

City, University of London Institutional Repository

Citation: Alrajeh, D., Russo, A., Lockerbie, J., Maiden, N., Mavin, A. and Novak, M. J.
(2013). Computational alignment of goals and scenarios for complex systems. 2013 35th
International Conference on Software Engineering (ICSE), pp. 1249-1252. doi:
10.1109/ICSE.2013.6606690

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/15056/

Link to published version: http://dx.doi.org/10.1109/ICSE.2013.6606690

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Computational Alignment of Goals and Scenarios for
Complex Systems

Dalal Alrajeh & Alessandra Russo

Imperial College London
London, United Kingdom

{dalal.alrajeh, a.russo}@imperial.ac.uk

James Lockerbie & Neil Maiden
City University London

London, United Kingdom
{James.lockerbie.1,

n.a.m.maiden}@city.ac.uk

Alistair Mavin & Mark Novak
Rolls Royce plc

Derby, United Kingdom
{Alistair.Mavin, Mark.Novak.JVAEC

}@rolls-royce.com

Abstract—The purpose of requirements validation is to
determine whether a large requirements set will lead to the
achievement of system-related goals under different conditions –
a task that needs automation if it is to be performed quickly and
accurately. One reason for the current lack of software tools to
undertake such validation is the absence of the computational
mechanisms needed to associate scenario, system specification
and goal analysis tools. Therefore, in this paper, we report first
research results to develop these new capabilities, and
demonstrate them with a non-trivial example associated with a
Rolls Royce aircraft engine software component.

Index Terms—Requirements validation, scenarios, operational
requirements, goal achievement.

I. THE REQUIREMENTS VALIDATION CHALLENGE
The inability of software engineering projects to validate

requirements so that new systems can achieve their high-level
goals (e.g., [12]) has led to many high-profile failures, for
example the NHS e-Records system (e.g., [2]). One reason for
these failures is the lack of a cost-effective means with which
to validate the emergent behaviour and qualities of a system
for compliance with its goals. Whilst previous research has
delivered elements of what is needed (e.g., automated scenario
generation and systematic goal impact analysis tools), projects
still lack the means with which to automatically generate the
emergent behaviours and qualities of the specified system
under different conditions expressed as scenarios, then analyze
these behaviours and qualities for goal achievement. We argue
that requirements projects increasingly need integrated tools
with which to quickly generate large scenario sets, accurately
compute future system behaviours from specified functions
and systematically analyze goal achievement. Moreover, the
tools need to be interactive so that analysts can explore the
impact of different requirements configurations on goal
achievement under different conditions.

As an example, consider variable stator vanes (VSVs) used
in aircraft engines to change the incidence of airflow to the
engine’s rotor blades. The vanes are controlled by a system of
sensors, electronic hardware and hydro-mechanical units to be
specified. One validation task might be to investigate one
scenario event – the impact of a missing speed signal between
the intermediate-pressure shaft and the control system on the
achievement of the goal that the torque motor continues

running. New software capabilities are needed to integrate
existing scenario, system specification and goal analysis tools
and techniques to enable such validation to take place. Figure
1 depicts the situation and the required new capabilities linking
current tools.

Figure 1: New capabilities linking existing scenario, system specification and
goal analysis tools.
To deliver the new capabilities we have identified key research
challenges that need to be overcome. These include:
1. How to predict system behaviour according to functions

from different types of scenario design event;
2. How to propagate the effect of learned operational

requirements compliance on goal achievement;
3. How to assess subsequent system-goal impact.
In this paper, we outline related work, then report preliminary
investigations on connecting goals and scenarios using logic
programming analysis tools and learning new arguments for
goal compliance. First findings are demonstrated with a
complex requirements validation problem from our industrial
partner Rolls Royce.

II. RELATED WORK
Surprisingly few computational mechanisms are available

to generate and validate the emergent properties of a large set
of specified requirements. From artificial intelligence, multi-
objective evolutionary optimization algorithms have been
applied to requirements selection in release planning [6], but
these search-based techniques are limited to validating small
numbers of predefined quality goals such as cost and time-to-
deliver. Likewise, the KEYS2 Bayesian-based method has
been combined with decision ordering diagrams to explore
requirements-led changes [7] on single qualities such as
robustness rather than a broader set of system and
organizational goals. What we need are new applications of
artificial intelligence to analyse more complete sets of system
behaviours and qualities, as well as enable human
understanding of those behaviours and qualities.

Several machine learning-based approaches have been
developed for requirements inference (e.g., [13]) and

behaviour model synthesis (e.g., [4,5]). Though the inferred
specification is guaranteed to cover the given scenarios, the
inference process does not take into account available
knowledge of the system (e.g., existing goals or domain
assumptions) and hence is prone to generating goals that
cannot be satisfied in the domain. We need more robust
machine learning-based approaches that take as input both
domain assumptions and combinations of complex scenario
events describing abnormal behaviours and states.

Finally, most computational scenario techniques are used
to specify required system behaviours rather than complex
conditions in which the system must operate. For example,
Live Statecharts extend UML message sequence charts with
means for distinguishing between possible, necessary and
forbidden behaviours [10] in tasks such as program synthesis
[11]. We need new computational scenario techniques that can
automatically generate different combinations of conditions
under which systems must operate in forms that can exercise
system specifications automatically.

III. EARLY RESEARCH RESULTS
Our work to overcome the research challenges builds on 3

pieces of research undertaken previously:
1. A computational tool for automatic scenario generation.

The tool provides services with which to generate static
scenario descriptions of possible inbound events that are
deployed to validate requirements completeness against
these events [17];

2. A tool-based framework that combines model checking,
inductive learning and scenarios to support the elaboration
of a complete set of operational requirements with respect
to given set of functions [12];

3. A computational tool for automatic impact propagation in
large goal models. The tool extends goal modelling in
complex systems with goal satisfaction arguments to
investigate the impact of atomic requirement changes on
goal and requirement compliance [15].

To be able to predict system behaviour from different types
of scenario design event, we are extending existing descriptive
models of abnormal behaviour and state in scenario generation
[16] with specifications of behavioural and quality
consequences that can be implemented in computational form.
To be able to reason about changes introduced to goal models,
we are associating goal models with a declarative
representation using logic programming. We are then using
Answer Set Programming (ASP) [14] as a computational
mechanism for aligning goals and scenarios, in order to
explore the impact of changes to the goal model on goal
achievement and to generate scenarios that illustrate the effect
of such changes. Lastly, to be able to learn operational
requirements from specifications of system functions and
selected system qualities, and to propagate the effect of
learned satisfaction arguments on goal achievement, we are
extending the ASPAL declarative learning system [3] to
accommodate probabilistic reasoning about complex system
goal models expressed using the i* approach.

IV. A DEMONSTRATING EXAMPLE
We demonstrate our approach using the specification of the

VSV actuation control system on aircraft engines developed
by Rolls Royce. Our aim is to implement the following stages
in an end-to-end requirements validation tool in which analysts
can explore the effect of different specification configurations
on goal achievement under different scenario conditions. As a
first step we are prototyping each of the components reported
in A-C separately to enable us to experiment with the potential
benefits of the proposed new capabilities and tool integration.

A. Extending Goal Models with Inbound Scenario Events
Required system behaviours and qualities of a modified

version of the VSV system are represented using the i* model
notation [17] shown in Figure 2. The model includes, in
particular, relationships and goals not explicitly stated in the
normal course description of the system, as the objective is to
create the situation where changes are made to an existing
(partial) model and impact analysis is then required.

Figure 2: An i* Strategic Rationale model of the VSV system showing the
impact of selected abnormal scenario events on the completion of actor tasks
and the validity of actor dependencies

We build on the ART-SCENE tool to generate possible
inbound scenario events to the VSV system. ART-SCENE
deploys a tried-and-tested event generation rule-set, based on
taxonomies of abnormal behaviour and state [16], to generate
possible alternative course events instantiated to given
domains, such as aircraft engines. One such generated
alternative course event is what if the speed signal between
two mechanical devices is missing? One advance that we are
experimenting with is to associate these events directly to goal
models, for example the impact of a missing speed signal
between the intermediate-pressure shaft sensor and the control
system as expressed on the i* model can be further explored.

B. Computing Candidate Impacts on Goal Achievement
We have chosen to use ASP as a means for generating

impacts of possible i* model changes arising from inbound
scenario events on the achievement of goals that are specified
in the model. ASP is particularly suited to support such task
due to its efficient capacity to prompt and explore large search
spaces in a timely manner. To deploy ASP, the i* goal models
need to be mapped into an ASP representation [14], whereby
relationship between artifacts in the i* model can be expressed
as conjunctions of if-then rules.

Consider the goal model given in Figure 2. The following
rules capture an excerpt of the model and in particular the goal
that “torque motor continues running” (rule 1), tasks (rules 2-
3), resources (rule 4) and links between them (rules 6-7).
goal(vsv_torque_motor_running). (1)
...
task(drive_vsv_torque_motor). (2)

task(calculate_demand_of_channel(a)). (3)
...
resource(ip_shaft_speed_n1). (4)
channel(a). (5)
...
happens(achieve(vsv_torque_motor_running), N, S):-
 timepoint (N), scenario(S), (6)
 holdsAt(achieved(drive_vsv_torque_motor), N, S).

happens(achieve(drive_vsv_torque_motor), N, S):-
 timepoint (N), scenario(S), (7)

channel(CH),
holdsAt(achieved(select_channel_with_lowest_demand(CH), N, S),
holdsAt(achieved(depower_tm_outputs_on_nonselected_channel,N,S),
holdsAt(achieved(switch_on_tm_outputs_on_selected_channels,N,S),

 holdsAt(achieved(supply_current_proportional_to_calc_demand), N, S).

The predicates goal, task, resource, channel, timepoint and
scenario are type predicates. For instance, rule (5) states that
a is a constant of type channel. The semantics of the other
predicates is given in Table I. In our interpretation, we
consider achieve(T) and produce(R) to be actions that may be
performed, and achieved(T) and available(R) to be fluents, i.e.,
time-varying properties that may be true or false. In this
representation, variables are represented starting with an
uppercase letter whilst constants with lower case ones.

TABLE I. DEFINITION OF PREDICATES USED IN ASP

Predicate Meaning
achieve(T) Achieve task T
achieved(T) Task T is achieved
produce(R) Produce resource R
available(R) Resource R is available
happens(A, N , S) Action A happens at time point N in scenario S
holdsAt(F, N, S) Fluent F holds at time point N in scenario S

In essence, each rule codifies one link in the i* model. For
example, rule 1 states that the system achieves the goal
“vsv_torque_motor_running” if the task “drive_vsv_torque_motor”
is achieved, so capturing the means-end link between a goal
and its associated task.

Our ASP representation provides a shared interface
between the goal model and scenario-based specifications.
Once it has been produced, we can use an ASP engine (e.g.,
iclingo [8]) to analyse goal achievement, compute scenarios

allowed by the model and the impact of changes to the model
on scenarios and goal achievement. We briefly describe our
initial investigation of impact on goals using ASP.

A goal model can be verified for goal achievement by
simply querying ASP whether all scenarios permitted by the
ASP representation and a set of input entries achieve the goals.
In our running example, the entries correspond to the N2 and
N1 speed sensors measures, P30 engine pressure measure and
the positions of VSVA1 and VSVA2 as follows.

holdsAt(available(volt_prop_to_actuator_pos(vsva2)), 0, s1). (8)
holdsAt(available(volt_prop_to_actuator_pos(vsva1)), 0, s1). (9)
holdsAt(available(n1_speed_measure), 0, s1). (10)
holdsAt(available(n2_speed_measure), 0, s1). (11)
holdsAt(available(p30_engine_pressure_measure), 0, s1). (12)

The tool then produces 32 varied scenarios in 0.010 second
where the goal “vsv_torque_motor_running” is achieved.

Using the what-if statements produced by ART-SCENE,
we can also explore the effects of exception cases on the
achievement of the goals. For instance, consider the question
“What-if the speed signal between N2 speed probe sensor and
the Control system is missing” shown in Figure 2. To
demonstrate the effect of this exception, we eliminate from our
ASP representation the rule that represents the dependency
link between the task “Measure Speed”, controlled by the N2
speed probe, and the task “Calculate IP shaft speed”
controlled by the Control system, i.e.,

happens(achieve(calculate_ip_shaft_speed), N, S):-
 timepoint(N),
 scenario(S),
 holdsAt(available(n2_speed_measure), N, S).

and run the tool. Consequently, the tool produces an output
stating that the goal “vsv_torque_motor_running” can no longer
be achieved. Furthermore, the tool can automatically generate
scenarios explaining why the goal cannot be achieved. In our
example, a sequence of tasks leading to undesirable states in
which the tasks “calculate_demand _of_channel(a)” and
“calculate_demand_of_channel(b)” can no longer be fulfilled
as the required resource IP shaft speed is not available.

Our preliminary experiments suggest an increased benefit
in using ASP as it allows us to predict system behaviour for
given functions using different types of scenario design events
and support related analysis of impacts on system-goals.

C. Learning Assumptions for Satisfaction Arguments
The semantics of the i* model inherently represent some

notion of satisfaction, for instance, a particular task has to be
completed in order for its associated goal to be satisfied. In our
example, for instance, the task of “calculating current demand
in channel a during steady state operation” is satisfied by five
resources being available, namely the LP shaft speed, IP shaft
speed, altitude and the positions for VSVS1 and VSVA2.
However, the model itself does not include assumptions made
by the engineer about the relationship between resources, tasks
and goals, nor does it account for abnormal behaviours.

Satisfaction arguments [9] are used as a means of
associating important domain assumptions to the specification
of system behaviour leading to goal achievement. By attaching
tasks and goals with satisfaction arguments, it is possible to

determine whether a given high-level goal will hold or not.
Our past experiences have revealed that satisfaction arguments
are both time-consuming and difficult for human analysts to
write. Therefore, the ability to generate all possible satisfaction
arguments (i.e., to infer new ones or modify existing ones) is
key to a successful alignment of goal models with scenarios. In
the remainder of this section, we briefly describe how one
aspect of the proposed learning capability link is the
computation of assumptions for satisfaction arguments
associated with tasks using results from Section IV.B.

To compute satisfaction arguments for the achievement of
a task in a goal model, we need to identify a set of positive and
negative scenarios to the goals’ achievement in the original
goal model. These scenarios may be either provided by the
user or automatically generated using the ASP engine. Once
identified, the user is expected to state which of the negative
scenarios should not prevent the goals from being achieved,
and therefore should not be considered as abnormal behaviour.
The selected negative scenarios, called accepted negatives, are
then augmented with the task for which the satisfaction
argument is to be learned. Therefore by forcing the
achievement of the task at the end of the negative scenario, we
are suggesting that there is a domain assumption (or
requirement) that is missing and is needed for the achievement
of the task. The objective of the learning process is to find a
new set of assumptions or to revise existing ones so that both
positive and accepted negative scenarios are allowed to occur
whilst satisfying the goals.

Referring back to our example, we use ASP to identify
positive scenarios to the goal “vsv_torque_motor_running”. To
identify negative scenarios, we prompt ASP to generate
scenarios in which the same goal is not achieved. For this, we
use the same scenario produced in the previous subsection
where the task “calculate_demand_of_channel(a)” and
“calculate_demand_of_channel(b)” have both failed. We
then augment the scenarios with desired tasks.

An ASP representation of the positive and accepted
negative scenarios are given as examples to the learning tool
ASPAL along with the original goal model. The outcome of
this is an amendment to the implicit satisfaction argument for
the concerned tasks stating that if the IP shaft speed resource
cannot be produced, then the current demand for channels A
and B are calculated using only the LP shaft speed, altitude
and VSVA1 position (and VSVA2 position for channel B).

V. DISCUSSION AND CONCLUSION
Many technical challenges need still to be addressed to realize
the new capabilities depicted in Figure1. Specifying an
ordering over tasks in the goal model is important in order to
map them into a scenario-based specification (e.g., MSC).
Providing automated translation of the ASP output into MSC
and vice versa is also essential in order to provide feedback to
the analysts and requirements engineers. The preliminary
investigation will need to be extended to consider the
integration of operational requirements and complete
satisfaction arguments, and the modelling and reasoning about
a set of software qualities or soft goals. We believe that the

declarative features of the existing analysis of learning tools
that we aim to integrate will be key to the success of this
ambitious research agenda.

ACKNOWLEDGMENT
This work is partially funded by the ERC project PBM–
FIMBSE (No. 204853).

REFERENCES
[1] D. Alrajeh, J. Kramer, A. Russo and S. Uchitel, “Elaborating

requirements using model checking and inductive learning,”
IEEE TSE, in press, 2012, doi (10.1109/TSE.2012.41).

[2] S. Chapman. “Hospital boss lambasts NHS e-records system,”
2009. http://www.computerworlduk.com/news/it-
business/13355/ hospital-boss-lambasts-nhse-records-system/.

[3] D. Corapi, A. Russo, and E.C. Lupu. “Inductive logic
programming as abductive search,” Tech. Com. ICLP, 54–63,
2010.

[4] C. Damas, B. Lambeau, and A. van Lamsweerde. “Scenarios,
goals, and state machines: a win-win partnership for model
synthesis,” In 14th ACM SIGSOFT FSE, 197–207, 2006.

[5] M. Emmi, D. Giannakopoulou, and C. Pasareanu. “Assume-
guarantee verification for interface automata,” In 15th Intl
Symp. on Formal Methods, 116–131, 2008.

[6] A. Finkelstein, M. Harman, S.A. Mansouri, J. Ren and Y.
Zhang. “Fairness analysis in requirements analysis,” In 16th
IEEE Intl conf. on RE, 115–124, 2008.

[7] G. Gay et. al. “Finding robust solutions in requirements
models”, J. ASE, 17(1), 87–116, 2010.

[8] M. Gebser et. al. “Engineering an Incremental ASP Solver,” In
24th ICLP, 190–205, 2008.

[9] J. Hammond, R. Rawlings and A. Hall. “Will it work?” In 5th
IEEE Intl Symp. on RE, 102–109, 2001

[10] D. Harel and P.S. Thiagarajan. “Message Sequence Charts”, in
UML for Real: Design of Embedded Real-time Systems (L.
Lavagno, G. Martin and B. Selic, eds.), Kluwer Academic
Publishers, 75–105, 2004.

[11] D. Harel and I. Segall. “Synthesis from Scenario-based
Specifications”, J. of Comp. Syst. Sci. 78(3), 970–980, 2012.

[12] C.W. Johnson and C.M. Holloway. “Questioning the role of
requirements engineering in the causes of safety-critical
software failures,” In 1st Institution of Engineering and
Technology Intl Conf. on System Safety, 352–361, 2006.

[13] A. van Lamsweerde and L. Willemet. “Inferring declarative
requirements specifications from operational scenarios,” IEEE
TSE, 24(12), 1089–1114, 1998.

[14] V. Lifschitz. “Answer set programming and plan generation,”
AI, 138(1-2), 39–54, 2002.

[15] J. Lockerbie and N. Maiden. “REDEPEND: Extending i*
modelling into requirements processes,” In 14th IEEE RE, 354–
355, 2006.

[16] A. Mavin and N. Maiden. “Determining socio-technical
systems requirements: Experiences with generating and walking
through scenarios,” In 11th IEEE RE, 213 – 222, 2003.

[17] E. Yu, P. Giorgini, N. Maiden and J. Mylopoulos, “Social
Modeling for Requirements Engineering,” Cambridge, MA:
MIT Press, 2011.

