

City, University of London Institutional Repository

Citation: Maiden, N., Lockerbie, J., Zachos, K., Bertolino, A., Angelis, G. & Lonetti, F.

(2014). A Requirements-Led Approach for Specifying QoS-Aware Service Choreographies:
An Experience Report.. Lecture Notes in Computer Science, 8396, pp. 239-253. doi:
10.1007/978-3-319-05843-6_18

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/15055/

Link to published version: https://doi.org/10.1007/978-3-319-05843-6_18

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Requirements-led Approach for Specifying QoS-aware
Service Choreographies: An Experience Report

Neil Maiden1, James Lockerbie1, Konstantinos Zachos1, Antonia Bertolino2,
 Guglielmo De Angelis2, Francesca Lonetti2

1 School of Informatics, City University London, London, UK
2 Istituto di Scienza e Tecnologie

dell'Informazione “A. Faedo” CNR, Pisa, Italy

{N.A.M.Maiden@, James.Lockerbie.1@,
kzachos@soi.}city.ac.uk

{antonia.bertolino@, guglielmo.deangelis@,
francesca.lonetti@}isti.cnr.it

Abstract. [Context and motivation] Choreographies are a form of service
composition in which partner services interact in a global scenario without a
single point of control. The absence of an explicitly specified orchestration re-
quires changes to requirements practices to recognize the need to optimize
software services choreography and monitoring for satisfaction with system re-
quirements. [Question/problem] We developed a requirements-led approach
that aims to provide tools and processes to transform requirements expressed on
service-based systems to QoS-aware choreography specifications. [Principal
ideas/results] The approach is used by domain experts to specify natural lan-
guage requirements on a service-based system, and by choreography designers
to adapt their models to satisfy requirements more effectively. Non-functional
requirements are mapped to BPMN choreography diagrams as quality proper-
ties, using the Q4BPMN notation, that support analysis and monitoring facili-
ties. [Contribution] We report the new integrated approach and provide lessons
learned from applying it to a real-world example of dynamic taxi management

Keywords: service choreographies; requirements monitors; user task models;
adaptive systems; quality properties; requirements-led life-cycle.

1 Introduction

Choreographies are a form of service composition in which, unlike orchestration,
services interact to achieve a goal without a single point of control [1]. The increased
flexibility of architectures based on choreographies can deliver more adaptive service-
based systems that satisfy more ambitious requirements of certain types on these sys-
tems. However, we still need new techniques to design flexible choreographies that
can be argued to satisfy system requirements, and new mechanisms for monitoring
services invoked in these choreographies to show continued requirements satisfaction.

The traditional approach to service composition uses orchestration coordinators
and arranges services according to a predetermined business logic and execution order
[2] based on design choices about the type and granularity of available services. This
execution order and logic is often expressed as a workflow using notations such as
BPEL [2]. Whilst service orchestration is a widely deployed form of system architec-
ture, it can result in a failure to satisfy requirements in increasingly adaptive environ-
ments as the predefined execution order and/or business logic can be rendered invalid
by changes to a service consumer’s context. One advantage of service choreographies
is that they impose fewer architecture-level constraints than orchestrations, and as a
consequence have greater potential to deliver adaptive systems that continue to satisfy
the evolving requirements on them. They make fewer design choices about the granu-
larity of services to be invoked, an execution order for these services does not need to
be specified, and business logic is specified independent of the services [3].

Requirements work is needed to specify the required behavior and qualities of cho-
reography activities in a model. Quality of Service (QoS) has been acknowledged as a
main concern in service-oriented computing (SOC) and in QoS-aware service compo-
sition. Relevant work in SOC includes quality-of-service ontologies and measurement
[e.g. 4], however little research or practice traces service qualities back to the origi-
nating quality requirements on the systems. These specified behaviors and qualities
are needed to guide local enactment of services and to enable the run-time monitoring
of each choreography activity for continued requirements satisfaction. Indeed, this
alternative paradigm for service technology creates new challenges, including how to:

1. Optimize the specification of choreography diagrams with respect to system
requirements;

2. Associate specified system requirements with choreography activities in a cho-
reography diagram;

3. Enhance choreography diagrams with quality properties that trace system re-
quirements, to support analysis and monitoring facilities.

In this paper, we report results from the CHOReOS project (www.choreos.eu) to
address the three challenges using a real-world dynamic taxi management example.
The next section outlines the CHOReOS approach for specifying QoS-aware service
choreographies. In sections 3 and 4 we report how this requirements approach uses
user task models to generate a first-cut BPMN choreography diagram. Section 5 de-
scribes Q4BPMN (http://labsedc.isti.cnr.it/tools/q4bpmn) for extending BPMN mod-
els with specifications of different types of quality properties [5], and how these ex-
tended models can drive the instantiation of corresponding monitors. Section 6 pre-
sents lessons learned and the paper ends by looking at related work, reviewing current
omissions in the approach, and outlining the next steps.

2 The CHOReOS Approach

Among the various challenges posed by the vision of the Future Internet (FI) [6], is
how to provide user-centric processes to support the whole life cycle of SOC systems
from their design, to their development, up to their maintenance and governance at

run-time [7]. Requirements specification is a fundamental part of dealing with this
challenge. A distinctive feature of the FI vision affecting this activity is the active role
of domain experts, who are intended to take the place of requirements analysts. The
CHOReOS project tackled this challenge by elaborating an approach that considers
the user as an active part in the choreography life cycle, and developed it from a busi-
ness standpoint by leveraging realistic B2B and B2C scenarios provided by the indus-
trial project partners e.g. the dynamic taxi management example in this paper. The
result was a domain-expert centric approach supporting non-technical users to specify
the desired choreography with respect to their business goals, requirements and quali-
ty expectations [8]. An overview of the approach is depicted in Figure 1.

Fig. 1. The key stages of the user-centric requirements-led approach

A domain expert specifies the requirements on a future service-based software sys-
tem in natural language using the new CHOReOS Requirements Tool. To maximize
the uptake of the approach, we decided not to adopt more formal requirements speci-
fication techniques that would have necessitated trained analysts. Instead, the primary
input to the approach is a small set of natural language requirements that need domain
knowledge rather than analytic training to write (see Sections 3.1 and 3.2). To gener-
ate a first-cut choreography diagram that satisfies the requirements, the expert uses
procedures adapted from previous work to retrieve user tasks models that match the
requirements (see Section 3.3). The Requirements Tool then automatically reasons
with retrieved models to generate a first-cut model of an under-constrained choreog-
raphy diagram that can satisfy the matched requirements (Section 4). The choreogra-
phy designer can select and refine the generated BPMN choreography activities that
are the best-fit abstractions of the requirements problem to complete the design of the
choreography. Finally, the requirements mapped to the functional BPMN choreogra-
phy diagram can be used to specify non-functional systems engineering properties
using the existing Q4BPMN notation, an extension of BPMN (see Section 5).

If it is applied successfully, the approach will transform functional and quality re-
quirements on a system expressed in natural language into a single service choreogra-
phy specification that is expressed using BPMN and Q4BPMN, and optimized to
satisfy the requirements and the domain constraints extracted from matched user task
models. In addition, the specification of such Q4BPMN properties of the choreogra-
phy activities enables the definition of software modules monitoring the fulfillment of
QoS constraints directly traced from the requirements [9].

3 From Natural-Language Requirements to First-Cut
Choreography Specifications

An objective of our requirements-based approach was for it to be usable in the largest
number of service-oriented projects possible. Natural language continues to be the
most used form of requirements expression [e.g. 10], so our approach assumes that
functional and quality requirements to be satisfied by the service choreography will
be expressed in natural language by domain experts rather than trained analysts. It
assumes that a domain expert gathers requirements from the consumers of its services
– the domain expert acts as a surrogate for service consumers such as travelers need-
ing a taxi, who are unlikely to participate directly in a requirements process.

The domain expert is supported in 3 stages. In the first stage, they are guided to
express system requirements with associated qualities. In the second stage, the expert
is guided to cluster requirements on a single choreography. In the third stage, the
cluster is matched to a catalogue of user task models to guide the initial design of the
requirements-driven service choreography.

3.1 Expressing Structured Natural Language Requirements

Whilst our experiences have shown that domain experts with minimum training can
write functional requirements in natural language [e.g. 11], we do not believe that
they can express measurable quality requirements such as performance and reliability
as effectively. Therefore we developed requirements writing guidelines based on the
notion of a qualifier from the anatomy of well-written requirements [10] to transform
the functional root of a requirement into one or more quality requirements. These
guidelines are built into tool support that guides the domain expert to add one or more
qualifiers indicative of different qualities to each specified functional requirement.

The CHOReOS Requirements Tool provides support to the domain expert to de-
fine four different qualities considered the most relevant for the project scenarios:
accuracy, reliability, performance and security. It tags and parses the functional re-
quirements text written by the domain expert to extract keywords and synonyms, then
applies simple rules to infer which of the four qualities, if any, might be associated
with the described requirement. The expert is then prompted to consider adding the
inferred qualifier to the requirement, which s/he can accept or reject. For example, the
functional requirement written by a domain expert in taxi management: The user shall
receive a prompt notification of how long it will take for their taxi to arrive is parsed
to infer a possible performance qualifier based on the keyword prompt. Next, to make
each quality requirement measurable [12], the expert simply indicates the quality
rating on a Likert scale of 1 (very low) to 5 (very high). The expert can then apply
additional qualifiers if required, however the tool ensures that only one quality can be
selected as the most important, as shown in Figure 2. Each response on the scale for
each quality type has been associated with a predefined range of measures to deter-
mine satisfaction with the requirement. We describe this in detail in Section 5.2.

The output from this stage is a set of structured natural language requirements on
systems that can be implemented as service choreographies.

Fig. 2. Expressing quality requirements in the CHOReOS Requirements Tool

3.2 Clustering Requirements

Domain experts write requirements on systems rather than service choreographies.
However, before these requirements can be mapped onto choreography activities,
work is needed to cluster similar requirements that will map onto a single choreogra-
phy and its elements such as activities and roles. This is because a domain expert acts
as the ghost author of requirements from multiple service consumers, and more than
one requirement can specify the same or a similar function or quality. Therefore, to
optimize the specification of a single choreography, similar and overlapping require-
ments need to be discovered and handled.

To do this, the Requirements Tool provides the capability to calculate the semantic
similarity between any pair of requirements in the set of requirements, similar to a
linguistic approach for large-scale requirements management reported in [13]. The
algorithm for computing semantic similarity is based on one element of an existing
algorithm that computes measures of similarity between natural language require-
ments and service descriptions during service discovery [14]. The Requirements Tool
invokes the algorithm as a third party service, taking the selected requirement and
computing a measure of its similarity with every other requirement in the set. A de-
scription of the algorithm and an evaluation of its effectiveness are provided in [14].

Figure 3 shows an example of a cluster of requirements on the Request Taxi
choreography. The similarity algorithm function reorders the Requirements List table
according to a match score (the most relevant at the top) and the expert can simply
select and add the requirements into the Requirements Cluster. Similarly, there is also
a keyword search that moves the matched requirements to the top of table.

The output from this stage is a cluster of system requirements that are matched to
user task models to inform the design of a first-cut service choreography.

Fig. 3. A completed requirements cluster for the taxi management example.

3.3 User Task Models for Choreography Specification

A user task model is a description of the structured activities that are often executed
by a user during the interaction with a system in its contextual environment to attain
goals [15]. Research exploiting user task models to design service-based systems is
scarce. For example, Paterno et al. [16] delivered an environment to support tasks and
services matching with CTT task models to develop user interfaces but the association
between tasks and services was manually established and not cost-effective. Ruiz et
al. [17] proposed a method for designing web services that analyzed user task descrip-
tions to identify a web application’s required operations. Unlike Paterno’s work, this
approach was automated but did not include activities such as discovering, selecting
and composing software services specific to the design of service-based applications.

Our approach utilizes class-level user task models expressed in the ConcurTask-
Trees (CTT) formalism [15] to apply an engineering approach to user task modeling.
The precise semantics of CTT enable greater automated guidance with which to spec-
ify choreographies, whilst the CTT models can bridge the semantic gap between natu-
ral language specifications and formal choreography specifications. For the approach,
we built upon the existing library of domain-independent CTT models developed in
S-Cube, the EU-funded Network of Excellence for Software Services (www.s-cube-
network.eu/). We used commonly occurring class-level tasks such as requesting and
booking and extended them with knowledge from the applied domains. The CTT
models were developed manually in a process reported in [18].

Figure 4 depicts the CTT model Request taxi. This CTT model follows a common
3-tier structure we specified. The top-level user goal, Request taxi, is decomposed into
intermediate level tasks such as Retrieve data. In turn, this task is decomposed into
the application task level. Application tasks include detect current location; retrieve
date and time; and optional tasks retrieve preferences and retrieve taxi membership.
A description of the full semantics of CTT models can be found in [19].

Important to this design guidance, is a set of mappings between CTT and BPMN
semantics that we use to generate a first-cut BPMN choreography diagram. The map-
ping rules are simple, and we can demonstrate them using the Request taxi CTT mod-
el. The sub-task Retrieve Data occurs concurrently (|[]|) with Provide taxi request
details. These two tasks enable (>>) the sub-task Submit query. CTT semantics define

enables (>>) sub-tasks as interleaved, so our rule specifies that both sub-tasks can be
undertaken in the same choreography activity. The Submit query sub-task enables and
passes on information ([] >>) to the Process query sub-task. CTT semantics indicate
that information is passed between the sub-tasks, so our rule specifies a boundary
between choreography activities across which messages are exchanged. Finally, the
CTT operator choice ([]) denotes a split in the tasks followed, so our rule specifies a
split in the flow of the choreography, represented in BPMN as a gateway or loop.

Fig. 4. The CTT specification of the user task Request Taxi

Returning to the Requirements Tool, the cluster of requirements is fired at the
TEDDiE service, which applies sophisticated information retrieval techniques to iden-
tify CTT models relevant to the requirements. Of course, the approach’s effectiveness
depends upon the accurate automatic retrieval of user task models that match each
requirement from the cluster to each CTT model. An evaluation of the retrieval pro-
cess can be found in [18]. The normal course output from a single invocation of the
TEDDIE engine is retrieval of one or more CTT models from the library, and each
model is mapped to one or more individual requirement statements in the cluster. First
evaluations have revealed that, because the CTT models in the library express class-
level tasks rather than more concrete and hence complete business processes, most
requirements clusters are likely to match to more than one CTT model.

The output is documented in a XML file that specifies the data with which to gen-
erate a first-cut BPMN choreography diagram.

4 Generating a First-cut Choreography as a BPMN
Choreography Diagram with Associated Requirements

Our approach uses the Business Process Model and Notation (www.bpmn.org), which
is an emerging standard for business process modeling and the specification of service
choreographies. The choreography designer designs BPMN choreographies using the
MagicDraw visual modeling tool (www.nomagic.com), which we configured to accept
the XML files output from the Requirements Tool. As a result, the choreography de-
signer receives explicit requirements-based guidance for designing a service choreog-
raphy based on a first-cut template model annotated with requirements information.

A first-cut BPMN choreography diagram generated for the taxi example is shown
in Figure 5. One consequence of the BPMN formalism being more complete than the

CTT formalism is that each choreography diagram automatically generated from CTT
models will be incomplete. As well as integrating model elements generated from
more than one CTT model, the choreography designer may need to add choreography
tasks, as well as define the instance-level participant names in the choreography.

Fig. 5. Automatically generated first-cut BPMN choreography diagram in MagicDraw

All of the design refinement should be directly informed by the requirements
linked to each choreography element, presented in MagicDraw as a requirements-
choreography task matrix. The matrix maps each original requirement to one or more
choreography tasks in the choreography diagram. The designer can use the require-
ment traces imported from each matched user task model to refine the specification of
the required levels of quality-of-service, and from them support the application of
quality properties. An example of a requirements matrix is depicted in Figure 6.

Fig. 6. Completed matrix mapping system requirements to choreography tasks in MagicDraw

The output of this stage is a first version of a service choreography diagram speci-
fied using the constraints derived from matching user task models, and with each
element of the choreography that is annotated with requirements information derived
from the original system requirements from domain experts and service consumers.
For reference, a final elaborated version of the first-cut choreography diagram shown
in Figure 5 can be found at http://labsedc.isti.cnr.it/tools/q4bpmn/co-taxing.

5 Monitorable Service Qualities from Requirements

To express qualities on service choreographies we used Q4BPMN (Quality for
BPMN), a semi-formal notation for specifying quality annotations at the choreogra-
phy level [5]. It allows designers to extend BPMN models with quality properties that
the services entering the choreography will have to abide by. With Q4BPMN, the
choreography designer can state the quality requirements for the choreography and its
roles at the same level of abstraction of the tasks’ flow without the need for additional
models. The explicit introduction of non-functional constraints within a choreography
specification supports the verification and validation of their impact on the overall
quality requirements. At the same time, prospective participants can use this infor-
mation to understand the quality level required on their part.

5.1 The Q4BPMN Notation

Q4BPMN is an implementation of the Property Meta-Model (PMM) with which to
specify the quality properties, metrics and observable events of a system [20].
Q4BPMN is implemented within MagicDraw as a design tool, and was conceived to
support the specification of non-functional properties within a service choreography
expressed in the BPMN notation. It provides designers and analysts the means to
annotate a choreography diagram with quality requirements [5]. Specifically,
Q4BPMN enables the definition of non-functional systems engineering properties that
can be directly linked either to a single task (i.e. «Q4Task»), specific participant of a
task (i.e. «Q4Participants»), or whole choreography (i.e. «Q4Choreography») [21].

Q4BPMN supports several kinds of properties, which correspond to the class of
properties inherited from the PMM meta-model. Specifically, it currently defines four
classes of properties: (i) dependability properties concerning the availability of the
system and failure rates; (ii) performance properties related to time, mainly from a
software and human interaction point of view; (iii) security properties related to en-
cryption of operations and trustworthiness of the business activities; and (iv) accuracy
properties that relate to time and space dimensions.

5.2 Mapping requirements to Q4BPMN

Although Q4BPMN provides the means for expressing quality properties within a
BPMN choreography diagram, it does not bind to any specific methodology for defin-
ing which values, dimensions or context characterize these properties. In this sense, as

commonly happens during their specification, non-functional requirements can con-
ceal underspecified aspects that can allow many different interpretations depending
on the context these desired system properties are offered [22]. For example, a user
expressed performance requirement such as NFR0077: The user shall be able to use
the taxi booking system efficiently is useful in the early stages of the requirement
elicitation process, as this kind of natural language requirement can be easily under-
stood by non-technical stakeholders (e.g. final users). However, quantifying such a
high level user requirement could imply a different interpretation depending on the
context and the functionalities intended to impact on it.

To address this, the non-functional requirements and their various potential inter-
pretations were mitigated by quantifying each abstract property in a set of application
contexts. From the analysis of our application domains we identified three major con-
cerns representing the different contexts for achieving the quality goals intended by
the elicited non-functional requirements. Specifically, such concerns are:
i. Software System: the properties specified under this concern represent those quality

attributes quantifying either the behavior of software components, or their interac-
tions;

ii. Human–Computer Interaction: the properties specified under this concern repre-
sent those quality attributes quantifying any interactions between a human and any
part of the considered software system;

iii. Business Activities: the properties specified under this concern represents those
quality attributes quantifying the admissible constraint used in order to characterize
the activities of both the whole system (i.e. software + human related activities),
and its actors from a business perspective.

The model shown in Figure 7 shows the requirements to Q4BPMN mapping which
includes these concerns, modeled as agent-based quality goals. The left side of the
model shows a user expressed systems requirement and the four main qualities that
can be associated with it, indicated on scales of 1 to 5 as described in Section 3.1.
These user expressed systems requirements correspond directly to four user quality
goals on the wider service-based system – accuracy, dependability, performance and
security. These goals are then decomposed into the 3 concerns described above: Soft-
ware System, HCI and Business, and shown as agent-based quality goals. Finally, the
model shows the definition of the qualitative properties that could be used by the
agent-based goals. In this case, we have instantiated the model for our application to
the taxi management scenario. Specifically, for each of the properties we identified:
the type and the dimension it addresses; but also its name and the values prescribed
for each specific satisfaction level.

In order to define the abstract properties, we drew upon research in disciplines such
as software reliability and human-computer interaction to determine prototypical
measures of different qualities that the expert uses to refine the requirement measure.
For example, we considered the Secure Sockets Layer (SSL) protocol for security
encryption-type requirements and Miller’s work [23] describing threshold levels of
human attention for HCI time performance-type requirements. We then utilised the
expert input available to us in our taxi management application domain to review the
provided definitions and quantify the predefined ranges.

Fig. 7. Non-functional requirements mapping to quality properties in Q4BPMN

Table 1, for example, shows mappings between two original system requirements
and the quality properties they relate to. In the first, the traveller details are required to
be transmitted with a performance level of 5, which translates to the software time
performance property. The required time performance for all software interactions
within this choreography task is therefore quantified as 50msec. However, the second
requirement is mapped to a participant property limited specifically to the Taxi Com-
pany operating in the choreography task. It specifies that the taxi company shall be
reputable, which maps a onto a trust property related to the business security quality
goal. The instantiation of these properties reflect the specification introduced in Fig-
ure 7.

Table 1. An example of mapping original system requirements to quality properties

Choreography	
element,	 Name	

Original	 requirement	
Name,	 ID,	 description,	 quality	

Quality	 Property	

Task	 	
Request	 Taxi	 	
Service	 	

MID	 send	 customer	 details	 (NFR0012):	 MID	
shall	 be	 able	 to	 transmit	 traveller	 (customer)	
details	 to	 the	 taxi	 company	 	
[Performance	 5]	

timePer_Software_L5

§ isHard	 =	 true	
§ metrics	 –	 DefaultMaxDurationMetric	
§ nature	 =	 PRESCRIPTIVE	
§ operator	 =	 LESS	 EQUAL	
§ propertyClass	 –	 PERFORMANCE	
§ unit	 =	 “msec”	
§ value	 =	 “50”

Participant	 	
property	 	
Taxi	 Company	

Reputable	 taxi	 company	 (NFR0086):	 The	 taxi	
company	 shall	 have	 an	 established	 reputa-‐
tion	 [Security	 4]	

taxiCompanyBusinessTrust

§ NF	 Properties	 =	 resourcesTRU_Business_L4	
§ ParticipantRef	 =	 Taxi	 Company	

Once complete, the quality properties into which the requirements are mapped can
be used to inform the generation of property-based service monitors.

5.3 Software Monitors from Q4BPMN Specifications

Software monitors can be accurately developed to monitor for specified qualities of a
service choreography at run-time. A monitor is a software system that observes a
target system’s behavior for qualities of interest such as satisfying the target system’s
requirements [24]. Effective monitoring is key for adaptation to ensure that the target
system can bind to and invoke new services in new contexts to ensure continued re-
quirements satisfaction. Robinson distinguishes software and requirements monitors.
He defines a requirements monitor as a software component that determines the re-
quirements status from a stream of significant input events [24], where the events are
observed and recorded by software monitors.

Our approach explicitly supports the choreography designer to map QoS require-
ment into monitorable properties on a choreography model, the individual choreogra-
phy tasks in the model, and on the roles in a task. By leveraging on generative tech-
niques within the context of the model-driven engineering, the Q4BPMN properties
support the synthesis of QoS monitoring modules of the service choreography. Spe-
cifically, each generated monitoring module determines whether a property associated
to a quality requirement is satisfied using observed data and messages. Given the need
to map requirements of different types onto different types of event filters, our ap-
proach uses a flexible event-based monitoring infrastructure tailored to observe and
analyze the behavior of distributed systems and services [25]. The reference imple-
mentation of such event-based monitor includes a complex event-processing engine
based on Drools Fusion [26]. The details about the model-to-code transformation
process of the Q4BPMN properties in presented at length in [27].

Our use of Q4BPMN is related to current requirements metrics such as Planguage,
the keyword-driven language for writing measurable quality requirements [12]. Plan-
guage’s use of measures and metrics is similar to the Q4BPMN’s use of abstract,
descriptive or prescriptive properties [27], however we believe that the grounding of
these property types in observable data that can be collected using software monitors
offers it a distinct advantage for service-based systems.

6 Lessons Learned	

We return to the 3 challenges reported earlier to assess whether applying our ap-
proach helped to resolve them and report the most important lessons learned:

Optimize the specification of choreography diagrams with respect to system re-
quirements. For the dynamic taxi management scenario, 97 system requirements were
successfully specified and used to generate meaningful first-cut choreography dia-
grams. The simple interface of the requirements tool enabled system requirements to
be specified effectively without training, and the similarity algorithm helped the user
cluster requirements for specifying a single choreography. However, there was a usa-

bility concern with the similarity function, as matching the selected requirement to the
other 96 requirements took over 5 minutes using a standard laptop on the City Uni-
versity London network. An option for improving the performance of this function is
to store the match results in a requirements matrix to remove the need for invoking
the similarity algorithm web service for every requirement pair each time it is run.

The requirements specified retrieved the domain specific Request taxi CTT model
and the generic Calculate route model. Minor refinements were made to the generated
choreography tasks, shown in figure 5, and the final choreography tasks listed in Fig-
ure 6. Additional tasks included Confirm taxi request and Board taxi situated at either
end of the process flow. While the use of CTT models provided valuable design guid-
ance for the choreography design in this example, varying degrees of success were
experienced for other choreographies. For example, in the context-aware traffic man-
agement choreography, the first-cut BPMN model elements generated by the retrieved
CTT models Provide traffic information and Calculate route were either discarded or
revised beyond recognition. Therefore, further work is needed to expand the catalogue
of CTT models and to evaluate the effectiveness of the process in future case studies.

Associate specified system requirements with choreography activities in a chore-
ography diagram. In our example, 38 out of the 40 clustered requirements were au-
tomatically mapped to choreography tasks and provided a useful starting point for the
user. However, our approach can only match requirements to each retrieved CTT
model, therefore matched requirements are automatically allocated to the first chore-
ography task generated from each CTT model. Future work on the TEDDiE service to
match the requirements to specific choreography tasks would improve the process and
reduce the level of human input required. Also, it was evident that users need to be
better supported where requirements are relevant to more than one choreography task
in the model. As exemplified by the requirement NFR0077, which is mapped across 5
of the choreography tasks (see Figure 6), high level user requirements could imply
different interpretations depending on the context and the functionalities intended to
impact on them. One possible way of addressing this would be to use satisfaction
arguments, as defined in [29], to provide a means to reason about the relationships
between user expressed quality requirements and lower-level system requirements.
We have already made an initial attempt to implement satisfaction arguments in the
Requirements Tool (see [30]), but we need to explore effective ways of implementing
this, or a similar approach, in the MagicDraw modeling environment.

Enhance choreography diagrams with quality properties that trace system re-
quirements, to support analysis and monitoring facilities. Although the Q4BPMN
notation already existed, this was the first time that we traced the originating set of
system requirements through the choreography specification process. Reconciling the
user expressed quality scores with actual values for the quality properties was a chal-
lenge. This required a significant level of domain expert input as ultimately context
was everything and generic values reported in literature were not necessarily suitable.

Finally, it is worth mentioning the limitation that there is no backwards compatibil-
ity between the MagicDraw environment and the CHOReOS Requirements Tool. This
restricts the possibility of revising the originating requirements without starting the
process again and is an area that needs to be addressed in future.

7 Conclusion and Future Work	

In this paper we report an integrated approach for designing service choreographies
from system requirements to deliver more adaptive software systems. We integrated
new and existing work from different sub-disciplines to develop a pragmatic solution
to a pressing problem – how to engineer increasingly adaptive service-based software.
We believe the combination of techniques for natural language requirements expres-
sion, user task models, quality model extensions to business processes, and transfor-
mations of these models to construct requirements-based software monitors, is
unique. Not only have we developed an end-to-end approach for generating service-
based systems that can be traced to their originating system requirements, but also we
have developed an integrated toolkit based on BPMN modeling in MagicDraw.

Of course the approach we presented is not complete – it has some important omis-
sions. One is the lack of discovery techniques to select and bind candidate services to
choreographies at run-time. CHOReOS has developed such techniques linked to soft-
ware service repositories [28]. Another is the lack of support to develop service-level
agreements from requirements. Such agreements are needed to manage contractual
relationships with the providers of the services invoked in choreographies, and should
be derived from requirements. Although the approach provides the foundations for
requirements-led development of SLAs, it still has to be extended it to deliver it.

Although we successfully applied the methods and tools in the demonstrated ex-
ample, the next stage of our work is to evaluate the approach formatively in the de-
velopment of other service-based systems. We plan to report results from these forma-
tive evaluations in future work.

Acknowledgment. The research is supported by CHOReOS project n° 257178 of the
FP7 European program: FP7-ICT-2009-5.

References

1. Peltz C., Web Services Orchestration and Choreography. IEEE Computer 36(10), 46-52
(2003)

2. Ouyang C., Verbeek E., van der Aalst W.M.P., Breutel S., Dumas M., Hofstede A.H.M.,
Formal Semantics and Analysis of Control Flow in WS-BPEL. Science of Computer Pro-
gramming, 2(3), 162-198 (2007)

3. Ben Hamida A., Kon F., Oliva G.A., Dos Santos C.E.M., Lorre J.P., Autili M., De Angelis
G., Zarras A., Georgantas N., Issarny V., Bertolino A., An Integrated Development and
Runtime Environment for the Future Internet. Springer LNCS, volume 7281, 81-92 (2012)

4. Sawyer P., Hutchinson J., Walkerdine J., Sommerville I., Faceted Service Specification.
Proceedings SOCCER Workshop, at RE’05 Conference, Paris (2005)

5. Bartolini C., Bertolino A., Ciancone A., De Angelis G., Mirandola R., Quality Require-
ments for Service Choreographies. Proceedings WEBIST 2012, 143-148 (2012)

6. ERCIM News. Special Theme: Future Internet Technology. Number 77. April 2009.
7. Shaw M., The Challenge of Pervasive Software to the Conventional Wisdom of Software

Engineering. Keynote speech at ESEC/FSE’09, August 2009. http://www.esec-fse-
2009.ewi.tudelft.nl/downloads/ESECFSE09-shaw.pdf

8. Autili M., Di Ruscio D., Inverardi P., Lockerbie J., Tivoli M., A Development Process for
Requirements Based Service Choreography. Proceedings RESS 2011, 59-62 (2011)

9. Bartolini C., Bertolino A., Ciancone A., De Angelis G., Mirandola R., Apprehensive QoS
Monitoring of Service Choreographies. Proceedings SAC 2013, 1893-1899 (2013).

10. Alexander I., Stevens R., Writing Better Requirements. Addison-Wesley (2002)
11. Maiden N.A.M., Jones S.V., Manning S., Greenwood J., Renou L., Model-Driven Re-

quirements Engineering: Synchronising Models in an Air Traffic Management Case Study.
Proceedings CaiSE’2004, Springer-Verlag LNCS 3084, 368-383 (2004)

12. Gilb T., Competitive Engineering: A Handbook For Systems Engineering, Requirements
Engineering, and Software Engineering Using Planguage. Elsevier (2005)

13. Natt och Dag, J., Gervasi, V., Brinkkemper, S., Regnell, B., A linguistic engineering ap-
proach to large-scale requirements management. IEEE Software, 22(1), 32-39 (2005)

14. Zachos K., Maiden N.A.M., Zhu X., Jones S., Discovering Web Services To Specify More
Complete System Requirements. Proceedings CaiSE’2007, Springer-Verlag Lecture Notes
on Computer Science LNCS 4495, 142-157 (2007)

15. Paterno F., Santoro C., Preventing User Errors by Systematic Analysis of Deviations from
the System Task Model. International Journal of Human-Computer Studies, Vol. 56(2),
225-245 (2002)

16. Paterno F., Santoro C., Spano L.D., User Task-based Development of Multi-device Ser-
vice-oriented Applications. Proceedings of the International Conference on Advanced Vis-
ual Interfaces, Roma, Italy (2010)

17. Ruiz M., Pelechano V., Pastor O., Designing Web Services for Supporting User Tasks: A
Model Driven Approach. CoSS International Workshop on Conceptual Modeling of S-
oSS, 193-202 (2006)

18. Zachos K., Kounkou A., Maiden N.A.M., Exploiting Codified User Task Knowledge to
Discover Services at Design-Time. IJSSOE 3(2): 30-66 (2012)

19. Paterno F., Mancini C., Meniconi S., ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models. Proceedings of the IFIP TC13 International Conference on Hu-
man-Computer Interaction, 362-369 (1997)

20. Di Marco A., Pompilio C., Bertolino A., Calabrò A., Lonetti F., Sabetta A., Yet another
meta-model to specify non-functional properties. Proceedings QASBA 2011, 9-16 (2011)

21. Bartolini C., Bertolino A., Ciancone A., De Angelis G., Mirandola R., Non-functional
analysis of service choreographies. Proceedings PESOS 2012, 8-14 (2012)

22. Pohl K., Requirements Engineering - Fundamentals, Principles, and Techniques. Springer,
(2010)

23. Miller R.B., Response time in man-computer conversational transactions. Proceedings of
the Joint Computer Conference, New York, NY, USA, ACM, 267-277 (1968)

24. Robinson W., A Roadmap for Comprehensive Requirements Monitoring, IEEE Computer,
May 2010, 64-72 (2010)

25. Bertolino A., Calabrò A., Lonetti F., Sabetta A., GLIMPSE: a generic and flexible monito-
ring infrastructure. Proceedings EWDC 2011, 73-78 (2011)

26. Drools Fusion: Complex Event Processor, http://www.jboss.org/drools/drools-fusion.html
27. Bertolino A., Calabrò A., Lonetti F., Di Marco A., Sabetta A., Towards a Model-Driven

Infrastructure for Runtime Monitoring. Proceedings SERENE 2011, 130-144 (2011)
28. Ali M., De Angelis G., Polini A., ServicePot – An Extensible Registry for Choreography

Governance. Proceedings SOSE 2013, 113-124 (2013).
29. Hammond J., Rawlings R., Hall A., Will it work?. Proceedings 5th IEEE International

Symposium on Requirements Engineering, IEEE Computer Society, 102-109 (2001)
30. www.choreos.eu/bin/view/Documentation/Requirements_Tool

