the following section.

5.2.14.1 INTERFACEDECLR SUB-ELEMENT

In this sub-element the interfaces offered by the service that are related to the security property
are defined. In the current example for the NR property the interface provided is the provider001
provider. Moreover, the operations and their inputs that should be checked are also defined, which
are the rgsac, rqsbc, rgstc and rspct. All inputs are external and are not static according to the

Boolean values of the attributes forMatching and persistent.

Below the definition of the InterfaceDeclr sub-element for the NR property is provided.

<InterfaceDeclr>
<ID>001</ID>
<ProviderRef>providere0l</ProviderRef>
<Interface>
<InterfaceSpec>
<Name>cloudinterface</Name>
<Operation>
<interfaceId>c</interfaceld>
<OperationId>id@e04</OperationId>
<operationName>rqsac</operationName>
<inputVariable "false" "true">
<varName>data</varName>
<varType>url</varType>
</inputVariable>
<inputVariable>
<varName>seq</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "false" "true">
<varName>t</varName>
<varType>url</varType>
</inputVariable>
</Operation>
<Operation>
<interfaceId>c</interfaceld>
<OperationId>id@@O5</OperationId>
<operationName>rqsbc</operationName>
<inputVariable "false" "true">
<varName>data</varName>

170

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varType>url</varType>
</inputVariable>
<inputVariable>
<varName>seq</varName>
<varType>string</varType>
</inputVariable>
</Operation>
<Operation>
<interfaceId>c</interfaceld>
<OperationId>id@@0®7</OperationId>
<operationName>rqstc</operationName>
<inputVariable "false" "true">
<varName>data</varName>
<varType>url</varType>
</inputVariable>
<inputVariable>
<varName>seq</varName>
<varType>string</varType>
</inputVariable>
</Operation>
</InterfaceSpec>
</Interface>
</InterfaceDeclr>

5.2.1.4.2 GUARANTEED SUB-ELEMENT

The monitorable specification of the NR property is provided by the Guaranteed sub-element

of the security property. This element is specified in EC-Assertion as’:

Rule R1:

Happens(e(_idl, senderl, receiverl, RQSx(_seqrq),_receiverl), _tAReq,
[_to, _te])

A =HoldsAt(ResUpReq(_seqrq, _seqrs,_t), _to) =

Happens(e(_id2, receiverl,_senderl,RSP«(_seqrs), receiverl), _tg2,
[to, te+100])

This rule states that when there is a call event ROSac, with a variable seqrq that uniquely
specifies the sequence of the request event, at the specific time instance ¢0, which is a request sent

from the data owner A for uploading data to a cloud provider C, and as long as there is no

3 This assertion is specified in XML in Appendix A

171

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

previous request received by the cloud provider C from A4 with the same sequence number that
has not been responded (ResUpReq fluent not holds) until 70 (precondition), a reply event RSPca
should occur from C to A at the time tg2, which should be in the time range between ¢0 and ¢0

plus 100 msec.

Since the assertion in the rule needs to be checked against information that will arise after the
occurrence of the event that will trigger the check, the Guaranteed has the type
“Future_Formula”. In order to determine the conditions under which the assertion should be
checked, the precondition element is defined, in which it is stated that a request event should
happen and a fluent should not be hold at the time of the occurrence of the event. Thus, an event
of the type call is defined in the precondition, and its attribute unconstrained is true, as it is an
instantaneous event. Furthermore, a WrappedCondition element is used in the precondition with
the logical Operator AND, because in the rule there is a combined condition regarding the
occurrence of an event and the state of the fluent ResUpRegq. In order to define that the fluent does
not hold at the time t1 when the event occurred, we use the holdsAt element with the attribute

negetated = “true”.

In the postcondition element, the reply event that should occur at the time t2 from the Cloud
Provider is defined. This event is of a type reply, the event condition is unconstrained = false, as
this event has a predefined time Range, and for expressing the time range [t1, t1+100] the plus
operator is used in the foTime element. Due to the fact that the reply event has a predefined time

range that is expected to occur, t2 is defined as existential time variable type.

Below the XML definition of the above rule is given below.

<Guaranteed "gtl" "Future_Formula">
<quantification>
<quantifier>forall</quantifier>
<timeVariable>

<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<quantification>
<quantifier>existential</quantifier>
<timeVariable>
<varName>t2</varName>
<varType>TimeVariable</varType>

172

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</timeVariable>
</quantification>
<precondition>
<atomicCondition "gtl-acl">
<eventCondition "true">
<event>
<eventID "true" "false">
<varName>VIDO</varName>
</eventID>
<call>
<interfaceId>CP</interfaceld>
<OperationId>1</OperationId>
<operationName>upload</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>
<varType>OpStatus</varType>
<value>REQ-B</value>
</inputVariable>
<inputVariable "true" "false">
<varName>senderl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>receiveril</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</inputVariable>
</call>
<tVar>
<timeVar>
<varName>tl</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>tl</varName>
<varType>TimeVariable</varType>
</time>

173

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</fromTime>
<toTime>
<time>
<varName>tl</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
</eventCondition>
</atomicCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>
<atomicCondition "gtl-ac2">
<stateCondition>
<holdsAt "false">
<state "ResUpReq">
<argument>
<variable "false" "true">
<varName>seqrqg</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>seqrs</varName>
<varType>int</varType>
</variable>
</argument>
</state>
<timeVar>
<varName>tl</varName>
<varType>TimeVariable</varType>
</timeVar>
</holdsAt>
</stateCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
</precondition>
<postcondition>
<atomicCondition "gtl-ac3">
<eventCondition "true">
<event>
<eventID "true" "false">
<varName>VID1</varName>
</eventID>
<reply>
<interfaceId>CP</interfaceld>
<OperationId>2</OperationId>

174

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<operationName>upload</operationName>
<outputVariable "true" "false">
<varName>status2</varName>
<varType>OpStatus</varType>
<value>RES-B</value>
</outputVariable>
<outputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>senderl</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrs</varName>
<varType>int</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</outputVariable>
</reply>
<tVar>
<timeVar>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
<Expression>
<plus>100</plus>

175

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</Expression>
</toTime>
</event>
</eventCondition>
</atomicCondition>
</postcondition>
</Guaranteed>

To initiate or update the fluent, the following assumption is made. This assumption states that
when an upload request is made at t1 and if the fluent ResUpReqg does not hold at the time t1 and
if a reply to the request is made at t2, then the reply event will initialise the fluent at time t2,
which will keep the information about the sequence number of the request event and its reply

event.

Assumption 1:

R1.A2: Happens(e(_idl, senderl,_ receiverl,RQS,c(_seqrq),_receiverl), ti1,
[_t1, _t1])

A = HoldsAt (ResUpReq(_seqrq,_seqrs, _t), _t1)

A Happens(e(_id2, _receiverl, _senderl, RSP (_seqrs), _receiverl), t2,
[t1, _t1+100) =

Initiates(e(_id2, _receiverl, _senderl, RSP« (_seqrs), _receiverl),
ResUpReq(_seqrq, _seqrs, _t2), _t2)

The element of the above assumption is expressed in the same way as the rule assertion. XML

definition can be found in Appendix A, with the Guaranteed Id= “gt2”.

5.2.1.5 ASSESSMENTSCHEME ELEMENT

According to the certification model, in the assessment scheme element there are four sub-

elements that can be defined. These are:
* Evidence Sufficiency Condition element,

* Expiration Condition,

Conflict, and

e Anomalies.

176

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

5.2.1.5.1 EVIDENCE SUFFICIENCY CONDITION ELEMENT

The EvidenceSufficiencyCondition element defines all the conditions regarding the sufficient
evidence that must be collected, in order to be able to issue a certificate. Below we provide

examples of how to define this element, as there are different ways to express it.

The first example corresponds to a monitoring period condition and states that the minimum

period that a cloud service should be monitored before issuing a certificate is 3 days.

<EvidenceSufficiencyCondition "1011">
<MonitoringPeriodCondition "3 "days"/>
</EvidenceSufficiencyCondition>

The second example corresponds to a monitoring events condition and states that a minimum
of at least 5000 events should be monitored before issuing a certificate.
<EvidenceSufficiencyCondition "1012">

<MonitoringEventsCondition "5000" />
</EvidenceSufficiencyCondition>

The third example corresponds to a sufficiency condition defined through an expected system
behaviour model. Our example refers to the monitoring based certification model for the NR
property and is a model of the expected behaviour of the ToC for this property, i.c., the cloud
storage service C that should be certified that realises the NR protocol and, through it, satisfies the
NR security property.

A graphical representation of this model is shown in Figure 47. As the model shows the cloud

storage service C initially gets to statel and at this state it may respond to:

e (alls of the operation RQSac(nroac) from a data owner a to upload data along with an
NRO for it. The model specifies that the frequency of C receiving such a call whilst being
in state 1 is Pr[01, 0.5), meaning that at least 10% and below 50% of the events should be
of this type of calls, which make C move to state 2. Whilst at state 2 there should be a

response event RSPca(nrrca) with a frequency range Pr[1,1] which states that there

177

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

should be a response event for the call event that lead C to state 2, in order for C to move
back to state 1.

Calls of the operation ROSbc(nrobc) from a data user B a to upload data along with an
NRO for it. The model specifies that the probability of C receiving such a call whilst
being in state 1 is Pr [0.5, 1), which denotes that at least 50% of the events should be of
this type of calls. This event will make C move to state 4. Whilst at state 4 there should be
a response event RSPcb(nrrcb) with a frequency range Pr[1,1] which states that there
should be a response event for the call event that lead C to state 4, in order for C to move
back to state 1.

Calls of the operation RQStc(nrotc) from a TTP for a resolution of a disputation. The
model specifies that the probability of C receiving such a call whilst being in state 1 is Pr
(0.0, 0.2), which states that up to below 20% of the events should be of this type. This
event will make C move to state 3. Whilst at state 3 there should be a response event
RSPct(nrrct) with a frequency range Pr[1,1] which states that there should be a response

event for the call event that lead C to state 3, in order for C to move back to state 1.

state machine NR_C_exp_behaviour | NR_CHepobehaviourU

v {

| state1

“1 |
RSPca(nrrca) RQStc(nrotc) RSPcbf nrrcb)
Pr1,1] RQSac(nroac) Pr(0.0,0.2) RQSbe(nrobe) Pr[1,1]
Pr[0.1,0.5) Pr[0.5, 1) RPSrf??ts]nrrct)

— state2 \ stated

state3 \

Figure 47 — Example of expected TOC Behaviour Model

178

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Below an XML example of the ExpectedSystemOperationModel is given, to show the way

such state transition model is defined.

<ExpectedSystemOperationModel>
<InitialState "s1" "statel"/>
<states>
<state>
<atomicState "s2" "state2"/>
</state>
<state>
<atomicState "s3" "state3"/>
</state>
<state>
<atomicState "s4" "stated4"/>
</state>
</states>
<transitions>
<transition "t "s1" "s2" "9.1"
<CallEvent>
<invocation>
<execute>
<interfaceId>CP</interfaceld>
<OperationId>1</OperationId>
<operationName>upload</operationName>
<inputVariable "true"
<varName>sender</varName>
<varType>String</varType>
<value>DP</value>
</inputVariable>
<inputVariable "true"
<varName>receiver</varName>
<varType>String</varType>
<value>CP</value>
</inputVariable>
</execute>
</invocation>
</CallEvent>
</transition>
<transition "t2" "s2" "s1" "1t
<ReplyEvent>
<invocation>
<execute>
<interfaceId>CP</interfaceld>
<OperationId>1</OperationId>
<operationName>upload</operationName>
<outputVariable "true"
<varName>receiver</varName>
<varType>String</varType>
<value>CP</value>

179

lle.5Il>

"false">

"false">

Il1ll>

"false">

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</outputVariable>
<outputVariable "true" "false">
<varName>sender</varName>
<varType>String</varType>
<value>DP</value>
</outputVariable>
</execute>
</invocation>
</ReplyEvent>
</transition>
<transition "t3" "s1" "s3" "9.0" "9.2">
<CallEvent>
<invocation>
<execute>
<interfaceId>CP</interfaceld>
<OperationId>2</OperationId>
<operationName>download</operationName>
<inputVariable "true" "false">
<varName>sender</varName>
<varType>String</varType>
<value>DC</value>
</inputVariable>
<inputVariable "true" "false">
<varName>receiver</varName>
<varType>String</varType>
<value>CP</value>
</inputVariable>
</execute>
</invocation>
</CallEvent>
</transition>
<transition "t4q" "s3" "s1" "1 "1t
<ReplyEvent>
<invocation>
<execute>
<interfaceId>CP</interfaceld>
<OperationId>2</OperationId>
<operationName>download</operationName>
<outputVariable "true" "false">
<varName>receiver</varName>
<varType>String</varType>
<value>CP</value>
</outputVariable>
<outputVariable "true" "false">
<varName>sender</varName>
<varType>String</varType>
<value>DC</value>
</outputVariable>
</execute>
</invocation>

180

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</ReplyEvent>
</transition>
<transition "t5" "s1" "sq4" "9.5" "1
<CallEvent>
<invocation>
<execute>
<interfaceId>CP</interfaceld>
<OperationId>3</OperationId>
<operationName>resolution</operationName>
<inputVariable "true" "false">
<varName>sender</varName>
<varType>String</varType>
<value>TTP</value>
</inputVariable>
<inputVariable "true" "false">
<varName>receiver</varName>
<varType>String</varType>
<value>CP</value>
</inputVariable>
</execute>
</invocation>
</CallEvent>
</transition>
<transition "te" "s4" "s1" "1 "1t
<ReplyEvent>
<invocation>
<execute>
<interfaceId>CP</interfaceld>
<OperationId>3</OperationId>
<operationName>resolution</operationName>
<outputVariable "true" "false">
<varName>receiver</varName>
<varType>String</varType>
<value>CP</value>
</outputVariable>
<outputVariable "true" "false">
<varName>sender</varName>
<varType>String</varType>
<value>TTP</value>
</outputVariable>
</execute>
</invocation>
</ReplyEvent>
</transition>
</transitions>
</ExpectedSystemOperationModel>

181

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

From an evidence sufficiency point of view, the above model determines the number of events
of different types that should be seen whilst monitoring C for the correct realisation of the NR

protocol in order to deem the monitoring evidence as sufficient.

5.2.1.5.2 EXPIRATION CONDITION

The second sub-element in the AssessmentScheme is the Expiration Condition, which is used
to define when a certificate should expire. An example of an expiration condition is given below.
The example states that the certificate should expire one year after the date it is issued:
<ExpirationCondition "987">

<elapsedPeriod "1 "years"/>
</ExpirationCondition>

5.2.1.5.3 ANOMALIES

In this sub-section the anomalies sub-element is presented, with an example of an anomaly for

the NR property. Anomalies can be:
* Potential attacks on TOC,
* Other suspicious behaviour in the ToC, or
* Operational conditions related to the security property that is to be certified,

Anomalies are defined as assertions, which despite not having caused any violation of the
security property, they may potentially affect its satisfiability and, therefore, lead to the
suspension or revocation of certificate generated by the model. The definition of the potential
anomalies that should be monitored, as part of a certification model, should be based on an
analysis of whether potential attacks, the ways in which the behaviour of different external actors
that interact with TOC, and the overall operating conditions of the interaction between TOC and

these actors may affect the satisfaction of the given security property by the TOC. Like security

182

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

properties, anomalies are also specified as EC-Assertions, except that their violation does not lead

automatically to the suspension/revocation of a certificate.

Below we provide an example of defining an assertion for the anomaly concerning Potential
attacks. In the case of NR, data owners (As) and data consumers (Bs) may be non-trusted parties.
Both of them, for instance, may try to launch a denial-of- service attack on the cloud provider (C).
This may happen directly by, for example, issuing a high volume of data uploading and
downloading requests to C and/or re-issuing previous requests (replay attack). It should be noted
that the monitoring rule R1 in the certification model would require C to respond only to a request
from a data provider only if this request has not been responded before. Hence, the certification
model assumes that C should not respond to repeated requests. However, even if no response of C
is expected in such cases, high volume of repeated requests may escalate to a DOS attack that will

prevent C from satisfy the NR property.

Hence the purpose of anomaly monitoring is not to detect the individual instances of repeated
requests from A to C, but to detect whether an activity appears in high volume. To monitor and
keep a record of the repeated requests from particular data owners, the NR certification model

should include the following anomaly detection monitoring assumptions:

ANOMALY ASSUMPTIONS:
Al: Initially(RepeatedUplReq(_seqrq, ©0), systime())

A2: Happens(e(_idl,_senderl, receiverl,RQSx(_seqrq),_receiverl), _ti,][
_t1, t1]) A HoldsAt(ResUpReq(_segrq,_seqrs, _t), _ti1)=
Terminates(e(_id1l,_senderl, receiverl,RQSxc,_receiverl),
RepeatedUplReq(_seqrq, _N), _t1)

A Initiates(e(_idl,_senderl, receiverl,RQS,c,_receiverl),
RepeatedUplReq(_seqrq, N+1), _t1)

The first of these assumptions initialises the counter of repeated requests from a given data
owner _senderl to 0 and the second increases it whenever a new previously responded requests is

re-played by senderl.

To cover the potential of a similar type of attack from data consumers (B), the NR certification
model includes also anomaly-monitoring assumptions similar to those listed above for data

downloading requests RQSgc.

183

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

The XML example of the assertion for the anomaly is given in the Appendix A denoted with
the Guaranteed ID="gt7”, based on the EC-Assertion explained. In order to initialise the fluent
RepeatedUpReq, the initially element is used in the postcondition of the first guaranteed.
Moreover, in order to increase the variable N of the fluent when it is initialised in the second
assumption with the Guaranteed ID="“gt8”, (in Appendix A) the operationCall element is used,

which adds the constant Counter with value 1 to the variable N of the fluent.

5.2.1.6 MONITORINGCONFIGURATION ELEMENT

The MonitoringConfigurations element is used to specify the list of the monitoring
configurations that are used to collect the evidence for generating certificates of this type. As
shown in the example below, a MonitoringConfiguration with Id=MCI has been defined.
Furthermore, one Reasoner called everestReasoner has been defined, which is the monitor used
for analysing events and checking whether the monitoring conditions are satisfied or not, along

with its EndPoint and its assertionlD.

<MonitoringConfigurations>
<MonitoringConfiguration "MC1">
<Component>
<Reasoner>
<EndPoint>everestReasoner</EndPoint>
<AssertionId>AS@01</AssertionId>
</Reasoner>
</Component>
</MonitoringConfiguration>
</MonitoringConfigurations>

5.2.1.7 EVIDENCEAGGREGATION ELEMENT

An example of an Evidence Aggregation element is shown below. In this example, an
aggregation element with start date “2013-01-01" is defined, that states that the aggregation of the
detailed evidence, received by the monitor, should be carried out at regular interval periods of 30

days. Therefore, it means that every 30 days the evidence in the generated certificate will be

184

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

updated, and should apply a “Max” mathematical function value of the variable used to measure
the current security property.
<EvidenceAggregation>
<AggregatedResultsInfo "days" "30"
"2014-07-01"
"2014-06-01"/>
<FunctionalAggregatorId>Max</FunctionalAggregatorId>

<IntermediateResults>false</IntermediateResults>
</EvidenceAggregation>

5.2.1.8 LIFECYCLEMODEL ELEMENT

The life cycle model of a monitoring-based certificate is described by the A UML stare chart

diagram in the below figure, where all states and transactions are presented.

The life-cycle model of the NR certification model is shown in Figure 48 has an initial state
called “Activated” and the states “Pre-Issued”, “Issued”, “Anomaly Inspection”, “Anomaly
Selection”, “Revoked” and “Ended” (i.e., the final state). Moreover, there are three composite
states named “Continuous Monitoring”, “Anomaly-Audit’ and “Conflict-Audit”, as well as the

historical state “History”.

185

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

state machine MonitoringBasedCM [MonitoringBasedCM]/I

Activated
.—) entry / startMonitoring

monitoringEvidence(e: MonitoringResult) / recordMonitoringResult{e:MonitoringResult)

monitoringEvidence(e:
MonitoringResult)
Continuous Monitoring
D1 when
when (expiration-conditions) retrieveCertificate
(assertion-satisfied
AND "
i
sufficiency-conditions- Issuing
satisfied) Pre-Issued Issued
- — when (validity-conditions-satisfied)
entry / CheckValidity Conditions | aggregate evidence

‘ History |
when when
[unre:zzvm:g‘oaﬁslws] / (no-unresolved-anomaly)

AnomalyrAudit
when resolvedAnomaly(a:

(unresolved-anomalies) D2 Anomaly)
R Anomaly ‘ when (Iy ! d) A ly
Selection [1 Inspection
when
Revoked (non-resolvable-anomaly)

@ entry / stopMonitoring S —

Figure 48 — UML diagram of Life Cycle Model

According to this model, the first state in the certificate’s lifecycle is called Activated, where
the certification process activated and the certificate is being activated. After being activated, the
certificate moves to the composite state Continuous Monitoring. Whilst being in this state, the
security property and anomaly detection monitoring rules and assumptions of the certification
model are being monitored by the monitor and the related monitoring evidence is sent to the
framework, as stated by the transition evidence(e:MonResult). When the accumulated evidence
meets the sufficient conditions (EvidenceSufficiencyConditions) specified in the certification
model and the security property monitoring rules are satisfied, the certificate moves to the state
Pre-Issued, according to the transition when(assertion-satisfied AND sufficiency-conditions-
satisfied) from DI to Pre-Issued state. At this state, the framework will check if there are any
extra validity conditions for the certificate type (see action CheckValidityConditions) and, if they

186

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

exist and are satisfied, the certificate will move to the state Issued, where also the aggregation of
the evidence takes place, as specified by the action aggregate evidence of the transition that lead
to this state. Moreover, at this state a concrete certificate for the NR security property of the
specific provider is generated and can be obtained by any interested external party upon request,

based on the transition retrieveCertificate.

Whilst a certificate is in the Issuing composite state, if an anomaly is detected, the it will move
to the state Anomaly-Selection of the composite state Anomaly-Audit, based on the transition
when(unresolved-anomalies). When all the detected anomalies are selected, the certificate will
move to the state Anomaly-Inspection in which the selected anomalies are being inspected one by
one. The inspection is a responsibility of the certification authority that will sign off the
certificates. If all the detected anomalies are resolved, the certificate moves back to the History
state, which denotes the state where the certificate was prior to moving to the Anomaly-Audit.
Otherwise, if there are anomalies that cannot be resolved (i.e., accepted as affordable risks), the
certificate moves to the state Revoke, which will lead to its termination and no further certificates

will be issued.

When the expiration date of an issued certificate is reached, as stated in the
ExpirationCondition of the certification model, the certificate will move to state D/ based on the
transition when(expiration-conditions). At this point if a sufficient body evidence has already
been accumulated for issuing a new instance of the certificate, it will move automatically to the
state Issuing, or otherwise it will continue gathering evidence until a new certificate instance can

be issued.

An XML example of the life-cycle model is given below. In this example all the states are
being defined according to their type (atomic, composite, history), as well as their transitions. An
example of a transition, as shown in the following example is between the state with id “statel”
(“Activated”) and the state with id “state2” (“Pre-Issued”). The condition for this transition states
that in order to go from the “Activated” state to the “Pre-Issued” state the
EvidenceSufficiencyCondition, with id “1011” defined in the AssessmentScheme element of the
model, should be satisfied.

187

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<LifeCycleModel>
<InitialState "is" "Activated"/>
<states>
<state>
<atomicState "atl" "Rejected"/>
</state>
<state>
<compositeState "cs1" "ContinuousMonitoring">
<substate>
<compositeState "cs2" "Issuing">
<substate>
<atomicState "as1" "Pres-Issued"/>
</substate>
<substate>
<atomicState "as2" "Issued/>
</substate>
</compositeState>
</substate>
<substate>
<atomicState "at2" "Anomaly-Audit"/>
</substate>
<substate>
<atomicState "at3" "Conflict-Audit/>
</substate>
</compositeState>
</state>
</states>
<transitions>
<transition "is" "atl">
<WhenCondition>
<event>assertionViolated</event>
</WhenCondition>
</transition>
<transition "is" "asl">
<WhenCondition>
<event>sufficiencyConditionSatisfied</event>
</WhenCondition>
</transition>
<transition "as1" "as2">
<WhenCondition>
<event>assertionSatisfied</event>
</WhenCondition>
</transition>
<transition "cs1" "atl">
<WhenCondition>
<event>assertionViolated</event>
</WhenCondition>
</transition>
<transition "cs1" "fs'>
<WhenCondition>

188

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<event>expirationReached</event>
</WhenCondition>
</transition>
<transition "cs2" "at2">
<WhenCondition>
<event>anomalyDetected</event>
</WhenCondition>
</transition>
<transition "cs2" "at3" >
<WhenCondition>
<event>conflictDetected</event>
</WhenCondition>
</transition>
<transition "at2" "hs">
<WhenCondition>
<event>anomalyResolved</event>
</WhenCondition>
</transition>
<transition "at3" "hs">
<WhenCondition>
<event>conflictResolved</event>
</WhenCondition>
</transition>
</transitions>
<FinalState "fs" "Revoked" />
<historyState "hs" "history"
"cs2" />

</LifeCycleModel>

5.3 E-HEALTH SCENARIO

The second example is a certification model for an e-Health application developed by Atos®
that was used as a case study in the CUMULUS project [71]. This application has been built for
patients suffering from dementia and it aims to develop an innovative and integrated solution for
the general management of such patients and to provide innovative tools to support their
treatment. The e-health system has been re-designed and adapted for deployment in a multi-cloud
environment, so that it can benefit from the advantages that cloud computing offers. The

application consists of two main software components: (i) a multi-cloud server, and ii) a client.

* Atos Spain S.A is an international information technology services company that works with clients across the
following market sectors: Manufacturing, Retail, Services; Public, Health & Transport; Financial Services; Telecoms,
Media & Technology; Energy & Ultilities. (http://atos.net)

189

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

The first one consists of a database and two server applications. All of them can be deployed in
different multi-cloud scenarios alternatives, like private clouds, public clouds or hybrid scenarios.
Secondly, the client-side component consists of a desktop application that connects to one of the

server applications.

The security property to certify for this system was an Authentication property regarding the
HTTP to HTTPS redirection. This security property refers to the network-authenticated-server-
access abstract security property of the Application and Interface Security property category
(AIS:authentication:network-authenticated-server-access), which guarantees that the exchange of
data between the client and the TOC is secure, by verifying the authenticity of both user and
TOC.

5.3.1 AUTHENTICATION CERTIFICATION MODEL

As presented in the previous Section 5.2.1, most of the elements that should be defined in the
CM can be expressed in a simple way and are usually similar. The different element though in
each case is the definition of the assertion of the security property, thus we will provide the EC-

Assertion for the network authenticated server access security property used in this scenario.

5.3.1.1 GUARANTEED SUB-ELEMENT

HTTPS to HTTPs redirection states that the TOC provides a communication channel between

a client and itself, which offers the following guarantees:
* The client receives assurance that he is communicating with the ToC, and

* The exchange of data between the client and the ToC is protected with guarantees

about their authenticity.

This security property has one performance attribute called verified, which is a Boolean value

to describe if it is true or false, without any parametric attributes. Thus, the property is considered

190

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

as verified if the client communicates with a webserver (ToC) using SSL/TLS and verifies the
authenticity of the webserver with a certificate, providing adequate encryption. This security
property guarantees that HTTP requests are always redirected to HTTPS and that the network
channel is confidential, verifying the authenticity of the user and the web server. More
specifically, every time there is a request to port 80 (unsecure communication), this request will
be redirected to port 443 (secure communication), in order to guarantee redirection. The security
property analysed will also verify the confidentiality of the communication, by monitoring the
requests sent from the client to the webserver and the requests sent from the webserver to the

client, to check if the data is encrypted.

HTTPS (HTTP over SSL or HTTP Secure) is the use of Secure Socket Layer (SSL) or
Transport Layer Security (TLS) as a sub-layer under regular HTTP application layering. HTTPS
encrypts and decrypts users’ page requests as well as the pages that are returned by the Web
server. The use of HTTPS protects against eavesdropping and man-in-the-middle attacks. HTTPS
and SSL support the use of X.509 digital certificates from the server so that, if necessary, a user
can authenticate the sender. Unless a different port is specified, HTTPS uses port 443 instead of
HTTP port 80 in its interactions with the lower layer, TCP/IP. The security of HTTPS is therefore
that of the underlying TLS, which uses long-term public and secret keys to exchange a short-term

session key, in order to encrypt the data flow between client and server.

Therefore, to assess this property, we defined two monitoring rules to cover the cases: i) that
the ToC redirects every HTTP request to HTTPS, and ii) that the ToC provides a secure
communication (SSL/TLS connection) between the client and the server of the communication.

The SSL/TLS encryption validation will verify the presence of SSL/TSL channel encryption.
Concerning the first case of HTTPS redirection, the following monitoring rule applies:

Rule 1:

Happens(e(_idl, senderl, receiverl,httpCall(_formatl,_serverAddressl),
_receiverl), ti,[_t1, _t1])

A _serverAddressl = 80 =

A Happens(e(_id2, _receiverl, _senderl, httpCall(_httpStatus2,
_location2, _serverAddress2), _receiverl), t2, [_t1, _ti1+1000)

A _location2 = https://servername/

A _httpStatus2 = 301

191

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

This rule states that when a call to the operation is made from the client to the HTTP server,
and the request for the data transmission is through the port 80 (which indicates an unsecure
communication channel), the monitor should check for the existence of another event, which is
reply event from the web server back to the client, in order to notify the execution of the
redirection to the HTTPS port. For every redirection, the reply event should have an attribute
named location, which will be a string that indicates that there is redirection to the HTTPS port,

and an HttpStatus attribute, which includes the status code of the response, that should be 301.

The Guaranteed element for the above rule is presented in the XML listing below:

<Guaranteed "gtl" "Future_Formula">
<quantification>
<quantifier>forall</quantifier>
<timeVariable>

<varName>tl</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<quantification>
<quantifier>existential</quantifier>
<timeVariable>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<precondition>
<atomicCondition "ace">
<eventCondition "true">
<event>
<eventID "true" "false">
<varName>VIDO</varName>
</eventID>
<call>
<interfaceld>serverHTTP</interfaceId>
<OperationId>1</OperationId>
<operationName>httpCall</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>
<varType>OpStatus</varType>
<value>REQ-B</value>
</inputVariable>
<inputVariable "true" "false">
<varName>senderl</varName>
<varType>Entity</varType>
</inputVariable>

192

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<inputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>formatl</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serverAddressl</varName>
<varType>string</varType>
</inputVariable>
</call>
<tVar>
<timeVar>
<varName>tl</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>tl</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>tl</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
</eventCondition>
</atomicCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>
<atomicCondition>
<relationalCondition>
<equal>
<operandl>
<variable>

193

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varName>serverAddressl</varName>
<varType>string</varType>
</variable>
</operandl>
<operand2>
<constant>
<name>port80</name>
<value>80</value>
</constant>
</operand2>
</equal>
<timeVar>
<varName>tl</varName>
<varType>TimeVariable</varType>
</timeVar>
</relationalCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
</precondition>
<postcondition>
<atomicCondition "acl">
<eventCondition "true">
<event>
<eventID "true" "false">
<varName>VID1</varName>
</eventID>
<reply>
<interfaceld>serverHTTP</interfaceId>
<OperationId>2</OperationId>
<operationName>httpCall</operationName>
<outputVariable "true" "false">
<varName>status2</varName>
<varType>OpStatus</varType>
<value>RES-B</value>
</outputVariable>
<outputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>senderl</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>serviceId</varName>

194

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varType>string</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>httpStatus2</varName>
<varType>string</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>location2</varName>
<varType>string</varType>
</outputVariable>
</outputVariable>
<outputVariable "true" "false">
<varName>serverAddress2</varName>
<varType>string</varType>
</outputVariable>
</reply>
<tVar>
<timeVar>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>tl</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>tl</varName>
<varType>TimeVariable</varType>
</time>
<Expression>
<plus>1000</plus>
</Expression>
</toTime>
</event>
</eventCondition>
</atomicCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>
<atomicCondition>
<relationalCondition>
<equal>
<operandl>
<variable>
<varName>location2</varName>
<varType>string</varType>

195

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</variable>
</operandl>
<operand2>
<constant>
<name>locationHttps</name>
<value>https://servername/</value>
</constant>
</operand2>
</equal>
<timeVar>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVar>
</relationalCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>
<atomicCondition>
<relationalCondition>
<equal>
<operandl>
<variable>
<varName>httpsStatus2</varName>
<varType>string</varType>
</variable>
</operandl>
<operand2>
<constant>
<name>RedirectStatus</name>
<value>301</value>
</constant>
</operand2>
</equal>
<timeVar>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVar>
</relationalCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
</postcondition>
</Guaranteed>

196

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

In order to check that the ToC provides a secure communication (SSL/TLS connection)

between the client and the server of the communication, the following rule applies.

Rule 2:

Happens(e(_idl, senderl, receiverl,httpCall(_format3,_serverAddress4),
_receiverl), t3,[_t3,_t3])

A _serverAddress4 = 443 =

_format3 = SSL-TLS

This rule states that when a call event to the HttpsCall operation is made from the HTTPS
server to the client, and the data transmission through port 443, then the monitor should check if
the value of the argument format, which describes the content of the packet, is SSL-TLS. The

XML representation of this rule can be found in Appendix B, with the GuaranteedID="gt2".

5.4 SMART CITIES SCENARIO

The Smart Cities scenario was developed by Wellness Telecom® and was used as a case study
in CUMULUS project [70]. This scenario was developed in order to manage the public lighting in
Spain in a more effective and efficient way. WelLight was developed to achieve significant energy
and economic savings on public lightning, and to provide real-time information about the
performance of the system and the status of the public infrastructure. There are several standard
interfaces available that can be used to interact with several devices that may exist within an
electrical panel, such as network analysers, flux regulators, contactors or peer-to-peer
telemanagement systems. One of the strengths of WelLight is the fact that it does not need its own
server or its own communications infrastructure, as all the information is available through an
Internet-based software service. It is a SaaS solution based on VMWare technology, which is

used on top of Open Stack for IaaS.

® Wellness Telecom (WT) is an Information and Telecommunication Technologies SME company located in Seville
(Spain). WT is expert in wireless/sensors networks management, open source software adapted to ICT solutions, and
development of intelligent control systems able to interoperate with multiple technologies. (www.wtelecom.es/)

197

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

The security property that is the focus of certification in this system scenario is data access
confidentiality between two parties. This is an example of the external data exchange
confidentiality security property (A1S:confidentiality:external-data-exchange-confidentiality).This
property is achieved in the scenario system through the use of a VPN (Virtual Private Network).
VPN is a private network that allows data to securely pass form one endpoint to the other, thus it
provides additional security by hiding the traffic from the public network that the service

operates.

5.4.1 CONFIDENTIALITY CERTIFICATION MODEL

The different elements that define the confidentiality certification model are introduced in the

reminder of this chapter.

54.1.1 GUARANTEED SUB-ELEMENT

The external data exchange confidentiality security property describes the confidentiality level
of the data in the TOC with respect to the personnel operating the TOC. Thus, data should only be

accessible within the TOC and no external entities should have access to this data.

To verify this property the monitor has to check if the data exchanges between the involved
parties are sent through the VPN. In order to do so, we need the address through which the data is
sent. This address is monitored by accessing the appropriate datagram field in the Internet Layer.
Moreover, we assume that the events can be captured only on one side of the communication
channel, which is the server side. The opposing party (i.e. the client) is assumed to receive what is

sent from the server and to have sent what the server receives.

Thus, in order to assess this property, we have defined three rules, which are presented below in
EC-Assertion.

198

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Rule 1:

Happens(e(_idl, senderl, receiverl,LCUCall(_packetDest), receiverl),
_t1,[_t1,_t1])

A HoldsAt (vVPNaddress(_VPNaddressCall, t), _tl1) =

_packetDest = VPNaddressCall

The first rule states that when data is sent from the server to the client, the datagram
containing the data is sent to the address of the VPN. The guaranteed term to express this rule is

given below.

<Guaranteed "gtl" "Future_Formula">
<quantification>
<quantifier>forall</quantifier>
<timeVariable>

<varName>tl</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<precondition>
<atomicCondition "ace">
<eventCondition "true">
<event>
<eventID "true" "false">
<varName>VIDO</varName>
</eventID>
<call>
<interfaceId>LCU</interfaceId>
<OperationId>1</OperationId>
<operationName>LCUCall</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>
<varType>OpStatus</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>senderl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">

199

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>packetDest</varName>
<varType>string</varType>
</inputVariable>
</call>
<tVar>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>tl</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>tl</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
</eventCondition>
</atomicCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>

<atomicCondition "as1">
<stateCondition>
<holdsAt>
<state "vVPNaddressCall">
<argument>
<variable "true" "false">

<varName>VPNaddress</varName>
<varType>string</varType>
</variable>
</argument>
</state>
<timeVar>
<varName>tl</varName>
<varType>TimeVariable</varType>
</timeVar>
</holdsAt>
</stateCondition>
</atomicCondition>

200

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</assertionCondition>
</WrappedCondition>
</precondition>
<postcondition>
<atomicCondition "as2">
<relationalCondition>
<equal>
<operandl>
<variable "true" "false">
<varName>packetDest</varName>
<varType>string</varType>
</variable>
</operandl>
<operand2>
<variable "true" "false">
<varName>VPNaddressCall</varName>
<varType>string</varType>
</variable>
</operand2>
</equal>
<timeVar>
<varName>tl1</varName>
<varType>TimeVariable</varType>
</timeVar>
</relationalCondition>
</atomicCondition>
</postcondition>
</Guaranteed>

Rule 2:

Happens(e(_idl, senderl, receiverl,LCUCall(_packetSource), receiverl),
_t1,[_t1,_t1])

A HoldsAt(vVPNaddress(_VPNaddress,_t), _t1) =

_packetSource = VPNaddress

The second rule states that when the server receives data, the datagram containing the data is

received from the address of the VPN.

However, the VPN address required for the above rules is set by calls to a particular operation
(setupVPN), if the VPN server is determined dynamically. The rule about initializing the VPN

address in the formulas is expressed in EC-Assertion as:

201

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Rule 3:

Happens(e(_idl, senderl, receiverl,setupVPN(_setupVPNaddress),
_receiverl), ti,[_t1, _t1])

A HoldsAt(vVPNaddress(_VPNaddress,_t), _t1) =
Terminates(e(_idl,_senderl, receiverl,setupVPN(_setupVPNaddress),
_receiverl), vVPNaddress(_VPNaddress,_t), _t1)

A Initiates(e(_idl,_senderl, receiverl,setupVPN(_setupVPNaddress),
_receiverl), vVPNaddress(_setupVPNaddress, t), _t1)

The Guaranteed terms of the last two rules expressed in XML can be found in Appendix C,
with the GuaranteedID “gt2” and “gt3”, respectively. The rest of the elements are of the
certification model are similar to those presented for the NR security property, except of the

Anomalies element, which is not relevant for the last two examples of the scenarios provided.

202

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Chapter Six

IMPLEMENTATION

6.1 OVERVIEW

In this chapter we discuss the implementation of the proposed framework for generating
monitoring-based certificates, as described in Chapter 4. More specifically in section 6.2 is
presented the implementation architecture of the framework and the different components that it
consists of. Section 6.3 presents a more detailed explanation of the components along with their

implementation and their interfaces (APIs). Finally, also the databases used are also presented.

6.2 ARCHITECTURE

The monitoring mechanisms of this research have been designed according to the architecture
model shown in Figure 49. This figure presents the internal design of the framework for realising
the generation of monitoring-based certificates. All monitoring modules and the databases of the

framework are presented.
As shown in the figure below, there are three different types of actors, which are:

* A CA/ Cloud Service Provider, which is a Certification Authority or a cloud provider

that requires to certify a cloud service,

* A Service Consumer, which is a user eligible to request a certificate of a specific

service (i.e. a privileged service user, a cloud provider, a service owner, etc.), and

* A Client, which is any user that uses or interacts with the cloud service that is being

monitored and certified.

203

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<<actor>>

<<actor>>
CA/Cloud Service Provider

Service Consumer

Management Client g | Retrieval Client g] Retrieval Client g]

\

\

L Framework Architecture > i)

Management API Retrieval API
Certification Manager &) Certification Communicator & |
B
I

© ©

i
i
1
Generation ARl Anomalieg/Confliats API
l

\

Certificate Generator / Attestation g]
Monitoring Manager API

; 7%
I
|
I
I
I
|
I
!
I
I
|

Sufficiency Condition Managerg | 0
|
|

Certificates DB g]
Life Cycle Manager £ LT T >

i
1
1
1
Anomalies Manager g 0
1
1
1
1

Certification Models DB g]

Conflicts Manager g l5osososcas >

Monitoring Manager g] SE

Aggregator |- _ _ =
k- _ SEEES Evidences DB =)

Detailed Evidence Manager g]| _| _ =SS0 e | Aggregated Evidence
Monitor Translator g | N e sCES O | "] petailed Evidence
N S

i g]

Monitoring API ~ Service]
Monitoringj EventBus &]|.

Results CEEEEEE Sooa

Monitoring Module (EVEREST) E Event Captor | {|
i
|

EVEREST &

AV

<<actor>> g]
Client

Figure 49 — Monitoring Architecture

204

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Based on the architecture presented in the above figure, the monitoring mechanisms of the

proposed framework are realised through the following components:

* Certification Manager: This component communicates with actors to create or
modify Certification Models (CMs), and then it provides the information of them to

the Monitoring Manager, to start the certification process.

* Certification Communicator: This component communicates with actors that
request a certificate and send them the generated certificates, if there are any

generated ones from the required CM stored in the Certificates Repository.

* Certificate Generator/Attestation: The Certificate Generator Attestation
component is the component that has responsibility to check all the conditions stated
in the CM and to manage the process of generating certificates according to the life-
cycle model defined in the CM. It consists of four sub-components, each of which is
responsible for a specific type of conditions stated in the CM. More specifically, these

sub-components are:

o Anomalies Manager, which is the component with the responsibility to handle

anomalies that might be defined in the CM as assertions,

o Conflicts Manager, which is the component that has the responsibility to handle

conflicts that might be defined, in the CM

o Sufficient Condition Manager, which is the component with the responsibility

to handle sufficiency conditions, and

o Life-Cycle Manager: This component is responsible to handle the life cycle
model stated in the Certification Model and change the status of the certificate
based on the conditions and states provided by the state-transition model of the

life cycle.

* Monitoring Manager: The Monitoring Manager component retrieves the CM
instance from the Certification Manager, which holds the information about the ToC

to be certified, the security property, as well as the conditions that should be taken

205

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

under consideration in order to issue a certificate. After retrieving the instance, the
Monitoring Manager feeds the other components with the relevant information of the

CM instance, depending on their functionality.

More specifically, it receives the certification model from the Certification Manager
module and configures the required monitoring infrastructure for the realization of the
certification model. It also configures the Detailed Evidence Manager and the
Aggregation Manager, which are responsible to process the monitoring results.
Finally, it also translates the security property assertions to the language that the

monitor understands through the Monitor Translator module.
To fulfil these responsibilities it consists of the following sub-components:

o Detailed Evidence Manager: This component polls the monitoring module at
regular intervals, in order to collect the monitoring results generated for the given
certification model, and stores the monitoring results in the Detailed Evidence

table of the framework’s database.

o Aggregator: This component has responsibility for aggregating monitoring
results and storing them in the Evidence DB of the framework, as required by the
given certification model. The aggregation manager polls the detailed evidences
at regular intervals, in order to aggregate and store these events in an aggregated
form, which is also defined by the certification model. For example, primitive
monitoring results may denote lengths of individual periods of unavailability of a
service, whereas the aggregated results may indicate the average length of

unavailability periods over a monitoring period of a specific period.

o Monitor Translator: This component retrieves the information about the
assertions of the security property described in the Certification Model, and
translates them to the EC-Assertion language that the Monitor understands, in

order to start the monitoring process of the specific ToC for the defined security

property.

206

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* Monitor Module: The Monitor Module is responsible for monitoring the events for a
specific security property and a target of certification (ToC). This module may reside
on a cloud infrastructure or can be external. In our current implementation, we assume
that it is an external module. The Monitor Module gets a monitoring configuration
with all the details required for the monitoring process (e.g., the assertions that
constitute the specification of the security properties that need to be monitored at
runtime, or where to report the results of the monitoring process) from the Monitoring
Manager. The Monitor Module consists the actual monitor that we are using, which is

the EVEREST monitoring tool.

e Event Bus: This component has responsibility for communicating primitive
monitoring events from and monitoring results from the between the different
components of the monitoring infrastructure used in the generation of monitoring

based certificates, and between such components and our framework.

* Event Captor: This component is responsible to capture all the events that are
happening in the ToC, in order to monitor a ToC and gather the required evidence for
certifying it. It publishes the events that they capture to the allocated Event Bus,

which subsequently forwards them to the monitor.

6.3 COMPONENTS

In this section each individual component of the presented monitoring architecture in Figure 49

is explained, as well as the interfaces exposed by the different components in the architecture.

6.3.1 CERTIFICATION MANAGER

This component communicates with external actors, in order to create or modify an existing
Certification Model (CM). Moreover, it provides the information of the created CM to the

Monitoring Manager, to start the certification process, as presented in Figure 50.

207

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

The Certification Manager component is responsible to handle requests from Certification
Authorities (CA) or Cloud Service Providers about generating Certification Models or issuing
new certificates for specific security properties. After receiving the requests, the Certification
Manager will pass all the necessary information of the agreed CM to the Monitoring Manager

Module to begin the certification process, through the Monitoring Manager API.

This component is also connected with the Certification Models DBs, so as to retrieve all
necessary information about the required models from the CA. Moreover, it provides information
stored in the Certification Model to the Certification Generator/Attestation module through the

Generation API, for the generation of new certificates.

Management API

Certification Manager] Certification Models DB @

A i

Monitoring Manager API Generation API

Figure 50 — Certification Manager
The specifications and the operations of the interface provided by this component are

presented in the Table 10 below.

Table 10 — Management API

Management API

Operation Description

getPropertyAndTOCS(): String This method receives a call from the CA to retrieve all
available TOCz and Security properties, from the available
certification models stored in the database.

208

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Return Type String This method returns a string representation
of an XML of the following structure,
which describes all the available properties
and TOCs.

<PropertiesAndTocs>
<Property category="xxxxxx">
<TargetOfCertification
ID="yyyyy" />
</Property>
<Property category="xxxxxxx">
<TargetOfCertification
ID="yyyyy" />
</Property>

</PropertiesAndTocs>

Operation Description

retrieveCertificationModel(St | Retrieves all available certification models for the specific
ring property, String toc): | TOC and property chosen from the CA.
String

Parameters
Name Type Description

Property String The selected property by the CA to be certified

TOC String The selected TOC by the CA

Return Type String This method returns the string representation of
the XML certification model, where the XML is
written according to the schema presented in
Chapter 4.

Operation Description
addCertificationModel(String This method stores the confirmed certification model
cmInstanceld, String modelXML) of the CA to the database.

Parameters
Name Type Description
cmlnstanceld String The unique identifier of the certification

209

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

model instance that has been confirmed

model XML String The confirmed CM in the XML format
Operation Description
submitCertificationModel This method allows the CA to submit a certification model
(String modelXML) in order to start the certification process.
Parameters
Name Type Description
model XML String The string representation of the XML certification
model.

6.3.2 MONITORING MANAGER

The Monitoring Manager component presented in Figure 51 is responsible for coordinating the
automatic configuration of the monitoring system and for managing the monitoring process
required for certifying a specific security property. More specifically, when it receives the
necessary information of the provided certification model (CM) from the Certification Manager,
its sub-component Monitor Translator translates the assertion defined in XML, into EC-Assertion,
which is the language that the Monitor understands to start monitoring the events of the specific
ToC. In order to receive a CM from the Certification Manager component, the Monitoring

Manager exposes the Monitoring Manager API, which is presented in Table 11.

210

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Monitoring Manager API

Evidences DB g1

Monitoring Manager 8]

_ _ﬂ Aggregated Evidence |

Aggregator |- -----

"I == Detailed Evidence
Detailed Evidence Manager E i —

Monitor Translator §]

Results

Monitoring j Event Bus 5]

Monitoring APl

Figure 51 — Monitoring Manager

Table 11 — Monitoring Manager API

Monitoring Manager API
Operation Description
submitCertificationModel This method allows submitting a certification model to the
(String model) monitoring manager from the Certification Manager.
Parameters
Name Type Description
model String String representation of an XML certification
model.

211

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

6.3.2.1 DETAILED EVIDENCE MANAGER

This component is part of the Monitoring Manager component and is responsible to poll the
monitoring module at regular intervals, in order to collect the produced monitoring results. If it
fetches any monitoring result from the monitoring module, it stores the results in the “Detailed
Evidence” table of the framework database. This evidence is called Detailed (and consequently
the component that manages it is called “Detailed Evidence Manager”), as it refers to every
single result coming from the monitor, as opposed to the “Aggregated Evidence”, which is the

aggregated value of more than one monitoring results.

6.3.2.2 AGGREGATION MANAGER

Aggregation Manager is a part of the Monitoring Manager component and is responsible to
aggregate the monitoring results. The monitoring manager configures the aggregation manager in
order to aggregate the monitoring results for every aggregated period, as defined in the
certification model. The Aggregation Manager component also stores the aggregated results in the

“Aggregated Evidence” table of the framework database.

6.3.2.3 MONITOR TRANSLATOR

Following the introduction of a new language for specifying assertions as part of monitoring
based certification models, it became necessary to introduce a new component that would support
the translation of assertions into the operational monitoring language of the monitor used, which
is the EVEREST monitoring tool. In particular, the new component is responsible to translate the
assertions for a security property as specified in the CM, into EC-Assertion. EC-Assertion is an

XML language based on Event Calculus and is expressed we have discussed already in Chapter 3.

This new assertion language for monitoring based certification models has a similar semantic

foundation to EC-Assertion (i.e., it is based on the notion of the events that may happen at

212

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

runtime and affect the state of a TOC) but it provides higher level and aggregate syntactic
constructs in order to specify security property assertions. The following table provides an
overview of the correspondences between the CM assertion specification elements and the EC-

Assertion.

Table 12 - Correspondences between CM assertion specification elements and EC-Assertion

CM Assertions EC-Assertions Comments

ID Id of formulas Assertions in a CM must have identifiers
that uniquely identify them within the CM.
EC-Assertion formulas are also required to
have a unique id within a monitoring

specification.
variables (operation vars, Variables (operation There is a 1-1 correspondence between
temporal, vars, state vars, temporal, vars, operational, temporal and relational
condition vars and fluent vars and conditions variables in CM assertions and
relational condition vars) relational condition vars) | EC-Assertions. State condition variables in

CM assertions correspond to fluent variables
in EC-Assertion.

quantifiers (forall, exists) quantifiers (forall, exists) | Both CM assertions and EC-Assertion
formulas have variables quantified by either
the universal (forall) or the existential
(exists) quantifier.

logical operators (and, or, logical operators (and, Both languages support the use of the logical
not) or, not) operations of conjunction (and), disjunction
(or) and negation (not) to form compound
logical conditions within assertions (CM
assertion) and formulas (EC-Assertion).

precondition body of monitoring Precondition element of the CM assertion
formulas corresponds to the body in EC-Assertion
language.
postcondition head of monitoring Postcondition element of the CM assertions
formulas corresponds to the head in EC-Assertion
language
event condition Happens predicate Event conditions in CM assertions

correspond to conditions expressed by the
predicate Happens in EC-Assertion. Call,

213

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

reply, and execute events in CM-Assertion
correspond to REQ, RES and EXC events in
Happens predicates. In both languages these
types of events relate to the execution of
operations.

A time variable (timeVar) in a CM assertion
event corresponds to the time variable of a
Happens predicate.

A time period (timePeriod) in a CM

assertion event has no corresponding
counterpart in EC-Assertion and was

introduced for this purpose.

The range of a time variable in a CM
assertion event corresponds the time range of
a Happens predicate. As in CM assertions,
the boundaries of a time range in EC-
Assertion can be defined by time variables,
constants, or linear time expressions over
time variables and constants.

time expression time expression Both CM assertions and EC-Assertions
support the specification of linear time
expressions over time variables and
constants.

operation Type signature (sig) EC-Assertion supports the specification of
operations but does not group them into
interfaces. Furthermore, EC-Assertion does
not distinguish between input, output and
fault variables in operations. Hence, all these
different types of operation variables in CM
assertions are mapped into variables in EC-

Assertion.
state condition — initiates Initiates predicate State conditions in CM assertions are
element mapped into fluents in EC-Assertion.

Initiates conditions in CM assertions are
expressed by an Initiates predicate in EC-
Assertion, which expresses the initiation of a
fluent that represents the condition at a
specific time point.

state condition — terminates | Terminates predicate State conditions in CM assertions are
element mapped into fluents in EC-Assertion.
Terminates conditions in CM assertions are
expressed by a Terminates predicate, which
expresses the termination of a fluent that
represents the condition at a specific time
point.

214

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

state condition — initially Initially predicate State conditions in CM assertions are
element mapped into fluents in EC-Assertion. An
initially state condition in CM assertions is
expressed by an Initially predicate, which
expresses the holding of the fluent that
represents the condition at the start of the
system’s operation.

state condition — holdsAt HoldsAt predicate State conditions in CM assertions are
element mapped into fluents in EC-Assertion. A
holdsAt state condition in CM assertions is
expressed by a HoldsAt predicate, which
expresses the holding of the fluent that
represents the condition at a particular time
point.

relational conditions relational conditions Relational conditions in CM assertions are
mapped directly into relational predicates in
EC-Assertion.

The only difference is that a relational
condition may involve an event series
expression as an operand of a function that is
an operand of a relational condition. In this
case the mapping is described below.

relational condition relational condition Operands in relational conditions of both
operand (variable, operand (variable, languages correspond to each other with the
operation call, expression, | operation call, exception of event series expressions in CM
event series expression) expression) assertions.

event series expression Event series expressions in CM assertions

have no direct corresponding element in EC-
Assertion language. Event series expressions
are mapped into a set of monitoring
assumptions, which are used to detect the
event patterns of the event series expression,
and update fluents keeping a record of
intermediate values of the overall variable of
the event series expression. The mapping of
a CM assertion event series expression
involve also a monitoring rule that checks
the condition expressed by the relational
condition, which incorporates the event
series expression.

215

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Based on the above correspondences, we have developed an algorithm that translates CM
assertions into EC-Assertion formulas. The specification of this algorithm is given in the

following table.

As shown in the table, the algorithm is a collection of functions that collectively transform CM
assertions into EC-Assertion formulas. More specifically, the function translateAssertionToEC
accepts a CM assertion and returns a list of EC formulas. This function creates an EC-Assertion
formula for the given CM assertion and then invokes the translateAssertionCondition function to
transform the precondition and postcondition of the assertion into EC-Assertion formulas
predicates that form the body and head respectively of the EC formula. The function
translateAssertionCondition transforms the atomic conditions. In particular, event conditions are
transformed into Happens predicates in EC-Assertion formulas, state conditions are transformed
into Initiates, Terminates or HoldsAt predicates in EC-Assertions, and relational conditions in CM
assertions are transformed into relational predicated in EC-Assertion. These transformations are
supported by the functions createECEventPredicate, createECStatePredicate and
createECRelationalPredicate in the algorithm. The function addOperand transforms the operand
of a relational condition into EC relational operands. If a relational operand is of type series
expression, then this function also creates additional assumptions to update the computational

value of the series expression.

Table 13 - Algorithm for translating CM assertions into EC-Assertions formulas

1 Ae[] : List of EC Assumptions

2 Function translateAssertionToEC(AT):Fec[]
3 Fec[] =0

4 Aec[] =0

5 for each V in AT.V[]do

6 create a fluent FL. to hold V

7 create Initially formula F.. for FLe,
8 Fec[] ‘= Fec[] U Fec

9 end for

10 for each AF in AT.AF[]do

11 create empty EC formula F.

12 Fec.B[] := Fec.B[]JUtranslateAssertionCondition(AF.PrcC)
13 Fec.H[] := Fec.H[]UtranslateAssertionCondition(AF.PoC)
14 Fec[] ‘= Fec[]U Fec

15 end for
16 Fec[] .= Fec[]U AEC[]

216

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

17
18

19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

return F..[]
end translateAssertionToEC

Function translateAssertionCondition(AC) :P..[]
Pec[] := 0
for each atomic condition/wrapped atomic condition ATC in AC do
if ATC is an event condition then
Pec[] := Pec[]UcreateECEventPredicate(ATC)
else if ATC is a state condition then
Pec[] := Pec[]UcreateECStatePredicate(ATC)
else if ATC is a relational condition then
Pec[] := Pec[]UcreateECRelationalPredicate(ATC)
end if
end for
return P[]
end translateAssertionCondition

Function createECRelationalPredicate(REL) :Pc.[]
Pec[] =0
create an EC relational P.. for REL
Pec[] := Pec[]UaddOperand(P.., REL.OP1)
Pec[] := Pec[]UaddOperand(P.., REL.OP2)
Pec[] = Pec[] + Pec
return P[]
end createECRelationalPredicate

Function addOperand(Pec, OP):Pc.[]
Pec[] := 0
if OP is a Function operandthen
create EC function Fn.. for OP
add Fne. to P, as an operand
else if OP is a series expression operand then then
let SE is the series expression
if SE.COM is a function then
let Fn is the function
Pec[] := Pec[]UtranslateAssertionCondition(SE.AC)
Pec[] := Pec[]VUadjustFunction(Fn)
create an EC function Fne. for Fn
create EC variable V.. to hold return value of Fngc
create a Fluent FL.. to hold V.
add Ve to P, as an operand
create Initially formula F.. for FLe,
Aec[] ‘= Aec[]U FLec
create an assumption A, to Terminate/Initiate FLe. using P[] and
Fnec
Aec[] ‘= Aec[]U Acc
else
create EC variable V.. for OP
add V. to P, as an operand
end if

217

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

64 return P[]
65 end addOperand

Symbols
Pec - EC predicate

Pec[] - List of EC predicates
Fec - EC Formula
Fec[] - List of EC Formulas

Aec[] - List of EC Assumptions

Fec.B[] - List of P.. signifies formula
body

Fec.H[] - List of P.. signifies formula
head

FLee - EC fluent
Vec - EC variable
AT - Assertion

AT.V[] - List of variable declaration
in an assertion

AT.AF[] - List of assertion formula in
an assertion

AF - Assertion Formula

AF.PrC - Precondition of type
Assertion Condition

AF.PoC - Post condition of type
Assertion Condition

AC - Assertion Condition
AC.ATC - Atomic Condition in AC

AC.WC[] - List of wrapped condition
of type AC

REL - Relational Condition

REL.OP1 - First operand of the
relation

REL.OP2 - Second operand of the
relation

SE - Series Expression
SE.AC - Assertion Condition

SE.COM - Computation

Functions

adjustFunction(Fn):Pe..[] - Is a function that checks if the argument type of
the series function Fn complies with the expected argument type. If the
argument type does not match the expected argument type, it amends the
argument to make it to comply with the expected argument type.

createECEventPredicate(ATC):P..~ This function accepts an event atomic
condition in an assertion and creates the corresponding EC Happens predicate.

createECStatePredicate(ATC):P.. - This function accepts a state atomic
condition in an assertion and creates the corresponding EC predicate (i.e.

Initiates, Terminates or HoldsAt).

218

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

In order to provide the EC-Assertion formula to the Monitor, the Monitoring Manager uses the

Monitoring API, which is presented in Table 14.

Table 14 — Monitoring API

Monitoring API

Operation Description

feedEverestWithMonitoringSpe | This method is responsible for submitting the assertions

cifications (String formula) for a security property as specified in the CM to the
Monitor component.

Parameters

Name Type Description

formula String String representation of the EC-Assertion formula.

6.3.3 CERTIFICATION COMMUNICATOR

This module presented in Figure 52 allows the actors to request a generated Certificate. To
enable this communication the Certification Communicator component exposes the Retrieval
API. Moreover, in case the framework detects an anomaly or a conflict, it receives this
information from the Certificate Generator attestation component through the

Anomalies/Conflicts API.

219

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Retrieval API

Certification Communicator g Certificates DB g]

Anomalies / Conflicts API

Figure 52 — Certification Communicator

The Retrieval API presented in Table 15 defines methods to establish the communication

between the actors and the framework, in order to handle the requests for generating specific

certificates.
Table 15 — Retrieval API
Retrieval API
Operation Description
Get(String Certificate_Id, String This method retrieves tall certificates for the
SecProperty, String TOC) specific Security Property and ToC from the
Certificates DB.
Parameters
Name Type Description
Certificate Id String The unique identifier of the certificate
SecProperty String The security property that the generated
certificate refers to.
TOC String The ToC that the generated certificate refers to.
Operation Description

notifyAnomaliesandConflicts This method allows the CA to be notified about a detected
(String certId): Boolean anomaly or conflict, regarding a specific certificate.

220

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Parameters
Name Type Description
certld String The Id of the specific generated certificate that the
anomaly or a conflict refers to.
Return Type Boolean This method returns ta Boolean value regarding the
resolution of an anomaly or a conflict. True means
that it was resolved and False that it was not resolved.

In order for the Certification Communicator to receive any anomalies or conflicts detected
through the monitoring process, in exposes the Anomalies/Conflicts API to communicate with the

Certificate Generator Attestation component. The method of this API is presented in the Table 16.

Table 16- Anomalies and Conflicts API

AnomaliesandConflicts API
Operation Description

getAnomaliesandConflicts This method allows the CA to be notified about a detected

(String certId): Boolean anomaly or conflict, regarding a specific certificate.

Parameters

Name Type Description

certld String The Id of the specific generated certificate that the
anomaly or a conflict refers to.

Return Type Boolean This method returns ta Boolean value regarding the
resolution of an anomaly or a conflict. True means
that it was resolved and False that it was not resolved.

221

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

6.3.4 CERTIFICATE GENERATOR / ATTESTATION

The Certificate Generator/Attestation (CG) is presented in Figure 53. This component has the
responsibility to check all the conditions stated in the CM and managing the process of generating
certificates according to the life-cycle model defined in the CM. It consists of four different sub-
components, each of which is responsible for a specific type of conditions defined in the CM, in
order to issue a certificate and update its status. It receives the CM from the Certification Manager
component and for this reason it exposes its functionality through the Generation API, which is

presented in Table 17.

/
Generation API Anomalies /Conflicts API

Certificate Cenerator / Attestation E

Certificates DB g]
Sufficiency Condition Manager §]| [~~~ "~~~ "~~~ = >

Life Cycle Manager 2]

Evidences DB g]

Anomalies Manager H] Aggregated Evidence

Conflicts Manager & | Detailed Evidence

Figure 53 — Certificate Generator

Table 17 — Generation API

Generation API

Operation Description
submitCertificationModel(String This method allows submitting a certification model
model) to the Certificate Generator.

222

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Parameters
Name Type Description
model String String representation of an XML certification
model.

Operation Description
changeStateOfCertificate(Long This method is responsible for changing the status of
certificateID, String state) the certificate according to the “LifeCycle Manager”.
Parameters

Name Type Description
certificateID Long Long value of a certificate Id.
State String String value of the current state of the certificate
Operation Description

createcertificate(String This method is responsible for creating a certificate when
Certificate_Id, String conditions are satisfied.
SecProperty, String TOC)
Parameters

Name Type Description
Certificate Id String The unique identifier of the certificate
SecProperty String The security property that the generated

certificate refers to.

TOC String The ToC that the generated certificate refers to.

According to the type of conditions, which should be taken under consideration in order to
decide the state of the generated certificate, there are relevant sub-components of the CG that deal

with them. Below we describe each sub-component and their functionality.

223

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

6.3.4.1 ANOMALIES MANAGER

This component is a sub-component of the CG component, and is responsible to detect if any
anomaly stated in the Certification Model has occurred. As an anomaly, we define any potential
attacks on TOC or any other suspicious behaviour related to the property, which despite not
having caused any violation of the security property of the model so far, may lead to a violation of

this property in the future.

Thus, in order to detect an anomaly, this component checks through the Detailed Evidence
Database, where all the monitoring results sent by the monitor are stored, to find if there is
evidence with an assertion Id that matches the anomalies assertion Id defined in the Certification

Model.

Whilst an anomaly is being detected, the framework notifies the issuer, who is responsible to
either resolve it or decide that it is a critical one and cannot be resolved, which will lead to the
revocation of the certificate (if this is stated in the life cycle model). For the notification of the
issuer, the CG will provide the detected anomalies to the Certification Communicator through
Anomalies/Conflicts Manager API, which is the relevant component to communicate with the

external actors, and will wait for the response about weather the anomalies were resolved or not.

6.3.4.2 CONFLICTS MANAGER

This component is responsible to detect if any conflict stated in the Certification Model has
occurred. Similar to the Anomalies Manager component, it checks the detailed evidence in the
database, and checks if there is any evidence with the conflict assertion type. If it detects a
conflict it will notify the Certificate Communicator component through the Anomalies/Conflicts

API and it will wait for the resolution response.

As a conflict we define any violation of the security property rule that might occur in a shorter
period than the defined aggregation period. For example, in the “Availability-percentage-of-up-

time” security property, it could be defined that a ToC should have an average up time of 99% in

224

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

a period of one month (aggregation period). However, if the availability is checked in a weekly
basis, it might fell below 99%, which might not affect the overall percentage of the aggregation
period. If a conflict occur the framework will notify the issuer and they will decide whether this
conflict can be resolved or not. For the notification of the issuer, the CG component exposes the

Anomalies/Conflicts Manager API to the Certification Communicator.

6.3.4.3 SUFFICIENCY CONDITION MANAGER

This component is responsible to check if enough evidence is collected, according to the
Certification Model, in order to issue a certificate. This component can check the monitoring
period defined in the CM or number of events that should be monitored before issuing a
certificate. An additional check that can also be defined in this element of the CM is for the
“ExpectedSystemOperationModelCondition” condition, which is used to define an expected

operation model of ToC.

More specific, there might be cases where an expected behaviour of the TOC should be
defined, that states which and how many events the monitor should check before issuing a
certificate. To enable checks of the representativeness of monitoring events, the certification
model includes a specification of a model for the expected behaviour of ToC. As we discussed in
in Section 4.3.1.5.1.(C), in order to define the sufficiency conditions in the certification model, a
state transition model might be defined to describe probabilities of occurrence of events that occur
in the service (ToC). In order to handle this type of conditions we have developed an algorithm
that first checks the total number of events received from the service, and then it checks if every
type of events that are relevant for the monitoring process are within the limits of the expected

frequency of each case, as defined in the model.

Below the algorithm that this component is using to check the

ExpectedSystemOperationModelCondition is presented.

225

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Table 18 - Algorithm for Processing Behavioural State Transition Models

1 CheckEvent(e, state, nstate, CountES[e,state], CountS[state], valid) {
2 // CountES[e,state] is the total num of occurrences of e in state

3 // CountS[state] is the total num of occurrences of any event in state
4 if there is t in state.transitions such that t.event = e then {

5 CountES[e,state] = CountES[e,state] + 1; CountS[state] =

6 CountS[state]

7 + 1; nstate = t.ds; valid = true

8 }

9 else

10 {valid = false}

11 }

12 Boolean UpdateCounts(trace){ //ValidPR[e,s] indicates the satisfaction
13 of expected frequency range of all events of all state transitions
14 Set CountES[e,s] to @ for all states s and events e of its trans;

15 Set CountS[s] to © for all states s;

16 Set ValidPR[e,s] to false for all states s and events e of its trans;
17 CST = ETOCB.s@; //CST is the current state

18 NST = nil;

19 validTrace = true;

20 While not end of event trace and validTrace do {

21 e = next non processed event in trace;

22 CheckEvent(e, CST, NST, CountES[e,CST], CountS[CST], validTrace);
23 if validTrace {

24 for each t in CST.transitions do {

25 if (CountES[t.e,CST]/CountS[CST] in R(t.e.lpr, t.e.upr)) {
26 ValidPR[t.e,CST] = true

27 }

28 }

29 CST = NST

30 }

31 return (validTrace)

32}

Symbols CST - The current state

e - Event

NST - The next state
state - The current state
t - Transition
nstate - The next state

t.e - Event of the transition t
CountES[e,state] - List of number of
occurrences of e in state lpr - lower probability of ocurrance
CountS[state] - List of number of upr = upper probability of ocuurance

occurrences of any event in state
R(t.e.lpr, t.e.upr) - the range of
ValidPR[e,s] - List of satisfaction of the expected relative frequency of
expected frequency range of all events undertaking this transition whilst
of all state transitions in CST

226

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Functions

CheckEvent(e, state, nstate, CountES[e,state], CountS[state], valid) - Is a
function that checks all occurred events and counts the valid ones.

UpdateCounts(trace) - This function updates the relative frequency of each
valid event in the current state, and updates the array ValidPR[e,s] that is
used to indicate the valid frequencies of events in a specific state s.

As shown in Table 18, the algorithm first checks all events and if an event is valid, then the
UpdateCounts() updates the relative frequency of it in the current state (see array
CountES]/e,state]). It also updates the array ValidPR[e,s] that is used to indicate if the expected
frequency range of the current event e in state s is preserved by the current relative frequencies of
events. Moreover, the UpdateCounts()checks if each next event in the event trace is consistent
with the ordering of events defined in the ETOCB. If it is not, then the UpdateCounts() reports the
trace as invalid. For example, if an event is relevant for the specific security property defined, the
event is being counted in the ETOCB, whereas in cases where an event is not relevant for the
specific checking (i.e. different kind of event occurred in the TOC), but it was received from the
monitored service, then the UpdateCoutns() function will report it as invalid, and would not be

counted for the ETOCB.

Thus, if an expected behavioural model is defined, in order to check this type of conditions,
this component executes the algorithm presented above. According to this algorithm, the
sufficiency Condition Manager component checks if all possible paths are covered before issuing
a certificate. To do so, it checks the PrimitiveEvents table of the database, where all events
occurred in the ToC are being stored. Then by checking the different types of these events (calls
or responses), as well as the sender and the receiver of each event, it can keep track of every event
that took place and compare it with the conditions defined in the behavioural state transition

model.

227

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

6.3.4.4 LIFE CYCLE MANAGER

This component is responsible to handle the Life Cycle Model defined in the monitoring based
certification model. In order to generate a certificate, this sub-component of the CG checks the
conditions that apply to the particular transaction in the certificates life cycle of the certification
model, which leads the certificate to a specific state. If the required conditions are fulfilled, such
as if there are enough monitoring results produced or if the specified monitoring period has
passed, then the CG will set the certificate’s state to the relevant one. To do so, it pulls regularly

data from the Evidence DB, and checks whether the conditions are met.

Since the certificates life cycle is defined with states and transactions that lead from a specific
state to a different state, each transaction refers to a specified condition (with the reference Id of
each condition). Therefore, the CG will check every condition specified in the Assessment Scheme
of the Certification Model and will combine it with the relevant transaction as specified in the life

cycle, so as every time a condition occurs, is will update the state of the generated certificate.

The framework uses the Life Cycle Model (LCM) of a certification model in order to monitor
the overall certification process and to update the status of certificates, which may be generated
according to it. More specifically, starting from the initial state of the LCM the framework will

process all events according to this model. This processing is based on the algorithm provided

below.
Table 19 — Algorithm for Processing the Life Cycle Model

1 State ChooseTransition(State curstate, EventQueue queue){

2 top = queue.head(); //returns null when queue is empty

3 tre, = {t Etransitions(curstate): top#null && t.event()=top};

4 //trans matching events

5 tren = {t €Etransitions(curstate): t.event() = ""}; //trans with no

6 events

7 en., = {t Etre: satisfied(guard(t))};//trans with True guard & match
event

8 eNnen = {t Etrey: satisfied(guard(t))};//trans with True guard but no
event

9 t = null;

10 if(ene, =08&8&en., =0){

11 if(top#null) throw invalidEvent; //non matching event from the queue

1; else return(curstate);

} else if (en.#0) { //select transition with event

228

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

14 t = select (ene); queue.pop();

15 } else { //select transition with True guard but no event

16 t = select (ene);

17 }

18 for (a : retrieveActions(t)) { //retrieve transition actions

19 execute(a); //execute actions

20 }

21 return t.nextState(); //return the new state

22}

Symbols tren - transition with no events
curstate - The current state en, - transition with matching event

and satisfied guard condition
queue - queue with events
enen — transition with no event and
top = queue.head() satisfied guard condition

trey, - transition with events that t - Transition
matches events of the queue
a - Action

Functions

ChooseTransition(State curstate, EventQueue queue) - This function checks if
there is an event in the queue that matches an event of a transition of the
current state and then for the specific transition checks if the guard
condition (if any) is satisfied, in order to move the next state that this
transition leads to.

According to the algorithm presented in Table 19, all the events received by the TOC during
the certification process are placed in a queue. An event can be a condition that is met (e.g.,
EvidenceSufficiencyCondition, aggregation period, expiration condition etc.). The algorithm
checks if there is an event in the queue that matches an event of a listed transition of the current
state of the LCM and if the guard condition of it (if any) is satisfied. When these conditions are
satisfied for the specific transition, the algorithm executes the actions for the transition, and sets
the status of the certificate that is being handled by the process, to the state that the transition
leads to. To check the conditions associated with the transitions of an LCM, the algorithm pulls
regularly data from the database storing the monitoring evidence gathered, and checks the

conditions against it.

229

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

6.3.5 MONITORING MODULE

The monitoring module presented in Figure 54 is responsible for monitoring a specific security
property, as defined in the Certification Model, against runtime events of a system. This module
receives the EC-Assertions for a specific ToC and Security Property by the Monitoring Manager
component, and more specifically form the Monitor Translator, in order to start monitoring the
events of the ToC. The events are being captured by the Event Captor component and received
through the Event Bus component. Moreover, when the monitoring process starts, the monitor
will start producing monitoring results that should be send to the framework for the certification

process. This is done through the Monitoring API. The method implemented at the Monitoring
API is described in Table 20.

v/
Monitoring API

EC-Assertion ‘ EventBus E]
Monitering Module (EVEREST) &] Monitoring = :
g Results : !
|
!
|
|
!

EVEREST &)

< ____________________ 4

Events [j

Figure 54 — Monitoring Module

Table 20 — Monitoring Module API

Monitoring API
Operation Description
List<String> This method allows retrieving the latest monitoring
getLatestMonitoringResults() results from the monitoring module.
Parameters

230

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Name

Type

Description

Return Type

List of String

String representation of the XML monitoring
result.

6.3.6 EVENT CAPTOR

The Event Captor works as a channel between a Web Service Client, a Web Service Container

and an Event Receiver (Event Bus component), as it is shown in the components diagram in

Figure 55. The Event Captor that we have used is mainly for Web services, but our certification

framework could work with any type of event captors in a cloud environment, as long as the

format of events generated by for monitoring complies with format that the monitor understands.

Thus, the current Event Captor listens to any SOAP request that arrives at the port and forwards

them to the Web Service container (tunnelhost, tunnelport). It also creates and sends the captured

events to the Event Bus (receiverhost, receiverport).

Any SOAP response received from web service container is forwarded to the web service

client (listener port) and the generated events are forwarded to Events Receiver (receiverhost,

receiverport).

SOAP Requests/Resposes

Web Service Client 8]

(listenerPort)
SRR >

Event Captor

]

SOAP Requests/Resposes

(tunnelHost, tunnelPort)

Web Service Container

Web Senvice 8]

gl

Events

(receiverHost, receiverPort)

Event Bus

£]

Figure 55 — Event Captor

231

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

6.3.7 EVENT BUS

The Event Bus component is a “publish/subscribe” event communication infrastructure that is
used to forward any event captured by the Event Captor, to the framework. More specific, after
locating a suitable monitor in a specific cloud, the framework gets from it a token assigned to an
event channel of interest and uses this token to subscribe the monitor to the Event Bus. The same
token is passed to the Event Captor to be used when it publishes events to the bus so that these

events can be forwarded from the appropriate monitor.

The Event Bus component support several technologies/protocols related to messaging
implementation, namely: XMPP, JMS [45] and AMQP [107], but for our purposes only XMPP

will be used.

6.3.8 EVIDENCE DATABASE

The Evidence Database is used to record all types of evidence (primitive events or monitoring
results) and all their details, in case they will be needed for auditing purposes. All tables are built

based on MySQL.

6.3.8.1 DETAILED EVIDENCE

This table presented in Table 21 records the monitoring results received from the Monitor that

is collected according to Certification Model, regarding the assessment of security properties.

Table 21 — Detailed Evidence Table

Columns Description
Event Id A unique identifier (Id) for every event captured
CM _Instance Id Reference to the Certification Model instance that the aggregated evidence
relates to (Foreign key referencing Certification Model DB)

232

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

TimeStamp The time of the evidence collection

EventPayloadType Type of evidence:

* InteractionEventType (the evidence that captures a call of a service
operation or a response from the execution of a service operation)

* MonitoringResultEventType (a monitoring result regarding the
satisfaction or not of a security property that is produced by a monitor)

* PredictionResultEventType (a prediction regarding the satisfaction or
not of a security property by the end of a specific period of time in the
future that is produced by the monitor)

* InfrastructureMonitoringEventType (a measure regarding some
infrastructure layer property)

Evidence XML The XML encoding of the evidence, represented as a string.

Evidence Object The evidence as java object, which is automatically produced by the
monitoring manager before getting recorded in the database.

A. Sender

This table presented in Table 22 records the sender of each primitive event that is collected,

regarding the assessment of security properties.

Table 22 — Sender Table

Columns Description

Event Id Reference to a specific event captured

(Foreign key referencing the Detailed Evidence table)

Name The name (Id) of the sender

1P The IP address of the sender

Port The port number used by the sender process

User_Id A unique identifier (Id) of the user that started the sender process
Processld A unique identifier (Id) of the process that generates the event

233

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

B. Receiver

In Table 23 is presented the Receiver table, which records the receiver of each primitive event

that is collected, regarding the assessment of security properties.

Table 23 — Receiver Table

Columns Description

Event Id Reference to a specific event captured

(Foreign key referencing the Detailed Evidence table)

Name The name (Id) of the receiver

1P The IP address of the receiver

Port The port number used by the receiver process

User_Id A unique identifier (Id) of the user that started the receiver process
Processld A unique identifier (Id) of the process that generates the event

C. Notifier

This table presented in Table 24 records the notifier (event captor) of each primitive event that

is collected regarding the assessment of security properties.

Table 24 — Notifier Table

Columns Description

Event Id Reference to a specific event captured

(Foreign key referencing the Detailed Evidence table)

Name The name (Id) of the notifier
1P The IP address of the notifier
port The port number used by the notifier process

234

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

An example of a monitoring result in XML is given below, in order to provide the way
payload is defined of the detailed evidence. It is showed that the Event Type is
MonitoringResultEventType, and that the result is a violation. The event metadata signifies that

100 events were used to derive this monitoring result.

<eventInstance "http://www.slaatsoi.org/eventschema">
<EventPayload>
<MonitoringResultEvent>
<SecurityPropertyInfo "violation"
"1001-inst" "1001-inst">
<GuaranteedState "violation"

"ORCThroughputConstraintInventoryBookSaleState">
<QoSName>http://www.slaatsoi.org/commonTerms#arrival rate
</QoSName>
<QoSValue>0.008264462809917356</QoSValue>

</GuaranteedState>
</SecurityPropertyInfo>

</MonitoringResultEvent>
</EventPayload>
<EventMetadata>

<key>NumberOfEvents</key>

<value>100</value>
</EventMetadata>

</eventInstance>

6.3.8.2 PRIMITIVE EVENTS

In this table the events received by the Event Captor from the ToC, regarding a specific CM,

are being stored. Table 25 shows the structure of this table.

Table 25 - Primitive Events Table

Columns Description
Eventld A unique identifier (Id) of the primitive event
TimeStamp The time of the evidence collection
ecName The name of the event based on the EC-Assertion type, such as Happens.

235

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Prefix The prefix of the EC-Assertion event, such as ic for call or ir for a reply
event.

Operation name The name of the operation of the event

Partnerld The name of the service interface of the event.

Sender The sender of the event.

Receiver The receiver of the event.

negated Whether the event is negated

Abducible Defines if abductive reasoning generated the event.

Recordable Defined if the event was recorder to process the predicate defined in the EC-
Assertion

eventObject The event as java object, which is automatically produced by the monitoring
manager before getting recorded in the database.

eventString The XML encoding of the evidence, represented as a string.

6.3.8.3 AGGREGATED EVIDENCE

This table that is presented in Table 26 records the aggregated evidence, which is generated by
the “Aggregation Manager” component according to the CM and it is inserted in the generated

certificates.

Table 26 — Aggregated Evidence Table

Columns Description

AggregatedEvents Id A unique identifier (Id) of the aggregated evidence

CM _Instance Id A reference to the Certification Model instance that the aggregated evidence
relates to (Foreign key referencing Certification Model DB)

Creation_Time The creation time of the aggregated evidence

Start Time The start time of the aggregation period

236

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

End Time The end time of the aggregation period

Assertion_ID A reference to the Assertion ID that expresses the security property for
which this aggregation is produced

(Foreign key referencing Certification Model Table)

Assessment_Result The overall assessment result of the security property, which is either
satisfied or violated.

Evidence XML The aggregated evidence as string representation of XML

Evidence Object The aggregated evidence as java object

Below, an example of an XML representation of the aggregated evidence is presented. In the
reportinfo element is defined (i) the creator, (ii) the start date of the aggregation, (iii) the end date
of the aggregation, and (iv) the Certification Model Instance that was used to assess the property
(“reportld="Report-1001-inst”). Moreover, the AssessmentResultSummary signifies that for the
Guaranteed of the monitored property, 58 violations were detected. Finally, the
FunctionalAggregatorResult element shows the measure used to aggregate the monitoring results
of the security property defined in the “1001-inst” certification model instance, which was the

“average” value.

<aggregatedReportType xmlns:ns2=http://www.slaatsoi.org/eventschema
"http://www.slaatsoi.org/business-report-schema">
<ReportInfo "SLA@SOI Business Reporting"
"2013-08-29T15:32:57.136+01:00"
"2013-08-29T15:32:57.073+01:00"
"2013-08-29T15:32:57.136+01:00"
"Report-1001-inst"/>
<AssessmentResultSummary>
<SecurityProperty "o" "o" "58"/>
<Guaranteed "o" "o" "58"/>
</AssessmentResultSummary>
<FunctionalAggregatorResultSummary>
<FunctionalAggregatorResult "0.0018021085940434745"
"Average"
"ORCThroughputConstraintInventoryBookSaleState"
"1001-inst"/>
</FunctionalAggregatorResultSummary>
</aggregatedReportType>

237

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

6.3.9 CERTIFICATION MODEL DATABASE

Table 27 present the certification model database, in which all certification models that are
used to assess security properties are recorded. For every request of a specific certification model

(CM _1Id), anew CM Instance (CM_Instance Id) will be created.

Table 27 — Certification Model DB

Columns Description
CM _Id A unique identifier (Id) for every CM - primary key
CM _Instance Id A unique identifier for every request made by a CA to apply a specific CM to

a specific ToC.

CASignature The CA signature of a specific instance of the CM
Security Property The security property category that is going to be certified
Assertion_ID A unique identifier (Id) of the assertion that expresses the property
Assertion The specification of the security property in the certification language
ToC_ID The unique identifier (Id) of the Target of Certification (ToC) that is being
certified by the specific instance.
ToC_Name The name of the ToC that is being certified by the specific instance
CM_ XML The whole CM as string representation of XML
CM _Object The whole CM as java object
6.3.10 CERTIFICATES DATABASE

In Table 28 the Certificates Database table presented, which records all the generated
certificates, in order to be provided in the requestors or notify the registered users for every

update that might occur.

238

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Table 28 — Certificates DB

certPK A unique identifier (Id) for every certificate generated (cert) - primary key
certSerialNo The serial number of the generated certificate

Security Property The security property category that is being certified

tocName The name of the ToC that is being certified by the specific instance

(Foreign key referencing Certification Model Table)

validFrom The date from which the certificate begins to be valid
validUntil The expiration date of the certificate

certString The whole certificate (cert) as a string representation of XML
certObject The whole certificate (cert) as java object

239

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Chapter Seven

EVALUATION

7.1 OVERVIEW

In this chapter we present the process that we have followed in order to evaluate the
certification framework introduced in this thesis and the outcomes of this evaluation. The
evaluation has been based on the prototype tool that we developed to implement the framework
(see Chapter 6), the EVEREST monitoring tool used in the prototype, and for the verification of

the proposed certification model we have used the Prism model checker [191].

7.2 EVALUATION METHODOLOGY

In order to evaluate all the aspects of this research, three different activities were chosen, as
there are three major contributions. Thus, we selected to evaluate first the proposed Certification
Model that was introduced earlier in Chapter 4, and is used as an input in the certification process.
Then, the defined Life Cycle model in the CM was also evaluated, to check its correctness for
handling the process and updating the status of the certificates. Finally, the whole framework was

also evaluated in terms of correctness and performance at run time.

The three separate activities that our evaluation is based on, focusing on different aspects of

our approach. These activities were:

1. Subjective evaluation of the comprehensiveness and complexity of certification
models for certifiers, and whether they cover all the need for a certification process of

a cloud service.

240

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

This activity was based on interactive sessions with experts in certification and the use
of a questionnaire that they had to fill in order to give their feedback about the

complexity and comprehensiveness of the certification models used in our approach.

2. Formal analysis and verification of certification models.

This activity focused on the use of model checking in order to verify properties of the
certification processes (i.e., life cycle model) that are specified in the proposed
certification model. This analysis was based on a symbolic analysis and a model

checking using the PRISM model checker.

3. Experimental evaluation for the operational correctness and performance of the

certification framework at run time.

This activity focused on the investigation of the performance and correctness of the
certification framework, at runtime. The activity was based on the use of a certification
model for database management systems (DBMS) developed based on a Protection
Profile of Common Criteria, and the use of a DBMS as part of an e-commerce system,

established by a benchmark used for performance evaluation in this area.

7.3 EVALUATION ACTIVITIES

Different sets of experiments and evaluation activities were conducted in order to evaluate our
research. Below each type of activity that was conducted is being presented and explained, as well

as the analysis of their results.
7.3.1 SUBJECTIVE EVALUATION

For this type of evaluation, we conducted a survey to four certifiers, after having presented
them the proposed monitoring-based certification process and explained them the proposed

certification model.

241

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

7.3.1.1 SUBJECTIVE EVALUATION METHODOLOGY

The four persons that were chosen to answer to our questionnaire are Italian certifiers. The
session was part of the evaluation of the CUMULUS project, thus the certifiers were chosen by a

project partner based on the availability of relevant experts to take part to our survey.

The session started with explaining the session structure and objectives to the participants and
followed by an introduction of the relevant aspects of the certification process presented. Then,
according to the planned duration of the overall session, each section was executed separately,
lasting about 15 to 30 minutes for a slide presentation of the certification process and of the
relevant certification model. Regarding our monitoring-based certification process, the
presentation included an introduction to both structure and objectives of the monitoring based
certification model, with a main focus on how it attempts to capture the basic concepts of the
monitoring process, as well as the definition of the different kind of conditions that need to be

defined in the certification model and checked by the proposed framework.

After the presentation, the participants had 15 minutes to answer the questionnaire. Moreover,
further details for clarification purposes were given when asked by the participants and where
needed, they were requested to clarify their answers to the questionnaire, by providing written

comments.

The questions were only closed-answer questions of two possible types: i) questions with a
Yes/No answer with a request to provide a written explanation, and ii) questions with five level
scale answer (Excellent, Good, Neutral, Poor, Very Poor). We have also provided a free text
space for each question for any further comment they would like to add, so as to gather as much
feedback as possible from the certifiers. Moreover, we decided to provide a free text space also
for the overall session, to allow the participants to report any extra relevant comment with regards

to the overall process or provide comments that were not included to the questions.

It is important to notice that we had a time constraint due to the actual availability of the
certifiers, thus we needed to restrict our session to present only in a conceptual level the
certification process and to arrange only one session that would last no more than half a day. The

main effect on the session design were:

242

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* Presenting the framework based on only one use case and corresponding functional

and security requirements, and
* Presenting a simplified version of the Monitoring Based Certification Model.

These lead to a partial satisfaction of the general evaluation criteria, as well as to the fact that
there was no time to for the participants to attempt to produce a certification model or to have a
more detailed training on how to define it. Thus, not all certifiers understood completely the
monitoring process, or they found some elements of the certification model too complicated to

define.

The questions were formed in order to cover i) the user satisfaction aspect with regards to the
concept of easiness of comprehension of the certification model (Question 1), and ii) the
representation capability analysis by exploring the ability of the Monitoring Based Certification
Model to capture the significant aspects of the monitoring based certification process (Question 2-
5) and by gathering the overall rating for the ability of the certification model to capture

significant aspects of security certification of cloud services (Question 6).

Moreover, there were some comments about changes that might occur in a service that is being
monitored and certified and whether we can detect these changes in order to adapt the
certification process according to them. Finally, some certifiers also proposed to combine the
monitoring-based certification process with a test-based process, to check that no changes have

occurred in the service being certified.

7.3.1.2 ANSWERS OF THE QUESTIONNAIRE

A more detail presentation of the answers in each question of our questionnaire is provided
and analysed below. Table 29 below shows all answers of each participant to the different

questions.

243

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Table 29 - Answers of the Questionnaire

Q1 Q2 Q3 Q4 Q5 Q6

P1 | >90% N/A >90% N/A Assertions Yes

P2 [>90% | >90% >90% >90% None No

P3[(>90% | >90% >90% >90% Assertions Yes
Evidence

P4 |>90% | >90% >90% 50-74% | Sufficiency | No
Conditions

Below all questions are presented and a further analysis of the given answers is provided.

Question 1

Do you think that Monitoring Based Certification Models (MBCMs) are capable of
representing comprehensively continuous security certification processes for cloud services

security?
Question #1

Answers

0-24% 35-49% 50-74% 75-90% >90%

Figure 56 — Answers to Question 1

The first question of the questionnaire was about the certification model’s capability to offer
continuous certification for cloud services. As shown in Figure 56, all four certifiers replied that

the MBCM is able to provide continuous certification for cloud services.

244

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Question 2

Do you think that the assertion rules specified as part of a the Monitoring Based Certification
Model are capable of representing accurately and effectively the continuous collection of
evidence required for the assessment of security properties and/or the effectiveness of control

mechanisms realising these properties in the cloud?

Question #2

B Answers

© B N W A

0-24% 35-49% 50-74% 75-90% >90%

Figure 57 — Answers to Question 2

In this question all certifiers except one, as shown in Figure 57, replied. All three of them
answered that the monitoring assertion rules defined in monitoring based certification models are
capable to accurately specify the continuous monitoring process for assessing most security
properties. The only certifier who could not answer this question indicated that this was due to
lack of knowledge and sufficient information about the monitoring process, thus was unable to

make a statement for the assertion language.

Question 3

Do you think that the life cycle models specified as part of a Monitoring Based Certification
Model are capable of representing effectively the processes of collecting evidence, and

generating and managing certificates based on it?

245

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Question #3

4 Answers

S = N W B

0-24% 35-49% 50-74% 75-90% >90%

Figure 58 — Answers to Question 3

All certifiers stated that the life cycle model of the certification model is able to effectively
represent the certification process, as shown in Figure 58. However, there was also some
uncertainty in their answer because two of them found the process complicated and difficult to

understand all steps.

Question 4

Do you think that the evidence sufficiency conditions that may be specified as part of a
Monitoring Based Certification Model (number of events, period of monitoring, expected
behaviour of target of certification) are capable of representing effectively the circumstances
under which the evidence collected would be enough to make a decision about issuing a

certificate or otherwise?

246

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Question #4

I ¥ Answers

0-24% 35- 50-74% 75-90% >90%
49%

S = N W B

Figure 59 — Answers to Question 4

As shown in the Figure 59, three out of four answers in this question stated that the element
used to specify the sufficiency conditions in the certification model can be used effectively to
specify the circumstances, under which the collected evidence are enough in order to issue a
certificate. However, one certifier answered that we should take under consideration the cases
where changes might occur in the service during the monitoring process, thus this element is not

sufficient for these cases.

Question 5

Which of the following parts of the Monitoring Based Certification Models (Assertions,
Evidence Sufficiency Conditions, Life-Cycle Model) do you think that it would be difficult for

someone with expertise in cloud security to specify even after training?

247

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Question #5

2 1 Answers

O R N W N

None Assertions Evidence Life-Cycle
Sufficiency Model
Conditions

Figure 60 — Answers to Question 5

As Figure 60 presents, half of the certifiers found difficult to specify the Assertion element,
which is used to express the monitoring rules to collect evidence for security properties and
anomalies. Another answer was that the most difficult element to define is the evidence
sufficiency conditions. One certifier was unable to answer, stating that it was difficult to

understand the whole process.

Question 6

Are there any key elements/requirements that continuous security certification processes for

cloud services should address but the Monitoring Based Certification Models fail to cover?

248

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Question #6

. - o

Yes No

S = N W B

Figure 61 — Answers to Question 6

In this question there were comments concerning the adaptation of the framework to possible
changes in services that are being certified, and whether the monitor can detect them in order to
continue the certification process according to them. Another comment was about including some

functional tests, to assure that no changes have been made at the services.

During the session, the participants asked questions regarding the monitoring process and the
specification of some elements. More specifically, according also to the answers in Question 5,
they found more difficult to specify the Security Property Assertion element and the Evidence
Sufficiency Conditions elements. This is due to the lack of time to explain in more details the EC-
Assertion language and its elements, as well as the expected behavioural model, which they found
difficult to understand the concept of it. Furthermore, during the presentation of the monitoring-
based certification process, questions arose regarding the expected behavioural model and the life
cycle model and the way the framework process the state machines defined in the CM for these
two elements. Moreover, also during the time of answering the questionnaire, some participants
asked for further clarification of some questions, as well as to re-explain some parts of the

presentation, to refresh their memories to answer the questions.

Overall, the participants seemed to understand the process, after further clarifications, and

found it really interesting and useful for certifying cloud services. However, one participant was

249

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

confused with the whole process and had difficulties in understanding the elements to be defined

in the CM and in particular the way to specify them.

7.3.1.3 THREATS TO VALIDITY

For this subjective evaluation concerning the comprehensiveness and correctness of the
proposed certification framework, different factors affected the results. Firstly, one main
limitation in this activity was the lack of availability of relevant expert personnel to participate in
our survey. Thus, we could only involve four Italian certifiers to participate and answer our

questionnaire.

Furthermore, another limitation was the time constraint of the participants. Since we have
limited time to present and explain the monitoring based certification process, as well as the
certification model that we have defined, we were able to present it in a conceptual level, without
going into more technical details. Thus, there was no possibility to train the participants or engage

them to try and define a certification model on their own.

Based on these limitations, we were able to provide a presentation with as many details as
possible, on the certification process and on the certification model, by referring to only one case

study as an example.

As a result, the provided explanation was not adequate leading to the fact that one participant
was not able to fully understand the process and was unable to answer to some questions. Thus,

not all answers of this survey were indicative of our work.

7.3.2 VERIFICATION AND FORMAL ANALYSIS

For conducting the verification and a formal analysis of the proposed life-cycle model of the
certification model, we used the Prism model checker tool used for formal modelling and analysis

of systems that perform random or probabilistic behaviour [191].

250

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

7.3.2.1 FORMAL ANALYSIS METHODOLOGY

In order to check the correctness of the defined Life-Cycle model of the Certification model,
we used the Prism model checker. In Prism, we define three different modules to check the
correctness of the model. These modules are: the: i) Monitoring Manager, ii) Anomaly Manager,

and iii) Monitor.

As shown in the figure below, different states are defined to denote whether a certificate is
issued (State 2) or not (State 1) in the Monitoring Manager module, and in every state the module
receive different types of events from either the monitor or the anomaly manager module. Based
on the type of events and the conditions defined in the Life Cycle model of the CM, a certificate

could be issued (cert=1), revoked (cert=2) or not issued (cert=0).

The check starts from the Monitoring Manager module, which as a first step initiates the
Monitor to start sending events (start=1). As soon as the Monitor is initialised and moves from
State=0 to State=1, there are different paths that it can take with different probability for each one
of them. For this example presented below, we have chosen the following probabilities, for testing
purposes to check the life cycle model: i) a probability of 90% to send a rule satisfaction and 10%
to send a rule violation when it process the security property assertion, and ii) a probability of
90% not to detect an anomaly (thus, the assertion of the anomaly is not satisfied) and 10% to send

an anomaly event, whilst processing the anomaly assertions.

In case of a rule satisfaction (ev=1I), the Monitoring Manager keeps record of this type of
events by increasing the variable nsat every time it receives a rule satisfaction. Similarly, in case
it receives a rule violation (ev=2) it increases the variable nvio and in case that no anomaly is
being detected (ev=06) it increases the variable noAnom. If an anomaly is received (ev=3), then
except of increasing the variable nan, it also starts the Anomaly Manager module in order to see if
the detected anomaly will be resolved or not (start=2). When the Anomaly Manager is being

initialised, then there is a probability of 80% to resolve the anomaly and 20% not to resolve it.

Thus, when the Monitoring Manager receives an event from the Anomaly Manager for a
resolved anomaly (ev=4), the resAnom variable is increased, whereas in the case of an unresolved

anomaly (ev=5), the variable Unres will be increased and the certificate will be either revoked

251

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

(cert=2), in case it was already issued when the unresolved anomaly event was received, and the
monitoring process will terminate (state=3), or a certificate will not be issued (cert=0) and the

monitoring process will terminate (state=3).

Monitoring Manager Module

Satisfied Rule No Anomaly Detected No Anomaly Detected
(ev=1 & nsat= nsat+l) (ev=6 & Satisfied Rule (ev=6 &
AND nsat<minSat NoAnom = NoAnom+1) (ev=1 & nsat= nsat+1) NoAnom = NoAnom+1)

WHEN Sufficiency Condition Satisfied
And No anomalies) THEN
Certificate is Issued (cert=1

Start Monitor
(start=1)

(nsat>=minSat & (nan=0 or
nan=resAnom) WHEN
Rule Violation
(ev=2 &
nvio=nvio+1)
WHEN Rule Violation Anomaly Detected Anomaly Resolved Anomaly Detected Anomaly Resolved OR
(ev=2 & nvio=nvio+1) {ev=3 & nan=nan+1), (ev=d & (ev=3 & nan=nan+1), (ev=4 & Unresolved
OR Unresolved Anomaly Start Anomaly resAnoms=resAnom+1) Start Anomaly resAnom=resAnom+1) Anomaly
(ev=5 & Unres=Unres+1), Manager (start=2) Manager (start=2) (eves &
THEN No certificate is Unres=Unres+1),
Issued (cert=0) THEN
Revoke Certificate

(—w (cert=2)

No Certificate (cert=0) OR
Revoked Certificate (cert=2)

Monitor Module Anomaly Manager Module

—)

I
I
}
|
|
I
1 1 | Prob=0.8 t: I
rob=0.8 to resolve an
Prob=0.9 to send a Prob=0.1to send a ! anomaly event (ev=4)
Satisfied Rule event Violated Rule event |
(ev=1) (ev=2) :
v 1 Module started
Monitor started 1 {start=2

(start=1)]
0 1 :
A !

| Prob=0.2 not to resolve an

Prob=0.9 not having an Prob=0.1to send an ! anomaly (ev=5)

Anomaly event (ev=3) Anomaly event (ev=3) :
A4 Y !
|
|
I
I
|

Figure 62 - Prism Modules

252

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Below we provide the way these modules are defined in the Prism model checker.

dtmc
global start: [0..2];
global minsat: [0..60] init 10; //sufficiency condition: min num of
//satisfactory results
global resAnom: [0..60] init @; //resolved anomalies
global ev: [0..6] init ©; //monitoring evidence: 1(satisfaction), 2(violation),
// 3(anomaly), 4(resolved anomaly),
// 5 (unresolved anomaly), 6 (no anomaly)
global nan: [0..60] init ©; //number of anomalies
global cert: [0..2]; // © (not issued), 1 (issued), 2 (revoked)
module monitoring_manager
sr: [@..3] init ©; //states of the monitoring manager
noAnom: [0..60] init ©; //number of no anomalies detected
nsat: [0..60] init o; // number of rule satisfactions
nvio: [0..10] init o; //number of rule violations
Unres: [0..10] init o; //number of unresolved anomalies

[] sr=0 -> (sr'=1) & (start'=1); //the monitoring manager initiates the monitor

[] sr=1 & (ev=1) -> (nsat'=mod(nsat,60)+1) & (ev'=0) & (start'=1l) & (sr'=1);
//when a rule satisfaction is received nsat is increased by 1

[] sr=1 & (ev=2) -> (nvio'= mod(nvio,10)+1) & (cert'=0) & (start'=0) & (sr'=3);
//when a violation is received, nvio is increased by 1 and no certificate is
//issued, the process stops (move to state sr=3)

[] sr=1 & (nsat>=minsat) & (nan=0) -> (cert'=1l) & (start'=1) & (sr'=2);
//when sufficient evidence is reached and there are no anomalies,
//a certificate is issued (cert=1) and moves to state sr=2

[] sr=1 & (nsat>=minsat) & (nan=resAnom) -> (cert'=1) & (start'=1l) &
(sr'=2); //when sufficient evidence is reached and there are no unresolved

[] sr=1 & (ev=3) -> (nan' = mod(nan,50) + 1) & (ev'=0) & (start'=2) & (sr'=1);
//when an anomaly is received, the anomaly manager is initiated and
//the nan is increased by 1

[] sr=1 & (ev=6) -> (noAnom' = mod(noAnom,50) +1) & (ev'=0) & (start'=1) &
(sr'=1); //when the anomaly rule is not satisfied the noAnom is increased by 1

[] sr=1 & (ev=4) -> (resAnom' = mod(resAnom,50) + 1) & (ev'=0) & (start'=1) &
(sr'=1); // when an anomaly is resolved the resAnom is increased by 1

[] sr=1 & (ev = 5) -> (Unres' = mod(Unres,10)+1) & (cert'=0) & (start'=0) &
(sr'=3); //when an unresolved anomaly is received, an no certificate

[] sr=2 & (ev=1) -> (nsat' = mod(nsat,50)+1) & (ev'=0) & (start'=1) & (sr'=2);
//when a certificate is issued and rule satisfaction is received,
//the nsat is increased by 1

//anomalies, a certificate is issued (cert=1)

//has been issued, the process stops

253

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

[] sr=2 & (ev=2) -> (nvio' = mod(nvio,10)+1) & (cert'=2) & (start'=0) & (sr'=3);
//when a certificate is issued and a violation is received,
//the certificate is being revoked (cert'=2)

[] sr=2 & (ev=4) -> (resAnom' = mod(resAnom,50) + 1) & (ev'=0) & (start'=1) &
(sr'=2); //when a certificate is issued and a resolved anomaly is received,
//the resAnom is increased by 1

[] sr=2 & (ev=5) -> (Unres' = mod(Unres,10)+1) & (cert'=2) & (start'=0) &
(sr'=3); // when a certificate is issued and an unresolved anomaly event
//is received, the certificate is being revoked (cert=2)
[] sr=2 & (ev=3) -> (nan' = mod(nan,50)+1) & (ev'=0) & (start'=2) & (sr'=2);
//when a certificate is issued and an anomaly is being detected,
//the nan is increased by 1

[] sr=2 & (ev=6) -> (noAnom' = mod(noAnom,50)+1) & (ev'=0) & (start'=1) &
(sr'=2); //when a certificate is issued and no anomaly is being detected,
//the noAnom is increased by 1
[] sr=3 -> (start'=0);
endmodule

module anomaly manager
// the anomaly manager sends events concerning the anomalies resolution

sp: [0..1] init o;

[] sp=0 & (start=2) -> (sp'=1); // anomaly manager is initiated by the
//monitoring manager
[] sp=1 & (nan>resAnom) -> 0.8: (ev'=4) & (sp'=1) // prob of anomaly resolution
+ 0.2: (ev'=5) & (sp'=1);// prob for unresolved anomaly
endmodule

module monitor
// the monitor sends security satisfaction, violation and anomalies event

sm: [0..3] init o; //states of monitor
counter: [0..50] init @; //number of sent events

[] sm=0 & (start =1) -> (sm'=1);
//monitor initiated by the monitoring manager

[] sm=1 -> 0.90: (counter'=mod(counter,50)+1) & (ev'=1) & (start'=0) & (sm'=2)

+ 0.10: (counter'=mod(counter,50)+1) & (ev'=2) & (start'=0) & (sm'=2);
//prob of rule satisfaction and violation

[] sm=2 -> (sm'=0);

[] sm=1 -> 0.10:(counter'= mod(counter,50)+1) & (ev'=3) & (start'=0) & (sm'=3)
+ 0.90:(counter'= mod(counter,50)+1) & (ev'=6) & (start'=0) & (sm'=3);

//prob of anomaly or no anomaly
[] sm=3 -> (sm'=0);
endmodule

254

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Based on this model, we have allocated different probabilities for receiving a rule satisfaction,
detecting an anomaly, as well as for resolving an anomaly, for each set of tests. Furthermore, we
ran each of these sets five different times, each time by changing the number of sufficient
conditions for issuing a certificate. More precisely, we run three different sets of tests with
different probabilities, and for each set we changes the sufficiency conditions to 10, 20, 30, 40

and 50 rule satisfaction events. The probabilities that we checked were:

[1] Probability 90% to receive a rule satisfaction and 10% a rule violation, 10% to receive an
anomaly event and 90% not to have an anomaly, and in case of an anomaly, 80% to

resolve the anomaly and 20% not to resolve it;

[2] Probability 90% to receive a rule satisfaction and 10% a rule violation, 10% to receive an
anomaly event and 90% not to have an anomaly, and in case of an anomaly, 90% to

resolve the anomaly and 10% not to resolve it; and

[3] Probability 95% to receive a rule satisfaction and 5% a rule violation, 5% to receive an
anomaly event and 95% not to have an anomaly, and in case of an anomaly, 95% to

resolve the anomaly and 5% not to resolve it.

These probabilities were chosen only for testing and evaluation purposes, in order to check the
behaviour of the life cycle model based on different percentages. In a real scenario we would
expect a really small percentage for a security property rule violation, as this will revoke a

certificate, and a small percentage also for an anomaly not to be resolve.

7.3.2.2 PRISM MODEL CHECKING RESULTS

For checking the correctness of the life-cycle model defined in the certification model, we first
checked the probabilities to have a certificate with a violation (P=? [F (cert=1)&(nvio>0)]), and a
certificate with an unresolved anomaly (P=? [F (cert=1) & (Unres>0)]). In all cases both
probabilities were 0%, showing that there is no possibility to have either of the two cases, which

was correct.

255

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Further on, we checked the probability to have a resolved anomaly (resAnom>0), an
unresolved anomaly (Unres>0), and no anomaly (noAnom>0) for each set of tests. These values
should be the same for each set of tests concerning the probabilities, as they are only affected by
the probabilities of sending each type of events. The results of each test are presented in the

following table.

Table 30 - Probabilities for resAnom, Unres and noAnom

Probabilities resAnom>0 | Unres>0 noAnom>0
'59&“_"“9002}; RefA;ng 0.3999 0.1666 0.8823
o oAnam Resheom | 04499 | 0.0900 0.8823
S;‘,J_t;/onf’An;’;}y; Res_‘;‘;?,}? 0.4749 0.0476 0.9470

As shown in Table 30, the probabilities of having a resolved or an unresolved anomaly, as well
as having no anomaly at all (meaning that the assertion concerning an anomaly is not satisfied)

depends only to the probabilities defined in the modules.

Finally, the last check that we have conducted was the different probabilities of having an
issued or a revoked certificate, or an issued certificate with at least one anomaly, or one resolved
anomaly, or no anomaly at all. In each test we were also changing the number of the sufficient

condition events. The results are presented in the following table.

Table 31 - Probabilities of issuing certificates based on number of sufficient condition evidence

rere Number of] _ _ (cert=1)&((cert=1)& (cert=1)&
Rachablines Events el S nan>0) (resAnom>0) | (noAnom>0)
10 0.2844 0.2844 0.2174 0.2040 0.2843
First set of experiments 20 0.0812 0.0812 0.0722 0.0704 0.0812
Sat- noAnom- ResAnom 30 0.0232 0.0232 0.0220 0.0217 0.0232
90% - 90% - 80% 40 0.0066 0.0066 0.0064 0.0064 0.0066
50 0.0018 0.0018 0.0018 0.0018 0.0018

256

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

10 03139 | 03139 0.2470 0.2403 0.3139
Second set of experiments 20 0.0989 | 0.0989 0.0899 0.0890 0.0989
Sat- noAnom- ResAnom 30 0.0312 | 0.0312 0.0300 0.0298 0.0312
90%- 90% - 90% 40 0.0098 | 00098 | 0.0096 0.0096 0.0098
50 0.0031 | 0.0031 0.0030 0.0030 0.0030
10 0.5828 | 0.5828 0.3993 0.3901 0.5828
Third set of experiments 20 0.3401 | 0.3401 0.2726 0.2693 0.3401
Sat- noAnom- ResAnom 30 0.1985 | 0.1985 0.1737 0.1725 0.1985
95% - 95% - 95% 40 0.1159 | 0.1159 0.1068 0.1063 0.1159
50 0.0676 | 0.0676 0.0643 0.0641 0.0676
First set of experiments Second set of experiments
“eert=1
Hcert=1
0.3000 o cert=2 0.4000 W cert=2
0.2500 (cert=1)&(nan0) 03000 (cert=1)&(nan>0)
£0.2000 certeLresAnom0) £ . i (cert=1)&(resAnom>0)
= E(cert= resAnom>| a p
E 0.1500 S 02000 ‘ e L (cert=1)&(noAnom>0)
£ 1000 (cert=1)&(noAnom>0) g P
a U /
= 0.1000 »
0.0500
0.0000 10 20 30 40 50 0.0000 10 20 30 40 50
Number of sufficient evidence events Number of sufficient evidence events

Third set of experiments

\ Heert=1
)
0.6000 fcert

5000 \ . (cert=1)&(nan>0)
0.4000 ° ‘ ‘ i (cert=1)&(resAnom>0)

z
2 8 0.3000 \ " /“ - & (cert=1)&(noAnom>0)
£ 0.2000 ‘ ®

0.1000 o

0.0000

10 20 30 40 50
of sufficient evid events

h

Figure 63 — Probabilities of issuing certificates based on number

of sufficient condition evidence

257

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

As shown in Table 31 and in Figure 63, based on the different number of sufficient evidence and
based on the different probabilities of each event to happen, the probabilities to have an issued
certificate or a revoked certificate in every case is different. More precisely, when the number of
sufficient evidence is increasing, meaning that more events of rule satisfaction are needed in order
to issue a certificate, the probability to issue a certificate is decreasing. Similarly, when the
probability to have a rule satisfaction increases or when the probability to resolve an anomaly

increases, then the probability to issue a certificate also increases.

Furthermore, the probabilities to have an anomaly, or no anomaly or resolved anomaly whilst

having also an issued certificate is also decreasing when more sufficient evidence are required.

Based on the results from the model checking, we can conclude that the life-cycle model is
accurately defined in the certification model, as the behaviour of the model checking is realistic

based on the events and form of the conducted tests.

7.3.2.3 THREATS TO VALIDITY

In this type of evaluation, there are several factors that can compromise the results. However,

we tried to minimize these threats but still there are possibilities that the results might be biased.

The main impact of these experiments was the limited capability of the model checker tool to
process many iterations of the defined model. More specifically, to compute each probability the
Prism model checker process on average 900 iterations of the model. Though, when we tried to
have more events for the sufficiency conditions, the tool could not process all possible iterations
to calculate accurate probabilities, thus we limited our experiments to have up to 50 rule
satisfaction events to be sufficient in order to issue a certificate. However, we expect that this

would not be the case for a certification process of a real service.

Moreover, another constraint was the increased complexity of our model, in case we wanted to
insert also a time automaton to express the expiry date of a certificate, which would lead to
reissue a certificate. Thus, we did not include this factor in our model checking, even though in a

real service certification process it is essential.

258

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

7.3.3 PERFORMANCE

In order to evaluate the performance of our monitoring-based certification approach, we have
conducted an experiment based on a case study involving the certification of a real system. The
system that we selected was the open source MySQL server [170], the RUBIS benchmark [196]

to produce the workload, and an existing Protection Profile of Common Criteria.
Our choices for this type of experiment was influenced by:
* The complexity of this system,

* The existence of a Protection Profile generated by Oracle that specifies security
properties for such systems based on Common Criteria [74] (aka Security Functional

Requirements (SFR)), and

* The existence of benchmarks for creating realistic workloads for the MySQL server,
which enable the evaluation of the automated certification process in realistic
conditions. Moreover, since our approach does not support interventions with the
purpose of addressing or restoring security violations, we focus only on the

evaluation criteria of the MySQL server, based on the selected Protection Profile.

7.3.3.1 PERFORMANCE METHODOLOGY

The experiment that we set up to evaluate our approach realised a certification process for the
security functional requirement FIA UID.1.2 for the MySQL Server [74], based on a certification
model including the assertions for defining the security property. We also used the RUBIS
benchmark [196] to produce realistic workloads of events for the MySQL server and monitor the

server for certification purposes during the execution of these workloads.

RUBIS is an auction site prototype, similar to the eBay, which implements the core
functionality of an auction site, which allows users to browse for items, bid for items on sale, and
pay for items from a wallet modelled after a bank account. To support its functionality, RUBIiS

implements a number of operations and transactions requiring varying levels of consistency and

259

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

isolation. To capture events (i.e., logs of queries) from the operation of the server, we used the
MySQL AUDIT Plugin developed by McAfee [170]. The Audit plug-in is based upon the same
technology as McAfee Database Activity Monitoring, allowing users to easily satisfy access full
audit information. It may be used as a standalone audit solution or configured to feed data to

external monitoring tools.

This Audit plug-in captures the logs created during the execution of the RUBIS workloads
against the server. The events logged by the plugin were initially exported as .json files and
subsequently parsed and converted into events, in the .xml format required by the framework. All
the different systems used in our experiment, including RUBIiS, MySQL, EVEREST and the
proposed framework for monitoring-based certification process, were deployed on a cloud cluster
involving a test-bed cloud cluster equipped with four 4-core server machines, each running at

2.20GHz, with 8GM of main memory, 450GB of disk space under Ubuntu 3.8.0.

The Common Criteria Protection Profile for the functional requirement FIA UID.1.2 [74]
refers to security requirements for database management systems in organisations where there are
requirements for protection of the confidentiality, integrity and availability of information stored
in the database. The main requirement is to provide basic database functionality, including
allowing users to be granted the discretionary right to disclose the information to which they have

legitimate access to other users.

The basic measure that we used in order to evaluate the performance of the certification
process was the average time for making a decision about the monitoring assertion formulas in the
model, called decision delay or d-delay. d-delay measures the difference between the time point
when the latest event that is needed in order to make a decision about the satisfaction or otherwise
of a monitoring formula occurs (tc) and the time when following the capture and processing of the
event, the monitor makes a decision on whether the formula is satisfied (tp), i.e., d = tp— tc. Based
on d- delay measures for individual instances of monitoring formulas, we calculated the average

delay in the monitoring process using following formula:
ave(d) =Y, d/N

Where:

260

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

* dis the d-delay of each monitoring rule instance, and

* Nis the total number of monitoring rule instances for which a decision was made.

7.3.3.2 PERFORMANCE RESULTS

The graph in Figure 64 shows the d values for the different events of the RUBIS benchmark
that caused monitoring rule checks in the certification model, and the moving average of d-delay
(ave(d)) calculated over a window of 1000 events. The average value of d-delay across the whole
RUBIS benchmark was 384.33 milliseconds (standard deviation = 118.92 milliseconds). As
shown in the figure, ave(d) remained relatively stable throughout the execution of the benchmark,

showing that certification results can be produced quickly following the actual events.

s d-delay drdelay Events | Ave(d)

- [1-5000] | 326.02
S [5001-

- 10000] | 324.47
£ [10001-

3 15000] | 357.59
? [15001-

s 20000] | 443.31
[20001-

- 25000] | 413.87
[25001-

29746] 443.83

Figure 64 — d-delay in execution of the database CM

In addition to the time needed to generate certification results, the execution of a monitoring-
based certification model may have an impact on the operation of ToC as it is necessary to

configure the ToC in order to produce the events needed for the monitoring process that underpins

261

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

the certification process. To evaluate this overhead in the case of the MySQL server, we executed

two cases on the RUBIS benchmark:
* Case (a) without using the MySQL audit plugin; and

* Case (b) with the use of the MySQL audit plugin in the server.

The overhead was estimated by calculating the average throughout (i.e., the number of queries
executed per minute) of the server in 10 different executions of case (a) and 10 different
executions of case (b). Each of these 20 executions involved the execution of the same number of
RUBIS queries against the server (~30,000 queries), but the queries executed in each execution
were selected randomly by the RUBIS system. The completion of the execution of the different

query sets took on average 18 minutes.

Throughtput Average Execution Time

4000
80

3000

~——Throughput

60

(without plugin)

Throughput
(with plugin)

40

Number of Queries
2000

1000

)|
|
|
Query Execution Time (miliseconds)
20

o

6 101112131415 16 17 18
SRR AR R E L ¢ 1234567891011 R21B1I15161718

Execution Period (minutes) Execution Period (minutes)

Figure 65 - Average throughput (i) and query processing time (ii) in executing the RUBIS
benchmark on MySQL server with and without the MySQL AUDIT plugin

262

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Table 32 - Average throughput and query execution time with and without the AUDIT plugin

Min Throughput Average Query Processing Time (msecs)
No Plugin With plugin No plugin With plugin
1 3688.9 3245 16.27 18.49
2 819.9 824.7 73.18 72.75
3 1390.9 1386.1 43.14 43.29
4 1615 1651.1 37.15 36.34
5 1630.4 1629.7 36.8 36.82
6 1638.2 1636.5 36.63 36.66
7 1630.7 1645.9 36.79 36.45
8 1633.9 1643.9 36.72 36.5
9 1624.4 1648.5 36.94 36.4
10 1630.2 1619.9 36.81 37.04
11 1630.9 1611.8 36.79 37.23
12 1617 1646.9 37.11 36.43
13 1638.8 1648.5 36.61 36.4
14 1651.5 1627.3 36.33 36.87
15 1631.3 1628 36.78 36.86
16 1665.5 1635.4 36.03 36.69
17 1677.4 1649.8 35.77 36.37
18 788.2 779.6 76.12 76.96

The average throughput for cases (a) and (b) was measured per minute and the result is shown
in the Throughput graph of Figure 65 and in details in Table 32. As shown in this graph the use of
the MySQL AUDIT plugin had only a very minor effect on the performance of the server. The
same is evident from Average Execution Time graph in Figure 65, which shows the average
execution time per RUBIS query (in milliseconds), for every minute during the execution period.
The absence of any significant effect is also evident, which shows the actual throughput and
average query execution times for (a) and (b). The main difference in query execution time was
observed only in the initial stage of the execution of each query set, when RUBIS sent queries to

establish the connection to MySQL for each transaction thread.

7.3.3.3 THREATS TO VALIDITY

In this last type of evaluation experiment, there are different factors that can compromise our
results. However, we tried to minimize them by running multiple iterations to cover as many

possibilities as possible to be have more accurate and realistic results.

263

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

A main factor in this case is that the system that we monitored is not confirmed by other
studies yet, with regards the overheads that might be introduced by monitoring its events.
However, in order to have an adequate sample of evidence, we ran 20 different executions of the
RUBIS benchmark and the MySQL Server, 10 of which were with the use of the plugin and 10
without it. Thus, based on the results we assumed to have an adequate sample of evidence to

reach our conclusion.

Furthermore, all tests have been performed on a load-free system, so as to avoid any

interference to the performance of the tests by the effect of concurrency.

Finally, in order to avoid introducing human errors in processing this large amount of data, all
test results have been generated automatically, with the use of .json and .xml files as inputs to our

translator and to our framework.

264

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Chapter Eight

CONCLUSION AND FUTURE WORK

8.1 OVERVIEW

In this final chapter of the thesis, we provide an overview of the research work conducted
regarding the monitoring-based certification framework for cloud services, which was presented
in the earlier chapters. We also point out the main novelties of this framework and the
contributions that our research has made to the state of the art. Moreover, the limitations of our

research are also presented and directions for future work are discussed.

8.2 SUMMARY OF RESEARCH WORK

The framework designed and presented in Chapter 6 of this thesis was aimed at providing a
novel basis for defining and automating the certification of security properties of cloud services.
This process is based on continuous monitoring of the actual operations of cloud services, in order
to gather the required evidence and enable a continuous assessment of the satisfaction of the
security property of interest. The use of evidence coming from continuous monitoring provides
coverage of contextual conditions that might not be possible to envisage, test or simulate through
other forms of assessment of security properties, such as through testing or static analysis, and

therefore provides, in our view, an advantage over them.

To continuously monitor the events, we used the EVEREST monitoring tool. To specify an
automatically executable certification process, we have defined an XML based language for
specifying monitoring based certification models, as presented in Chapter 4. This language can be
used to define all the necessary information regarding the certification process for a specific target

of certification. More specifically, as required by the schema, a Certification Model contains

265

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

information regarding the Target of Certification (ToC) that needs to be certified, the security

property that the certificate refers to, the way of assessing the defined security property, and all

relevant conditions that need to be met in order to generate and issue a monitoring-based

certificate.

In order to define the security property assertions, a new language was defined based on the

Event Calculus language. Furthermore, a translator was developed to translate the assertions of

the Certification Model into the EC- Assertion language, which is the language that the EVEREST

monitoring tool uses to define monitoring rules and assumptions. The extensions in the language

were made to support the definition of complex security properties assertions.

8.3 CONTRIBUTIONS

The main contributions of this research are summarised below.

Development of an XML based language for expressing monitoring based certification

models

We have defined a new XML based language in order to be able to specify the monitoring
based certification models.. This language is defined by an XML schema and enables the
automated specification and realization of certification models for an objective assessment of
security properties, using evidence gathered through continuous monitoring. The XML
schema of the language was presented and explained in Chapter 4 and examples of defined

models were given in Chapter5.

The purpose of such models is to define: (i) the security property that needs to be
certified, (ii) the types and extent of evidence that should be acquired in order to be able to
certify the property, (iii) the life cycle of certificates of the given type, and (iv) the agents

which will have the responsibility to carry out different parts of the process.

Since, in the monitoring based certification process the evidence required for assessing
and verifying security properties is acquired through continuous monitoring of the cloud

service operations, the evidence underpinning certificates of this type can cover contextual

266

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

conditions that might not be possible to predict, test or simulate through other forms of
assessment, such as testing or static analysis, that take place before the deployment of a

cloud service.

Definition of an XML based Assertion Language to express the assertions of the security

property

In order to enable the formal specification of security properties that can drive the
monitoring process as part of the certification model, we have developed a new XML
language. This language was introduced in Section 4.3.1.4 and has a similar semantic
foundation to the EC-Assertion language of EVEREST, with respect to the specification of
monitoring conditions in terms of events and fluents and first order temporal logic formulas
of Event Calculus. However, the new language provides higher level and aggregate syntactic
constructs, in order to specify more complex security property assertions that were needed
for the work done in this research. It has also introduced the concept of “executable” events,
whose purpose is to perform complex computations that may be needed during the

monitoring process.

Following the introduction of this new language, it became necessary to introduce a new
component to our framework, which could support the translation of these assertions of the
certification model, into the operational monitoring language of the EVEREST monitoring

tool that we used.

In particular, as discussed in Section 6.3.2.3, the new component is responsible to
translate the assertions for a security property as specified in the certification model, into the

EC-Assertion language of the EVEREST monitoring tool.

Development of a framework to process the Certification Models and automatically generate

monitoring-based certificates.

Having defined a certification model and a language to express the security properties
assertions, we then developed a framework to support the monitoring based certification
process, based on the information defined in the model. As described in Chapter 6, this

framework allows the processing of the defined certification models and the generation and

267

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

management of monitoring-based certificates. More specifically, it is able to translate the
security property assertions, defined in the certification model, to the EC-Assertion language
that the monitor understands, and to process all conditions defined in the certification model,
as well as the monitoring results received by the monitor, in order to decide and change the
status of the certificate based on this information. For the decision of the status of the
certificates, the framework process the life-cycle model defined in the certification model,

following the algorithm presented in Section 6.3.4.4.

The developed framework is novel with respect to the existing state of the art. More
specifically, existing cloud certification and other schemes do not support the continuous
monitoring of the resources in order to acquire the necessary evidence to certify a service, as
we discussed in Chapter 2. Moreover, they are not able to automatically identify appropriate
evidence acquisition plans and security assessment models. The proposed framework fills
these gaps, by supporting the monitoring of security properties and resources, tailored to the
need of users, in order to provide adequate monitoring evidence for the purposes of
certification. Furthermore, it can support the expression and automated execution of other
aspects of the process, including the specification and verification of evidence sufficiency

conditions and the specification and execution of life cycle models for certification.

Evaluation of the approach

Three different activities were conducted in order to evaluate the outcomes of this
research. These were: (i) a subjective evaluation of the comprehensiveness and complexity of
the proposed certification models, (ii) a formal analysis and verification of the life cycle
models defined in certification models, and (iii) an experimental evaluation of the

operational correctness and performance of the proposed framework.

The first activity was based on interactive sessions with experts in the area of certification
and on a questionnaire that the participants had to answer, in order to give their feedback
about the complexity and comprehensiveness of the certification models used in our
approach. According to the results of this evaluation, it showed that the proposed model is
capable to accurately specify the conditions to support the continuous monitoring

certification process for assessing most security properties of cloud services.

268

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

The second activity focused on the use of model checking tool to verify the life cycle
model specified in the proposed certification model. This analysis was based on a symbolic
analysis and a model checking using the PRISM model checker. The results of this activity

proved that the life-cycle model is able to accurately support the certification process.

The third activity was based on the use of a certification model for database management
systems (DBMS) as part of an e-commerce system, which was established by a benchmark
used for performance evaluation and on a Protection Profile of Common Criteria. This
activity showed that certification does not affect the performance of the system that is being
certified (i.e., the TOC), as measured by different metrics (e.g., TOC throughput, TOC

transaction execution time).

8.4 LIMITATIONS

The framework that we have developed for the monitoring based certification process of cloud

services has some limitations.

The main limitation is that the framework is able to process only one certification model at a
time. Even though we use the Certification Model ID to all the objects used by the process (e.g.
rules, assumptions, evidence, etc.) in order to differentiate the execution of different monitoring
processes, the EVEREST monitor that we used to support the monitoring process is not able to

handle multiple different assertions.

Furthermore, our approach requires a specific XML format for the received events in order for
the monitor to process them and for the framework to store them for auditing purposes. Thus, it
requires from the service providers to adjust the format of their produced events, based on the
expected format, and to include all needed information in the relevant tabs of the event XML

schema.

Finally, in order to correctly define a Certification Model, as presented in Chapter 4 and 5,

some training will be needed, especially for the definition of the security properties assertions.

269

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

8.5 FUTURE WORK

This research proposed a framework that allows the certification of cloud services, based only
on continuous monitoring. However, this approach can be further used to provide a higher level of
certification, by combining it with other ways of evidence collection. Therefore, some directions

for future work are listed below:

* Hybrid Certification

In some cases the use of monitoring based certification is not fully sufficient for achieving a
high degree of assurance. For example, in the case of certifying the authorisation security
property of a service, where only authorised users can modify resources, the users request events
for updating data can be monitored and then trigger a testing agent to verify the users
authorisation rights to execute this operation. Another example of combining evidence collection
techniques could be used to certify the protection of a system from SQL injection attacks
(integrity security property). In this case a testing could be performed in a pre-production
environment and then in a production environment, where the TOC should not be threatened by
tests, instead of attacking the TOC the test-base certification process can rely on monitoring

evidence, checking that no query containing SQL injection is executed.

Therefore, in such cases the combination of different types of evidence (e.g., monitoring and
testing) may be useful in achieving the required assurance level. The combination of such types of
evidence has been termed as “hybrid certification” in [131]. As defined in [131], hybrid
certification process aims to combine evidence from multiple sources of different nature (such as
Monitoring, Testing, or Trusted Computing (TC) Proofs) in order to determine the satisfaction of
a security property by a service. Such a combination permits to develop more consistent and
concrete processes, which can overcome limitations introduced by certification processes based
on a single way of collecting evidence. Hybrid certification can be achieved in two modes,

depending on the module in charge of combining the evidence coming from different sources:

a) In a dependent mode, where the certification process is driven by one of the

mechanisms used for evidence collection. The driving mechanism, as required by the

270

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

conditions specified in the certification model, it triggers the dependent one as a

subordinate in order to generate the additional evidence; and

b) In an independent mode, where two evidence collection processes are executed
independently and a third module collects the evidence from these two processes. This
module evaluates the evidence coming from the different sources, as specified in the

certification model, in order to assess the validity of the property.

Whilst the first of the above modes has been realised by existing work [69], the second needs

to be implemented and our approach could be extended to support it.

* Incremental Certification

To support the dynamic behaviour of the cloud, the certification process should be able to
dynamically certify and constantly verify the validity of a certificate, at runtime. The incremental
certification process aims to provide such ability, by avoiding as much as possible the re-
certification of a service in case a change occurs (i.e. a possible change of the Virtual Machine
used, service migration, or changes to the configurations of platform services). This can be
achieved by adapting the certification process to be able to reuse available evidence that is still
sufficient for the certification and partially re-evaluate parts of the service that has changed.
Furthermore, previous issued certificates can also be reused as evidence for generating new ones,

which refer to the same security property and cloud service.

However, the monitoring-based certification process is considered to be an incremental
certification, as it continuously checks for a property to be valid. In particular, the deployment on

a different stack it can automatically be achieved by moving the event captors in the new stack.

* Certificate composition

Certificate Composition is a concept that has already been introduced in SOA environment in

[16][189][190][188]. This type of certification aims to reuse the evidence in existing certificates

271

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

of component services, in order to issue a new certificate for a composite service. However, in the
work done for this type of certification, the process does not support a specific description in the
form of a certification model, thus a composition of this type requires certification authorities to
be involved and a time consuming selection of candidates based on existing evidence. This work
could be enhanced by a simpler and effective approach that can exploits the concept of the

certification model introduced in this research.

Extending the work presented in this thesis to support composition of certificates would
require the ability to assess the compatibility of the security properties expressed in the relevant
monitoring based certificates, and the compatibility and complementarity of the monitoring

evidence underpinning them.

272

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

REFERENCES

(1]

(2]

[3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

"Amazon CloudWatch", http://aws.amazon.com/cloudwatch/

"Blue Vector Monitoring and Management Engine for Cloud Computing", White paper, Blue Vector Systems,

www.bluevector.com

Abramowski D., "Monitoring Applications in the Cloud", March 10, 2009, SYS-CON Media, Inc.

Accorsi R. and Lowis L. "ComCert: Automated Certification of Cloud-based Business Processes." ERCIM News 2010(83), pp.
50-51,2010.

Accorsi R., Lowis L., Sato Y. “Automated Certification for Compliant Cloud-based Business Processes, Business & Information

Systems Engineering”, 2011

Aceto G., Botta A., De Donato W., Pescap¢ A. "Cloud Monitoring: definitions, issues and future directions", 1st IEEE
International Conference on Cloud Networking (IEEE CloudNet'12)", Paris (France), pp. 63-67, 2012.

Agence Nationale de la Sécurité des Systémes d'Information (ANSSI), http://www.ssi.gouv.fr/fr/certification-qualification/cesti/,
2011

Agostini R., Bettini C., Cesa-Bianchi N., Riboni D., Ruberl M. and Sala C. “Towards highly adaptive services for mobile
computing”. In Proceedings of IFIP TC8 Working Conference on Mobile Information Systems (MOBIS), Springer, 2004, pp.
121-134.

Al-Moayed A. and Hollunder B. Quality of service attributes in web services. In Proc. of the 5th International Conference on

Software Engineering Advances (ICSEA 2010). Nice, France, August 2010.

Alves A., Arkin A., Askary S., Barreto C., Bloch B., Curbera F., Ford M., Goland Y., Guizar A., Kartha N., Liu C.K., Khalaf R.

“Web services business process execution language version 2.0. OASIS Standard”, 2007.

Andreozzi S., Bortoli N.D., Fantinel S., Ghiselli A., Rubini G.L., Tortone G. and Vistoli M.C. “GridICE: a monitoring service
for grid systems,” Future Generation Computer Systems, 21 (4), pp. 559-571, April 2005.

Anisetti M. et al., “ASSERT4SOA: Toward Security Certification of Service-Oriented Applications”, OTM 2010 Woekshops,
pp. 38-40, 2010.

Anisetti M., Ardagna C.A. and Damiani E. “A Low-Cost Security Certification Scheme for Evolving Services”, In Proc. Of
IEEE 19th International Conference on Web Services, pp. 122-129, 2012.

Anisetti M., Ardagna C.A. and Damiani E. “Defining and matching test-based certificates in open SOA”. In Proc. of the Second
International Workshop on Security Testing (SECTEST 2011). Berlin, Germany, March 2011, short paper.

Anisetti M., Ardagna C.A. and Damiani E. “Fine-grained modeling of web services for test-based security certification”. In Proc.

of the 8th International Conference on Service Computing (SCC 2011), Washington, DC, USA, July 2011.

273

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23

[t}

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Anisetti M., Ardagna C.A., Damiani E. and Maggesi J. “Security certification-aware service discovery and selection”. In
Proceedings of the Fifth IEEE International Conference on Service-Oriented Computing and Applications (SOCA), pp. 1-8,
2012.

Ardagna C.A., Asal R., Damiani E., and Vu Q.H. “On the management of cloud non-functional properties: The cloud
transparency toolkit”. In Proceedings of IFIP NTMS 2014, 2014.

Ardagna C.A., Asal R., Damiani E., and Vu Q.H.. “From Security to Assurance in the Cloud: A Survey”. ACM Computing
Surveys, 48(1), Article 2, 2015.

Armando A. and Compagna L. SATMC: a SAT-based model checker for security protocols. In Proceedings of the 9th European
Conference on Logics in Artificial Intelligence (JELIA 2004), volume 3229 of Lecture Notes in Computer Science. Springer
Verlag, pp 730-733, 2004.

Armando A., Carbone R., Compagna L., Cuellar J., and Tobarra L.. Formal analysis of SAML 2.0 web browser single sign—on:
breaking the SAML-based single sign—on for google apps. In Proceedings of the 6th ACM workshop on Formal methods in
security engineering ,ACM New York, NY, USA, pp. 1-10, 2008.

Armbrust M., Fox A., Griffith R., Joseph A.D., Katz R., Konwinski A., Lee G., Patterson D., Rabkin A., Stoica I. and Zaharia M.
“Above the Clouds: A Berkeley Review of Cloud Computing”, In Tech. Rep. UCB/EECS 2009, EECS Department, U.C.
Berkeley, 2009.

Armbrust M., Fox A., Griffith R., Joseph A.D., Katz R., Konwinski A., Lee G., Patterson D., Rabkin A., Stoica I. and Zaharia M.
“A view of cloud computing”. CACM 53, 4, pp. 50-58, 2010.

ASSERT4SOA Project. ASSERT4SOA, Advanced Security Service cERTificate for SOA. www.assert4soa.eu, 2011.
AVANTSSAR. Research project IST-2001-39252. http://www.avantssar.eu/.
AVISPA. Research project IST-2001-39252. http://www.avispa—project.org/.

Bacic E.M. The canadian trusted computer product evaluation criteria. In Proc. of the Sixth Annual Computer Security

Applications Conference, Tucson, AZ, USA, December 1990.

Baiardi F., Cilea D., Sgandurra D., Ceccarelli F. “Measuring Semantic Integrity for Remote Attestation”. In Proceedings of the

2nd International Conference on Trusted Computing, April 06-08, 2009, Oxford, UK [doi>10.1007/978-3-642-00587-9_6]
Baresi L. and Di Nitto E. “Test and Analysis of Web Services”. Springer, New York, USA, 2007

Baresi L. and Guinea S. “Dynamo: Dynamic Monitoring of WS-BPEL Processes”, In Proccedings of the 3rd International

Conference On Service Oriented Computing (ICSOC 05), Amsterdam, pp. 478-483, 2005.

Baresi L., Guinea S. and Plebani P. “WS-Policy for Service Monitoring” In Technologies for E-Services, 6th International

Workshop, TES 2005, pp. 7283, 2005.

Barham P. et al. "Xen and the art of virtualization." In Proceedings of the nineteenth ACM symposium on Operating systems

principles (SOSP '03), 37(5), pp. 164-177, 2003.

274

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Baset A.S., Wang L. and Tang C. “Towards an understanding of oversubscription in cloud”. In Proceedings of the 2nd USENIX
conference on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services , Hot-ICE’12, pp. 7-7,

Berkeley, CA, USA, USENIX Association, 2012.

Basili V.R., Caldiera G., Rombach H.D. “The Goal Qiestion Metric Approach”. In Encyclopedia of Software Engineering, J.
Marciniak (Ed), Wiley, 1994.

Berger S., Caceres R., Goldman K.A., Perez R., Sailer R. and Van Doorn L. “vTPM: Virtualizing the trusted platform module”.
In Proceedings of USENIX-SS, 2006.

Bettini C., Maggiorini D. and Riboni D. Distributed Context Monitoring for the Adaptation of Continuous Services. World Wide
Web, 10(4):503-528, 2007.

Bianculli D. and Ghezzi C. “Monitoring Conversational Web Services”. In IWSOSWE’ 07, 2007.

Blake M.B., Kahan D.R. and Nowlan M.F. Context Aware Agents for User-oriented Web Services Discovery and Execution.
Distrib. Parallel Databases, 21(1), pp. 39-58, 2007.

Boampong P.A. and Wahsheh L.A. “Different facets of security in the cloud”. In Proceedings of CNS 2012, 2012.

Bowels K., Juels A. and Oprea A. “HAIL: a high-availability and integrity layer for cloud storage”, In Proceedings of the 16th
ACM conference on Computer and Communications Security (CCS ’09), 2009.

Burton S., Kaliski J. and Pauley W. “Toward risk assessment as a service in cloud environments”. In Proccedings of the 2nd

USENIX conference on Hot topics in cloud computing, pp. 13—13, Berkeley, CA, USA, June 2010.
Cachin C., Keider I., and Shraer A., “Trusting The Cloud”, IBM Research, Zurich Research laboratory, 2009.

Canfora G. and Di Penta M. Service-oriented architectures testing: A survey. Software Engineering: International Summer

Schools, pp. 78-105, 2009.

Carlsson C. and Fullér R. “Predictive Probabilistic and Possibilistic Models Used for Risk Assessment of SLAs in Grid
Computing”, Information Processing and Management of Uncertainty in Knowledge-Based Systems 13th International

Conference (IPMU 2010), Germany, Part II, Vol.81, pp. 747-757, 2010.

Catteddu D. and Hogben G., “Cloud Computing: Benefits, Risks and Recommendations for Information Security.”, European

Network and Information Security Agency (ENISA), 2009.

Celesti A., Tusa M. and Puliafto A., Security and Cloud Computing:InterCloud Identity Management Infrastructure, In
Procceedings of the 19th IEEE International Workshops on Enabling Technologies:Infrastructures for Collavorative Enterprises,

pp. 263-265, 2010.

Certification Commission for Healthcare Information Technology. Certification Handbook CCHIT Certified® 2011
Certification Program, May 2011.
http://www.cchit.org/sites/all/files/CCHIT%20Certified%202011%20Certification%20Handbook%20May%2017%202011%20F
INAL_1.pdf

275

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Cetinkaya E.K. and Sterbenz J.P.G. “A Taxonomy of Network Challenges”. In Proceedings of the 9th IEEE/IFIP International
Conference on the Design of Reliable Communication Networks (DRCN), pp. 322-330, Budapest, 2013.

Chahal S., Steichen J.H., Kamhout D., Kraemer R., Li H. and Peters C. “An Enterprise Private Cloud Architecture and
Implementation Roadmap”. IT@Intel White Paper, Intel Information Technology, June 2010. Available at:

http://www.intel.co.uk/content/dam/doc/guide/intel-it-enterprise-cloud-architecture-roadmap-paper.pdf [retrieved June 2013]

Chandran S.P. and Angepat M. “Cloud Computing: Analysing the Risks involved in Cloud Computing Environments”, In

Proceedings of Natural Sciences and Engineering, Sweden, 2010.

Chen Y., Paxson V., and Katz R.H. “What’s New About Cloud Computing Security?”, University of California, Berkeley Report
No. UCB/EECS-2010-5, 20(2010), pp. 2010-5, 2010.

Chevalier Y., Compagna L., Cuellar J., Drieslma P.H., Mantovani J., Mdersheim S., and Vigneron L. “A high level protocol
specification language for industrial security—sensitive protocols”. In Workshop on Specification and Automated Processing of

Security Requirements (SAPS 2004), 2004.

Chow R., Golle P., Jakobsson M., Shi E., Staddon J., Masuoka R. and Molina J. “Controlling data in the cloud: outsourcing
computation without outsourcing control”. In Proc. of the 2009 ACM workshop on Cloud computing security, pp. 85-90, 2009.

Chow R., Jakobsson M., Masuoka R., Molina J., Niu Y., Shi E. and Song Z. “Authentication in the clouds: a framework and its
application to mobile users”. In Proceedings of the 2010 ACM workshop on Cloud computing security workshop pp. 1-6, 2010.

Clayman S. et al., “Monitoring Service Clouds in the Future Internet”. In Towards the Future Internet - Emerging Trends from

European Research, (eds.) Tselentis, G et al., IOS Press: Amsterdam, pp. 115 — 126, 2010.
Cloud Industry Forum. http://www.cloudindustryforum.org/about-us
Cloud Security Alliance (CSA), https://cloudsecurityalliance.org/research/ctp/

Cloud Security Alliance, “The notorious nine: Cloud computing top threats in 2013”, v.1.0, Cloud Security Alliance, February
2013, available from: http://cloudsecurityalliance.org/research/top-threats/ [retrieved: April 2014]

Cloud Security Alliance, Cloud Audit, Available from: https://cloudsecurityalliance.org/research/cloudaudit/
Cloud Security Alliance, Cloud Controls Matrix, Available from: https://cloudsecurityalliance.org/research/ccm/

Cloud Security Alliance, CSA Security, Trust and Assurance Resigtry (STAR), Avaliable from:

https://cloudsecurityalliance.org/star/

Cloud Security Alliance, Security Guidance for Critical Areas of Focus in Cloud Computing vol. 2, available from:

http://www.cloudsecurityalliance.org/guidance/csaguide.v2.1.pdf [retrieved: June, 2013].
COBIT, http://www.isaca.org

Coker G. et al., “Principles of remote attestation”. From the issue entitled "Special Issue:10th International Conference on

Information and Communications Security (ICICS)".

276

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79

[}

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

ComCert, http://www.telematik.uni-freiburg.de/comcert

Common Criteria (CC) for Information Technology Security Evaluation, CCDB USB Working Group, 2012, part 1-3. Available

from: http://www.commoncriteriaportal.org..

Compagna L. “SAT-based Model-Checking of Security Protocols”. PhD thesis, Universit degli Studi di Genova and the
University of Edinburgh, 2005.

Comuzzi M. and Spanoudakis G. "Dynamic Set Up of Monitoring Infrastructures for Service Based Systems", In Proceedings of
the 25th Annual ACM Symposium on Applied Computing, Track on Service Oriented Architectures and Programming, pp.
2414-2421, March 2010.

CUMULUS Project, Deliverable “D2.1 Security-aware SLA specification language and cloud security dependency model
v1.01”, September 2013. Available from http://www.cumulus-project.eu/ [retrieved 2013]

CUMULUS Project, Deliverable “D2.4 Final CUMULUS Certification Models”, May 2015. Available from

http://www.cumulus-project.eu/ [retrieved 2015]

CUMULLUS Project, Deliverable “D6.3 Smart Cities Pilot”, December 2014. Available from http://www.cumulus-project.eu/
[retrieved 2014]

CUMULUS Project, Deliverable “D6.4 e-Health Pilot”, December 2014. Available from http://www.cumulus-project.eu/
[retrieved 2015]

Damiani E. and Mana A. “Toward WS-Certificate”, In Proceedings of the ACM Workshop on Secure Web Services (SWS
2009), pp. 1-2,2009.

Damiani E., Ardagna C.A. and loini N.E., "Open Source Security Certification". Springer, December 2008.

Database Management System Protection Profile, Issue 2.1, May 2000, Available from
http://www.commoncriteriaportal.org/files/ppfiles/T129%20- %20PP%20v2.1%20%28dbms.pp%S5B1%5D%29.pdf

Dempsey K. et al., Information Security Continuous Monitoring (ISCM) for Federal Systems and Organisations, NIST 800-137,
2011, available from: http://csrc.nist.gov/publications/nistpubs/800-137/SP800-137-Final.pdf

Dimitrakos T. “The BEinGRID Project”, In Grid and Cloud Computing A Business Perspective on Technology and
Applications, Springer Berlin Heidelberg, 2009.

Djemame K., Armstrong D.J., Kiran M., Jiang M. “A Risk Assessment Framework and Software Toolkit for Cloud Service
Ecosystems”. In Proceedings of the Second International Conference on Cloud Computing, GRIDs, and Virtualization, pp. 119-

126, 2011.

DoD, Department Of Defense Trusted Computer System Evaluation Criteria. USA Department of Defence, December 1985.
http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt

Doelitzscher F., Reich C., Knahl M.H. and Clarke N.L. "Incident detection for cloud environments", Proc. of the Third

International Conference on Emerging Network Intelligence,2011, pp. 100-105.

277

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Doelitzscher F., Reich C., Knahl M.H., Passfall A. and Clarke N.L., "An agent based business aware incident detection system

for cloud environments", Journal of Cloud Computing: Advances, Systems and Applications, 1(9), 2012.

Dong W.L. and Yu H. “Web service testing method based on fault-coverage”. In Procceedings of the 10th IEEE International
Enterprise Distributed Object Computing Conference Workshops (EDOCW 2006). Hong Kong, China, October 2006

Dranidis D., Kourtesis D., Ramollari E. “Formal Verification of Web Service Behavioural Conformance through Testing”. In

Proc. of the 3rd South-East European Workshop on Formal Methods, November 2007

Dranidis D., Ramollari E., Kourtesis D. “Run-time Verification of Behavioural Conformance for Conversational Web Services”.

European Conference on Web Services, Eindhoven, November 2009

Emeakaroha V.C., Calheiros R.N., Netto M.A.S., Brandic I. and De Rose C.A.F. “DeSVi: An Architecture for Detecting SLA

Violations in Cloud Computing Infrastructures” 2nd International ICST Conference on Cloud Computing, 2010.

Emeakaroha V.C., Ferreto T., Netto M.A.S., Brandic 1., De Rose C.A.F. “Casvid: Application Level Monitoring for SLA
Violation Detection in Clouds” In Proccedings of the 2012 IEEE 36th Annual Computer Software and Applications Conference
(COMPSAC 2012), pp. 499 — 508, 2012.

Emeakaroha V.C., Netto M.A.S., Calheiros R.N., Brandic I., Buyya R., De Rose C.A.F. “Towards autonomic detection of SLA
violations in Cloud infrastructures”. Future Generation Comp. Syst. 28(7), , pp. 1017-1029 2012.

ENISA, Security Certification Practice in the EU: Information Security Management Systems — A Case Study, v1, October 2013,

available from: https://www.enisa.europa.eu/
EuroCloud Deutschland eco e.V., “Requirements”. http://www.saas-audit.de/en/511/requirements/

European Network and Information Security Agency (ENISA), “Cloud Computing: Benefits, Risks and Recommendations for
Information Security”, (Eds) L. Dupre and T. Haeberlen, 2012. Available at: https://resilience.enisa.europa.eu/cloud-security-

and-resilience/publications/cloud-computing-benefits-risks-and-recommendations-for-information-security [retrieved 2013]

Fally B., Ahtes J. and Martensmeier T. “Approaching the cloud: Better business using Grid solutions, Twenty-five successful

case studies from BEinGRID”, BEinGRID Consortium, 2010.
Federal Information Security Management. https://www.dhs.gov/federal-information-security-management-act-fisma

FedRAMP Office, Guide to Understanding FedRAMP. Version 1.2, 22 April 2013, p. 51. Available from:
http://www.gsa.gov/portal/mediald/170599/fileName/Guide_to_Understanding_ FedRAMP_042213

Feng J., Chen Y. and Summerville D.H. “A Fair Multi-Party Non- Repudiation Scheme for Storage Clouds”, Int. Conf. on
Collaboration Technologies and Systems (CTS), pp. 457-465, May 2011.

Ferrer A. J., Hernandez F., Tordsson J., Elmroth E., Ali-Eldin A., Zsigri C., Sirvent R., Guitart J., Badia R.M., Djemame K.,
Ziegler W., Dimitrakos T., Nair S.K., Kousiouris G., Konstanteli K., Varvarigou T., Hudzia B., Kipp A., Wesner S., Corrales M.,
Forgd N., Sharif T., and Sheridan C. “OPTIMIS: A holistic approach to cloud service provisioning”, Future Generation
Computer Systems, 28(1), pp. 66-77, 2012.

278

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

[95] Foster H. and Spanoudakis G. "Advanced Service Monitoring Configurations with SLA Decomposition and Selection", In
Proceedings of the 26th ACM Symposium Applied Computing — Track on Service Oriented Architecture and Programming, , pp.
1582-1589, March 2011.

[96] Foster H. and Spanoudakis G. “Dynamic Creation of Monitoring Infrastructures”. In Service Level Agreements for Cloud

Computing. Vol. 3, Wieder, P.; Butler, J.M.; Theilmann, W.; Yahyapour, R. (Eds.), Springer, 2011.

[97] Foster H. and Spanoudakis G. “SMaRT: A Workbench for Reporting the Monitorability of Services from SLAs”, In Proccedings
of the 3rd International Workshop on Principles of Engineering of Service-Oriented Systems — in conjunction with the 33rd

ACM/IEEE International Conference on Software Engineering, pp.36-42, 2011.

[98] Frantzen L., Tretmans K. and De Vries E. “Towards model-based testing of web services”. In Proc. of the International

Workshop on Web Services - Modeling and Testing — WS-MaTe 2006. pp. 67-82. Palermo, Italy, June 2006.

[99] Fraunhofer Institute for Secure Information Technology SIT, Darmstadt. Simple Homomorphism Verification Tool —Manual,

2007.

[100] Gan Y., Chechik M., Nejati S., Bennett J., O'Farrell B. "Runtime monitoring of web service conversations", In Proceedings of

the 2007 conference of the center for advanced studies on Collaborative research, Richmond Hill, Ontario, Canada , 2007.
[101] Ganglia, 2011. http://ganglia.sourceforge.net/ [retrieved April 2012)

[102] Ghezzi C. and Guinea S. "Runtime Monitoring in Service Oriented Architectures", In Test and Analysis of Web Services, (Eds)
Baresi L. & di Nitto E., Springer, pp. 237-264, 2007.

[103] Gilani W. et al. “SLA-aware Service Management”, Deliverable DA3.a, M38, F7 SLA@SOI Project, 2011, available from:
http://sla-at-soi.eu/wp-content/uploads/2011/08/D.A3a-M38-SLA-aware-service-management.pdf [retrieved December 2011]

[104] Grabner A. "Challenges of Monitoring, Tracing and Profiling your Applications running in The Cloud", May 06, 2009, SYS-
CON Media, Inc.

[105] Grabner A. "Proof of Concept: dynaTrace provides Cloud Service Monitoring and Root Cause Analysis for GigaSpaces", May
06, 2009, SYS-CON Media, Inc.

[106] Gridipedia, 2011. SLA Monitoring and Evaluation Technology Solution http://www.gridipedia.eu/sla-monitoring-
evaluation.html (last accessed on 27/12/2011)

[107] Grobauer B., Walloschek T., Stocker E. “Understanding Cloud Computing Vulnerabilities”, IEEE Security & Privacy, 9(2), pp.
50-57,2011.

[108] Guergens S. and Rudolph C. “Security Analysis of (Un—) Fair Non-repudiation Protocols”. Formal aspects of computing, 2004.

[109] Guergens S., Ochsenschlaeger P., Rudolph C. “Role based specification and security analysis of cryptographic protocols using
asynchronous product automata”. In DEXA 2002 International Workshop on Trust and Privacy in Digital Business. IEEE, 2002.

[110] Guo, Z. “A Governance Model for Cloud Computing”, International Conference on Management and Service Science (MASS),

pp. 1-6, 2010.

279

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

[111] Gurgens S., Rudolph C. and Vogt H. “On the Security of Fair Non- Repudiation Protocols”, International Journal of Information
Security, 4(4), pp. 253- 262, 2005.

[112] Haeberlen A. “A case for the accountable cloud.”, SIGOPS Oper. Syst. Rev. 44(2): 52-57, April 2010.

[113] Halle S. and Villemaire R. "Runtime Monitoring of Message-Based Workflows with Data", In Procceding of the 12th
International IEEE Enterprise Distributed Object Computing Conference (EDOC ’08), 2008, pp. 63-72.

[114] Hall¢é S. and Villemaire R. "Runtime monitoring of web service choreographies using streaming XML", I n Proceedings of the

2009 ACM symposium on Applied Computing (SAC '09). ACM, New York, pp. 2118-2125, 2009.

[115] Hanna S. and Munro M. An approach for specification-based test case generation for web services. In: Proc. of the IEEE/ACS

International Conference on Computer Systems and Applications (AICCSA 2007). Amman, Jordan, May 2007

[116] Heckel R. and Lohmann M. “Towards contract-based testing of web services” In Proccedings of the International Workshop on

Test and Analysis of Component Based Systems(TACoS 2004). Barcelona, Spain, pp. 517-526, March 2004.
[117] Heiser J. and Nicolett M. “Assessing the Security Risks of Cloud Computing”, Gartner technical report, June 2008.
[118] Herrmann D.S. “Using the Common Criteria for IT security evaluation”. Auerbach Publications, 2002.

[119] Hua Z., Gong B. and Xu X. “A DS-AHP approach for multi-attribute decision making problem with incomplete information”.
Expert Systems with Applications, 34(3), pp. 2221-2227, 2008.

[120] Hudic A., Krotsiani M., Tauber M., Spanoudakis G., Loriinser T., Mauthe A. and Weippl E.R.R. “A Multi-Layer and Multi-
Tenant Cloud Assurance Evaluation Methodology”, In Proccedings of the 6th IEEE International Conference on Cloud

Computing Technology and Science (CloudCom 2014), Singapore, 2014.
[121] ICSA Labs. Testing Services. https://www.icsalabs.com/testing-services, 2011

[122] ISO/ IEC 27005:2007, Information Technology—Security Techniques—Information Security Risk Management, International

Organisation Standardization, 2007.

[123] Jahl C. “The information technology security evaluation criteria”. In Proccedings of the 13th International Conference on

Software Engineering, Austin, TX, USA, pp. 306 - 312, May 1991.
[124] Jank K. “Reference Architecture”. Adaptive Services Grid Deliverable D6.V-1, 2005.

[125] Jensen M., Schwenk J., Gruschka N. and Iacono L.L. “On Technical Security Issues in Cloud Computing”, In Proc. of the IEEE
International Conference on Cloud Computing, 2009, pp. 109-116.

[126] Jin S., Ahn J., Cha S., and Huh J. "Architectural Support for Secure Virtualization under a Vulnerable Hypervisor", In
Procceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-44), pp. 272-283,
December, 2011.

[127] Jokhio M., Dobbie G. and Sun J. “Towards specification based testing for semantic web services”. In Proc. of the 20th
Australian Software Engineering Conference (ASWEC 2009). Gold Coast, Australia, April 2009.

280

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

[128] Jurjens J. UMLsec: Extending UML for secure systems development. Lecture Notes in Computer Science, pages 412—425,
2002.

[129] Kamara S. and Lauter K. “Cryptographic cloud storage”, 14th International Conference on Financial cryptograpy and data

security, pp. 136-149, 2010.

[130] Kang S. et al. “Scalable and energy-efficient context monitoring framework for sensor-rich mobile environments”. In Proc. of
the 6th international conference on Mobile systems, applications, and services (MobiSys '08), ACM, New York, pp. 267-280,
2008.

[131] Katopodis S., Spanoudakis G., and Mahbub K. “Towards hybrid cloud service certification models”. InProceedings of the IEEE
International Conference on Services Computing (SCC), pp. 394-399, 2014.

[132] Katsikas S.K., Lopez J. and Pernul G., “Trust, Privacy and Security in E-business: Requirements and Solutions”, In Proceedings
of the 10th Panhellenic conference on Advances in Informatics (PCI'05), Bozanis, P. and Houstis, E.N. (Eds.), Springer-Verlag,
Berlin, Heidelberg, pp. 548-558, 2005.

[133] Kaufman L. “Data Security in the World of Cloud Computing”, IEEE Security and Privacy, 7 (4), pp. 61-64, 2009.

[134] Kearney K., Torreli F. and Kotsokalis C. “SLA*: An Abstract Syntax for Service Level Agreements”, In Proc. Of 10th
IEEE/ACM International Conference on Grid Computing, pp. 217-224, 2010.

[135] Keum C., Kang S., Ko 1.Y., Baik J., Choi Y.I. Generating test cases for web services using extended finite state machine. In:
Proc. of the 18th IFIP International Conference on Testing Communicating Systems (TestCom 2006). New York, NY, USA,
May 2006.

[136] Khan K.M. and Malluhi Q. "Establishing Trust in Cloud Computing," IT Professional , 12 (5), pp.20-27, Sept.-Oct. 2010.
[137] King T.M. and Ganti A.S. “Migrating autonomic self-testing to the cloud”. In Proceedings of ICSTW 2010, 2010.

[138] Kiran M., Jiang M., Armstrong D., Djemame K. “Towards a Service Lifecycle Based Methodology for Risk Assessment in
Cloud Computing”, In Proc. of the International Conference on Cloud and Green Computing (CGC'2011), December 2011.

[139] Kloti R., Kotronis V. and Smith P. “OpenFlow: A Security Analysis”. In 8th Workshop on Secure Network Protocols (NPSec
2013), Germany, October 2013.

[140] Kloukinas C., Spanoudakis G., and Mahbub K. “Estimating Event Lifetimes for Distributed Runtime Verification”, In

Proceedings of the 20th International Conference on Software Engineering and Knowledge Engineering, July 2008.

[141] Kramler G., Kapsammer E., Kappel G. and Retschitzegger W. “Towards using uml 2 for modeling web service collaboration
protocols”. In Proceedings of the first international conference on interoperability of enterprise software and applications

(INTEROP-ESAO0S5). Springer, 2005.

[142] Krautheim F.J. “Private virtual infrastructure for cloud computing”. In Proceedings of HotCloud 2009, San Diego, CA, USA,
20009.

281

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

[143] Krotsiani M. and Spanoudakis G. “Continuous Certification of Non-Repudiation in Cloud Storage Services”, In Proceedings of
the 4th IEEE International Symposium on Trust and Security in Cloud Computing (IEEE TSCloud 2014), Beijing, China,
September 2014.

[144] Krotsiani M., Spanoudakis G. and Kloukinas C. “Monitoring-Based Certification of Cloud Service Security”, In proceedings of
the On the Move to Meaningful Internet Systems: OTM 2015 Conferences, Vol. 9415 of the series Lecture Notes in Computer
Science, pp. 644-659, October 2015.

[145] Krotsiani M., Spanoudakis G., Mahbub K. “Incremental Certification of Cloud Services”. In Proc. of the Seventh International
Conference on Emerging Security Information, Systems and Technologies (SECURWARE 2013), Barcelona, pp. 72-80, 2013.

[146] Kwiatkowska M., Norman G. and Parker D. “PRISM 4.0: Verification of Probabilistic Real-time Systems”. In Proc. of the 23rd
International Conference on Computer Aided Verification (CAV’11), volume 6806 of LNCS, pp. 585-591, Springer, 2011.

[147] Kwiatkowska M., Norman G. and Parker D. “Probabilistic Model Checking: Part 2 — Descrete — Time Markov chains”
Available from: http://www.prismmodelchecker.org/lectures/biss07/02-dtmcs.pdf [retrieved March 2015]

[148] Kwiatkowska M., Norman G. and Parker D. “Probabilistic Symbolic Model Checking with {PRISM}: A Hybrid Approach”.
International Journal on Software Tools for Technology Transfer (STTT), 6(2), pp. 128-142, 2004.

[149] Lagazio M., Barnard-Wills D., Rodrigues R., Wright D. “Certification Schemes for Cloud Computing”, EU Commission Report,
Digital Agenta for Europe, 2014. Available from: https:/ec.europa.eu/digital-agenda/en/news/certification-schemes-cloud-

computing [retrieved 2015]

[150] Li H., Dai Y. and Yang B. "lIdentity-Based Cryptography for Cloud Security", IACR Cryptology ePrint Archive, pp.169-169,
2011.

[151] Li M., Zang W., Bai K., Yu M. and Liu P. “MyCloud: Supporting user-configured privacy protection in cloud computing”. In
Proceedings of ACSAC 2013, 2013.

[152] Likitalo V. “Remote Attestation and Peer-to-Peer Networks”. In Helsinki University of Technology Laboratory of Information
Processing Science. Available from: http://www.tml.tkk.fi/Publications/C/18/likitalo.pdf [retrieved 2013]

[153] Lipner S. “Twenty years of evaluation criteria and commercial technology”. In Proccedings of the 1999 IEEE Symposium on

Security and Privacy, Oakland, CA, USA, May 1999.

[154] Liu F., Tong J., Mao J., Bohn R., Messina J., Badger L., Leaf D. “NIST Cloud Computing Reference Architecture:
Recommendations of the National Institute of Standards and Technology (Special Publication 500-292). CreateSpace
Independent Publishing Platform, USA, 2012.

[155] Lodderstedt T., Basin D., Doser J. et al. “SecureUML: A UML-based modeling language for model—driven security”. Lecture
notes in computer science, pp. 426—441, 2002.

[156] Lombardi F. and Di Pietro R. “Secure virtualization for cloud computing”, J. Netw. Comput. Appl. 34 (4), pp. 1113-1122, July
2011.

282

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

[157] Lorenzoli D. and Spanoudakis G. “Predicting Software Service Availability: Towards a Runtime Monitoring Approach”, IEEE

9th International Conference on Web Services (Work-in-Progress track), July 2011

[158] Lorenzoli D., Spanoudakis G. “Runtime Prediction of Software Service Availability”, 2011 International Conference on

Software Engineering Research and Practice (SERP'11), July 18-21, pp. 239-245, 2011

[159] Ma W., Wu Q. and Tan Y. “A TPA Based Efficient Non-Repudiation Scheme for Cloud Storage”. In Proceedings of the Second
International Conference on Systems Engineering and Modeling (ICSEM -13), pp. 1630-1635, 2013.

[160] Mahbub K. and Spanoudakis G. "Monitoring WS-Agreements: An Event Calculus Based Approach" Springer monograph on
Test and Analysis of Web Services, (Eds) Baresi L. and Di Nitto E., Springer Verlang, pp. 265-306, 2007.

[161] Mahbub K. and Spanoudakis G. "A framework for Requirements Monitoring of Service Based Systems", 2nd International

Conference on Service Oriented Computing (ICSOC 2004), pp 84 — 93, November 2004.

[162] Mahbub K., Spanoudakis G. and Tsigkritis T. "Translation of SLAs into Monitoring Specifications", In Service Level
Agreements for Cloud Computing, R. Yahyapour, P. Weider (Eds), Springer-verlag, 2011.

[163] Mana A., Koshutanski H. and Pérez E.J., “A trust negotiation based security framework for service provisioning in load-

balancing clusters”. Computers & Security 31(1), pp. 4-25, 2012.

[164] Mao C. Towards a hierarchical testing and evaluation strategy for web services system. In: Proc. of the 7th ACIS International

Conference on Software Engineering Research, Management and Applications (SERA 2009). Haikou, China, December 2009.

[165] Markowitch O. and Roggeman Y. “Probabilistic Non-Repudiation without trusted third party”. In Proceedings of the Second

Conference on Security in Communication Networks, 1999.

[166] Masayuki O., Shiozaki T. and Suzuki T. "Security architecture for cloud computing." Fujitsu scientific and technical journal,

46(4), pp. 397-402, 2010.

[167] Massie M.L., Chun B.N. and Culler D.E. “The ganglia distributed monitoring system: design, implementation, and experience”,

Parallel Computing, vol. 30, 2004, pp. 817-840.

[168] Mayrhofer R., Radi H., Ferscha A. “Recognizing and Predicting Context by Learning from User Behavior”. Radiomatics:

Journal of Communication Engineering, special issue on Advances in Mobile Multimedia, 1(1), May 2004

[169] McAfee Cloud Service, Available from: http://www.mcafee.com/uk/resources/data-sheets/ds-cloud-secure-program.pdf

[retrieved 2014]
[170] McAfee MySQL AUDIT Plugin, Available From: https://github.com/mcafee/mysql-audit

[171] McAndrew T. “FISMA vs. FedRAMP: A Coalfire Perspective”, Dallas, April 2012. Available from:
http://www.coalfire.com/medialib/assets/PDFs/Perspectives/Coalfire-Perspective-FISMA-vs-FedRAMP .pdf

[172] Meinxner F. and Buettner R. “Trust as an Integral Part for Success of Cloud Computing”. Seventh International Conference on

Internet and Web Applications and Services (ICIW 2012), pp. 207 - 214, 2012.

283

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

[173] Mell P. and Grance T. “Effectively and Securely Using the Cloud Computing Paradigm (v.025)”, presentation, US National
Isntitute of Standards and Technology (NIST), 2009.

[174] Microsoft, The Economics of Cloud for the EU Public Sector, Paper, 2010, Avalibe from:
http://www.microsoft.eu/Portals/0/Document/EU_Public_Sector_Cloud_Economics_A4.pdf [retrieved: June, 2013].

[175] Molnar D. and Schechter S.E. “Self Hosting vs. Cloud Hosting: Accounting for the Security Impact of Hosting in the Cloud”. In
Workshop on the Economics of Information Security (WEIS)], Cambridge, MA, USA, June 2010.

[176] Morris T. “Trusted platform module. In Encyclopedia of Cryptography and Security”, (eds) H.C.A. van Tilborg and S. Jajodia,
Springer, 2011.

[177] Moser O., Rosenberg F. and Dustdar S. “Non-intrusive monitoring and service adaptation for WS-BPEL” In Proceedings of the
17th international conference on World Wide Web (WWW '08). ACM, New York, NY, USA, pp. 815-824, 2008.

[178] Munoz A. and Mana A. “Bridging the GAP between software certification and trusted computing for securing cloud

computing”. In Proceedings of the IEEE SERVICES 2013, June 2013.
[179] Nagios, 2011. http://www.nagios.org/ (last accessed on 11/10/2013)
[180] NIST 800-53 rev. 3, Available from: http://www.nist.org/nist_plugins/content/content.php?content.18

[181] Novikoff E. "The role of remote monitoring in Cloud Computing", http://www.enkiconsulting.net/blog/the-role-of-remote-

monitoring-in-cloud-computing.html. (accessed on 17/10/2013).
[182] Open Certification Framework, https://cloudsecurityalliance.org/research/oct/
[183] Ovum, http://www.computing.co.uk/ctg/news/2113323/ovum-public-cloud-services-market-explode

[184] Paquette S., Jaeger P.T., Wilson S.C. “Identifying the security risks associated with governmental use of cloud computing”,

Government Information Quarterly, 27(3), pp. 245-253, 2010.

[185] Parker D. “Implementation of Symbolic Model Checking for Probabilistic Systems”, 2002. Available from:
http://163.1.88.73/papers/davesthesis.pdf [retrieved March 2015]

[186] PCI Security Standards Council, PCI DSS Quick Reference Guide: Understanding the Payment Card Industry Data Security
Standard v2, https://www.pcisecuritystandards.org/documents/PCI%20SSC%20Quick%20Reference%20Guide.pdf [retrieved:
June, 2013]

[187] Pino L. and Spanoudakis G. “Constructing Secure Service Compositions with patterns” 2012 IEEE 8th World Congress on
Services, pp. 184-191, 2012.

[188] Pino L. and Spanoudakis G. “Finding Secure Compositions of Software Services: Towards A Pattern Based Approach”. In 5th
IFIP Int. Conf. on New Technologies, Mobility and Security — Track on Security, Istanbul, Turkey, May 2012.

[189] Pino L., Mahbub K. and Spanoudakis G. “Designing Secure Service Workflows in BPEL”. In Porceedings of the 12th
International Conference on Service Oriented Computing (ICSOC 2014), Paris, November 2014.

284

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

[190] Pino L., Spanoudakis G., Fuchs A., Gurgens S. “Discovering Secure Service Compositions”. In Proceedings of the 4th

International Conference on Cloud Computing and Services Sciences, Barcelona, Spain, April 2014.
[191] Prism Model Checker, http://www.prismmodelchecker.org/

[192] Rajendran T., Balasubramanie P., Cherian E. “An efficient WS-QoS broker based architecturefor web services selection”.

International Journal of Computer Applications 1(9), pp. 79-84, 2010.

[193] Ramgovind S., Eloff M.M., Smith E. “The Management of Security in Cloud Computing”, Information Security for South
Africa (ISSA), pp. 1-7, 2010.

[194] Ran S. “A model for web services discovery with QoS”. ACM SIGecom Exchanges 4, 1, 1-10, 2003.

[195] Ratha N.K., Connell J.H. and Bolle R.M. "Enhancing security and privacy in biometrics-based authentication systems." IBM
systems Journal 40(3), pp. 614-634, 2001.

[196] RUBIS Benchmark, Available Form: http://rubis.ow2.org/

[197] Rumbaugh J., Jacobson I. and Booch G. “Unified Modeling Language Reference Manual”. The Pearson Higher Education,
2004.

[198] Sabahi F. "Secure Virtualization for Cloud Environment Using Hypervisor-based Technology", International Journal of Machine

Learning and Computing, 2(1), pp. 39-45, February 2012.

[199] Salifu M. et al. Using Problem Descriptions to Represent Variability for Context-Aware Application. in 1st VaMoS 07. 2007.

Limerick, Ireland: Lero Technical Report.

[200] Salifu M., Nuseibeh Y.Y.B. “Specifying Monitoring and Switching Problems in Context”. In Proccedings of the 15th IEEE
International Requirements Engineering Conference (RE 07), pp. 211-220, 2007.

[201] Salva S. and Rabhi I. “Automatic web service robustness testing from wsdl descriptions”. In: Proccedings of the 12th European

Workshop on Dependable Computing (EWDC 2009). Toulouse, France, May 2009

[202] Sangroya A., Kumar S., Dhok J. and Varma V. “Towards Analysing Data Security Risks in Cloud Computing Environments”,
In Proceedings of the 4th International Conference of Information Systems, Technology and Management (ICISTM2010), pp.
255-265, Thailand, March 2010.

[203] Santos N., Rodrigues R., Gummadi K.P. and Saroiu S. “Policy-sealed data: A new abstraction for building trusted cloud
services”. In Proceedings of USENIX Security Symposium, 2012.

[204] Sarathy V., Narayan P. and Mikkilineni R. “Next generation Cloud Computing Architecture. Enabling real-time dynamism for
shared distributed physical infrastructure”, In Proceedings of the 19th IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises (WETICE '10), 2010.

[205] Saripalli P. and Walters B. “QUIRC: A Quantitative Impact and Risk Assessment Framework For Cloud Security”. In Proc. Of
the 3rd IEEE International Conference on Cloud Computing, IEEE, pp. 280 — 288, 2010.

285

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

[206] Schubert L. “The Future of Cloud Computing Opportunities for European Cloud Computing Beyond 20107, [online] Available
from: http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf (Last accessed on 07/07/2012).

[207] Securing Web services for army SOA, http://www.sei.cmu.edu/solutions/softwaredev/securing-web-services.cfm
[208] SERENITY Project. Serenity, system engineering for security & dependability. www.serenity—project.org, 2006.

[209] Serhani M., Dssouli R., Hafid A., Sahraoui H. “A QoS broker based architecture for efficient web services selection”. In Proc.

of the IEEE International Conference on Web Services (ICWS 2005). Orlando, FL, USA, July 2005.

[210] Shanahan M. “The event calculus explained”, In Artificial Intelligence Today [Ed] Wooldridge, M. J. and Veloso, M., Vol.
1600, LNCS, Springer, pp. 409-430, 1999.

[211] Shar L.K. and Kuan H. B. “Defending against Cross-Site Scripting Attacks”. Computer, 45(3), pp. 55-62, 2012

[212] Sheldon F.T., Weber J. M., Yoo S M. and Pan W.D. “The Insecurity of Wireless Networks”. IEEE Security & Privacy, 10(4),
pp. 54-61, 2012.

[213] Shi W., Lee J.H., Suh T., Woo D.H., Zhang X. “Architectural support of multiple hypervisors over single platform for
enhancing cloud computing security”. In Procceefings of the ninth Conference of Computing Frontiers (CF *12), pp.75-84, 2012.

[214] Simmonds J., Gan Y., Chechik M., Nejati S., O'Farrell B., Litani E., Waterhouse J. "Runtime Monitoring of Web Service
Conversations," IEEE Transactions on Services Computing. IEEE computer Society Digital Library. IEEE Computer Society,
pp. 223-244, 2009.

[215] Skogan D., Groenmo R., Solheim I., Inf S., Technol C., and Oslo N. “Web service composition in UML”. In Eighth IEEE
International Enterprise Distributed Object Computing Conference, 2004. EDOC 2004. Proceedings, pages 47-57, 2004.

[216] Spanoudakis G. and Mahbub K. “Non intrusive monitoring of service based systems”. Internatinal Journals of Cooperative

Information Systems, 15(3), pp. 325-358, 2006.

[217] Spanoudakis G., Damiani E. and Mana A. “Certifying services in cloud: The case for a hybrid, incremental and multi-layer

approach”. In Proceedings of the IEEE HASE 2012, October 2012.

[218] Spanoudakis G., Kloukinas C. and Mahbub K. “The SERENITY Runtime Monitoring Framework, In Security and
Dependability for Ambient Intelligence”, In Security and Dependability for Ambient Intelligence, (Eds) Spanoudakis G., Mana
A., Kokolakis S. “Advances in Information Security Series”, Springer, ISBN-978-0-387-88775-3, pp. 213-238, 2009.

[219] Spring, J., Monitoring Cloud Computing by Layer, Part 1, IEEE Security and Privacy 9(2), pp. 66-68, 2011.
[220] Spring, J., Monitoring Cloud Computing by Layer, Part 2, IEEE Security and Privacy, 9(3), pp. 52-55, 2011.

[221] Sugerman J., Venkitachalam G. and Lim B.H. "Virtualizing 1/O devices on VMware workstation’s hosted virtual machine

monitor." In Procceedings of the General Track: 2002 USENIX Annual Technical Conference, (Ed.) Y. Park, pp. 1-14, 2002.

[222] Szefer E.J., Keller E., Lee R.B., Rexford J. "Eliminating the Hypervisor Attack Surface for a More Secure Cloud", In
Procceedings of the 18th ACM Conference on Computer and Communications Security, pp. 401-412, 2011.

286

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

[223] Szefer J. and Lee R.B. "Architectural Support for Hypervisor-Secure Virtualization". In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages and Operating Systems, New York, pp. 437-450,

2012.

[224] Takabi H., Joshi J.B.D. and Ahn G.J. "Security and privacy challenges in cloud computing environments." IEEE Security &
Privacy 6(8), pp. 24-31, 2010.

[225] The 2011 Mid-Year Top Cyber Security Risks Report, Technical White Paper, HP Enterprise, 2011, [online] Available at:
http://www.hpenterprisesecurity.com/collateral/report/201 1 FullY earCyberSecurityRisksReport.pdf [retrieved June 2012]

[226] Truong H.L. and Fahringer T. “SCALEA-G: a Unified Monitoring and Performance Analysis System for the Grid,” Scientific
Programming, 12(4), pp. 225-237, November 2004, axGrids 2004 Special Issue.

[227] TrustCOM, 2007. The TrustCOM project. Deliverable 64: Final TrustCoM Reference implementation and associated tools and

user manual. June 2007 (v3.0).
[228] Truste, Available at http://www.truste.com/

[229] Trusted Computing Group: TCG Specifications. Available from: https://www.trustedcomputinggroup.org/specs/ [retrieved
2013]

[230] Tsai W., Paul R., Yamin W., Chun F., Dong W.L. “Extending WSDL to facilitate web services testing”. In Proc. of the 7th IEEE

International Symposium on High Assurance Systems Engineering. Tokyo, Japan, October 2002.

[231] Tsigritis T., Spanoudakis G. “Diagnosing Runtime Violations of Security & Dependability Properties”, In Proccedings of the
20th International Conference on Software Engineering and Knowledge Engineering (SEKE), pp. 661-666, July 2008.

[232] Tsigritis T., Spanoudakis G., Kloukinas C., Lorenzoli D. “Diagnosis and Threat detection capabilities of the SERENITY
Runtime Framework”, In Security and Dependability for Ambient Intelligence, (eds) G. Spanoudakis, A. Mana, Kokolakis,
Advances in Information Security Series, Springer, pp 239-272, 2009.

[233] Vaclav M.J. "Biometric authentication systems", 2000. [online] available from: http://www.fi.muni.cz/reports/files/older/FIMU-
RS-2000-08.pdf [retrieved August 2015].

[234] Yeo C.S., Buyya R., Integrated Risk Analysis for a Commercial Computing Service, Journal of Grid Computing, 7(1), pp. 1-24,
20009.

[235] Zech P. “Risk-based security testing in cloud computing environments”. In Proceedings of IEEE ICST 2011, 2011.

[236] Zhou J. and Gollmann D. “A Fair Non-Repudiation Protocol” In Proceedings of the IEEE Symposium on Security and Privacy,
pp. 55-61, 1996.

[237] Zhou J. and Gollmann D. “An Efficient Non-Repudiation Protocol”, In Proceedings of the 10th Computer Security Foundations
Workshop, pp. 126-132, 1997.

287

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

GLOSSARY

Anomaly

Assertion

Asset
Assurance

Attack

Certificate

Certification

Certification Model (CM)

Conflict

Life Cycle

Risk

Part of the certification model, used to analyse the behaviour of
different external actors that interact with ToC that may lead to

potential future attacks.

The formal specification of a security property that is expressed in a

way to allow its automated assessment.
Information, resources or applications that need to be secured.
A positive declaration that aims to provide confidence to users.

An attempt by malicious users to damage or destroy a system or a

network.

The outcome of the certification process, which states the cloud
providers’ compliance, according to an assessment defined in a

certification model.

A process that allows users to formulate a trusted judgment for cloud
providers, according to their compliance with certain policies or

standards.

An XML based model that defines the way to process the certification

of a service for a specific security property.

Defines an assessment of the security property for a sub period of the
time specified in the certification model, which gives a different result
from the assessment of the same property according to the assertion

specified in the model.

A state machine diagram, used to define all possible states a certificate

can take during its life

The probability of occurrence of an unwanted event and its negative

consequences for the stakeholders.

288

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Security Mechanism A security mechanism is a method, tool, or procedure for enforcing

security in a system. Also knows as countermeasures.

Security Property The security requirement imposed on a cloud service, derived from
applicable laws, policies, standards or regulations, that need to be
addressed and its measurements (e.g. sample size, period), in order to

obtain the necessary security level.

Security Requirements The functional and non-functional requirements that need to be satisfied

in order to achieve a defined security level of a cloud service.

Target of certification An asset of a cloud service (e.g. a specific service operation, a set of
(ToC) service operations, data managed by the service) or an asset that is
required or contributes to the realization of a cloud service (e.g., a

virtual machine), which becomes the subject of certification.

Threat Any possible event that can have a harmful impact to organizational
operations, organizational assets, or individuals, through an information
system via unauthorized access, destruction, disclosure, modification of

information, or denial of service.

289

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

APPENDIX A: CERTIFICATION MODEL FOR NR

The CM for the NR security property is presented below, as presented in Section 5.2.

<?xml version="1.0" encoding="UTF-8"?>
<p:CertificationModel xmlns:p="http://www.cumulus.org/certificate/model"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
"http://www.cumulus.org/certificate/model
file:/Users/Maria_K/Dropbox/Deliverables/schemas/CertificationModel_XMLSchema_v8.xsd">
<Model Id>cm:id:nomitoring:0001</Model Id>
<Signature>
<Name>City</Name>
<Role>CA</Role>
</Signature>
<TOC "idiee1">
<providesInterface>
<ID>001</ID>
<ProviderRef>provider@01</ProviderRef>
<Interface>
<InterfaceSpec>
<Name>cloudinterface</Name>
<Operation>
<interfacelId>c</interfaceld>
<OperationId>id@001</OperationId>
<operationName>rqsac</operationName>
<inputVariable "false" "true">
<varName>data</varName>
<varType>url</varType>
</inputVariable>
<inputVariable "false" "true">
<varName>t</varName>
<varType>url</varType>
</inputVariable>
</Operation>
<Operation>
<interfacelId>c</interfaceld>
<OperationId>id@002</OperationId>
<operationName>rqsbc</operationName>
<inputVariable "false" "true">
<varName>data</varName>
<varType>url</varType>
</inputVariable>
</Operation>
<Operation>
<interfaceId>c</interfaceld>
<OperationId>id@003</OperationId>
<operationName>rqstc</operationName>
<inputVariable "false" "true">
<varName>data</varName>
<varType>url</varType>
</inputVariable>
</Operation>
</InterfaceSpec>

290

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</Interface>
</providesInterface>
</TOC>
<SecurityProperty "0001"
"AIS:non-repudiation:non-repudiation-of-origin"
"CSA" "AIS:non-repudiation:non-repudiation-of-origin">
<sProperty "http://www.cumulus-project.eu">

<propertyPerformance>
<propertyPerformanceRow>
<propertyPerformanceCell "verified">true </propertyPerformanceCell>
</propertyPerformanceRow>
</propertyPerformance>
</sProperty>
<Assertion "AS@01">
<InterfaceDeclr>
<ID>001</ID>
<ProviderRef>provider@01</ProviderRef>
<Interface>
<InterfaceSpec>
<Name>cloudinterface</Name>
<Operation>
<interfaceld>c</interfaceld>
<OperationId>id@004</OperationId>
<operationName>rqgsac</operationName>
<inputVariable "false" "true">
<varName>data</varName>
<varType>url</varType>
</inputVariable>
<inputVariable>
<varName>seq</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "false" "true">
<varName>t</varName>
<varType>url</varType>
</inputVariable>
</Operation>
<Operation>
<interfaceld>c</interfaceld>
<OperationId>id@@05</OperationId>
<operationName>rqsbc</operationName>
<inputVariable "false" "true">
<varName>data</varName>
<varType>url</varType>
</inputVariable>
<inputVariable>
<varName>seq</varName>
<varType>string</varType>
</inputVariable>
</Operation>
<Operation>
<interfaceld>c</interfaceld>
<OperationId>id@@0@7</OperationId>
<operationName>rqstc</operationName>
<inputVariable "false" "true">
<varName>data</varName>

2901

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varType>url</varType>
</inputVariable>
<inputVariable>
<varName>seq</varName>
<varType>string</varType>
</inputVariable>
</Operation>
</InterfaceSpec>
</Interface>
</InterfaceDeclr>
<VariableDeclr>
<varName>seqrqg</varName>
<varType>string</varType>
</VariableDeclr>
<VariableDeclr>
<varName>seqrs</varName>
<varType>string</varType>

</VariableDeclr>
<Guaranteed "gt1l" "Future_Formula">
<quantification>
<quantifier>forall</quantifier>
<timeVariable>

<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<quantification>
<quantifier>existential</quantifier>
<timeVariable>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<precondition>
<atomicCondition "gtl-acl">
<eventCondition "true">
<event>
<eventID "true" "false">
<varName>VIDO</varName>
</eventID>
<call>
<interfaceId>CP</interfaceIld>
<OperationId>1</OperationId>
<operationName>upload</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>
<varType>OpStatus</varType>
<value>REQ-B</value>
</inputVariable>
<inputVariable "true" "false">
<varName>senderil</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>

292

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</inputVariable>
</call>
<tVar>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
</eventCondition>
</atomicCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>
<atomicCondition "gtl-ac2">
<stateCondition>
<holdsAt "false">
<state "ResUpReq" >
<argument>
<variable "false" "true">
<varName>seqgrqg</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>seqgrs</varName>
<varType>int</varType>
</variable>
</argument>
</state>
<timeVar>

293

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</holdsAt>
</stateCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
</precondition>
<postcondition>
<atomicCondition "gtl-ac3">
<eventCondition "true">
<event>
<eventID "true" "false">
<varName>VID1</varName>
</eventID>
<reply>
<interfaceId>CP</interfaceld>
<OperationId>2</OperationId>
<operationName>upload</operationName>
<outputVariable "true" "false">
<varName>status2</varName>
<varType>OpStatus</varType>
<value>RES-B</value>
</outputVariable>
<outputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>senderil</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrs</varName>
<varType>int</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</outputVariable>
</reply>
<tvVar>
<timeVar>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>

294

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
<Expression>
<plus>100</plus>
</Expression>
</toTime>
</event>
</eventCondition>
</atomicCondition>
</postcondition>
</Guaranteed>
<Guaranteed "gt2" "Future_Formula">
<quantification>
<quantifier>forall</quantifier>
<timeVariable>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<quantification>
<quantifier>existential</quantifier>
<timeVariable>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<precondition>
<atomicCondition "gt2-acl">
<eventCondition "true">
<event>
<eventID "true" "false">
<varName>VID@</varName>
</eventID>
<call>
<interfaceId>CP</interfaceld>
<OperationId>1</OperationId>
<operationName>upload</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>
<varType>OpStatus</varType>
<value>REQ-B</value>
</inputVariable>
<inputVariable "true" "false">
<varName>senderil</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">

295

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varName>receiverl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</inputVariable>
</call>
<tVar>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
</eventCondition>
</atomicCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>
<atomicCondition "gt2-ac2">
<stateCondition>
<holdsAt "false">
<state "ResUpReq" >
<argument>
<variable "false" "true">
<varName>seqgrqg</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>seqgrs</varName>
<varType>int</varType>
</variable>
</argument>

296

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</state>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</holdsAt>
</stateCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>
<atomicCondition "gt2-ac3">
<eventCondition "false">
<event>
<eventID "true" "false">
<varName>VID1</varName>
</eventID>
<reply>
<interfaceId>CP</interfaceld>
<OperationId>2</OperationId>
<operationName>upload</operationName>
<outputVariable "true" "false">
<varName>status2</varName>
<varType>OpStatus</varType>
<value>RES-B</value>
</outputVariable>
<outputVariable "true" "false">
<varName>receiveril</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>senderl</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrs</varName>
<varType>int</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</outputVariable>
</reply>
<tVar>
<timeVar>
<varName>t2</varName>

297

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
<Expression>
<plus>100</plus>
</Expression>
</toTime>
</event>
</eventCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
</precondition>
<postcondition>
<atomicCondition "gt2-ac4">
<stateCondition>
<initiates>
<event>
<eventID "true" "false">
<varName>VID1</varName>
</eventID>
<reply>
<interfaceId>CP</interfaceld>
<OperationId>2</OperationId>
<operationName>upload</operationName>
<outputVariable "true" "false">
<varName>status2</varName>
<varType>OpStatus</varType>
<value>RES-B</value>
</outputVariable>
<outputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>senderl</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>

298

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</outputVariable>
<outputVariable "true" "false">
<varName>seqrs</varName>
<varType>int</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</outputVariable>
</reply>
<tVar>
<timeVar>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
<Expression>
<plus>100</plus>
</Expression>
</toTime>
</event>
<state "ResUpReq" >
<argument>
<variable "false" "true">
<varName>seqrq</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>seqrs</varName>
<varType>int</varType>
</variable>
</argument>
</state>
<timeVar>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVar>
</initiates>
</stateCondition>
</atomicCondition>
</postcondition>
</Guaranteed>
<Guaranteed "gt3" "Future_Formula">

299

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<quantification>
<quantifier>forall</quantifier>
<timeVariable>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<quantification>
<quantifier>existential</quantifier>
<timeVariable>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<precondition>
<atomicCondition "gt3-acl">
<eventCondition "true">
<event>
<eventID "true" "false">
<varName>VIDO</varName>
</eventID>
<call>
<interfaceId>CP</interfaceId>
<OperationId>1</OperationId>
<operationName>download</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>
<varType>OpStatus</varType>
<value>REQ-B</value>
</inputVariable>
<inputVariable "true" "false">
<varName>senderil</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</inputVariable>
</call>
<tvVar>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>

300

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
</eventCondition>
</atomicCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>
<atomicCondition "gt3-ac2">
<stateCondition>
<holdsAt "false">
<state "ResDownReq" >
<argument>
<variable "false" "true">
<varName>seqgrqg</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>seqgrs</varName>
<varType>int</varType>
</variable>
</argument>
</state>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</holdsAt>
</stateCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
</precondition>
<postcondition>
<atomicCondition "gt3-ac3">
<eventCondition "true">
<event>
<eventID "true" "false">
<varName>VID1</varName>
</eventID>
<reply>
<interfaceId>CP</interfaceld>
<OperationId>2</OperationId>

301

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<operationName>download</operationName>
<outputVariable "true" "false">
<varName>status2</varName>
<varType>OpStatus</varType>
<value>RES-B</value>
</outputVariable>
<outputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>senderil</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrs</varName>
<varType>int</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</outputVariable>
</reply>
<tvVar>
<timeVar>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>tl1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>tl1</varName>
<varType>TimeVariable</varType>
</time>
<Expression>
<plus>100</plus>
</Expression>
</toTime>
</event>
</eventCondition>
</atomicCondition>
</postcondition>

302

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</Guaranteed>
<Guaranteed "gt4" "Future_Formula">
<quantification>
<quantifier>forall</quantifier>
<timeVariable>

<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<quantification>
<quantifier>existential</quantifier>
<timeVariable>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<precondition>
<atomicCondition "gtd-acl">
<eventCondition "true">
<event>
<eventID "true" "false">
<varName>VIDO</varName>
</eventID>
<call>
<interfaceId>CP</interfaceIld>
<OperationId>1</OperationId>
<operationName>download</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>
<varType>OpStatus</varType>
<value>REQ-B</value>
</inputVariable>
<inputVariable "true" "false">
<varName>senderil</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</inputVariable>
</call>
<tvVar>
<timeVar>
<varName>t1</varName>

303

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
</eventCondition>
</atomicCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>
<atomicCondition "gt4-ac2">
<stateCondition>
<holdsAt "false">
<state "ResDownReq" >
<argument>
<variable "false" "true">
<varName>seqgrqg</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>seqgrs</varName>
<varType>int</varType>
</variable>
</argument>
</state>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</holdsAt>
</stateCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>

<atomicCondition "gt4-ac3">
<eventCondition "false">
<event>
<eventID "true" "false">
<varName>VID1</varName>
</eventID>

304

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<reply>
<interfaceId>CP</interfaceld>
<OperationId>2</OperationId>
<operationName>download</operationName>
<outputVariable "true" "false">
<varName>status2</varName>
<varType>OpStatus</varType>
<value>RES-B</value>
</outputVariable>
<outputVariable "true" "false">
<varName>receiveril</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>senderil</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrs</varName>
<varType>int</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</outputVariable>
</reply>
<tVar>
<timeVar>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
<Expression>
<plus>100</plus>
</Expression>
</toTime>
</event>

305

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</eventCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
</precondition>
<postcondition>
<atomicCondition "gtd4-ac4">
<stateCondition>
<initiates>
<event>
<eventID "true" "false">
<varName>VID1</varName>
</eventID>
<reply>
<interfaceId>CP</interfaceld>
<OperationId>2</OperationId>
<operationName>download</operationName>
<outputVariable "true" "false">
<varName>status2</varName>
<varType>OpStatus</varType>
<value>RES-B</value>
</outputVariable>
<outputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>senderl</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrs</varName>
<varType>int</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</outputVariable>
</reply>
<tVar>
<timeVar>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>

306

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
<Expression>
<plus>100</plus>
</Expression>
</toTime>
</event>
<state "ResDownReq" >
<argument>
<variable "false" "true">
<varName>seqrq</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>seqrs</varName>
<varType>int</varType>
</variable>
</argument>
</state>
<timeVar>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVar>
</initiates>
</stateCondition>
</atomicCondition>
</postcondition>
</Guaranteed>
<Guaranteed "gt5" "Future_Formula">
<quantification>
<quantifier>forall</quantifier>
<timeVariable>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<quantification>
<quantifier>existential</quantifier>
<timeVariable>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<precondition>
<atomicCondition "gt5-acl">
<eventCondition "true">
<event>
<eventID "true" "false">

307

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varName>VIDO</varName>
</eventID>
<call>
<interfaceId>CP</interfaceId>
<OperationId>1</OperationId>
<operationName>resolution</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>
<varType>OpStatus</varType>
<value>REQ-B</value>
</inputVariable>
<inputVariable "true" "false">
<varName>senderil</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</inputVariable>
</call>
<tVar>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
</eventCondition>
</atomicCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>

308

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<atomicCondition "gt5-ac2">
<stateCondition>
<holdsAt "false">
<state "ResResReq">
<argument>
<variable "false" "true">
<varName>seqgrqg</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>seqgrs</varName>
<varType>int</varType>
</variable>
</argument>
</state>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</holdsAt>
</stateCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
</precondition>
<postcondition>
<atomicCondition "gt5-ac3">
<eventCondition "true">
<event>
<eventID "true" "false">
<varName>VID1</varName>
</eventID>
<reply>
<interfaceId>CP</interfaceld>
<OperationId>2</OperationId>
<operationName>resolution</operationName>
<outputVariable "true" "false">
<varName>status2</varName>
<varType>OpStatus</varType>
<value>RES-B</value>
</outputVariable>
<outputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>senderil</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">

309

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varName>serviceId</varName>
<varType>string</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrs</varName>
<varType>int</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</outputVariable>
</reply>
<tvar>
<timeVar>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>tl1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>tl1</varName>
<varType>TimeVariable</varType>
</time>
<Expression>
<plus>100</plus>
</Expression>
</toTime>
</event>
</eventCondition>
</atomicCondition>
</postcondition>
</Guaranteed>
<Guaranteed "gte" "Future_Formula">
<quantification>
<quantifier>forall</quantifier>
<timeVariable>
<varName>tl1</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<quantification>
<quantifier>existential</quantifier>
<timeVariable>
<varName>t2</varName>
<varType>TimeVariable</varType>

</timeVariable>
</quantification>
<precondition>
<atomicCondition "gt6-acl">
<eventCondition "true">

310

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<event>
<eventID "true" "false">
<varName>VIDO</varName>
</eventID>
<call>

<interfaceId>CP</interfaceld>
<OperationId>1</OperationId>
<operationName>resolution</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>
<varType>OpStatus</varType>
<value>REQ-B</value>
</inputVariable>
<inputVariable "true" "false">
<varName>senderil</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</inputVariable>
</call>
<tVar>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
</eventCondition>
</atomicCondition>
<WrappedCondition>

311

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<operator>and</operator>
<assertionCondition>
<atomicCondition "gt6-ac2">
<stateCondition>
<holdsAt "false">
<state "ResResReq">
<argument>
<variable "false" "true">
<varName>seqgrqg</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>seqgrs</varName>
<varType>int</varType>
</variable>
</argument>
</state>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</holdsAt>
</stateCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>
<atomicCondition "gt6-ac3">
<eventCondition "false">
<event>
<eventID "true" "false">
<varName>VID1</varName>
</eventID>
<reply>
<interfaceId>CP</interfaceld>
<OperationId>2</OperationId>
<operationName>resolution</operationName>
<outputVariable "true" "false">
<varName>status2</varName>
<varType>OpStatus</varType>
<value>RES-B</value>
</outputVariable>
<outputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>senderl</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>sourcel</varName>

312

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrs</varName>
<varType>int</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</outputVariable>
</reply>
<tVar>
<timeVar>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
<Expression>
<plus>100</plus>
</Expression>
</toTime>
</event>
</eventCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
</precondition>
<postcondition>
<atomicCondition "gt6-ac4">
<stateCondition>
<initiates>
<event>
<eventID "true" "false">
<varName>VID@</varName>
</eventID>
<reply>
<interfaceId>CP</interfaceld>
<OperationId>2</OperationId>
<operationName>resolution</operationName>
<outputVariable "true" "false">
<varName>status2</varName>

313

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varType>OpStatus</varType>
<value>RES-B</value>
</outputVariable>
<outputVariable "true" "false">
<varName>receiveril</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>senderil</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrs</varName>
<varType>int</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</outputVariable>
</reply>
<tVar>
<timeVar>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
<Expression>
<plus>100</plus>
</Expression>
</toTime>
</event>
<state "ResResReq">
<argument>
<variable "false" "true">
<varName>seqrq</varName>
<varType>int</varType>
</variable>

314

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</argument>
<argument>
<variable "true" "false">
<varName>seqrs</varName>
<varType>int</varType>
</variable>
</argument>
</state>
<timeVar>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVar>
</initiates>
</stateCondition>
</atomicCondition>
</postcondition>
</Guaranteed>
</Assertion>
</SecurityProperty>
<AssessmentScheme>
<EvidenceSufficiencyCondition "1011">
<MonitoringPeriodCondition "3 "days"/>
<ExpectedSystemOperationModel>
<InitialState "s1" "statel"/>
<states>
<state>
<atomicState "s2" "state2"/>
</state>
<state>
<atomicState "s3" "state3"/>
</state>
<state>
<atomicState "s4" "stated"/>
</state>
</states>
<transitions>
<transition "t "s1" "s2" "9.1" "9.5">
<CallEvent>
<invocation>
<execute>
<interfaceId>CP</interfaceld>
<OperationId>1</OperationId>
<operationName>upload</operationName>
<inputVariable "true" "false">
<varName>sender</varName>
<varType>String</varType>
<value>DP</value>
</inputVariable>
<inputVariable "true" "false">
<varName>receiver</varName>
<varType>String</varType>
<value>CP</value>
</inputVariable>
</execute>
</invocation>
</CallEvent>

315

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</transition>
<transition "t2" "s2
<ReplyEvent>
<invocation>
<execute>
<interfaceId>CP</interfaceId>
<OperationId>1</OperationId>
<operationName>upload</operationName>
<outputVariable "true"
<varName>receiver</varName>
<varType>String</varType>
<value>CP</value>
</outputVariable>
<outputVariable "true"
<varName>sender</varName>
<varType>String</varType>
<value>DP</value>
</outputVariable>
</execute>
</invocation>
</ReplyEvent>
</transition>
<transition "t3" "s1" "s3" "0.0"
<CallEvent>
<invocation>
<execute>
<interfaceId>CP</interfaceIld>
<OperationId>2</OperationId>
<operationName>download</operationName>
<inputVariable "true"
<varName>sender</varName>
<varType>String</varType>
<value>DC</value>
</inputVariable>
<inputVariable "true"
<varName>receiver</varName>
<varType>String</varType>
<value>CP</value>
</inputVariable>
</execute>
</invocation>
</CallEvent>
</transition>
<transition "t4" "s3" "s1" "
<ReplyEvent>
<invocation>
<execute>
<interfaceId>CP</interfaceld>
<OperationId>2</OperationId>
<operationName>download</operationName>
<outputVariable "true"
<varName>receiver</varName>
<varType>String</varType>
<value>CP</value>
</outputVariable>
<outputVariable "true"

316

mqrs

"false">

"false">

"9.2">

"false">

"false">

mqrs

"false">

"false">

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varName>sender</varName>
<varType>String</varType>
<value>DC</value>
</outputVariable>
</execute>
</invocation>
</ReplyEvent>
</transition>
<transition "t5" "s1" "s4" "9.5" "1t
<CallEvent>
<invocation>
<execute>
<interfaceId>CP</interfaceIld>
<OperationId>3</OperationId>
<operationName>resolution</operationName>
<inputVariable "true" "false">
<varName>sender</varName>
<varType>String</varType>
<value>TTP</value>
</inputVariable>
<inputVariable "true" "false">
<varName>receiver</varName>
<varType>String</varType>
<value>CP</value>
</inputVariable>
</execute>
</invocation>
</CallEvent>
</transition>
<transition "te" "s4" "s1" " "1t
<ReplyEvent>
<invocation>
<execute>
<interfaceId>CP</interfaceId>
<OperationId>3</OperationId>
<operationName>resolution</operationName>
<outputVariable "true" "false">
<varName>receiver</varName>
<varType>String</varType>
<value>CP</value>
</outputVariable>
<outputVariable "true" "false">
<varName>sender</varName>
<varType>String</varType>
<value>TTP</value>
</outputVariable>
</execute>
</invocation>
</ReplyEvent>
</transition>
</transitions>
</ExpectedSystemOperationModel>
</EvidenceSufficiencyCondition>
<ExpirationCondition "987">
<elapsedPeriod " "years"/>
</ExpirationCondition>

317

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<Anomalies>
<Assertion "AS002" >
<InterfaceDeclr>
<ID>001</ID>
<ProviderRef>provider@01</ProviderRef>
<Interface>
<InterfaceSpec>
<Name>cloudinterface</Name>
<Operation>
<interfaceld>c</interfaceld>
<OperationId>id@004</OperationId>
<operationName>rqgsac</operationName>
<inputVariable "false" "true">
<varName>data</varName>
<varType>url</varType>
</inputVariable>
<inputVariable>
<varName>seq</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "false" "true">
<varName>t</varName>
<varType>url</varType>
</inputVariable>
</Operation>
<Operation>
<interfaceld>c</interfaceld>
<OperationId>id@@05</OperationId>
<operationName>rqsbc</operationName>
<inputVariable "false" "true">
<varName>data</varName>
<varType>url</varType>
</inputVariable>
<inputVariable>
<varName>seq</varName>
<varType>string</varType>
</inputVariable>
</Operation>
<Operation>
<interfaceld>c</interfaceld>
<OperationId>id@00@7</OperationId>
<operationName>rqstc</operationName>
<inputVariable "false" "true">
<varName>data</varName>
<varType>url</varType>
</inputVariable>
<inputVariable>
<varName>seq</varName>
<varType>string</varType>
</inputVariable>
</Operation>
</InterfaceSpec>
</Interface>
</InterfaceDeclr>
<Guaranteed "gt7" "Future_Formula">
<quantification>

318

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<quantifier>forall</quantifier>
<regularVariable>
<varName>systime</varName>
<varType>TimeVariable</varType>
</regularVariable>
</quantification>
<postcondition>
<atomicCondition "gt7-acl">
<stateCondition>
<initially>
<state "RepeatedUpReq" >
<argument>
<variable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>N</varName>
<varType>int</varType>
<value>@</value>
</variable>
</argument>
</state>
<timeVar>
<varName>systime</varName>
<varType>TimeVariable</varType>
</timeVar>
</initially>
</stateCondition>
</atomicCondition>
</postcondition>
</Guaranteed>
<Guaranteed "gt8" "Future_Formula">
<quantification>
<quantifier>forall</quantifier>
<timeVariable>
<varName>tl1</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<precondition>
<atomicCondition "gt8-acl">
<eventCondition "true">
<event>
<eventID "true" "false">
<varName>VIDO</varName>
</eventID>
<call>
<interfaceId>CP</interfaceId>
<OperationId>1</OperationId>
<operationName>upload</operationName>
<inputVariable "true" "false">
<varName>statusil</varName>
<varType>OpStatus</varType>

319

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<value>REQ-B</value>
</inputVariable>
<inputVariable "true" "false">
<varName>senderil</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</inputVariable>
</call>
<tVar>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
</eventCondition>
</atomicCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>
<atomicCondition "gt8-ac2">
<stateCondition>
<holdsAt "true">
<state "ResUpReq" >
<argument>
<variable "false" "true">
<varName>seqgrqg</varName>
<varType>int</varType>
</variable>

320

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</argument>
<argument>
<variable "true" "false">
<varName>seqgrs</varName>
<varType>int</varType>
</variable>
</argument>
</state>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</holdsAt>
</stateCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
</precondition>
<postcondition>
<atomicCondition "gt8-ac3">
<stateCondition>
<terminates>
<event>
<eventID "true" "false">
<varName>VID@</varName>
</eventID>
<call>
<interfaceId>CP</interfaceld>
<OperationId>1</OperationId>
<operationName>upload</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>
<varType>OpStatus</varType>
<value>REQ-B</value>
</inputVariable>
<inputVariable "true" "false">
<varName>senderl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</inputVariable>
</call>

321

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<tvVar>
<timeVar>
<varName>t1l</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1l</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1l</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
<state "RepeatedUpReq" >
<argument>
<variable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>N</varName>
<varType>int</varType>
</variable>
</argument>
</state>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</terminates>
</stateCondition>
</atomicCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>
<atomicCondition "gt8-ac4">
<stateCondition>
<initiates>
<event>
<eventID "true" "false">
<varName>VIDO</varName>
</eventID>
<call>
<interfaceld>CP</interfaceld>
<OperationId>1</OperationId>
<operationName>upload</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>

322

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varType>OpStatus</varType>
<value>REQ-B</value>
</inputVariable>
<inputVariable "true"
<varName>senderil</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true"
<varName>receiveril</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true"
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true"
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true"
<varName>seqgrq</varName>
<varType>int</varType>
</inputVariable>
</call>
<tVar>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
<state "RepeatedUpReq" >
<argument>
<variable "true"
<varName>seqgrqg</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<operationCall>
<name>add</name>
<partner>self</partner>
<variable "true"
<varName>N</varName>

323

"false">

"false">

"false">

"false">

"false">

"false">

"false">

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varType>int</varType>
</variable>
<constant>
<name>Counter</name>
<value>1</value>
</constant>
</operationCall>
</argument>
</state>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</initiates>
</stateCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
</postcondition>
</Guaranteed>
<Guaranteed "gto" "Future_Formula">
<quantification>
<quantifier>forall</quantifier>
<regularVariable>
<varName>systime</varName>
<varType>TimeVariable</varType>
</regularVariable>
</quantification>
<postcondition>
<atomicCondition "gt9-acl">
<stateCondition>
<initially>
<state "RepeatedDownReq" >
<argument>
<variable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>N</varName>
<varType>int</varType>
<value>@</value>
</variable>
</argument>
</state>
<timeVar>
<varName>systime</varName>
<varType>TimeVariable</varType>
</timeVar>
</initially>
</stateCondition>
</atomicCondition>
</postcondition>
</Guaranteed>

324

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<Guaranteed "gtie" "Future_Formula">
<quantification>
<quantifier>forall</quantifier>
<timeVariable>

<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<precondition>
<atomicCondition "gtloe-acl">
<eventCondition "true">
<event>
<eventID "true" "false">
<varName>VIDO</varName>
</eventID>
<call>
<interfaceId>CP</interfaceId>
<OperationId>1</OperationId>
<operationName>download</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>
<varType>OpStatus</varType>
<value>REQ-B</value>
</inputVariable>
<inputVariable "true" "false">
<varName>senderil</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</inputVariable>
</call>
<tVar>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>

325

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
</eventCondition>
</atomicCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>
<atomicCondition "gtl0-ac2">
<stateCondition>
<holdsAt "true">
<state "ResDownReq" >
<argument>
<variable "false" "true">
<varName>seqgrq</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>seqgrs</varName>
<varType>int</varType>
</variable>
</argument>
</state>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</holdsAt>
</stateCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
</precondition>
<postcondition>
<atomicCondition "gtle-ac3">
<stateCondition>
<terminates>
<event>
<eventID "true" "false">
<varName>VID@</varName>
</eventID>
<call>
<interfaceId>CP</interfaceld>
<OperationId>1</OperationId>
<operationName>download</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>
<varType>OpStatus</varType>
<value>REQ-B</value>

326

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</inputVariable>
<inputVariable "true" "false">
<varName>senderl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</inputVariable>
</call>
<tVar>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
<state "RepeatedDownReq" >
<argument>
<variable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>N</varName>
<varType>int</varType>
</variable>
</argument>
</state>
<timeVar>

327

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</terminates>
</stateCondition>
</atomicCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>
<atomicCondition "gtl0-ac4">
<stateCondition>
<initiates>
<event>
<eventID "true" "false">
<varName>VIDO</varName>
</eventID>
<call>
<interfaceId>CP</interfaceld>
<OperationId>1</OperationId>
<operationName>download</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>
<varType>OpStatus</varType>
<value>REQ-B</value>
</inputVariable>
<inputVariable "true" "false">
<varName>senderil</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>receiveril</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>seqgrqg</varName>
<varType>int</varType>
</inputVariable>
</call>
<tVar>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>

328

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
<state "RepeatedDownReq" >
<argument>
<variable "true" "false">
<varName>seqgrqg</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<operationCall>
<name>add</name>
<partner>self</partner>
<variable "true" "false">
<varName>N</varName>
<varType>int</varType>
</variable>
<constant>
<name>Counter</name>
<value>1</value>
</constant>
</operationCall>
</argument>
</state>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</initiates>
</stateCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
</postcondition>
</Guaranteed>
<Guaranteed "gti11" "Future_Formula">
<quantification>
<quantifier>forall</quantifier>
<regularVariable>
<varName>systime</varName>
<varType>TimeVariable</varType>
</regularVariable>
</quantification>
<postcondition>
<atomicCondition "gtll-acl">
<stateCondition>
<initially>
<state "RepeatedResReq" >
<argument>

329

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<variable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>N</varName>
<varType>int</varType>
<value>@</value>
</variable>
</argument>
</state>
<timeVar>
<varName>systime</varName>
<varType>TimeVariable</varType>
</timeVar>
</initially>
</stateCondition>
</atomicCondition>
</postcondition>
</Guaranteed>
<Guaranteed "gti2" "Future_Formula">
<quantification>
<quantifier>forall</quantifier>
<timeVariable>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<precondition>
<atomicCondition "gtl2-acl">
<eventCondition "true">
<event>
<eventID "true" "false">
<varName>VID@</varName>
</eventID>
<call>
<interfaceId>CP</interfaceIld>
<OperationId>1</OperationId>
<operationName>resolve</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>
<varType>OpStatus</varType>
<value>REQ-B</value>
</inputVariable>
<inputVariable "true" "false">
<varName>senderl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>

330

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</inputVariable>
</call>
<tVar>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
</eventCondition>
</atomicCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>
<atomicCondition "g128-ac2">
<stateCondition>
<holdsAt "true">
<state "ResResReq">
<argument>
<variable "false" "true">
<varName>seqgrqg</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>seqgrs</varName>
<varType>int</varType>
</variable>
</argument>
</state>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>

331

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</holdsAt>
</stateCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
</precondition>
<postcondition>
<atomicCondition "gtl2-ac3">
<stateCondition>
<terminates>
<event>
<eventID "true" "false">
<varName>VID@</varName>
</eventID>
<call>
<interfaceId>CP</interfaceld>
<OperationId>1</OperationId>
<operationName>resolve</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>
<varType>OpStatus</varType>
<value>REQ-B</value>
</inputVariable>
<inputVariable "true" "false">
<varName>senderl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</inputVariable>
</call>
<tVar>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>

332

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
<state "RepeatedResReq" >
<argument>
<variable "true" "false">
<varName>seqrq</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<variable "true" "false">
<varName>N</varName>
<varType>int</varType>
</variable>
</argument>
</state>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</terminates>
</stateCondition>
</atomicCondition>
<WrappedCondition>
<operator>and</operator>
<assertionCondition>
<atomicCondition "gtl2-ac4">
<stateCondition>
<initiates>
<event>
<eventID "true" "false">
<varName>VIDO</varName>
</eventID>
<call>
<interfaceId>CP</interfaceld>
<OperationId>1</OperationId>
<operationName>resolve</operationName>
<inputVariable "true" "false">
<varName>statusl</varName>
<varType>OpStatus</varType>
<value>REQ-B</value>
</inputVariable>
<inputVariable "true" "false">
<varName>senderil</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>receiveril</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">

333

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>seqgrqg</varName>
<varType>int</varType>
</inputVariable>
</call>
<tVar>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVar>
</tVar>
<fromTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</fromTime>
<toTime>
<time>
<varName>t1</varName>
<varType>TimeVariable</varType>
</time>
</toTime>
</event>
<state "RepeatedResReq">
<argument>
<variable "true" "false">
<varName>seqgrqg</varName>
<varType>int</varType>
</variable>
</argument>
<argument>
<operationCall>
<name>add</name>
<partner>self</partner>
<variable "true" "false">
<varName>N</varName>
<varType>int</varType>
</variable>
<constant>
<name>Counter</name>
<value>1</value>
</constant>
</operationCall>
</argument>
</state>
<timeVar>
<varName>t1</varName>
<varType>TimeVariable</varType>

334

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</timeVar>
</initiates>
</stateCondition>
</atomicCondition>
</assertionCondition>
</WrappedCondition>
</postcondition>
</Guaranteed>
</Assertion>
</Anomalies>
</AssessmentScheme>
<ValidityTests/>
<MonitoringConfigurations>
<MonitoringConfiguration "MC1">
<Component>
<Reasoner>
<EndPoint>everestReasoner</EndPoint>
<AssertionId>AS©01</AssertionId>
</Reasoner>
</Component>
</MonitoringConfiguration>
</MonitoringConfigurations>
<EvidenceAggregation>
<AggregatedResultsInfo "days" "30"
"2014-07-01" "2014-06-01"/>
<FunctionalAggregatorId>Max</FunctionalAggregatorId>
<IntermediateResults>false</IntermediateResults>
</EvidenceAggregation>
<LifeCycleModel>
<InitialState "is" "Activated"/>
<states>
<state>
<atomicState "atl" "Rejected"/>
</state>
<state>
<compositeState
<substate>
<compositeState
<substate>
<atomicState
</substate>
<substate>
<atomicState
</substate>
</compositeState>
</substate>
<substate>
<atomicState "at2" "Anomaly-Audit"/>
</substate>
<substate>
<atomicState "at3" "Conflict-Audit/>
</substate>
</compositeState>
</state>
</states>
<transitions>

csl "ContinuousMonitoring">

"Issuing">

as1l” "Pres-Issued"/>

"Issued/>

335

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<transition "is" "atl">
<WhenCondition>
<event>assertionViolated</event>
</WhenCondition>
</transition>
<transition "is" "asl">
<WhenCondition>
<event>sufficiencyConditionSatisfied</event>
</WhenCondition>
</transition>
<transition
<WhenCondition>
<event>assertionSatisfied</event>
</WhenCondition>
</transition>
<transition
<WhenCondition>
<event>assertionViolated</event>
</WhenCondition>
</transition>
<transition
<WhenCondition>
<event>expirationReached</event>
</WhenCondition>
</transition>
<transition "cs2" "at2">
<WhenCondition>
<event>anomalyDetected</event>
</WhenCondition>
</transition>
<transition "cs2" "at3" >
<WhenCondition>
<event>conflictDetected</event>
</WhenCondition>
</transition>
<transition "at2" "hs">
<WhenCondition>
<event>anomalyResolved</event>
</WhenCondition>
</transition>
<transition "at3" "hs">
<WhenCondition>
<event>conflictResolved</event>
</WhenCondition>
</transition>
</transitions>
<FinalState "fs" "Revoked" />
<historyState "hs" "history" "cs2" />
</LifeCycleModel>
</p:CertificationModel>

asl" "as2">

cs1" "atl">

cs1" "fs'>

336

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

APPENDIX B: AUTHENTICATION CERTIFICATION

MODEL

Below the security property element of the CM for the e-Health scenario is given, as explained

in Section 5.3.

<SecurityProperty "0001"
"AIS:authentication:network-authenticated-server-access"
"CSA" "http-to-http-redirection">
<sProperty "http://www.cumulus-project.eu">

<propertyPerformance>
<propertyPerformanceRow>
<propertyPerformanceCell "verified">"true" </propertyPerformanceCell>
</propertyPerformanceRow>
</propertyPerformance>
</sProperty>
<Assertion "AS001">
<InterfaceDeclr>
<ID>0001</ID>
<ProviderRef>proRefl</ProviderRef>
<Endpoint>
<ID>eopl</ID>
<Location>http://</Location>
<Protocol>SOAP</Protocol>
</Endpoint>
<Interface>
<InterfaceSpec>
<Name>serverHTTP</Name>
<Operation>
<interfaceld>serverHTTP</interfaceId>
<OperationId>id@001</OperationId>
<operationName>httpCall</operationName>
<inputVariable "true" "false">
<varName>formatl</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serverAddressl</varName>
<varType>string</varType>
</inputVariable>
<outputVariable>
<varName>httpStatus2</varName>
<varType>string</varType>
</outputVariable>
<outputVariable>
<varName>location2</varName>
<varType>string</varType>
</outputVariable>
<outputVariable>
<varName>serverAddress2</varName>
<varType>string</varType>

337

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</outputVariable>
</Operation>
</InterfaceSpec>
</Interface>
</InterfaceDeclr>
<InterfaceDeclr>
<ID>002</ID>
<ProviderRef>proRef2</ProviderRef>
<Endpoint>
<ID>eop2</ID>
<Location>http://</Location>
<Protocol>SOAP</Protocol>
</Endpoint>
<Interface>
<InterfaceSpec>
<Name>serverHTTPS</Name>
<Operation>
<interfacelId>serverHTTPS</interfaceld>
<OperationId>id@002</OperationId>
<operationName>httpsCall</operationName>
<inputVariable "true" "false">
<varName>format2</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serverAddress3</varName>
<varType>string</varType>
</inputVariable>
<outputVariable>
<varName>format3</varName>
<varType>string</varType>
</outputVariable>
<outputVariable "true" "false">
<varName>serverAddress4</varName>
<varType>string</varType>
</outputVariable>
</Operation>
</InterfaceSpec>
</Interface>
</InterfaceDeclr>
<Guaranteed "gt1l" "Future_Formula">
<quantification>
<quantifier>forall</quantifier>
<timeVariable>
<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<quantification>
<quantifier>existential</quantifier>
<timeVariable>
<varName>t2</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<precondition>

338

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

</SecurityProperty>

APPENDIX C: CONFIDENTIALITY CERTIFICATION

MODEL

Below the security property element of the CM for the Smart Cities scenario is given, as

explained in Section 5.4.

<SecurityProperty "0001"
"AIS:confidentiality:external-data-exchange-
confidentiality:VPN" "CSA"
"AIS:confidentiality:external-data-exchange-confidentiality">
<sProperty "http://www.cumulus-project.eu">

<propertyPerformance>
<propertyPerformanceRow>
<propertyPerformanceCell "verified">true</propertyPerformanceCell>
</propertyPerformanceRow>
</propertyPerformance>
</sProperty>
<Assertion "AS001" >
<InterfaceDeclr>
<ID>0001</ID>
<ProviderRef>proRefl</ProviderRef>
<Endpoint>
<ID>eopl</ID>
<Location>http://</Location>
<Protocol>SOAP</Protocol>
</Endpoint>
<Interface>
<InterfaceSpec>
<Name>ucapi@@10</Name>
<Operation>
<interfaceId>ucapi@@10</interfaceld>
<OperationId>id@001</OperationId>
<operationName>LCUCall</operationName>
<inputVariable "true" "false">
<varName>packetDest</varName>
<varType>string</varType>
</inputVariable>
<outputVariable "true" "false">
<varName>packetSource</varName>
<varType>string</varType>
</outputVariable>
</Operation>
</InterfaceSpec>
</Interface>
</InterfaceDeclr>

345

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

<VariableDeclr>
<varName>VPNaddressCall</varName>
<varType>string</varType>
<value>10.9.8.1:10022</value>

</VariableDeclr>

<VariableDeclr>
<varName>VPNaddressReply</varName>
<varType>string</varType>
<value>10.9.8.10:10022</value>

</VariableDeclr>
<Guaranteed "gt1l" "Future_Formula">
<quantification>
<quantifier>forall</quantifier>
<timeVariable>

<varName>t1</varName>
<varType>TimeVariable</varType>
</timeVariable>
</quantification>
<precondition>
<atomicCondition "aco">
<eventCondition "true">
<event>
<eventID "true" "false">
<varName>VIDO</varName>
</eventID>
<call>
<interfaceId>LCU</interfaceId>
<OperationId>1</OperationId>
<operationName>LCUCall</operationName>
<inputVariable "true" "false">
<varName>statusi</varName>
<varType>OpStatus</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>senderil</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>receiverl</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>sourcel</varName>
<varType>Entity</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>serviceId</varName>
<varType>string</varType>
</inputVariable>
<inputVariable "true" "false">
<varName>packetDest</varName>
<varType>string</varType>
</inputVariable>
</call>
<tvVar>
<timeVar>

346

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

347

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

348

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

349

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

350

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

351

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

352

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

353

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

354

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

APPENDIX D: QUESTIONNAIRE

Questionnaire for certifies to evaluate the monitoring based certification model.

Evaluation Questions for Monitoring based certification process

1. Do you think that the Monitoring Based Certification Models (MBCM) are capable of representing
comprehensively continuous security certification processes for cloud services security? (select only
the answer that fits best with your view):

0: No, not at all [1
1: Yes, but in less than 25% of cases that | can think of []
2: Yes, in about 25-49 % of cases that | can think of [1
3: Yes, in about 50-74 % of cases that | can think of [1
4: Yes, in about 75-90 % of cases that | can think of [1
5: Yes, in excess of 90% of cases that | can think of [1

If you selected 4 or less, can you give examples of security properties and/or cloud services, which
cannot be effectively certified based on the MBCMs?

2. Do you think that the assertion rules specified as part of a the MBCM are capable of representing
accurately and effectively the continuous collection of evidence required for the assessment of
security properties and/or the effectiveness of control mechanisms realising these properties in the
cloud? (select only the answer that fits best with your view):

0: No, not at all [1
1: Yes, but in less than 25% of cases that | can think of []
2: Yes, in about 25-49 % of cases that | can think of [1
3: Yes, in about 50-74 % of cases that | can think of [1
4: Yes, in about 75-90 % of cases that | can think of [1
5: Yes, in excess of 90% of cases that | can think of [1

If you selected 4 or less, can you give examples of security properties/control mechanisms that cannot
be effectively monitored by the assertions in MBCMSs?

3. Do you think that the life cycle models specified as part of a MBCM are capable of representing
effectively the processes of collecting evidence, and generating and managing certificates based on
it? (select only the answer that fits best with your view):

355

Model Driven Certification of Cloud Service Security based on Continuous Monitoring

0: No, not at all [1
1: Yes, but in less than 25% of cases that | can think of []
2: Yes, in about 25-49 % of cases that | can think of [1
3: Yes, in about 50-74 % of cases that | can think of [1
4: Yes, in about 75-90 % of cases that | can think of [1
5: Yes, in excess of 90% of cases that | can think of [1

If you selected 4 or less, can you give examples of cases which life cycle models would not be adequate
for?

4. Do you think that the evidence sufficiency conditions that may be specified as part of a MBCM
(number of events, period of monitoring, expected behaviour of target of certification) are capable of
representing effectively the circumstances under which the evidence collected would be enough to
make a decision about issuing a certificate or otherwise? (select only the answer that fits best with

your view):

0: No, not at all [1
1: Yes, but in less than 25% of cases that | can think of []
2: Yes, in about 25-49 % of cases that | can think of [1
3: Yes, in about 50-74 % of cases that | can think of [1
4: Yes, in about 75-90 % of cases that | can think of [1
5: Yes, in excess of 90% of cases that | can think of [1

If you selected 4 or less, can you give examples of cases which evidence sufficiency conditions would
not be adequate for?

5. Which of the following parts of MBCMs, do you think that it would be difficult for someone with
expertise in cloud security to specify even after training (select all that apply):

None [
Assertions expressing the collection of evidence for security properties/anomalies []
Evidence sufficiency conditions [1
Life cycle models [1

6. Are there any key elements/requirements that continuous security certification processes for cloud
services should address but MBCM fail to cover?

No []
Yes []

If “YES”, please indicate the missing elements/requirements:

356

