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Investigation of Plenoptic Imaging Systems:

a Wave Optics Approach

Massimo Turola

Abstract

Conventional imaging devices only capture a part of the total information

carried by the light. A new generation of imaging devices, plenoptic systems,

use an array of micro lenses to codify the light coming from an object into

a four dimensional function called the light field. The final image is then

obtained after post processing computations on the light field.

In this work plenoptic imaging devices are analysed using a wave optics ap-

proach. A platform to simulate light propagating under the Fresnel approx-

imation in a generic optical system was developed in MATLAB. An optical

system can be modelled as the composition of two basic operators: the free

space propagation and the lens. The first one was implemented developing

an original method derived from the angular spectrum of plane waves theory

of propagation. The second was implemented using a phase mask. The code

was developed to optimize the signal to noise ratio and the computational

time.

Two different configurations of plenoptic imaging systems were simulated.

The first is the plenoptic 1.0 configuration. The general theory of plenop-

tic 1.0 and the post processing algorithms presented in the literature were

verified using the simulation platform. The effects of diffraction were also

evaluated and an original refocusing method is presented. For the second

configuration, plenoptic 2.0, a full study of the optical resolution has been
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made and a detailed analysis of the effects of diffraction is presented. The

results achieved with the simulations have been used to design a working

prototype of a plenoptic microscope.

This novel wave optics approach enables us to quantify for the first time in

the literature the effects of diffraction on this class of devices. In plenoptic

1.0 diffraction is a source of noise due to the crosstalk between neighbouring

lenslets. In plenoptic 2.0 systems the optical resolution is directly propor-

tional to the magnification of the lenslet array. A small magnification leads

to a high directional sampling but at the same time to a loss of optical res-

olution. The finite dimensions of the lenslets together with the wave nature

of light produce a physical limit to the amount of information that can be

achieved sampling the optical fields with those kind of devices.
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The scientific man does not aim at an immediate result. He does not expect

that his advanced ideas will be readily taken up. His work is like that of the

planter, for the future. His duty is to lay the foundation for those who are

to come, and point the way.

Nikola Tesla
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Introduction

The information contained in the light surrounding the environment we live

in is captured by different living beings according to the structure and the

nature of their visual systems. The human eye is a single lens imaging sys-

tem whose retina is composed of different types of photosensitive cells [30].

Those are rods, cones and photosensitive ganglion cells. There are three

types of cone cell, each one with its specific absorption bandwidth centred

on a specific wavelength giving to the retina the capability to act as a an

RGB coclour sensor. For this reasons cameras have always been designed to

capture light in the same way the human eye works, a single lens with three

colour pixels producing two dimensional images based on three colours [71].

This way of designing cameras produces a loss of information with respect

to all the information included into the light reaching the imaging system.

The reality we see and measure with the instruments and the senses we have

is just a projection of a more complex reality and great part of the informa-

tion carried by the electromagnetic field is lost. This situation is similar to

the one described in Plato’s Allegory of the cave where a group of people are

being chained for all their life inside a cave and facing a blank wall on which

shadows of different objects are projected. For them the shadows produced

by the objects passing in front of the fire are the only reality they know since
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they are limited in their perception by their situation [58] . The same hap-

pens with human perception and with the camera that imitates the human

visual system. All conventional imaging instruments are limited and the im-

ages they produce are projections of a more complex quantity containing all

information that light carries. Even the most advanced imaging instrument

will always produce data that are close to reality, but that does not reach it,

both because of intrinsic properties of light, such as diffraction, and because

they have been designed to collect only a small set of reality. Adelson and

Bergen [1] in 1991 proposed to describe the whole set of information con-

tained in the light by defining the plenoptic function, a seven dimensional

function describing intensity, direction and wavelength of rays propagating

in space. According to Adelson and Bergen a conventional imaging device

captures projections of this function. For example a photo is obtained by

integrating along the directional variables of the function, obtaining a two

dimensional intensity pattern of the object imaged losing information on its

three dimensional structure. If the integration is performed also along wave-

length the image will be in grayscale and the information about wavelength

will be lost. [2, 52].

This work will describe a new set of instruments that are able to sample the

plenoptic function and the post processing methods to access all the informa-

tion it carries. The character of this thesis will be mostly computational, and

numerical simulations will be used as an instrument to explore the potential

and define the limitations of this class of instruments.

The idea that more information is carried by the light contained in a scene

was first proposed by Leonardo da Vinci who described the volume contain-
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INTRODUCTION

ing the light as filled by a dense array of light rays, which he called radiant

pyramids [1]. The plenoptic function described by Adelson and Wang [1] is

the formalization of this concept of radiant pyramids adding to the directions

and positions of the rays information on the wavelength. Once the extra in-

formation contained in the scene has been understood the problem is to find

a method to measure it.

The first work about capturing the plenoptic function was done by Frederic

Yves in 1903 [32] on his works on parallax panorama-grams and by Lipp-

mann in 1908 [12] who proposed an array of pinhole cameras. The key to

capture the plenoptic function is to have multiple views of the object to im-

age. This can be done by translating a single camera to different positions

over a spherical or planar surface [41, 65, 27, 34], a method known as time

sequential sampling, or by using an array of cameras [72, 74, 54] known as

multi-sensor sampling. Multi-sensor techniques give high performances in

term of resolution but are extremely complicated and expensive, while time-

sequential techniques suffer the loss of the capability to capture dynamic

scenes [71]. The solution between cost and resolution is given by single-shot

plenoptic sampling techniques based on a space multiplexing of the plenop-

tic function [71], as proposed by Herbert Ives [33] and Lippmann [12]. This

single-shot space multiplexing method produces an array of elemental images

on the sensor and this introduces several trade-offs between spatial and direc-

tional resolution [71, 20] as well as optical resolution trade-offs [67]. Several

families of devices have been developed.

This work will describe those that sample the plenoptic function using an ar-

ray of micro lenses in front of the sensor as described by Adelson and Wang
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[2], Ng [53], Ng et al.[52], Ueda et al. [68] and Georgiev and Lumsdaine [17].

In particular Ng et al. developed the first generation of plenoptic imaging

systems, known as plenoptic 1.0, then improved by Georgiev who modified

them giving birth to the second generations, or plenoptic 2.0. These two

classes of instruments will be treated in this work. Other methods to cap-

ture the plenoptic function are based on creating mask patterns that enable

frequency domain multiplexing of the plenoptic function [70, 40], compressive

imaging techniques [49] or exotic solutions such as a slit camera [35]. The

resulting images obtained with all these different methods contains all the

extra information contained in the plenoptic function, but they are codified.

Therefore the final image is obtained after implementing post processing al-

gorithms in order to decode this information. For this reason the process of

capturing plenoptic images is also called computational photography [71, 51].

Along with the image rendering several post processing features can be

performed once the information captured is decoded. These features in-

clude digital refocus and changing the point of view [52], estimating depth

[35, 71, 18, 15] and super-resolution imaging [6, 61, 16, 13].

Summary of the Thesis and its Novel Contribution to
the Field

The purpose of this work is to analyse the optical performances of micro lens

array based plenoptic imaging systems. When this project started all existing

work on this kind of instrument had been done using a ray optics approach

and to place order in a relatively new field not yet well documented and un-
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INTRODUCTION

derstood. This work uses a wave optics approach so as to study the behaviour

of a plenoptic imaging system at its diffraction limit. This is the first work

that quantifies the effects of diffraction on the quality of raw sensor images

and rendered images, defining a new trade-off between spatio-angular reso-

lution and optical resolution. Most of the applications of plenoptic imaging

considered in the literature preceding this work regarded photography and

imaging of macroscopic objects. When attention is moved to the microscopic

world, diffraction effects become important. The first thing that was done

was to develop a simulation platform for wave propagation in a generic opti-

cal system. Existing methods to implement free space propagation have been

investigated and a variant of one of the existing methods has been proposed

in order to make it more efficient. This work also defines a new empirical

method to simulate light in any state of coherence based on the true physical

nature of coherence and it has been shown to give realistic results. Once the

simulation platform was properly tested it was used to simulate a plenoptic

imaging system. Different parameters were changed in order to investigate

their influence on the optical properties of the system. At the same time

post processing algorithms to extract information from the raw sensor data

were developed following the methods in the literature. Some innovative so-

lutions have also been developed. Different configurations of plenoptic setups

have been compared, with particular attention to the optical performances

of plenoptic 2.0 imaging systems. The results from these studies were then

used to build a plenoptic microscope prototype in the laboratory.

In the first chapter an introduction of plenoptic imaging is given. A rigorous

explanation of how the seven dimensional plenoptic function can be reduced
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to a four dimensional function called light field is given. A definition of the

light field will be given and an explanation of how the light field carries in-

formation regarding the 3D structure of the scene is provided including how

it is sampled by the two different configurations, plenoptic 1.0 and plenoptic

2.0. A rigorous theoretical description of both classes of plenoptic systems

is given using geometrical optics, with particular attention to the post pro-

cessing methods to decode the information in it.

The second chapter is a description of the simulation platform developed in

MATLAB that implements wave propagation of light under the Fresnel ap-

proximation. It has been designed to be a versatile and modular platform

composed of operators that act on an input optical field to give an output

field. The first operator described is the free space propagation based on the

Fresnel approximation. The scalar theory of diffraction will be treated from

a theoretical point of view starting from Maxwell’s equations to end with the

expression of Fresnel diffraction integral. Different methods to implement

Fresnel propagation will be analysed highlighting advantages and disadvan-

tages of each one of them in terms of resolution, signal to noise ratio and

computational effort. To optimize the trade-off between the signal to noise

ratio and digital aliasing a new wave propagation method is developed in

this work and will be presented in this chapter. Then the lens operator is

described and used to show results of simulation of simple optical systems

with the purpose of comparing the performances of the five different free

space propagation operators. This chapter is concluded with an explanation

of the method to simulate partially coherent light which was developed.

The third chapter is a complete description of a plenoptic 1.0 system explain-
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ing how to design and run simulations and how the to implement existing

post processing algorithms in MATLAB to render the final image from the

raw sensor data. Digital refocus principles and methods will be described.

An original method to estimate the depth of point sources will be also pro-

posed.

Chapter four focusses on the simulations performed to define the optical

properties of a plenoptic 2.0 system. The impulse response of the system will

be calculated together with its modulation transfer function. A frequency

analysis of the system will be presented, showing how the different parame-

ters of the system influence the optical resolution of the final rendered image.

The detailed optical analysis of a plenoptic system using a wave optics ap-

proach is one of the key novel contributions of this work to the field.

Chapter five contains the description of the setup built in the laboratory to

verify the conclusions achieved with the simulations. A full description of

the system will be given, as well as a description of the protocol to follow

to capture light field images. Results from this laboratory prototype will be

presented.
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Chapter 1

Theory and Methods of
Plenoptic Imaging

1.1 Introduction

A camera is a device that captures light in a scene [75]. The main con-

stituents of a conventional camera are the detector and lens. The rays of

light passing through the aperture of the lens are recorded on the sensor as a

two dimensional irradiance map of the scene imaged. Therefore a traditional

camera performs a limited sampling of the complete set of rays and in general

of the amount of information contained in the scene [51]. Finding methods

to quantify, extract and process the full set of information contained in the

light field is a comnplex problem. The space is filled with a dense array of

light with various intensities [1]. From each point of the object imaged a cone

of rays departs and fills the whole space while propagating. If a traditional

camera is placed at a certain position from the object it will sample only the

rays passing through its aperture. The set of information contained in this

cone of rays will then be recorded on a two dimensional plane. This process of

recording light coming from a three dimensional scene on a two dimensional
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plane causes loss of information. Following Adelson and Bergen [1] all the

information carried by the light propagating into space can be described by

a function, called the plenoptic function. Different parametrizations of the

plenoptic function are possible. One of these is a four dimensional function

called Light Field that will be discussed in more detail in the next sections.

A new class of optical instruments, called computational cameras are also

described; these are able to record and extract information from the light

field. Computational cameras differ form a conventional camera in the way

they sample the light coming from the object using a non conventional new

optics that codifies the light that hits the detector. This coded information

is then decoded by a computational stage, in order to extract an image [51].

Schematics of the difference between a conventional and a computational

camera can be found in figure 1.1

Conventional camera

Computational camera

New Optics

Detector

Computations

DetectorLens

Final Image

Final Image

Figure 1.1: Differences between a traditional camera and a computational
camera [51].
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1.2 Plenoptic Function and the Light Field

A grayscale photograph taken by a conventional camera represents the in-

tensity of light seen by a single viewpoint, at a single time, averaged and

weighted over the wavelengths of the visible spectrum [1]. The term view-

point is used to identify a direction of view of the scene. For each point of the

sensor, the intensity can be represented as function of the position P (x, y).

A colour photograph adds information about the wavelength λ of the light

adding a third variable, P (x, y, λ). If several photos are taken in succession

forming a movie the time dependence is added, P (x, y, λ, t) and if the movie

is captured using holographic techniques, i.e. saving phase and amplitude of

the optical field, all the information regarding the light intensity observable

form any viewpoint
−→
V = (Vx, Vy, Vz) is recorded. Therefore to describe all

the information that is potentially available from the light coming from the

object a seven dimensional function is needed. It takes the name of plenoptic

function and its name comes from Latin plenum that means full [2, 1, 71].

The plenoptic function implicitly contains a description of every possible

photograph that can be taken of a particular scene from any possible point

of view. To record the plenoptic function, one should move the camera along

all the possible positions
−→
X = (x, y, z) around the object and take a snapshot

or have an array of cameras surrounding the object taking snapshots simul-

taneously. The plenoptic function is an idealized concept and it is impossible

to record it completely. However it is possible to acquire samples of it or pro-

jections along one or more dimensions. For example a conventional grayscale

picture is a two dimensional slice along the coordinates x and y of the seven
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1.2. PLENOPTIC FUNCTION AND THE LIGHT FIELD

dimensional plenoptic function taken from a single point of view, averaging

the wavelength and integrating over the exposure time. A plenoptic camera is

able to record a section of the plenoptic function [1]. In particular, it records

the part of the plenoptic function whose rays pass through the aperture of

the camera, hence all the possible viewpoints contained in the lens aperture.

Final images are constructed by sectioning the plenoptic function along cer-

tain coordinates. The process of extracting information from the plenoptic

function is called rendering [41, 17] and it is where the computational stage

operates. Before proceeding in describing a plenoptic camera in detail it is

useful to define another parametrization of the plenoptic function derived

by Levoy and Hanrahan [41] that is more useful to implement the compu-

tational algorithms in the following sections. This parametrization is called

light field and is the radiance as a function of position and direction [41].

It is described by a set of four coordinates, two spatial coordinates and two

directional coordinates and for this reason is often referred to as the 4D Light

Field. There are two possible representations of the light field: the two-point

representation and the point-angle representation. With reference to figure

1.2 in the two point parametrization a ray of light is propagating in the free

space from the point (x,y) to the point (u,v). Its direction of propagation

in the three dimensional space is defined by the two points where it crosses

two parallel planes. Therefore the set of coordinates (x,y) and (u,v) defines

only one ray of light [41]. The point angle parametrization instead uses the

coordinates of the point where the ray intercepts a plane perpendicular to

the optical axis, and the angles that it forms with the optical axis along the

directions x and y, namely θx and θy, as shown in figure 1.3 [15]. In both
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cases the intensity is a function of four coordinates.

The 4D light field is therefore:

L(x, y, u, v) = L(x, y, θx, θy) (1.1)

(x,y)

(u,v)

Figure 1.2: Two point representation of the light field. Each ray of light is
uniquely defined by the coordinates of two points of interception.

(x,y)

(θ
x
,θ

y
)

y

x

z (optical axis)

Figure 1.3: Point angle representation of the light field. A ray of light is
uniquely defined by the coordinates of a point that belongs to a plane per-
pendicular at the optical axis z and by the angles θx and θy that it forms
with the optical axis along the directions x and y.

For each pixel of the sensor of a plenoptic camera it is possible to de-
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termine these four coordinates. The information provided by the two extra

directional coordinates enables a set of computational features such as 3D

reconstruction, synthetic refocus, full depth of field and aberration correction

[52]. Each of these features is possible after having decoded the light field

with the computational stage as shown in figure 1.1.

1.3 Plenoptic Camera

A plenoptic camera is a camera that records the 4D light field as described in

equation 1.1. The version proposed and built by Adelson and Wang in 1992

[2] is composed of a main lens, a sensor and a micro lens array placed in front

of the sensor [2]. The presence of the micro array enables the codification

of the directional information on the sensor, as will be discussed in the next

sections. This coded image represents the raw data of the plenoptic camera

and it can be seen in figure 1.4:

Sensor

Micro lens array

Main lens

Figure 1.4: Plenoptic camera and its fundamental components. The presence
of the micro array allows to record the light field .

The optical performance of the camera depends on the array’s design
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characteristic. The main issue with the micro lens array is its position with

respect to the main lens and the sensor. Depending on where it is placed

two types of cameras are possible:

• if the main lens forms its image on the micro array and the sensor plane

is conjugated with the main lens it is the first generation plenoptic

camera, or plenoptic 1.0 [53] as seen in figure 1.5 top.

• if the main lens forms its image on a plane that is different from the

micro array plane and the micro lenses image the main lens image plane

on the sensor it is the focused plenoptic camera, or plenoptic 2.0 [17]

as seen in figure 1.5 bottom.

In the next sections both configurations will be extensively analysed and the

way in which they capture the light field will be explained with particular

attention to the differences in the raw data they produce. Their performances

in term of lateral and directional (or angular) resolution will be detailed. The

computational algorithms to render images from the raw data will also be

extensively explained.
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f
µ

fab

f

Figure 1.5: Top: Plenoptic camera 1.0. The main lens is focused on the
object and forms an image on the micro array. f is the focal length of the
main lens and fµ the focal length of the micro lens array. Bottom: Plenoptic
camera 2.0. The main lens is focused on an object and forms an image on
the plane represented by the dashed line. The micro array acts as a relay
between the main lens image and the sensor, satisfying the lens equation
1/a+ 1/b = 1/fµ.

1.4 Plenoptic Camera 1.0

The first version of the plenoptic camera has been proposed and realised by

Adelson and Wang in 1992 [2] and then improved by Ng etal. [53] and by Ng

[52]in 2005-6.

The purpose of Ng was to design a camera that can use ray tracing tech-

niques to compute synthetic photographs after the acquisition of the four
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dimensional light field. The main difference between Ng’s camera and Adel-

son and Wang’s camera is that the latter was a prototype that utilized a

system of relay lenses from the main lens image plane and the micro lens

array [53] while in Ng’s camera the array of micro lenses is placed directly

in front of the sensor. Each micro lens forms an elemental sub image on the

sensor and the directional information is contained inside the sub images.

The main lens focuses the rays coming from one point on the object plane on

a single point in the image plane. If an array of micro lenses is placed at this

image plane all the rays will end up on a single micro lens. The micro lens

will then split this bundle of rays on the sub image underneath it, separating

the rays according to their direction. This is explained in figure 1.6 where

the plenoptic camera is modelled as a simple 2 f system. This behaviour can

be achieved also using an array of pinholes instead as proposed originally by

Yves. The problem using pinholes is that the amount of light reaching the

sensor is considerably lower since a pinhole is restricting the energy output.

Since the sensor plane is conjugate with the main lens under each micro lens

there will be an image of the main lens aperture. For simplicity in figure

1.6 the system is composed of only five micro lenses and each sub image is

composed of only three pixels. The rays departing from a single point in the

object plane shown in blue, red and green, are transferred by the main lens

on a single micro lens. As an effect of the micro lens, each ray ends on a

different pixel of the micro image.
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P

2f
2ff

µ

1

2

3

d

Figure 1.6: Ray diagram of a plenoptic 1.0 system. The main lens is in a 2f
configuration and the sensor plane is conjugated with the main lens plane.
The micro lens position maps the position (x,y) of the point P, while the sub
image maps the directions of the rays coming from that point. The ray with
direction θ1 falls on the pixel 1 (blue), the ray with direction θ2 falls on the
pixel 2 (green) and the ray with direction θ3 falls on the pixel 3 (red). The
sub image d maps the direction of the rays.

Since in the simplified case of figure 1.6 there are only three pixels per

micro lens, the maximum number of directions that can be sampled is three.

A plenoptic camera samples as many directions as the number of pixels under

each lenslet, therefore the directional resolution is given by the sub image

resolution. Figure 1.6 also shows that the spatial position of the point P is

recorded at the micro array plane and the sampling of the position is linked

to the number of lenses in the micro array. This leads to a trade-off between

directional and spatial resolution since due to the finite dimension of the

sensor, when more pixels are used to record the direction the same amount

of pixels are lost to record the position.

With reference to figure 1.7 two points are shown at two different positions

on the same focal plane. The task now is to find a link between Levoy’s and

Hanrahan’s two point representation of Light Field [41, 48] and the output
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data of the plenoptic 1.0 camera. Each sub image under each lenslet is an

image of the main lens aperture, while the main lens image is formed on the

micro array plane. To define the direction of a ray two points are needed.

One point is its origin, the second is where it crosses the main lens. These

two points are sampled by the lenslet array and by the sub images on the

sensor, as shown in figure 1.7. Therefore it is possible to refer to the micro

lens position on the array with spatial coordinates (x,y), and to the pixels of

the sub images as the directional coordinates (u,v). With an array of 5 × 5

micro lenses and a sensor of 15 × 15 pixel, the 4D light field recorded will be

a 5 × 5 × 3 × 3 function. Each point of this function is an intensity value

identified by four coordinates, 2 spatial and 2 directional. the sampling of

the spatial coordinates is 5 × 5, the sampling of the directional coordinates

is 3 × 3.
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Figure 1.7: Sampling of Light Field. Each ray is described by a set of four
coordinates, two spatial (x,y) and two directional (u,v). The spatial coor-
dinates are sampled by the position of the lenslet in the micro array, the
directional coordinates are sampled by the pixel under the lenslet.

This sampling used in the example above is of course very low. The
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amount of light captured by a lens is defined by its f-number that is the

ratio between the focal length and the aperture diameter. The f-number is

proportional to the number of rays with different directions that enter into

the main lens aperture diameter. The relative f-number can also be defined

as the ratio of the distance between the lens and its image and the aperture

diameter.

f# =
v

d
(1.2)

where v is the distance from the main lens and the image plane and d its

aperture diameter. Another useful quantity to describe the amount of direc-

tions sampled by a lens is its numerical aperture, defined, referring to figure

1.8 as:

NA = nsin(θ) ' nθ =
2

f#
(1.3)

Where n is the index of refraction, and θ is half the total range of directions

sampled by the lens. The assumption of dealing with small angles was made

because the distance between the main lens and the micro array is bigger than

the diameter of the micro lens. In air, n=1, therefore the relation between

the f-number and the range of directions is given by:

∆θ = 2θ =
4

f#
(1.4)

To be sure that all the directions sampled by the main lens are mapped

into the light field, the f-number of the lenslet should match the f-number

of the main lens [53] as shown in figure 1.8. This condition known as f-

number matching is very important in plenoptic imaging. If the f-number of

the lenslet is smaller than the one of the main lens then there is an under

sampling of the rays intercepted by the main aperture, since some of the
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pixels remain dark. If the f-number of the lenslet is bigger there is cross-talk

between the sub images. In both cases directional information is in part lost

(figure 1.9) .

D

z

Sensor

plane

Main lens

micro

lens

d

z
µ

∆θ
∆θ

F
#
 = D/z = d/z

µ

θ

Figure 1.8: F-number matching between the main lens and the micro lens in
the array.

Figure 1.9: When the f-number is matched, all the rays captured by the main
lens are mapped on the sub image (yellow). If the f-number of the lenslet is
smaller (red), the sub image is smaller and there is an under sampling of the
set of rays. If the f-number of the lenslet is bigger (green), the sub image is
larger and cross talk happens between neighbouring sub images .
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1.4.1 Phase Space in Plenoptic 1.0

It is useful to analyse the sampling of the light field from a phase space point

of view. In figure 1.10 a point source is sampled by the lenslet array.

The one dimensional case is considered here for simplicity. The single ray

departing from the point P on the focal plane of the main lens is refracted

by the optical system and is captured by a pixel on the sensor that belongs

to the sub image of a lenslet. The sub image position on the array gives the

coordinate x. The pixel of the sub image gives the direction θx. Therefore

in the phase space a single ray is represented by a point with coordinates (x,

θx). Considering all the rays departing from the point P(x) captured by the

main lens, they will all be focused on a single lenslet and then split on the

sub image. Each pixel of the sub image corresponds to a different direction

(ray). In the phase space this is equivalent to a vertical line. The physical

meaning is that for a single spatial position x corresponds a range of ∆θx

possible different directions, defined by the numerical aperture of the main

lens matched with the one of the lenslet.
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Figure 1.10: Sampling of the light field and phase space representations of
the rays.
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1.4.2 Light Field Parameterization

Before discussing the rendering procedures for plenoptic 1.0 light field data,

the three different parametrizations of the light field from the raw image will

be described. A plenoptic 1.0 raw image looks like an array of sub images,

each sub image contains samples of direction. An example of a plenoptic

raw image can be seen in figure 1.12. The raw image has been generated

by simulating light propagating into a plenoptic camera, using a Matlab

toolbox developed as part of this work which is described in detail in chapter

2. The simulated camera is composed of a 60 mm focal length lens, with

an aperture of 7 mm, and a sensor with a resolution of 1500 × 1500 pixels.

The micro array is composed of 75 × 75 lenslet with a focal length of 5

mm. The object imaged is a flat two dimensional image, therefore no depth

information is stored. The reason for using flat objects to test a plenoptic

imaging system is due to the fact that at this point of the work the interest is

focussed on understanding how the directions of the ray of light are recorded

on the sensor, therefore reducing the degree of freedom of the problem to a

flat isotropic isotropically emitting object simplifies the understanding of the

problem. In the next chapters more accurate simulations will be presented

taking into account the depth.
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Figure 1.11: Image used as an object in the simulations.

Figure 1.12: Left: Example of a raw plenoptic 1.0 image. Right: Zoom on
the raw image of the region indicated with the red square. Each lenslet is
formed by 20 × 20 pixels. Each pixel represents a direction of the rays hitting
the lenslet that produced the sub image.

This raw image is the first parameterization of the light field and it is

called the camera view. Pixels are arranged according to the positional co-

ordinates, and each sub image contains the directional coordinates as shown

59



1.4. PLENOPTIC CAMERA 1.0

in figures 1.12 and 1.13.

A second parameterization, known as the array view, is obtained by rear-

ranging the pixels according to the directional coordinates [52]. The result

is an array of N × N sub images, where N is the number of samples of the

directional coordinates. Each sub image represents the point of view linked

with a direction (θx, θy). The array view can be seen in figure 1.14 and 1.15

while the method to pass from the camera view to the array view is illus-

trated in figure 1.13.

x

y

v

u

Raw Data

x

y

u

v

Array View

Subimage

Figure 1.13: The array view is an array of the different point of view obtained
rearranging the pixels according to the directional coordinates.

An example of the array view parametrization of the raw image in figure

1.12 is shown in figure 1.14.

The third and last parametrization of the light field is the 4-D radiance, a

four dimensional function that represents radiance as a function of position

and direction. [41]. This third parametrization is less intuitive but is very
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useful from a computational point of view since it is a four dimensional array,

and every ray can be addressed by a set of four coordinates, or indices, as

will be explained in detail in chapter 4.
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Array view

Figure 1.14: Array view of the raw data shown in figure 1.12.

Array view

Figure 1.15: Zoom of the central part of the array view showing in detail the
different points of views.
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1.5 Plenoptic 1.0 Rendering

The act of de-codifying the information present on the sensor of the plenop-

tic camera in order to get an image is called rendering. In a conventional

2D image the intensity of each single pixel, corresponding to a position, is

obtained by summing the contributions of all the rays of light converging to

that point of the sensor [17] as shown in figure 1.16. This is equivalent to

integrating over all possible directions for each position.

θ

x

y

Figure 1.16: The intensity of a single pixel is obtained summing all the rays
of light coming from all the possible directions.[52]

The same is valid for a computational image, where the integrations are

made in post processing from the raw plenoptic data captured. If L(x, y, u, v)

is the sampled 4D light field, the radiance E(x, y) on a pixel (x,y) of the final

rendered image will be given by integrating all the rays coming from all the

sampled directions (u,v) for any fixed point (x,y). Following the work of Ng

63



1.5. PLENOPTIC 1.0 RENDERING

[52]:

I(x, y) =
1

z2

∫∫
L(x, y, u, v)A (u, v)cos4θdudv (1.5)

Where z is the distance between the main lens and the sensor, θ is the

angle formed by the rays and the sensor normal to the sensor surface and

cos4 θ is the vignetting factor. It takes into account the fact that the total

light illuminating the sensor declines moving outward from the centre of the

image. The result is a relative darkening of the image toward its borders.

This phenomenon can be well described by the so called ”cosine fourth” law

[37]. A (u, v) is an aperture function that limits the directions upon which

integration takes place to the ones included in the aperture of the main lens.

In the paraxial approximation, the cos4θ term can be dropped as well as the

1/z2 term and equation 1.5 becomes:

I(x, y) =

∫∫
L(x, y, u, v)A (u, v)dudv (1.6)

From a computational point of view, since the samples are discrete, the

double integral becomes as a sum along the directional coordinates u and v.

The total intensity of each pixel of the rendered image is then the sum of the

intensities of the pixels that form the corresponding sub image divided by the

number of pixels in the sub image. For a light field with N × N directional

samples, the intensity I(x, y) is given by:

I(x, y) =
1

N2

N∑
i=0

N∑
j=0

L(x, y, i, j) (1.7)

This can be seen in the phase space where each pixel of the final image is

made by the mean of all N directional samples [17], as shown in figure 1.17.
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Figure 1.17: Rendering an image from plenoptic 1.0 raw data is equal to
summing all the directional samples for each position. This process is shown
for the (x, θx) slice of the phase space. [17]

From figure 1.17 it can be noted that rendering an image from a light

field captured by a plenoptic 1.0 camera causes a loss of resolution compared

with the image collected by a conventional camera using the full sensor. Each

pixel of the final image corresponds to one lenslet. Considering a plenoptic

camera composed of a sensor with a resolution of 1000 × 1000 pixels and

a micro lens array of 100 × 100 lenslets, each sub image will contain 10 ×

10 directional samples. All these samples will contribute in computing the

intensity of a single pixel, therefore there will be only one pixel per lenslet

in the final image whose resolution is 100 × 100 pixels. This is the main

limitation to plenoptic 1.0 cameras: the better the directional information

is sampled, the more spatial resolution is lost [17, 52]. An example of a

rendered image from a computer generated light field is shown in figure 1.18
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Figure 1.18: rendered image from the raw data in figure 1.12. Resolution is
only 75 × 75 pixels.

This loss of resolution arises from the fact that the lenslet array is not

focused on the sensor and it produces on the sensor a blurred image [17].

1.6 Plenoptic Camera 2.0

A new kind of plenoptic camera, named focused plenoptic camera or plenoptic

camera 2.0, has been proposed by Lumsdaine and Georgiev et al. [43, 44].

As shown in figure 1.5 the plenoptic camera 2.0 is based on an array of micro

lenses focused on the image plane of the main lens. In this configuration the

sensor plane becomes conjugated with the main lens image plane. As will be

discussed in the next sections, in a plenoptic 2.0 camera there is a flexible

trade-off between angular and spatial resolution [17] leading to a full sensor
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resolution in the final image [4, 21]. There are two possible configurations of

the plenoptic 2.0 camera, as shown in figure 1.19. In both configurations each

micro lens forms on the sensor a relay image of part of the main lens image.

The position of the micro array is determined to satisfy the lens equation

1/a+ 1/b = 1/fµ, where a is the distance from the main lens image plane to

the micro array, b is the distance from the micro array to the sensor plane

and fµ is the focal length of each micro lens. If b is bigger than the focal

length fµ the camera is in a Copernican configuration where the main lens

image is a real image in front of the micro array, while if b is smaller then

fµ, the distance a happens to be negative and the main lens image is formed

behind the sensor plane. This is called Galilean configuration and the micro

array images a virtual main lens image (figure 1.19) [17].
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Figure 1.19: If the main lens image is formed in front of the micro array
the configuration is called Copernican, top, and the focal length of the micro
array is smaller then the distance b. If the main lens image is formed behind
the micro array the configuration is Galilean, on the bottom, and the focal
length of the micro array is bigger then the distance b.

For both configurations the magnification of the micro array stage is:

m =
b

a
(1.8)

The ratio between the distances a and b plays a crucial role in sampling the

light field in the plenoptic camera 2.0. Figure 1.20 shows a raw plenoptic 2.0
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image of a point source acquired through simulation (as discussed in chapter

2). The system is composed of a main lens with a focal length of 60 mm,

in a 2f configuration and a micro array made of 150µm diameter lenslets

with focal length of 5.3 mm. The distances a and b are set in order to

have a magnification m of 0.3. In this configuration each point of the main

lens image is sampled by three lenslets and each sub image corresponds to

a point of view of the object. The number of points of view depends on the

magnification of the micro array stage. Hence, in order to have more than

one point of view recorded it is necessary that the magnification m is less

than one. Looking at figure 1.20 the raw image is composed of a 3 × 3 matrix

of sub images, three points of view in the x direction and three along the y

direction. Figure 1.21 shows central 5 × 5 sub images in the raw data. The

central sub image records the direction corresponding to the central point of

view, indicated in both figures with the number 2. The lenslets on the left

and on the right of the central one record the directions corresponding to

the point of views from the left, indicated with 1 in figure 1.22, and right,

indicated with 3. The sub images 1 and 3 are shifted towards the outer edge

of the sub image. This happens as an effect of the change in the point of view

as well as because the sub images are flipped upside down as a consequence

of the imaging law.
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1.6. PLENOPTIC CAMERA 2.0

Figure 1.20: Raw data of a point source sampled by a plenoptic 2.0 system
with a magnification of the micro array stage equal to 0.3. Data acquired
with numerical simulations.

33

22

1

Figure 1.21: Zoomed raw data of a point source sampled by a plenoptic 2.0
system with a magnification of the micro array stage equal to 0.3. Data
acquired with numerical simulations. The grid represent the boundaries of
each sub image to show how the point of view of the point source changes
across the lenslets. The sub images are shifted by a quantity proportional to
the position of the lenslet in the array.
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main lens
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image plane
micro arraysensor plane
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Directional coordinates sampled by a single lesn let: d/a

d/a

d/a
d/b

d/b

1
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shift
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Figure 1.22: Sampling of the light field by a plenoptic 2.0 system with a
magnification of m=0.3. For simplicity the one dimensional case is shown.
Each micro lens has a diameter equal to d, a focal length fµ, and images the
main lens image on the sensor according to the lens law 1/a+1/b = 1/fµ The
total range of directions that can be sampled is given by d/b. Each lenslet
samples a sub set of directions equal to d/a as a single direction. The range
of directions shown in red are sampled by the central micro lens as a single
point of view. The angular resolution is therefore d/a and the total number
of directional samples is a/b = 1/m. In the specific case shown is 3.

As in the 1.0 case, the f-number of the micro lenses matches the f-number

of the main lens. With reference to figure 1.22 because of the f-number

matching condition the total number of directions captured by the main lens

is defined as Θ = D/z2 = d/b where D is the aperture of the main lens, z2

the distance of the main lens image, d is the diameter of the lenslet and b

is the distance between the lenslet and the sensor. The amount of directions

captured by a single lenslet is equal to p = d/a. Hence the range sampled

by the single lenslet with respect to the total range of directions in the light

field is:

p

Θ
=
d

a

b

d
= m (1.9)
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1.6. PLENOPTIC CAMERA 2.0

Hence:

p =
b

a
Θ = mΘ (1.10)

Therefore the magnification of the lenslet array determines the angular reso-

lution of the plenoptic 2.0 system. In the case illustrated in figures 1.23 and

1.22 for each position x on the main lens image plane, 3 directions are sam-

pled. Since the main lens image is scaled by the lenslets by a factor of m, the

resolution of the rendered image will be b/a times the resolution of the full

sensor. This fact implies that the spatio-angular trade off of the plenoptic

2.0 camera is not fixed by the number of micro lenses, but it is determined

by the optical geometry of the micro lens stage, and is fully determined by

the magnification m = b/a. The more samples of the directional coordinates,

the less will be the spatial resolution of the rendered image. In section 1.7

a more rigorous proof of this will be given. Figure 1.23 shows the effect of

magnification on the raw image of a point source. If the magnification is 1,

the main lens image is replicated on the sensor under only one lenslet. No

further information is given by the micro array stage. The whole range of

directions is sampled by a single lenslet and with only one point of view it

is not possible to recover the directional information. In order to have more

than one point of view, m should be at least 0.5. In this case the point source

is replicated under a total of four lenslets giving 2 × 2 points of view to ren-

der the image. If the magnification decreases further, the number of points

of view increases. The directional information in plenoptic 2.0 is recorded

not by a single lenslet like in the 1.0 case, but across many lenslets, since

each point of the object plane is imaged by a number of lenslets proportional

to the inverse of the magnification 1.8. Each lenslet samples a part of the
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directional coordinates contained into the solid angle d/a. The more point of

view that are present, the smaller will be the solid angle d/a, and therefore,

the better will be the angular resolution. [44]

m=1 m=0.5

m=0.25 m=0.1

Figure 1.23: Raw images of a point source simulated with different magni-
fications. From top left to bottom right: m = 1, m = 0.5, m= 0.25, m =
0.1.
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ANALYSIS

1.7 Plenoptic Camera 2.0: a Geometrical Op-

tics Analysis

This section provides a mathematical proof of the concepts introduced in

section 1.6. The mathematical model of Light Field sampling in plenoptic

2.0 has been developed by Lumsdaine and Georgiev [44, 43]. The goal of

this chapter is to express the intensity profile present on the sensor as a

function of the light field at the focal plane of the main lens. The intensity

on the sensor is given by integrating for each pixel along all the rays, or the

directions, the radiance captured by the sensor in analogy with what was

discussed in 1.5:

I(x, y) =

∫∫
θx,θy

L(x, y, θx, θy)dθxdθy (1.11)

For simplicity only one positional coordinate x is considered, and its corre-

sponding direction will be described by a new coordinate called momentum,

in analogy with Hamiltonian mechanics, defined as:

px = nθx (1.12)

where n is the refractive index of the medium of propagation, assumed to

be homogeneous. The reason of this change in coordinates is that using

the momentum p the transformations matrix of the optical elements are

invertible and the calculations are simpler [28]. The one dimensional intensity

profile is then equal to:

I(x) =

∫
px

L(x, px)dpx (1.13)

In the phase space the rays composing the light field, will be represented by

points with coordinates (x, px). Given a ray
−→
X0 = (x, px), it is possible to de-
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fine a ray transfer matrix A describing the transformation the ray undergoes

while propagating in an optical system as:

−→
X1 = A

−→
X0 (1.14)

Where
−→
X1 is a vector representing the ray after the transformation A. The

transformation matrix has the property of having its determinant equal to

unity, det(A)=1, and is invertible. It is therefore possible to express the ray

−→
X0 as a function of

−→
X1 as:

−→
X0 = A−1

−→
X1 (1.15)

The same considerations can be made for the full set of rays composing the

light field. In the assumption of zero loss during the propagation, the total

light field L is conserved, and L(
−→
X0) equals L(

−→
X1). Therefore:

L1(
−→
X1) = L0(

−→
X0) (1.16)

Because of equation 1.14 the Light Field at the position −→x1 is :

L1(A
−→
X0) = L0(

−→
X0) (1.17)

For the ray
−→
X1 = A

−→
X0:

L1(
−→
X1) = L0(A

−1−→X1) (1.18)

For the generic ray
−→
X the light field transformation formula becomes:

L1(
−→
X ) = L0(A

−1−→X ) (1.19)

Equation 1.19 shows the link between the light field at a plane, with the

same light field after an arbitrary optical transformation. With reference to
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figure 1.24 a single lenslet of diameter d is shown and the light field at the

sensor plane Lb(x, px) is expressed as a function of the coordinates of the

light field at the main lens image plane La(x, px). The link between the two

light fields is given by equation 1.19. According to geometrical optics, and as

is explained in Georgiev et al.[19], the optical transfer matrix Aab from the

main lens image plane and the sensor is the composition of two free space

propagation matrices and a lens matrix.

b a

sensor plane
main lens 

image planeL

L
a

L
b

d

d/b

d/a

Figure 1.24: System formed by a single lenslet. The rays at the main lens
image plane are transformed into the rays at the sensor plane by the lenslet.
The transformation can be described by a matrix A.

Therefore:

Aab =

1 b

0 1




1 0

− 1

fµ
1


1 a

0 1

 =


− b
a

0

− 1

fµ
−a
b

 (1.20)

Its inverse is:

A−1ab =


−a
b

0

1

fµ
− b
a

 (1.21)
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Applying the inverse A−1 matrix to equation 1.19 and substituting into the

integral in equation 1.11, the intensity on the sensor behind a single lenslet

is:

I(x) =

∫
px

La(−
a

b
x,− b

a
px −

1

f
x)dpx (1.22)

From figure 1.24, for a single spatial coordinate x on the main lens image

plane the integration takes place on a range of directional coordinates px

equal to d/b and the result is:

I(x) =
d

b
La(−

a

b
x,−1

b
x) (1.23)

From equation 1.23 the micro lens maps the spatial coordinates on the main

lens image plane to the sensor with a scaling factor equal to the magnification

m = b/a. Therefore the resolution of the sampled light field on the sensor

is b/a times the resolution of the sensor. The directional coordinates are

mapped as x/b. If the lenslet diameter is d then the maximum number of

directional coordinates sampled by one lenslet is equal to the f-number of the

lenslet d/b. Figure 1.24 shows how a single micro lens samples the radiance

from a single point X on the main lens image plane. Each pixel of the

micro lens image samples a single position X and a span of d/a directional

coordinates px. The same position X is sampled also by other micro-lenses

as shown in figure 1.25, but since each micro lens only captures d/a samples

of the directional coordinates, each lenslet samples a different portion of the

total span of directional coordinates contained in the light field.
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x x
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Figure 1.25: Sampling of the light field by plenoptic 2.0 camera. For each
of the two points represented, red and green, The total range of directional
coordinates are sampled by three different lenslets. For one position three
directions are sampled, with a resolution of d/a. Therefore the directional
sampling in plenoptic 2.0 is made across many lenslets. This can be seen in
the phase space. Lenset B and C sample 2 directions indicated with the same
number in the ray diagram and the phase space. Lens let A only samples
one direction of the red point.

1.8 Plenoptic 2.0 Rendering

The basic rendering in plenoptic 2.0 cameras is still made by integrating all

directions associated to a single position, as shown 1.8. The difference with

plenoptic 1.0 rendering is that this time the directional coordinates for a

single position, d/b, are recorded across many lenslets, each sampling d/a
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coordinates and as a consequence of that, the integration takes place across

all of these micro lenses [15]. The basic rendering process is shown in figure

1.26.

x
d/b

Figure 1.26: Image rendering with the focused plenoptic camera. One pixel
of the rendered image is given by the integration on all the directions d/b
associated with a given position. The integration takes place across the
lenslet and is represented by the vertical lines. Each lenslet is represented by
the diagonal lines.

Rendering an image in plenoptic 2.0 is more complicated and less intuitive

then the 1.0 case, therefore a more detailed analysis of plenoptic 2.0 rendering

will be given in chapter 5.

1.9 Conclusions

In this chapter, mostly based on results already presented in the literature, a

general view of plenoptic imaging systems behaviour and characteristics was

given. This chapter has also the scope to put order in a new field where the

literature is often fragmented and incomplete. It was introduced the concept

of plenoptic function to describe the full set of information contained in
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the light. The concept light field was also presented as a four dimensional

parametrization of the plenoptic function. Each ray of light is completely

identified by a set of four coordinates, two spatial and two directional. This

representation of the bundle of rays reaching the camera is very useful under

a computational point of view since each ray of light can be represented as

a point in the phase space. In the phase space an optical transformation

is described by a optical transfer matrix with the property of having the

determinant equal to one and to be invertible. In this way it is possible to

give a mathematical description of the behaviour of the plenoptic camera

and to put the basis for the ray tracing algorithms that will be presented

in the following chapters. Two different types of plenoptic camera were

described, the plenoptic 1.0 and 2.0. A detailed description of how light

field is recorded by these two classes of devices was given pointing out the

main differences in the performances of these two configurations. The main

original contribution to the field given by this chapter is that for the first time

a complete review and comparison of the characteristic of plenoptic camera

1.0 and 2.0 was given. This chapter represents a link between many pieces

of work on plenoptic imaging and covers all the aspects of this new field

providing a good overview of all the general aspects of plenoptic imaging.
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Chapter 2

Fresnel Simulation Toolbox:
Theoretical Prerequisites

2.1 Introduction

This chapter describes a MATLAB simulation toolbox developed as a part of

this doctorate project in order to investigate the potential of plenoptic imag-

ing for biomedical and microscopy applications with particular interest in its

behaviour at the diffraction limit. In literature are present many works on

simulating plenoptic imaging devices. Plenoptic systems have been studied

through simulation extensively. Until recently these studies have focussed

on a geometrical optics approach, however in this project the focus is on

investigating plenoptic systems biomedical and microscopy applications for

which the performance at high resolution needs to be studied; hence diffrac-

tion cannot be ignored. Over the duration of this project there have been

other research groups that have studied plenoptic systems under wave optics,

including a wave optics analysis of plenoptic 1.0 systems, such as Schroff et

al. [60, 61] and Trujillo-Servilla et al. [3] and a Fourier optics approach of the

diffraction limit of a digital camera, Farrell et al. [10]. The growing interest
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in this aspect of plenoptic systems over the past few years is a product of the

increasing interest in plenoptic systems overall and its new potential applica-

tions. In this work a Fresnel optics approach has been applied to a plenoptic

camera with the purpose of understanding how the light field is recorded and

to define some guidelines to design a working setup. Particular attention

has been given to the behaviour of the system at its diffraction limit, a sub-

ject that has never been explicitly treated in literature. In this chapter four

different methods to simulate light propagation in an optical system will be

discussed and their performance compared in term of accuracy of the results,

noise and computational effort. A Fresnel optics approach has been chosen

because the simulation tool to describe a plenoptic imaging system needs to

have the following requirements:

• it has to preserve the phase of the optical field propagating in order to

preserve directional information of the rays of light;

• it has to take into account the effects of diffraction;

• it has to be adaptable in order to easily change the characteristic of

the optical system, trying various configurations, keeping the operator

based approach of ray tracing.

To address these features, a wave optics simulation toolbox has been designed

and developed. Most of the existing literature on simulating plenoptic system

are based on ray tracing techniques [66, 45, 46, 52, 41]. The advantages of

using ray tracing is that the transformations that rays undergo during the

propagation can be described by two basic linear operators and compositions
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FRESNEL SIMULATION TOOLBOX: THEORETICAL
PREREQUISITES

of them. These are the free space propagation and the lens operator. In

developing the wave optics simulation this principle has been kept, and two

operators have been defined: propagation and lens. Four different types of

propagation operators have been described and compared. In analogy with

ray tracing an optical system has been simulated using compositions of the

two simple operators. In developing this platform all the media composing

the system have been considered as linear, isotropic, homogeneous and non

dispersive.

2.2 Scalar Theory of Diffraction

The term diffraction has been defined by Sommerfeld as any deviation of

light rays from rectilinear paths which cannot be interpreted as reflection or

refraction. [62].The complex vectorial equations describing wave propagation

in three dimensional space can be simplified into a set of scalar equations us-

ing the Scalar Theory of Diffraction as explained by Goodman [25]. The

starting point is given by Maxwell’s Equations in absence of sources of elec-

trical field of magnetic dipoles:

∇×
−→
E = −µ∂

−→
H

∂t

∇×
−→
H = ε

∂
−→
E

∂t

∇ · ε
−→
E = 0

∇ · µ
−→
H = 0

(2.1)
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where
−→
E is the electric field,

−→
H is the magnetic field, µ and ε are respec-

tively the magnetic permeability and electrical permittivity of the medium

in which the optical wave is propagating. Both
−→
E and

−→
H are a functions of

the position x, y and z, as well as the time t.

The operator ∇ is defined as:

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂ (2.2)

where î, ĵ and k̂ are unit vectors along directions x, y and z.

Propagation is assumed to happen in a dielectric medium that is linear,

isotropic and homogeneous. A medium is linear if its response to a several

disturbances acting simultaneously can be decomposed into the sum of the

responses to the single disturbances taken individually. It is isotropic if its

properties do not depends on the directions of polarization of the wave and is

homogeneous if its permittivity is constant along all direction of propagation.

The medium is considered also to be non dispersive, that is the permittivity

ε is not dependent on the wavelength.

Applying the operator ∇× to the left and to the right side of the first equa-

tion of 2.1 and using the vector identity

∇× (∇×
−→
E ) = ∇(∇ ·

−→
E )−∇2−→E (2.3)

∇(∇ ·
−→
E )−∇2−→E = ∇× (−µ∂

−→
H

∂t
) (2.4)

From the third equation in 2.1:

∇ · ε
−→
E = 0 (2.5)
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hence equation 2.4 becomes:

−∇2−→E = ∇× (−µ∂
−→
H

∂t
) (2.6)

since both the operators ∇× and its derivative are linear it is possible to

swap them on the right hand side of equation 2.4. Then substituting the

second Maxwell equation 2.1 into the equation 2.6:

−∇2−→E = −µε ∂
2

∂t2
−→
E (2.7)

Where ∇2 is the Laplacian operator defined as:

∇2 =
∂2

∂x2
î+

∂2

∂y2
ĵ +

∂2

∂z2
k̂ (2.8)

The refractive index of the medium in which the wave is propagating is:

n =

√
εµ

ε0µ0

(2.9)

where ε0 is the permittivity of the vacuum and µ0 the magnetic permeability

in vacuum. Therefore the speed of light in the vacuum is:

c =

√
1

ε0µ0

(2.10)

Then the wave equation for the electric field becomes:

∇2−→E − n2

c2
∂2
−→
E

∂t2
= 0 (2.11)

Similar considerations can be done for the magnetic field, leading to an iden-

tical equation:

∇2−→H − n2

c2
∂2
−→
H

∂t2
= 0 (2.12)
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Since the wave equation is obeyed by both the electric field and magnetic

fields, it is possible to define a scalar wave equation, obeyed by the single

components of those vectors. The scalar field components are represented as

a function u(x, y, z, t) called field disturbance. The scalar wave equation is

then:

∇2u− n2

c2
∂2u

∂t2
= 0 (2.13)

With this scalar approximation it is possible to treat the propagation of an

optical field as a scalar. This is only valid under the assumption of a linear,

isotropic, homogeneous and non dispersive medium, since all the component

in all the directions of the electric and magnetic fields must behave identically.

2.2.1 Helmholtz Equation

In the case of monochromatic waves the scalar field u is a function of time t

and position
−→
X defined as:

u(
−→
X, t) = A(

−→
X )cos[2πνt− φ(

−→
X )] (2.14)

Where A(
−→
X ) is the amplitude of the disturbance and φ(

−→
X ) is its phase at

a point in the space with coordinates
−→
X = (x, y, z). Separating space and

time dependence:

u(
−→
X, t) = Re{U(

−→
X )e−j2πνt} (2.15)

where U is a complex function of position and includes the phase term ejφ(
−→
X ).

U(
−→
X ) = A(

−→
X )ejφ(

−→
X ) (2.16)

This field should satisfy the scalar wave equation 2.13. Substituting equation

2.16 into 2.13:

∇2[U(
−→
X )e−j2πνt]− n2

c2
∂2

∂t2
[U(
−→
X )e−j2πνt] = 0 (2.17)
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Expressing the derivatives and simplifying the exponential terms:

∇2[U(
−→
X )] +

(
2πνn

c

)2

[U(
−→
X )] = 0 (2.18)

The wave number is defined as:

k =
2πνn

c
(2.19)

and expression 2.18 becomes:

(∇2 + k2)U = 0 (2.20)

Equation 2.20 is the Helmholtz equation and it describes the behaviour of a

complex disturbance propagating in a homogeneous medium.

2.2.2 Solutions of Helmholtz Equations

An analytical expression of the complex disturbance U that satisfies the

Helmholtz equation can be found using the Green’s theorem under partic-

ular boundary conditions as explained by Goodman [25]. There are two

possible solutions: Fresnel-Kirchhoff and Rayleigh-Sommerfeld. Considering

a wave U0 propagating through a diffracting screen at a point in space with

coordinates z = 0 with an aperture D the boundaries conditions:

• Fresnel-Kirchhoff (FK) conditions

U(x, y; 0) = U0(x, y; 0) for (x, y) ∈ D

U(x, y; 0) = 0 for (x, y) /∈ D

∂U

∂z
=
∂U0

∂z
for (x, y) ∈ D
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∂U

∂z
= 0 for (x, y) /∈ D

• Rayleigh-Sommerfeld (RS) conditions:

U(x, y; 0) = U0(x, y; 0) for (x, y) ∈ D

U(x, y; 0) = 0 for (x, y) /∈ D

The FK conditions lead to a simple result but they are not completely phys-

ically correct since they imply the field after the screen to be zero outside of

the aperture in the immediate proximity of the screen as well as its normal

derivative. The continuity of the normal derivative can lead to an unrealistic

physical condition might lead to a situation where light is present even where

it is not supposed to be in order to keep the optical field function smooth

enough. Results given by the FK condition are accurate only for a distance

from the aperture much larger than the wavelength. The RS condition on

the other hand is less strict since it does not requires the derivatives of the

disturbance. The only request is that the field is continuous along the aper-

ture and this is more similar to the physical reality of the problem. It leads

to a solution of the Helmholtz equation that is:

U(x, y; z) =
1

jλ

∫∫
σ

U(ξ, η; 0)
ejkr

r
cos(θ)dξdη (2.21)

where, with reference to figure 2.1, θ is the angle between the z axis and

the direction of propagation, r =
√
z2 + (x− ξ)2 + (y − η)2 is the distance

between the point P1 = (x, y, z) and P0 = (ξ, η; 0) and σ is the area of
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aperture. Since cos(θ) =
z

r
:

U(x, y; z) =
z

jλ

∫ ∫
σ

U(ξ, η; 0)
ejkr

r2
dξdη (2.22)

Equation 2.22 is the Rayleigh-Sommerfeld diffraction formula [25], and can

be simplified under the Fresnel approximation, as will be explained in section

2.2.3.

z

P
1

P
0

r

σ

θ

Figure 2.1: Geometry of the aperture.

2.2.3 The Fresnel Approximation

It is possible to approximate the distance of propagation r between P0 and

P1 with its Taylor expansion up to the second order when the distance of

propagation is much larger than the aperture of the pupil (paraxial approx-

imation):

r =

√
1 +

(
x− ξ
z

)2

+

(
y − η
z

)2

≈ z

[
1 +

(1)

2

(
x− ξ
z

)2

+
1

2

(
y − η
z

)2
]

(2.23)
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Therefore for large propagation distances, z � x, y, the diffraction integral

becomes:

U(x, y) =
ejkz

jλz

∫ ∫ ∞
−∞

U(ξ, η)e
jk
2z [(x−ξ)2+(y−η)2]dξdη (2.24)

Factorizing the exponential term the disturbance becomes:

U(x, y) =
ejkz

jλz
ej

k
2z

(x2+y2)

∫ ∫ ∞
−∞

U(ξ, η)e
jk
2z

(ξ2+η2)e
−jk
2z

(xξ+yη)dξdη (2.25)

This can be seen as the Fourier transform of the disturbance before the

aperture U(ξ, η) multiplied by a quadratic phase factor e
jk
2z

(ξ2+η2) [25].

2.3 Free Space Propagation Operator: Fres-

nel Approximation Approach

The first version of the free space propagation operator has been developed

using the Fresnel Integral as written in equation 2.25. The input distur-

bance U(ξ, η) is considered to be illuminated by monochromatic light with

wavelength λ. As stated in section 2.2.3 the Fresnel integral can be seen as

the two dimensional Fourier transform of the input field U(ξ, η) multiplied

by a quadratic phase factor [25, 63]. This is going to be very useful from

a computational point of view since it can be implemented with a fast The

function U ′(ξ, η) is defined as:

U ′(ξ, η) = U(ξ, η)e
jk
2z

(ξ2+η2) (2.26)

The optical field at the plane z is the product of the Fourier transform of

U ′(ξ, η) with the phase term e
jk
2z

(x2+y2):

U(x, y) =
eikz

iλz
e
ik
2z

(x2+y2)F [U ′(ξ, η)] (2.27)
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where the spatial frequencies of the Fourier Transform can be correlated with

the spatial coordinates x and y by the relation:{
fx = x

λz

fy = y
λz

(2.28)

This method is computationally fast since it requires only one Fourier trans-

form, and it is analytically correct. Particular attention should be given to

the sampling of the optical fields U and U’. Because of the presence of the

Fourier transform the coordinates of the input and output fields are not sam-

pled in the same way, but are scaled by a factor that is proportional to the

distance of propagation, as shown in equation 2.28 [24]. Therefore the input

and output planes have different sampling [63]. In addition the multiplicative

phase factor:

e
ik
2z

(ξ2+η2) (2.29)

presents rapid oscillation of the phase of the optical field for small variations

of z, since z is at its denominator [63, 50]. In order to avoid aliasing the

input field requires a large sampling and this is achieved by zero padding the

sampling window of the input field, with an increase of the digital resolution

of the field. It is known that the computational effort of the FFT algorithm

increases with the resolution as O(n log n), where n is the number of samples

of the input field and increasing the sampling resolution of the field [9] leads

to a long computational time.

2.3.1 Multi-Step Fresnel Propagation Operator

To overcome the scaling of the field and the large computational time required

by the Fresnel propagation integral method a modified method has been
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developed. A multi step approach as the one explained by Sypek [63, 64] and

shown in figure 2.2 was used. The reason to adopt the multi-step approach

z

input !eld

output !eld

Intermediate !elds

dz

Figure 2.2: To remove the scaling factor between the input and output fields,
a multi step Fresnel approach has been developed. The field is propagated
by unit of dz, the minimum distance to keep the sampling the same.

in this project is to remove the scaling factor between the input field and

the output field that arise from the Fourier transform as shown in equation

2.28, while Sypek developed a multi step propagation model to minimize the

oscillations of the Fourier spectrum and to avoid large zero paddings.

In the Fourier domain, an optical field sampled by a N ×N pixels window,

and with squared pixels that are dx wide the spatial frequency resolution is

[9, 24]:

dfx =
1

Ndx
(2.30)

Therefore the pixel size in the image plane is according to equations 2.28:

dξ = dνλz (2.31)
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where z is the propagation distance and λ is the wavelength of the monochro-

matic wave. The condition to keep the same resolution both in the input field

and the output field is:

dξ = dfxλz = dx (2.32)

Substituting equation 2.30 into equation 2.28:

1

Ndx
=
dx

λz
(2.33)

Then resolving for z the minimum propagation distance dz to keep the same

sampling both in the input and output fields is:

dz =
W 2

Nλ
(2.34)

and:

z =
N∑
i=1

dzi (2.35)

where W = Ndx is the dimension in meters of the input field. Equation 2.34

gives the length of the single step in which the propagation distance z should

be divided in order to keep the same resolution.

Although the results obtained with this multi-step approach are correct there

are some issues. The propagation distance should be a multiple of dz, and

this is a very significant limitation, especially since in simulating plenoptic

systems the distances need to be set precisely. Another issue regards the

computational time. With the multi step approach the number of FFT per-

formed increases with the steps, leading to a computational time N times

larger that the Fresnel Integral method. For these reasons the angular spec-

trum method as will be discussed in section 2.4 has been adopted in all the

simulations presented in this work.
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2.4 Free Space Propagation Operator: Angu-

lar Spectrum of Plane Waves Approach

In the Fourier domain the input disturbance can be seen as formed by a set of

plane waves travelling in different directions, the Angular Spectrum of Plane

waves representation of an optical field. In the next section the propagation

operator as and its characteristic transfer function will be defined. Three ver-

sions of the angular spectrum operator will be presented, and performances

of the three versions will be compared.

2.4.1 Angular Spectrum of Plane Waves

The disturbance U(x, y; 0) describing a monochromatic wave incident on a

plane (x,y) at the z=0 while travelling along the z direction has a Fourier

transform given by:

A(fx, fy; 0) =

∫∫ ∞
−∞

U(x, y; 0)e−j2π(fxx+fyy)dxdy (2.36)

and U(x, y; 0) is equal to the inverse Fourier transform of its spectrum:

U(x, y; 0) =

∫∫ ∞
−∞

A(fx, fy; 0)ej2π(fxx+fyy)dfxdfy (2.37)

The physical meaning fo the equation 2.37 is that the disturbance U(x, y; 0)

can be decomposed in the sum of elemental plane waves propagating in di-

rections given by the wave vector
−→
k whose magnitude is 2π/λ and direction

is given by its direction cosines (α, β, γ) [25, 50]. Dropping the temporal

dependence the plane wave is then:

p(x, y; z) = e−j
−→
k ·−→r (2.38)
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where

−→r = x̂i+ yĵ + zk̂ (2.39)

and

−→
k =

2π

λ
(α̂i+ βĵ + γk̂) (2.40)

The exponential becomes:

p(x, y; z) = e−j
2π
λ
(αx+βy)e−j

2π
λ
(γz) (2.41)

The terms, α, β and γ are the direction cosines of the wave vector
−→
k and

they are related as:

γ =
√

1− α2 + β2 (2.42)

Therefore the complex exponential function in equation 2.36 can be seen as

a plane wave with direction cosines

α = λfx, β = λfy, γ =
√

1− (λfx)2 + (λfy)2 (2.43)

The angular spectrum of plane waves of the disturbance U(x, y; 0) is the

function:

A

(
α

λ
,
β

λ
; 0

)
=

∫∫ ∞
−∞

U(x, y; 0)e−j2π(
α
λ
x+β

λ
y)dxdy (2.44)

After a prorogation of z the disturbance U(x, y; z) can be written in the form

of the angular spectrum in analogy with equation 2.37:

U(x, y; z) =

∫∫ ∞
−∞

A(fx, fy; z)ej2π(fxx+fyy)dfxdfy (2.45)

where fx = α/λ and fy = β/λ. To be a propagative disturbance, equation

2.45 should satisfy the Helmholtz equation 2.20:

(∇2 + k2)U = 0 (2.46)

95



2.4. FREE SPACE PROPAGATION OPERATOR: ANGULAR
SPECTRUM OF PLANE WAVES APPROACH

Substituting equation 2.45 into 2.46:

d2

dz2
A(fx, fy; z) +

(
2π

λ

)
[1− (λfx)

2 + (λfy)
2]A(fx, fy; z) = 0 (2.47)

A solution of the differential equation 2.47 is:

A(fx, fy; z) = A(fx, fy; 0)ej
2π
λ

√
1−(λfx)2+(λfy)2 (2.48)

The propagative solution is the one where the spatial frequencies satisfy the

condition:

(λfx)
2 + (λfy)

2 < 1 (2.49)

in this case the exponential term in equation 2.48 remains complex and the

wave can propagate since it is an oscillating term. For the values of spatial

frequencies that satisfy the condition:

(λfx)
2 + (λfy)

2 > 1 (2.50)

the exponent in the equation 2.48 becomes real, and the exponential is a

decay term. The solution is no longer propagative and waves are called

evanescent waves. It is interesting to see how the angular spectrum theory is

more complete than the Fresnel approximation since it includes evanescent

components too.

Finally, the disturbance after a propagation in z can be expressed as a func-

tion of the disturbance U(x, y; 0) at the plane z=0:

U(x, y; z) =

∫ ∫ ∞
−∞

A(fx, fy; 0)ej
2π
λ

√
1−(λfx)2−(λfy)2ej2π(fxx+fyy)dfxdfy (2.51)

The last equation enables a calculation of the output field U(x, y; z) in terms

of the input field and the propagation distance, under the approximation of
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a linear, isotropic, homogeneous and non dispersive medium.

Because of the linearity of the problem, the propagation is considered as a

linear system that maps the input disturbance U(x, y; 0) into the a new field

distribution U(x, y; z)[25]. This linear system is characterized by a transfer

function whose bandwidth is limited to the case of the propagative solution

of equation 2.47, excluding the evanescent waves. The angular spectrum of

the output field can be rewritten as the product of the angular spectrum of

the input field multiplied by the transfer function H(fx, fy):

A(fx, fy; z) = A(fx, fy; 0) ·H(fx, fy; z) (2.52)

The propagation is fully described by the transfer function:

H(fx, fy; z) =

{
ej

2πz
λ

√
1−(λfx)2−(λfy)2 if

√
f 2
x + f 2

y <
1
λ

0 otherwise
(2.53)

The bandwidth can be represented as a circle in Fourier space. For frequen-

cies smaller than 1/λ the transfer function introduces a shift in the spatial

domain that is responsible for diffraction [25]. Results obtained with the

angular spectrum method are similar to the ones obtained with the Fres-

nel approximation, but no scaling factor between the input and output field

is introduced. From a computational point of view, the angular spectrum

operator is composed of 3 steps:

1. Fourier transform of the input field

2. Multiplication of the Fourier transform of the input field with the prop-

agation transfer function in equation 2.53

3. Inverse Fourier transform of the product at step 2. The resultant field

is the output disturbance after the propagation in free space.
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The process can be seen in figure 2.3

A(f
x
,f

y
;0)H(f

x
,f

y
;z) F 

-1 {A(f
x
,f

y
;z)}A(f

x
,f

y
;0) A(f

x
,f

y
;z)

F {U(x,y;0)}
U(x,y;0) U(x,y;z)

Figure 2.3: Structure of the operator free space propagation with the an-
gular spectrum of plane waves method. The initial disturbance U(x, y; 0) is
transformed into the angular spectrum A(fx, fy; 0) with a Fourier transform
implemented by a FFT algorithm. The angular spectrum is multiplied by the
propagation transfer function H(fx, fy) and the resultant angular spectrum
is inverse transformed into the output disturbance U(x, y; z)

2.4.2 Band Limited Angular Spectrum

The transfer function of the propagation in equation 2.53 is a complex expo-

nential oscillating with a frequency depending by the propagation distance

z. Figure 2.4 shows four different profiles of the transfer function for four

propagation distances, 1 mm, 2 mm, 10 mm and 20 mm. Aliasing effects are

evident since for a propagation distance of 2 mm. When the z becomes large,

the aliasing arises at low spatial frequencies, narrowing the useful bandwidth

of the transfer function [50]. The transfer function can be rewritten as:

H(fx, fy) = ejφ(fx,fy) (2.54)

where φ is the oscillating phase term as:

φ(fx, fy) =
2π

λ

√
1− λf 2

x − λf 2
y (2.55)
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Figure 2.4: Cross section along of the phase of the transfer function of the
angular spectrum. It is evident how increasing the propagation distance
increases the oscillating frequency leading to aliasing.
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Defining the local spatial frequencies of the transfer function [25, 50] as

the frequency of the phase oscillation νx and νy along fx and fy:
νx =

1

2π

∂

∂fx
φ(fx, fy)

νy =
1

2π

∂

∂fy
φ(fx, fy)

(2.56)

the local spatial frequencies become:
νx = −z

λ

λ2fx√
1− (λfx)2

νy = −z
λ

λ2fy√
1− (λfy)2

(2.57)

As stated by Matsushima and Shimobaba [50], if the input optical distur-

bance is sampled by an N×N sampling window with pixel size dx, the trans-

fer function is sampled by units of spatial frequency equal to df = 1/(Ndx).

It is not a differential but a range of sampling units. To satisfy the Nyquist

condition the sampling frequency should be at least the double of the band-

width of the transfer function. For one direction in the local frequency space:

1

df
≥ 2|νx| (2.58)

Modifying the sampling of the transfer function, and of the input field, can

lead to huge sampling windows and long computational times. In addition to

that in practical applications the sampling interval is usually fixed. There-

fore the condition on the maximum frequency range for which the transfer

function is not aliased:

1

dfx
≥ 2z

|fx|

|
√

( 1
λ2

+ fx)2|
(2.59)
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Resolving the equation for |fx| :

|fx| ≤
1

λ
√

(2dfxz)2 + 1
= fmax (2.60)

Where fmax is the maximum frequency of the transfer function without gen-

erating errors due to aliasing. Assuming the sampling of the optical field

to be the same in both x and y direction the maximum bandwidth for the

sampling in fy is equal to the bandwidth in fx. Therefore:

1

dfy
≥ 2|νy| (2.61)

1

dfy
≥ 2z

|fy|

|
√

( 1
λ2

+ fy)2|
(2.62)

|fy| ≤
1

λ
√

(2dfyz)2 + 1
= fmax (2.63)

To avoid aliasing then, the two dimensional transfer function should be lim-

ited to a range of frequencies defined by equation 2.62. The expression of

the output field will then be:

U(x, y; z) = F−1 [A(fx, fy; 0)H ′(fx, fy; z)] (2.64)

where

H ′(fx, fy; z) = H(fx, fy; z)rect

(
fx
fmax

)
rect

(
fy
fmax

)
(2.65)

where rect is the rectangular function or normalized boxcar function. The

MATLAB algorithm to implement the band limitation consists in multiplying

the phase term of the propagation transfer function by a phase mask with the

shape of a circle function of radius fmax in the plane of the spatial frequencies.

A circular phase mask has been chosen instead of the rectangular phase mask

of equation 2.65 because it follows the geometry of the lens aperture, without
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introducing new spatial features that could effect the diffraction.

The resultant phase of the transfer function is shown in figure 2.5, with the

bandwidth for three different propagation distances.
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Figure 2.5: Bandwidth of the transfer function for three different propagation
distances.

From a computational point of view the algorithm to implement the band
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limited angular spectrum method can be summarized in the following steps:

1. Computation of the angular spectrum of the input disturbance via a

Fourier transform as shown in equation 2.37.

2. Estimation of the maximum bandwidth of the transfer function in order

to avoid aliasing error using equation 2.60.

3. Multiplication of the phase of the transfer function with a circular phase

mask with radius equal to the frequency obtained in the previous step.

4. Multiplication of the angular spectrum with the band limited transfer

function.

5. Inverse Fourier transform of the product at step 4

The structure of the free space propagation operator implemented by the

band limited angular spectrum can be seen in figure 2.6
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Figure 2.6: Structure of the operator free space propagation with the angular
spectrum of plane waves method in its band limited version. The initial dis-
turbance U(x, y; 0) is transformed into the angular spectrum A(fx, fy; 0) with
a Fourier transform implemented by a FFT algorithm. The angular spectrum
is multiplied by the propagation transfer function H(fx, fy) whose bandwidth
has been limited according to equation 2.63. The bandwidth of the transfer
function depends on the sampling of the input field, the wavelength of the
light λ and the propagation distance.The resultant angular spectrum is in-
verse transformed into the output disturbance U(x, y; z). N is the sampling
of thr input field, z the propagation distance and λ the wavelength.

2.4.3 Corrected Band Limited Angular Spectrum Method

The third method to implement the propagation operator with the angular

spectrum is the corrected band limited angular spectrum method. The dif-

ference between this method and the band limited angular spectrum method

presented in section 2.4.1 is that the bandwidth of the transfer function is

truncated to the value of the cut-off frequency of the free space propagation

in case the Nyquist criterion requires a bandwidth is too narrow.

For long propagation distances the propagation transfer function acts as a

low pass filter on the spatial frequency components of the input signal. When

its bandwidth is bigger than the cutoff frequency calculated with the band
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limited method to avoid digital aliasing there is a loss of resolution in the

final image. A trade-off should therefore be found between the error due

to the aliasing and the error due to the excessive bandwidth limitation. For

imaging applications this is not an issue since usually the numerical apertures

of the optical elements in the imaging system already limit the band passing

from the input field to the output field. However it is useful to estimate

the bandwidth of the free space propagation defining the maximum spatial

frequency that is transferred from the object plane to the image plane. This

value defines the amount of information transferred from the input field to

the image plane.

With reference to figure 2.7 for a point in the input field, the range of spatial

frequencies that are transferred to the output field are the ones whose direc-

tion cosines are contained into the angle that includes the sampling window

of the output field. In the cases of the propagation distance much bigger

than the sampling window, z >> W like in most of the applications of this

simulation toolbox the angle θ is equal to:

θ ' W

z
(2.66)

The link between the direction cosine and the spatial frequency is, according

to equation 2.43

θ = λfcutoff , (2.67)

The cutoff frequency of a field sampled by a sampling window W and after

a propagation distance of z is defined as:

νcutoff =
W

λz
(2.68)
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Figure 2.7: The maximum spatial frequency is linked to the dimension of the
sampling window of the output field w and the propagation distance z

Therefore the bandwidth of the transfer function should be bigger than νcutoff

in order not to introduce error in the reconstruction of the diffraction pattern

due to loss in resolution.

fmax ≥ νcutoff (2.69)

If the propagation distance limits the bandwidth of the output field too much,

the transfer function can be improved by increasing the sampling of the input

field. This condition is equal to having a smaller pixel size. Dealing with

bigger sampling windows however increases the computational effort.

2.5 Thin Lens Operator

This section will describe how the thin lens operator has been designed and

implemented in the simulation toolbox, following the method described in

Goodman [25]. A lens is composed of a material with a refractive index
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different form the one of air, that causes the propagation velocity of the

optical field to drop. In the approximation of a thin lens, the translation of

the ray of light inside the lens is negligible and if a ray enters the lens at the

coordinate (x, y) on one face, it exits at the same coordinates at the other

side. A thin lens delays and incident wave-front by an amount proportional

to its thickness. These delay can be modelled introducing a phase factor

to the incident field. The thickness of the lens, ∆(x, y), is a function of

the coordinates (x,y) as shown in figure 2.8, where ∆0 is the lens maximum

thickness at the coordinates (0, 0). The phase delay introduced by the lens
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Figure 2.8: Thickness of a lens as a function of position along x coordinate.
It can be defined in the same way along the y coordinate

is proportional to its thickness:

φ(x, y) = kn∆(x, y) + k[∆0 −∆(x, y)] (2.70)

where n is the refractive index of the lens material and k = 2π/λ is the wave

number. With reference to figure 2.8 the quantity kn∆(x, y) is the phase

delay introduced by the different material of the lens, and k[∆0 − ∆(x, y)]

is the phase delay introduced by the free space propagation between the
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two planes represented with dashed line. This phase delay can be seen as a

multiplicative phase term defined as:

tlens = exp[jk∆0]exp[jk(n− 1)∆(x, y)] (2.71)

The complex field U ′(x, y) immediately after the lens is therefore given by

the product of the field entering the lens U0(x, y) with the phase delay in

equation 2.71.

U ′(x, y) = tlens(x, y)U0(x, y) (2.72)

The sign convention used in the following derivation for a ray of light trav-

elling form left to right is:

• any convex surface encountered has positive radius of curvature

• any concave surface encountered had negative radius of curvature

The lens can be split into three elements such that the total thickness function

is the sum of three functions: From figure 2.9:

R
1

R
2

∆
1

∆
2

∆
3

Figure 2.9: The thickness function can be decomposed into the sum of three
contributions.

∆(x, y) = ∆1(x, y) + ∆2(x, y) + ∆3(x, y) (2.73)
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Where the three components of the thickness are:

∆1(x, y) = ∆01(x, y)−R1

(
1−

√
1− x2 + y2

R2
1

)
(2.74)

∆2(x, y) = ∆02 (2.75)

∆3(x, y) = ∆03(x, y) +R2

(
1−

√
1− x2 + y2

R2
2

)
(2.76)

R1 > 0 and R2 < 0 are respectively the radius of curvature of the right-

hand surface and the radius of curvature of the left-hand side of the lens

surface. Then total thickness function is given by:

∆(x, y) = ∆0(x, y)−R1

(
1−

√
1− x2 + y2

R2
1

)+R2(1−

√
1− x2 + y2

R2
2

)
(2.77)

where ∆0 is: ∆0 = ∆01 + ∆02 + ∆03. In the paraxial approximation it is

possible to approximate ∆(x, y) with its first element of the Taylor series:√
1− x2 + y2

R2
1

≈ 1− x2 + y2

R2
1

(2.78)

√
1− x2 + y2

R2
2

≈ 1− x2 + y2

R2
2

(2.79)

Substituting 2.78 and 2.79 into equation 2.77:

∆(x, y) = ∆0(x, y)− x2 + y2

2

(
1

R1

+
1

R2

)
(2.80)
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and substituting 2.80 into equation 2.70 the result is the expression of the

phase shift in the exponential form:

tlens(x, y) = exp[jkn∆0]exp[−jk(n− 1)
x2 + y2

2

(
1

R1

+
1

R2

)
] (2.81)

The focal length of the lens f is the quantity containing the information on

the physical properties of the lens and it is defined as:

1

f
≡ (n− 1)

(
1

R1

+
1

R2

)
(2.82)

Finally after dropping the constant phase factor the effects of a thin lens

under paraxial approximation as a quadratic phase transformation are de-

scribed by equation 2.83:

tlens(x, y) = exp[−j k
2f

(x2 + y2)] (2.83)

This equation can represent the effects of any lens, since the sign of f will

define whether the lens is positive or negative. The physical meaning of

this expression can be understood through figure 2.10. When a plane wave

represented by the complex field U(x, y) is normally incident on the lens,

according to equation 2.72, the field leaving of the lens will be:

U ′(x, y) = exp[−j k
2f

(x2 + y2)] (2.84)

The thin lens is introducing a phase term on the incident field, and the

resulting field is a quadratic approximation of a spherical wave. Figure 2.10

shows that when f is positive, the wave is converging towards a point on the

optical axis at distance f from the lens. If f is negative the wave is diverging

from a point on the optical axis placed at a distance f in front of the lens. The
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Plane Wave Spherical Wave

Lens
Plane Wave Spherical Wave

Lens

Figure 2.10: A thin lens converts a plane wave into a spherical wave.

lens therefore transforms a plane wave into a spherical wave. The operator

thin lens is defined as the product of the quadratic transformation in equation

2.83 with a function describing the aperture of the lens, called pupil P (x, y)

:

L(x, y) = P (x, y) exp[−j k
2f

(x2 + y2)] (2.85)

where the pupil function is defined as:

P (x, y) =

{
1

√
x2 + y2 < r

0 elsewhere
(2.86)

where r is the radius of the lens aperture.

2.5.1 Aliasing in Phase Sampling

The quadratic phase factor of the thin lens operator is a complex function

whose modulus is constant and equal to unity, and its argument is an oscil-

lating function in the interval (0, 2π]. The argument of the phase factor is

shown in figure 2.11
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Figure 2.11: Phase profile of a computer generated lens. The blue line
shows the quadratic phase term and the red line shows the same phase term
wrapped every 2π. This wrapping is the source of the aliasing.

The parabolic phase profile gets wrapped since the argument of a complex

function varies between 0 and 2π. This wrapping of the phase can cause

aliasing as the distance from the centre of the lens increases. For high values

of x and y, the quadratic term becomes too steep and the frequency of

oscillation between 0 and 2π of the phase factor might become too high to

be correctly sampled. With analogy of what has been said in section 2.4, for

a parabolic phase profile:

φ(x, y) =
k

2f
(x2 + y2) (2.87)

The instantaneous frequencies of the phase νx, νy in x and y respectively are

defined as:
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
νx =

1

2π

∂φ

∂x
=

1

2π

k

f
x

νy =
1

2π

∂φ

∂y
=

1

2π

k

f
y

(2.88)

In order to recover all the components of a periodic signal, the sampling

frequency should be at least twice the bandwidth of the signal. According

to the Nyquist criterion:

fNyquist = 2νmax (2.89)

The maximum instantaneous frequency νmax of the phase factor is the one

that correspond to the edge of the lens. For brevity the one dimensional

case along the x direction is considered, but the conclusions are valid for

the y direction because of the rotational symmetry of the pupil function in

equation 2.86. In this case xmax = ymax = r where r is the radius of the

pupil function. Defining the pixel size ∆x along x, and assuming the pixels

as square, so that the sampling frequency 1/∆x is the same along both axis,

the Nyquist condition to avoid aliasing is:

1

∆x
≥ 1

2π

k

f
xmax (2.90)

Since in general the sampling rate cannot be modified because of the fixed

pixel size of the sensor this expression leads to a condition for the radius of

the pupil function:

r = xmax ≤
2πf

k∆x
(2.91)

Substituting k = 2π
λ

into 2.91:

r ≤ λf

∆x
(2.92)
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The more powerful the lens, f will have a smaller value and hence the aper-

ture should be smaller. Therefore, in order to achieve a desired aperture size

in equation 2.92, the focal length must be such that:

f ≥ r∆x

λ
(2.93)

and given that the digital resolution of a lens with aperture equal to 2r is

given by:

N =
2r

∆x
(2.94)

then the minimum resolution of a lens of radius r and focal length f is:

N ≥ 2r2

fλ
(2.95)

Applying these conditions will assure that no aliasing will be introduced by

the lens operator.

2.6 Conclusions

This chapter described the theoretical basis of the wave optics simulation

toolbox developed during this doctoral work. From the Maxwell’s equation

following the theory found in literature it was shown how an optical field can

be described as a scalar field solution of the Fresnel integral. This can be

used to link together the field at a certain point in the space and the same

field after a propagation along a certain direction, since the output field can

be expressed in terms of th input field. This solution presents aliasing and

scaling problems. A second method, already described in literature, is the

multi step Fresnel propagation operator. It has been proposed to address

the scaling issue and consists in dividing the propagation distance in smaller
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intervals such that no scaling is introduced. The problem with this method

is the noise produced and the long computational time required. The third

method studied to implement the free space propagation was the angular

spectrum of plane waves. It produces exact results, without any scaling and

requires a short computational time. The propagation is seen as a linear

filter with a characteristic transfer function whose bandwidth is proportional

to the propagation distance. Aliasing arise if the resolution of the optical

field is not enough to sample correctly the transfer function. To avoid this a

fourth method was introduced: the band limited angular spectrum. It was

implemented following results already presented in literature. An original

contribution to the field was given by the correction imposed on the band

limitation of the band limited angular spectrum method, leading to the def-

inition of a fifth method that has been used in all the simulation results

presented in the following chapters. A trade-off between the noise produced

by aliasing and the loss of information caused by the bandwidth truncation

was defined and is was possible to conserve most of the information carried

by the optical filed reducing the aliasing error. As it will be shown in the

next chapter this last method is able to give the lowest signal to noise ratio.

This five propagation methods characteristics are resumed in table:

After the free space propagation operator was defined, the thin lens op-

erator was analysed. A thin lens is described by a pupil function with a

quadratic phase profile. In analogy with what seen for the angular spectrum

transfer function, also the lens phase profile can be under sampled causing

aliasing in the output optical field. Therefore a set of design equation have

been derived applying the Nyquist criterion to the lens phase profile. The
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Method Advantages Drawbacks
Fresnel integral Theoretically accurate Noisy, Scaling factor
Multi-step No scaling Noisy, slow
Angular Spectrum No scaling, fast Aliasing for long prop-

agations
Band Limited AS No scaling, fast, no

aliasing
Loss of information

Corrected Band limited AS No scaling, fast, no
aliasing, keeps infor-
mation

Trade off between
noise reduction and
information transmit-
ted

Table 2.1: Free space propagation methods

next chapter will show how this operators are practically used in the simu-

lation toolbox.
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Chapter 3

Fresnel Simulation Toolbox:
applications

3.1 Introduction

This chapter will describe in details the performance of the different free space

propagation operators described in the previous chapter. Some examples of

how they can be used to simulate of an optical system will also be presented.

Particular attention will be given to the differences between the different

operators in terms of performance and signal to noise ratio. It will also

be largely described how to simulate partially coherent light. An original

method to simulate both spatial and temporal coherence will be presented.

Results from the numerical simulations will also be presented to support the

theoretical model and to optimise the parameters. In future developments of

this work could be interesting to evaluate the performances of these methods

analytically. But for the nature of this work is it enough to evaluate those

performances using the simulations.
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3.2 Performances of the Angular Spectrum

Methods

To evaluate the differences in resolution of the three variants of the angular

spectrum methods, normal Angular spectrum (AS), Band Limited Angular

Spectrum (BL), and Corrected Band Limited Angular Spectrum (CBL) pre-

sented in chapter 2, a simulation has been implemented consisting of a free

space propagation of a constant input field with a circular pupil of diame-

ter 5 mm, sampled with a resolution of 3000 × 3000 pixels with a sampling

window of 1 cm. The propagation distances z varied from 1 m to 10 m. The

wavelength used was of 633 nm, corresponding to the red Helium-Neon Laser.

Performances have been evaluated experimentally through the simulations.

The setup simulated is shown in figure 3.1. Results are shown in figure 3.3

Aperture

1m 3m 6m 9m

z

Figure 3.1: Positions of the plane where the optical field has been sampled
with respect to the aperture.

where the cross section of the diffraction patterns are shown. The BL method

shown in the central column gives smooth diffraction patterns. Increasing
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the propagation distance however leads to the intensity profile losing part

of the information because of the excessive low pass filtering on the propa-

gation transfer function, leading the complete loss of the diffraction fringes.

A comparison with the AS can be seen in figure 3.3, where the diffraction

fringes are presents with the superimposition of the noise due to aliasing in

the transfer function sampling. This affects the resolution of the diffraction

pattern and the signal to noise ratio (SNR) drops with z as shown in figure

3.2.The CBL method gives a good noise reduction without losing the original

signal shape as explained in section 2.4.3 and as it is shown in figure 3.3 on

the far right column. Fringes are clearly present in the diffraction pattern

even for large propagation distances and the noise is removed.

In figure figure 3.2 the SNR of the diffraction patterns in figure 3.3 is plotted

as a function of the propagation distance for the three examined cases. The

BL method gives a better SNR especially for short propagation distances,

where the bandwidth of the transfer function is not low pass filtering the

signal yet, but only avoiding the aliasing. Its values remains in general above

the SNR of the CBL method (almost 15dB), even in the case of large prop-

agation distances. This is due to the excessive smoothing action that leads

to the loss of resolution. On the other hand without any bandwidth limita-

tion, AS, green line, the aliasing generated noise becomes dominant for long

propagation distances and the SNR approaches the 0 dB value. The best

results in terms of resolution and noise reduction are given by the corrected

BL method where the information on the diffraction is retained entirely.
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Figure 3.2: Sampling of the Signal to Noise ratio (SNR) at various values of
the propagation distances for the three propagation methods seen in section
2.4.1. The lines are just joining the sampled points and does not represent
a model. The BL and the corrected BL methods improve the SNR, that
instead drops as the propagation distance increases when the AS method is
used.
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Figure 3.3: Comparison of the performances of the three angular spectrum
propagation operator. Diffraction patterns of a 5mm pupil obtained by the
simulations. On the left column are shown diffraction pattern cross section
obtained using the angular spectrum method (AS). In the central column
the pattern for the same propagation distances have been obtained using the
band limited method (BL) and in the right column the same patterns have
been obtained using the correct band limited method (corrected BL).
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3.3 Comparison between the Free Space Prop-

agation Operators

In this section the differences in performance between the Fresnel approx-

imation and the angular spectrum of plane waves approach will be shown

with particular attention to the computational time required by the different

methods, the optical resolution and the error. Results will be used to eval-

uate the characteristic of the different propagation operators. These results

differ from the ones obtained in section 3.2 since the simulations in this case

involve the whole imaging system including the lens and not only the free

space propagation.

3.3.1 Description of the System

The system simulated is a simple imaging system composed of a single lens

with focal length f = 158mm, in a 2f configuration, as shown in figure 3.4.

The field of view is a square of 1cm × 1cm, and the resolution of the input

field is 2000 × 2000 pixels. The aperture of the lens is D = 5mm and its f

number, defined as:

F# =
z

D
(3.1)

is equal to F# = 63, where z is the distance from the lens to the image plane,

that in a 2f configuration is equal to z = 2f = 316mm. The optical cut-off

frequency of this system is given by the relation [25]:

νco =
1

λF#

(3.2)

The object was illuminated with monochromatic light of wavelength λ =

633nm, therefore the cut-off frequency was νco = 2.5 · 104cycles/m.
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f

z=2f z=2f

image planeobject plane

D=5mm

z=318mm

f=158mm

w=10mm

N=2000x2000

Figure 3.4: Schematic of the 2f system simulated. f is the focal length, z the
propagation distances, D is the aperture of the lens, w the field of view and
N the sampling resolution.

3.3.2 Image of a Point Source

The first experiment simulated is the image of a point source, realized with

a pinhole of 10µm of diameter placed at the object plane indicated in figure

3.4. The image has been taken using four different methods to propagate the

light into the system. Those are:

• Multi step Fresnel method (MSF), section2.3.1

• Angular spectrum method (AS), section 2.4

• Band Limited Angular Spectrum method (BL), section 2.4.1

• corrected Band Limited Angular Spectrum method (CBL), section 2.4.3

The impulse response for a point source as input will be computed using each

of these methods.

The sequence of operators used to simulate the system is shown in figure 3.5
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Input �eld

Free Space 

propagation

Free Space 

propagation

Lens

Operator

Output �eld

Figure 3.5: Operator sequence for the 2f system.

In the assumption of having a lens with a circular aperture and no aber-

rations, the impulse response of an optical system is an Airy Disk, that is

the Fourier transform of the pupil of the system at the image plane. The

fact that the theoretical output of the experiment is well known allows to

determine the quality of the simulation tools. In addition to that, the Fourier

transform of the impulse response of an optical system gives information on

the frequencies content of the image, hence the band pass of the imaging

system and its quality. Figure 3.6 shows the sensor image at the image plane

together with intensity profiles of the image.
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Figure 3.6: From top to Bottom: Image and intensity cross section of a point
source according to multi step method, angular spectrum method, band lim-
ited angular spectrum method and corrected band limited angular spectrum
method. In red is plotted the theoretical Airy pattern for reference.

From figure 3.6 it can be seen that in the case of the MSF method the

cross section of the impulse response does not go to zero because if addi-

tive background noise. In addition to that an offset is present in the image
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AS 67.5 µm
BL 77.5 µm
CBL 77.5 µm

Table 3.1: Position of the first minimum for all the three different angular
spectrum methods.

generated. This represent a reason more to discard the multi-step method

form any future simulation. The response of the AS method has a high fre-

quency noise components superimposed to the diffraction pattern while the

BL method reduces the noise due to aliasing of the transfer function in the

AS case as can be seen comparing the two cross sections. Both the BL and

the CBL methods present no background noise and in the high frequency

noise is reduced with respect to the AS case. Another parameter to evaluate

the accuracy of these methods is the position of the Airy disk first minimum.

It is given by [25, 55]:

xmin = 1.22
λz

D
(3.3)

where D is the aperture of the lens. According to the values in section 3.3.1

the Airy disk should have a its first minimum at xmin = 67µm. Without

considering the MSF case that is too noisy and does not present zeros, the

position of the first minimum is the other cases are:

As expected for both the band limited angular spectrum methods (BL and

CBL) the Airy Disk is slightly wider due to the low pass filtering action that

transfer function has undergone. However noise is reduced with the band

limitation as shown in figure 3.6. The noise of each diffraction patter has

been estimated considering as a reference the theoretical Airy patter. After

subtracting it to the calculated intensity profile, the variance has been used
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Method variance
AS 0.00120000
BL 0.00054646
CBL 0.00056632

Table 3.2: Noise estimation for the three different angular spectrum methods.

to estimate the noise. Values of the variance for the three different angular

spectrum methods are shown in table 3.3.2 : To better understand how the

resolution changes with the different methods, it is worth to have a look at the

Fourier transform of the images shown in figure 3.6. The Fourier transform of

the impulse response of a system give its frequency response. The shape of the

frequency response gives information about how the frequency components of

the input signal are modulated and transferred to the output signal. When

this function goes to zero the correspondent frequency value is called the

cutoff frequency. For frequencies higher than the cutoff frequency, all the

information included in the input signal is lost. Results are shown in figure

3.7. The graphs are symmetric with respect to the zero frequency, therefore

only the positive frequencies are shown.

From a comparison of the power spectra in figure 3.7 it is possible to

note the difference in shape of the power spectrum of the MSF method, that

goes to zero slower than the angular spectrum methods spectra. These three

figures present as expected the same shape since for low frequency the three

angular spectrum methods are identical, with the difference of the frequency

components after the cut-off frequency due to the fact that the BL and the

CBL have narrower bandwidths. In the AS method graph a strong peak is

present at a frequency of 105m−1 due to digital artefacts arising from aliasing
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Figure 3.7: From top left to bottom right: Power spectrum of the image
of a point source obtained with the MSF method, the AS method, the BL
method and the CBL method. In red is plotted the theoretical Airy pattern
power spectrum for reference.

effects. This peak disappears in the other two band limited implementations

of the angular spectrum. It is interesting that all four power spectra present

a dispersion of the energy towards high frequencies, indicating that a noise

is not avoidable in the simulation toolbox.

3.4 Coherence

The Fresnel simulation toolbox has been designed to analyse a light field

imaging system. Since all current and most future applications of plenoptic

systems will have incoherently illuminated objects, the simulation of such

a systems should take it into account. Therefore the decision to develop an

algorithm to simulate light propagating in a low state of coherence was taken.
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FRESNEL SIMULATION TOOLBOX: APPLICATIONS

In addition to that low coherent illumination avoids interference pattern cross

talk between neighbours lenslets that might decrease the quality of the final

image.

Coherence is a statistical property of light and is described in terms of second

order averages known as coherence functions [26, 47]. A full analysis of

coherence of optical fields can be found in text books such as Born and Wolf

[8], Mandel and Wolf [47] and Goodman [26] and will not be discussed in this

work. For the application described in this work coherence will be treated

under a less rigorous point of view. Before analysing the computational model

of coherence it is worth examining the two different types of coherence. As

defined by Goodman [26] :

• Temporal Coherence can be defined as the ability of light to interfere

with a delayed version of itself

• Spatial Coherence can be defined as the ability of light to interfere

with a spatially shifted version of itself

The empirical method developed to simulate light propagating at low coher-

ence includes both spatial and temporal coherence.

3.4.1 Temporal Coherence

Following the explanation of Goodman [26], given a complex disturbance

U(
−→
X, t) with a finite bandwidth ∆ν, it is expected to remain constant during

a time interval τ < 1/∆ν. This means that the disturbance taken at two

different times in the same spatial position U(
−→
X, t) and U(

−→
X, t+τ) are highly

correlated if τ < τc where τc is the coherence time. Under this condition
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τc = 1/∆ν. Since the correlation takes place without any spatial shift it is

possible to drop the spatial coordinates
−→
X . The degree of temporal coherence

is therefore given by the autocorrelation function:

Γ(τ) = 〈U(t+ τ)U∗(t)〉 (3.4)

The coherence time τ is therefore a function of the bandwidth of the light.

A perfectly monochromatic plane wave has a very narrow bandwidth and a

long coherence time, while on the other hand ultra fast laser pulses will have

a short coherence time and a large bandwidth. From the coherence time it

is possible to define the coherence length as lc = vτc where v = c/n is the

speed of light in the medium of propagation given by the speed of light in

the vacuum c divided by the refractive index n.

3.4.2 Spatial Coherence

To analyse spatial coherence two complex disturbances U(
−→
X 1, t) and U(

−→
X 2, t)

are observed at the same time in two different position
−→
X 1 and

−→
X 2. When

the two points coincide,
−→
X 1 =

−→
X 2 the two disturbances are perfectly cor-

related. When the distance between the two points begins to increase, the

correlation degree decreases until they become totally uncorrelated. In order

to better understand this concept it is useful to illustrate the Young exper-

iment [73]. With reference to figure 3.8 a squared light source of size ∆x

emits light towards a screen at a distance R. On the screen A there are two

pinholes Q1 and Q2. In order to have interference fringes on a second screen

B the following condition should be satisfied:

∆x∆θ < λ (3.5)
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FRESNEL SIMULATION TOOLBOX: APPLICATIONS

Where 2∆θ is the angle formed at the source with the two pinholes Q1 and

Q2 and λ is the wavelength of the light emitted by the source. In order to

see the fringes, the two pinholes should be situated in an area ∆A of size:

∆A ∼ (R∆θ)2 =
R2

S
λ (3.6)

R is the distance between the screen A and the source, S = ∆x2 is the area

of the source, and equation 3.5 has been used. The area ∆A is the coherence

area of the light in the plane A around the point Q0 on the optical axis.

S

∆x
∆θ

Q
1

Q
2

Q
0

A

R

B

Figure 3.8: Young experiment setup.

The area of coherence quantifies the degree of spatial coherence. It de-

pends on the area of the light source S, the distance of observation R and

the wavelength of the light.

3.4.3 Simulation of Spatial Coherence

The goal of this section is to define a novel method for simulating spatial

coherence in order to generate partially coherent optical fields. An electro-

magnetic wave is generated by a dipole oscillating at a certain frequency.

131



3.4. COHERENCE

This dipole can be a molecule, an atom, a group of atoms in a gas. In case

of a conventional incandescence light source, light is emitted by tungsten

atoms excited by the electrical current. This is also true for other sources

of illuminations, like gas lamps, neon, or solid state light sources like LED;

atoms of molecules excited to higher energy levels emit light when dropping

to the ground energy level. Each dipole emits light with a certain initial

phase. Considering a light source of surface Σ containing oscillating dipoles,

the elemental surfaces dΣ is defined as the surfaces on which all the dipoles

oscillate with the same phase. The average size and dimensionality of the

elemental surfaces dΣ is proportional to the degree of spatial coherence of the

light source. The more coherent the light source, the bigger the elemental

surfaces will be. From a computational point of view having a light source

composed of a mosaic of surfaces with different phases is equivalent to adding

a phase mask to the input field. This phase mask is composed of areas with

a random phase value. The dimension of these areas gives an idea of the

degree of spatial coherence. The idea behind the empirical method used to

generate the phase mask is shown in figure 3.9:
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FRESNEL SIMULATION TOOLBOX: APPLICATIONS

Figure 3.9: A random phase mask is generated by propagating light coming
form an array of sources, each one with a random phase value in the interval
[−π, π].

An array of point sources is generated on a sampling window of the same

dimension as the input field. The sources are placed regularly across the

array. If the number of sources is less than 20× 20, the sources are displaced

randomly in order not to affect the coherence with their regular structure.

The square root of the number of point sources used is defined as the coher-

ence index C. A C of 100 means that the initial array is composed of 100 ×

100 sources. A random phase value in the range [−π, π] is assigned to each of

these point sources. Their amplitude is set to one. Then the array of point

sources is convolved with a kernel K whose size is defined in order to make

all the random point sources disks of amplitude one with a finite size. All

these disks touch each others without overlapping as figure 3.10 shows. The

size of the kernel depends on the resolution N of the input field and on the

coherence index C and is equal to the ratio N/C.
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3.4. COHERENCE

The result of the convolution is a phase mask that is formed by an array of

circular areas with a random phase value. Although this array of sources is

already a phase mask, it cannot be used directly in the simulation platform

because of its periodicity. In fact it is not a random phase pattern. In order

to randomize the shape and the distribution of the coherence areas the array

of sources is propagated at a distance bigger than the size of the sources.

The distance dc chosen to propagate the light sources is the one derived in

section 2.3.1 to keep the same sampling both in the input and output fields

using the Fresnel propagation method discussed in section. From equation

2.34:

dc =
W 2

Nλ
(3.7)

where W is the field of view, N is the sampling and λ is the wavelength of the

light. The choice of using the Fresnel propagation as described in section 2.3

has been made because the propagation distance is small and hence aliasing

issues do not arise. In addition to that it only requires one Fourier transform,

making the random phase generation algorithm faster. The whole process is

shown in figure 3.10
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Figure 3.10: Process of the creation of the phase mask. Top: array of point
sources with a random phase value; centre: array of the areas of coherence at
source after the convolution with K; bottom: randomized areas of coherence
at object plane after the propagation of dc.

Some examples of phase masks generated from different number of sources

can be seen in figure 3.11:
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Figure 3.11: Final random phase mask generated a coherence index C equals
to 10, 50, 100 and 200.

The algorithm to generate the random phase mask can be summarized

as follow:

• A number of light sources are defined, arranged in a regular array and

allocated a random phase between −π and π.
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FRESNEL SIMULATION TOOLBOX: APPLICATIONS

• Each source has a size diameter given by: N/C

• This array of sources is then propagated a distance dc shown in equation

3.7 in order to randomize the shape of the coherence areas.

• the resultant phase is used as the output phase mask to add the input

field.

These considerations lead to correct results as proven by the simulation of

the image of an edge presented in section 3.5.3.
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3.4.4 Simulation of Temporal Coherence

As discussed in section 3.4.1, temporal coherence is defined by the time τ in

which the optical wave is correlated with itself. In other words after a time

t = τ , the optical disturbance U(t) and U(t+ τ) are totally uncorrelated and

cannot interfere with each other. To simulate this effect many snapshots of

the output field are taken each time using a different random distribution

of phases for the sources. Assuming that the time difference between every

snapshot is larger than or equal to the coherence time τ . For the application

for which this toolbox has been designed it is not relevant to know the exact

value of τ . However, the light source used for the laboratory prototype,

that will be described in chapter 6, was a Thorlabs LED Array Light Source

LIU630A with a wavelength centred on 630 nm and a bandwidth ∆λ = 20nm.

The emission spectrum is shown in figure 3.12.
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Figure 3.12: Emission spectrum of the LED considered in our simulations
and real image system. Data plotted from Thorlabs LED Array Light Source
LIU630A datasheet.
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Its coherence time is given by:

τ =
1

∆ν
=

∆λ

c
(3.8)

which is equal to τ = 6.6 × 10−17s. Therefore each snapshot is assumed

to be taken at the image plane at an interval of τ . All the snapshots are

then added together, integrating the optical disturbance over time. Longer

integration times will give better contrast and less noise while approaching

to the incoherent imaging as it is shown in the following paragraph.

3.5 Optimization of Coherence Parameters

In this section simulation will be presented in order to estimate the best

values of the simulation parameters to produce partially coherent light. These

parameters are the coherence coefficient C for spatial coherence and the

number of snapshots for the temporal coherence. A resolution target was

imaged by a 2f system described in section 3.3.1.

3.5.1 Optimization of Spatial Coherence

Simulations have been run propagating an optical disturbance with phase

masks generated with different values of the parameter C with the purpose

of defining the optimal number of sources to generate a phase mask that

produces a final images with a high signal to noise ratio. The input field

used is the USAF resolution target, shown in figure 3.13
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Figure 3.13: USAF resolution target.

The first simulation has been made changing the coherence index C from

a value of 5 (high coherence) to 500 (low coherence) in a sampling window

with a resolution of 1765 by 1765 pixels. Figure 3.14 shows how the field at

the image plane for different values of C appears, while figure 3.15 shows a

plot of the signal to noise ratio of the images as a function of the coherence

index showing an asymptotic behaviour. After a certain threshold value of

C, increasing the coherence index does not improve the image quality. The

threshold is defined as the value of C for which the variance of the previous

five values of SNR is less than 0.01. Figure 3.15 shows that for values of

C bigger than 250 the SNR asymptotically tends to 18 dB. In this case the

resolution of the input field, and therefore of the phase mask, is 1765 by 1765

pixels, so that the SNR reaches the asymptote when the ratio between the

number of sources and the resolution is 0.14. After this point, there is no

gain in making the light source more incoherent in terms of signal to noise

ratio improvement.
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Figure 3.14: Images of the USAF resolution target with different values of
ι. Increasing the number of point sources generating the phase mask leads
to more incoherent imaging, leading to improved resolution. Images where
obtained with 300 iterations.

The ratio between the number of sources C and the resolution of the

optical field N is defined as the incoherence degree ι:

ι =
C

N
(3.9)
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Figure 3.15: Signal to noise ratio of the image of a USAF resolution target
plotted as a function of the coherence index C.

The image quality evaluated using the signal to noise ratio improves with

the increasing of the sources used to generate the phase mask. However it

reaches an asymptote after 250 sources. This is due to the fact that the

interference effects due to low coherence decrease, improving image quality.
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3.5.2 Optimization of Temporal Coherence

The second simulation run aimed to define the investigate the effect of in-

creasing the number of snapshots on temporal coherence effects. The random

phase mask acts as a diffuser, and the resultant output field obtained by a

single snapshot will present a low signal to noise ratio due to speckles, as

shown in figure 3.16
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Figure 3.16: Noise due to the speckles in an image of a USAF resolution
target after only 5 snapshots.

Taking several snapshots and adding them all together is equal to an

integration over time of the optical field reaching the sensor. While increasing

the integration time, the noise due to the speckles drops considerably. Figure

3.17 shows several images of the USAF target in figure 3.13 taken with an

incoherence degree of ι = 0.14, and with an increasing number of snapshots

from 5 to 1000.
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Figure 3.17: Images of the USAF resolution target obtained adding an in-
creasing number of snapshot. this is equivalent to increase the integration
time of the sensor. The noise due to the speckles caused by the phase mask
decreases with increasing number of snapshots. images are obtained summing
the snapshots, therefore they do not have the same brightness.
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Since increasing the number of snapshots is computationally expensive,

the signal to noise ratio of the images in figure 3.17 has been evaluated and

plotted as a function of the number of snapshots in order to define an optimal

parameter. Results are shown in figure 3.18. The threshold is defined as the

number of snapshots for which the variance of the previous five values of

SNR is less then 0.01.
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Figure 3.18: Signal to noise ratio as a function of the number of iterations.
The threshold has been calculated looking at the variance of the previous five
data. The purpose of the fitted curve is to show the asymptotic behaviour
of the data.

For an image with an incoherence degree of ι = 0.14 the number of

iterations after which the SNR of the image does not improve further is
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350. After that value the SNR tends asymptotically to 18 dB in spite of

an increased computational effort. Therefore from a SNR point of view the

optimal number of iteration to simulate temporal incoherence is 350. All the

other simulations presented in this work will be performed with the coherence

parameters discussed in this section.

3.5.3 Coherent Imaging vs Incoherent Imaging

The image of an edge has been simulated to make a comparison between the

coherent and the incoherent system response. Data were simulated with the

same optical parameters described in section 3.3.1. The intensity profile of

an image of an edge is well known both in the case of coherent and inco-

herent illumination and provides a means of verification for the simulation

methodology discussed above. Figure 3.19 shows the response of a coherent

and an incoherent imaging systems to a sharp edge. The intensity profile of

the edge is shown in green, its coherent image in blue and the incoherent

image is shown in red. The coherent image presents fringes whose ampli-

tude decreases further away from the edge. This effect is known as ringing

artefacts, due to the coherent transfer function that usually presents rapid

discontinuities [25]. Another property of the coherent image is that it crosses

the actual location of the edge at 1/4 of its asymptotic value of intensity,

while the incoherent image does the same at 1/2 of its asymptotic value, as

can be seen in figure 3.19 [25]. Both conditions are verified by the simulations

run as shown in figure 3.19.
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Figure 3.19: Comparison between the coherent and an incoherent response
of a simple 2f system to a sharp edge.

3.6 Conclusions

In this chapter it was shown how the methods described in chapter 2 can be

implemented by the simulation toolbox. A comparison between the different

free space propagation methods described in chapter 2 was presented in sec-

tion 3.2 showing how the corrected band limited angular spectrum method

is the most suitable to simulate an imaging system since presents the best

trade-off between computational performance, Signal to Noise ration and ac-

curacy of the output field. This has been proven further in section 3.3 where

the image of a point source obtained with the four different method has been

analysed both in the spatial and frequency domain.

The last two sections of this chapter discuss coherence and present an original

method to simulate partially coherent light sources. The method is described
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in details and an estimation of the best simulation parameters is presented.

The correctness of the results is proven through the simulation of an infinite

edge presented in section 3.5.3.
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Chapter 4

Simulations of a Plenoptic 1.0
System

4.1 Introduction

The main purpose of the work described in this chapter is to prove that the

images obtained simulating a plenoptic imaging system using the wave sim-

ulation toolbox described in chapter 2 are equivalent to the ones obtained

with conventional ray tracing techniques. In addition to that the effects of

diffraction will be explained and evaluated. Simulations were run also to

better understand the existing rendering algorithms, the synthetic refocus-

ing algorithm and depth estimation. These algorithms based on ray optics

give the expected results on the raw images produced using the wave optics

simulation toolbox. The methods used to design, develop and test the data

processing algorithms, such as rendering, synthetic refocus and depth estima-

tion algorithms from the digitally generated light fields data are described.

All the light field processing algorithms presented in this chapter use the

third parametrization of the light field described in section 1.4.2 that is the

four dimensional representation of the intensity recorded on the sensor. Each
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point of this four dimensional array is a ray at the position x and y with a

direction θx and θy [52, 17].

4.2 Description of the System

The plenoptic 1.0 camera described in section 1.4 has been modelled as a 2f

system composed of a main lens, a micro lens array and a sensor as shown in

figure 4.1. The micro lens array is placed at a distance z=2f from the main

lens, where f is the focal length of the main lens, and the sensor is placed at

a distance fµ from the micro array plane that is also the focal length of the

lenslets. In this configuration the lenslet array plane is conjugated with the

object plane, while the sensor plane is conjugated with the main lens plane.

In order to satisfy the f-number matching condition described in section 1.4

the software automatically sets the aperture of the main lens according to

the propagation distances, the micro lens array parameters, the resolution

N of the input field, the wavelength of the light used and the micro array

parameters settings.
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Figure 4.1: Parameters that characterize the micro lens array are: the pitch
p, defined as the distance between the centres of two lenslets, the diameter
d, the number of lenslets per row N and the size of the micro array W.

The micro array parameters are illustrated in figure 4.2 and are the pitch,

the diameter of the single lenslet, the number of lenslet in a row and the size of

the array. In all simulations the pitch of the lenslets is equal to the diameter

and the lenslets are arranged in a square matrix.

p

d

N

W

Figure 4.2: Parameters that characterize the micro lens array.
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4.2.1 Diffraction Effects on the System

Diffraction from the lenslet’s circular aperture can generate cross talk be-

tween neighbouring sub images since the light form a single lenslet falls in

the sub image of the neighbouring lenslet. Because of this, blur is present

in the rendered image resulting in a loss of spatial resolution. To avoid this

loss of resolution the diameter of each lenslet should be large enough so that

the diameter of the Airy disk is smaller than the lenslet diameter. As seen

in equation 3.3 for a lens with a circular aperture, the diameter of the Airy

disk at its focal plane is

dAiry = 2.44λz/d (4.1)

In order to avoid diffraction induced cross talk the lenslet diameter should

be:

D > 2.44
λz

D
(4.2)

Therefore the condition of D is:

D >
√

2.44λfµ (4.3)

This is a very important result and it is an original contribution to the field,

since it represents the first design condition ever evaluated form diffraction

considerations. Therefore when choosing or designing a lenslet array for

plenoptic imaging the lenslet diameter and the focal length should satisfy

equation 4.3. The acceptable values belong to the area above the blue line

in the diagram shown in figure 4.3.
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Figure 4.3: Values of acceptable lenslet diameter to avoid diffraction induced
cross talk.

The effect of cross talk between lenslets on the raw image is shown in

figure 4.4. This image was obtained simulating a point source imaged by a

120 mm lens placed in a 2f configuration with the lens let array. The sensor

resolution was 2000 by 2000 pixels and the micro array was made of 101 by

101 lenslets with a diameter of 100 µm and a focal length of 100 mm.
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Figure 4.4: Raw plenoptic image of a point source. The grid represents
the edges of the sub images. If the point source is in focus, it should be
represented by only one lenslet. Because of diffraction some light goes also
on the neighbouring sub images.
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Figure 4.5: Phase space of the light field of a point object: on the left is the
case when the condition 4.3 is respected; on the right when diffraction induces
cross talk that arises between neighbouring lenslets. Cross talk introduces a
blur in the rendered image whose width is ∆x.

Figure 4.5 shows what happens in the phase space of a point source in
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the presence of cross talk and without cross talk. In the first case there is

no blur since all the light coming from a point source in focus is recorded

by a single lenslet, while in the second case the spreading of the light due

to diffraction causes a blur that is proportional to the number of sub images

involved.

4.3 Advanced Rendering Techniques

As described in chapter 1, one pixel in the rendered image is obtained from

the mean of all the pixels of the sub image that corresponds to the position

of the pixel in the final image [52]. This method generates an image that

is equivalent to the image obtained with a conventional camera without any

additional information. Since the final resolution depends on the number

of lenslets in the micro array, it will be smaller than the resolution that

can be obtained by a conventional camera which instead uses the full sensor

resolution [17]. To use the full variety of features enabled by light field

imaging, more advanced post processing techniques of the raw data should

be used. The first two post processing features presented are the change

of aperture and of point of view. These effects are achieved by integrating

each sub image along a sub set of directional coordinates, hence on a smaller

number of pixels.

4.3.1 Changing Aperture

The quality of the image captured by a conventional camera depends on

the combination of shutter speed and aperture chosen in order to get the

optimum total exposure [55]. The possibility of changing the aperture of the

155
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main lens in post processing allows us to change the depth of field of the

final image. In the simulations presented in this work the shutter speed is

not an issue since all the objects imaged static with constant and uniform

illumination. Therefore what determines the exposure is the aperture of the

main lens or the f-number. The f-number is proportional to the depth of

field of the imaging system that can be defined as the range of depths that

appears sharp in the resulting photograph [52]. If the f-number increases and

the aperture gets smaller, the depth of field increases. Therefore a plenoptic

camera can control the depth of field in post processing. Looking at the raw

plenoptic image, each sub image is formed by a number of samples of the

directions of the rays. If in equation 1.6 the range of integration along the

directional coordinates is reduced, the aperture of the main lens is reduced

at the same amount. If the aperture is smaller the rays propagating with

a large angle with respect to the optical axis will not reach the sensor and

will be not considered to form the intensity of each pixel. The result is a

rendered image that looks like it has been captured with a narrower aperture.

Computationally the algorithm to reduce the aperture is:

I(x, y) =
1

N ′2

N− kx
2∑

i=kx/2

N− ky
2∑

j=ky/2

L(x, y, i, j) (4.4)

where N ′ = N − k and k is the range of directional coordinates considered

in the sum. This operation in the phase space is shown in figure 4.6:
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Figure 4.6: Rendering seen from the (x, θx) slice of the phase space. The
directional pixels not considered for the integration are shown in grey.

An effect of reducing the aperture of a camera is to extend its depth

of field. Therefore the depth of field can be digitally extended changing

the range of directional coordinates included in the sum as explained above.

Figure 4.7 shows the raw image of thin silky skin separating two layers of an

onion, immersed in oil to improve transparency. The image is obtained from

the online repository of raw plenoptic data provided by Levoy in Syanford

University [48]. Figure shows 4.8 the differences between the rendered image

integrating over the full aperture, and the rendered image obtained using

only the central pixel of each sub image. The effect is to reduce the aperture

to a pinhole and to have an all-in-focus image. Images has been obtained

with home made rendering algorithm written in MATLAB.
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Raw Image

Figure 4.7: Raw plenoptic 1.0 image obatined from Levoy et al. The micro-
scope was a Zeiss Axiovert with a 20x/0.5NA (dry) objective. The micro lens
array was 24mm x 36mm, with square 125-micron x 125-micron f/20 micro
lenses, held in front of the Axiovert’s side camera port using an optical bench
mount. The camera was a Canon 5D full-frame digital SLR. The specimen
was the thin silky skin separating two layers of an onion, immersed in oil to
improve transparency [48].

Full aperture Image All in Focus Image

Figure 4.8: Rendered Images from the raw data in figure 4.7. On the left
there is the full aperture image obtained integrating along all the directional
coordinates, while on the right there is the all in focus image obtained taking
only the central pixel of the each sub image, that corresponds to rays with
the direction parallel to the optical axis.
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Reducing the number of pixel used to form the final image reduces of

course the SNR of the image making it more noisy.

4.3.2 Changing the Point of View

It is possible to change the point of view in the rendered image integrating

along all the directional coordinates in one direction keeping fixed the other

direction. For example an image corresponding to a particular point of view

can be obtained, with reference to equations 4.5, keeping fixed the directional

coordinate corresponding to the desired point of view and integrating along

all the other coordinates.

I(x, y) =
1

N

∑N
i=0 L(x, y, i, ky)

I(x, y) =
1

N

∑N
j=0 L(x, y, kx, j)

(4.5)

4.4 Depth Estimation

This section discuss how depth information can be extracted from light field

data. In the specific case of plenoptic 1.0 raw data, depth can be decoded

looking at the phase space. Section 1.4.1 explained that a point source on

the focal plane of the main lens looks like a straight vertical line in the phase

space. The physical meaning of this is that for a single position, that is one

lenslet, all the directional coordinates are sampled [17]. If the point source is

out of focus the situation is different. If the source is closer to the main lens

with respect to the focal plane, it will be imaged on a plane that is behind

the micro array. This situation is shown in figure 4.9. Both directional and

positional coordinates are sampled by more than one lenslet and each sub
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image will sample a set of directional coordinates corresponding to the part

of the main lens from where the rays come. Figure 4.10 shows what happens

in the phase space. On the lenslet plane the spot size will have a width of

∆x proportional to the distance, therefore the directions will be sampled by

the lenslets included in this interval. Each lenslet receives light coming a

particular area of the main lens, its correspondent sub image only records

the pixels linked with those coordinates as can be seen comparing figure

4.9 with 4.10. The resultant phase space representation is still a straight

line, but with positive slope proportional to the distance of the point source

4.10. If the source is further away from the plane where the main lens is

focused, the main lens image is formed before the lenslets plane. The point

is still sampled by more than one lenslet included in the spot size ∆x. The

difference with the previous case is that now in the phase space the point

source is represented by a straight line with a negative slope. The physical

meaning of the slope of the phase space line can be understood by looking at

figure 4.11. When the main lens image is formed in front of the micro lens

plane the increasing values of θx axis are mapped on decreasing values of x

and the line on the phase space representing the point has a negative slope.

If the image is formed behind the micro lens plane increasing directions on θx

axis are mapped on increasing positions on the x axis this inversion is absent

and the line in the phase space has a positive slope [52]. This characteristic

of the phase space permits us to discriminate between points in the scene

that are in front or behind the main lens focal plane, giving a first rough

depth estimate.
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Figure 4.9: Sampling of the light field of a point source in focus, on the top,
closer to the main lens, centre, and further away, bottom. When the source
is out of focus, both position and directions are sampled by more than one
lenslet since the main lens image is no longer formed any more on the lenslet
plane.
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Figure 4.11: Physical meaning of the slope in the phase space. If the point
source is further then the camera focal plane, the phase space line has a
negative slope. If the point source is closer then the focal plane, the slope of
the phase space line is positive.

Plenoptic 1.0 camera simulations, as discussed above, have been run to

verify this fact. The system was composed of a main lens with a focal length

of 120 mm, in a 2f configuration creating an image on the micro array plane.

The Micro lens array was composed of a matrix of 101 × 101 lenslets with a

diameter of 100 µm and a focal length of 100 mm. The ensor had a resolution

of 200 by 2000 pixels.
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Figure 4.12: Numerical simulation of a point source imaged by a plenoptic
1.0 imaging system. The point source was placed at three different distances
from the main lens. The top three figures show the focused image. In the
centre ones a defocus of 0.125 m closer to the main lens is added. In the
bottom ones the point source is closer to the main lens of 0.25 m. In all the
three cases the raw data image is on the left, the rendered image is on the
centre and the phase space line is on the right.
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4.5 Synthetic Refocus

Another post processing feature enabled by collecting the light field is the

possibility to refocus an image after it has been captured. This features is

called synthetic refocusing and is based on the fact that the recorded light

field can be used to compute images as if they were taken by a synthetic

camera positioned and focused differently from the actual camera. In this

section the synthetic refocusing algorithm is explained in terms of the dis-

cussion in Ng [52] and Ng et al. [53].

This method is based on the fact that for a plane out of focus for the real

camera, it is possible to define a synthetic camera composed of an aperture

and a sensor plane that is focused on that particular plane. The image pro-

duced by the synthetic camera will result in focus. This method is based on

a synthetic camera model obtained with ray tracing. It can be implemented

in a wave optics approach using the simulation platform developed in this

work and the limitations and the issues arising from a wave approach with

respect to the simple and ideal ray optics approach will be discussed. Figure

4.13 shows a plenoptic 1.0 imaging system whose main lens produces an out

of focus image on the micro lens plane. The directional set of coordinates ∆u

is mapped along the range of spatial coordinates ∆x. The light field can be

reparametrized in terms of a synthetic light field generated by an aperture

on the plane u’ represented by the dashed lens, that focuses the object on

a synthetic focal plane, x’. This second light field is parametrized with the

coordinates u’ v’ and x’ y’.
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Figure 4.13: The synthetic camera refocusing method is based on the fact
that is always possible to define a virtual aperture that is focused on the
lenslet plane.

As explained by Ng et al. [53] and in analogy with what was explained in

section 1.5 it is possible to define the intensity obtained rendering a synthetic

light field L′(x′, y′, u′, v′) at the synthetic focal plane as:

I(x, y) =

∫∫
L′(x′, y′, u′, v′)A(u′, v′)du′dv′ (4.6)

The goal is to express this intensity as a function of the captured light field

L(x, y, u, v) present on the actual sensor plane, finding the relationship that

links the set of coordinates x, y, u, v with x’, y’, u’, v’.
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4.5.1 Synthetic Refocus Algorithm

This algorithm has been developed by Ng et al. [53]. To find the link between

the real and the synthetic light field the following simplifications are made:

• only the synthetic sensor plane x’, y’ will be moved. Therefore the

main lens plane u’, v’ is at the same position of the plane u, v, and no

transformation is performed on the directional coordinates, therefore

(u, v)=(u’, v’ ).

• the aperture of the main lens will not change, A(x′, y′) = 1.

Figure 4.14 shows a two dimensional diagram explaining the reparametriza-

tion under the simplifications explained above. Only the coordinates x and

u are shown for simplicity. F is defined as the distance of the main lens from

the lenslet array plane, and F’ as the distance from the synthetic focal plane.

The ratio between these two distances is the refocusing parameter α′, defined

as:

α′ =
F

F ′
(4.7)

The refocusing factor can assume the following values:

• α′ = 1 when the synthetic focal plane is at the same position of the

main lens focal plane

• α′ > 1 when the distance between the main lens and the synthetic

image plane is smaller than the distance between the main lens and

its original focal plane. This occurs when the system is refocused on a

plane that it is further away with respect to the main lens focal plane.
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• α′ < 1 when the distance between the main lens and the synthetic

image plane is bigger than the distance between the main lens and its

original focal plane. This occurs when the refocus takes place on a

plane that is closer with respect to the main lens.

u

F

x’

x

F’

x’-u’

u (x’-u’)F/F’

α = F/F’

Main lens plane

Synthetic image plane

Original image plane

x’
1

x
1

Figure 4.14: Changing the focal plane of the camera is equal to re-
parametrizing the light field according to the new coordinates. The re-
parametrization corresponds to a scaling of the ratio between the refocused
plane and the original camera plane α′.

Looking at figure 4.14 a ray of light that crosses the main lens plane at the

coordinate u and that then intercepts the synthetic image plane at the point

x′1, can be represented with the coordinates of the original image plane x1.
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Because of similar triangles, the value of the x coordinate on the image plane

can be expressed as a function of the coordinates u, x′:

x1 = u+ (x′1 − u)
F

F ′
= u+ (x′1 − u)α′ (4.8)

Therefore extending to the four dimensional case, the points belonging to

the synthetic image plane can be expressed as a function of the directional

coordinates at the main lens plane and the spatial coordinates at the original

image plane as:

x′ =
x

α′
+ u

(
1− 1

α′

)

y′ =
y

α′
+ v

(
1− 1

α′

) (4.9)

With this change of coordinates the light field at the synthetic focal plane x′

can be written substituting equations 4.9 into equation 4.6.

I(x, y) =

∫∫
L

(
x

α′
+ u

(
1− 1

α′

)
,
y

α′
+ v

(
1− 1

α′

)
, u, v

)
A(x′, y′)dudv

(4.10)

Equation 4.10 represents the rendered image obtained by integrating along

the directional coordinates of the light field reparametrized as if it were cap-

tured by a camera whose focal plane is the same as the synthetic focal plane.

Focusing at different depths corresponds to changing the separation between

the lens and the image plane, shifting it by a quantity proportional to the

refocusing factor α′. From equation 4.9 the four dimensional light field at

the synthetic plane is obtained from the light field recorded on the sensor by

shifting and rescaling its spatial coordinates. The transformation operated

on the light field is the composition of two transformations:
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• a scaling of a factor α′ that depends on the distance of the synthetic

focal plane from the main lens.

• a translation term u(1− 1/α′) that increases with the directional coor-

dinates and with the magnitude of the factor α′.

Therefore the synthetic refocus can be treated as a linear operator acting on

the four dimensional light field that maps the light field recorded on a new

set of coordinates. The rendering on this new set of coordinates gives the

image focused at a different plane.

4.5.2 Refocusing Operator

The synthetic refocus equation 4.10 has been obtained with ray optics con-

siderations only. However, it can be applied to light fields obtained with wave

optics simulations. When using wave optics particular attention should be

given in the design of the imaging system in order to avoid cross talk effects

induced by diffraction, as explained in section 4.2.1. The effects of this op-

erator in the phase space is a change of the slope of the lines describing the

points of the image in the phase space. Since the total light field is conserved,

the area in the phase space remains the same, hence the projection of the

light field on the phase space is sheared with respect to the original one [17].
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Figure 4.15: Changing the position of the focal plane is equal to shear the
light field in the phase space. The total area remains the same since the total
light field is conserved.

MATLAB code has been developed to implement the synthetic refocus

operator. The algorithm is composed of two distinct stages. The first stage

creates a new set of spatial coordinates shifting and rescaling the original

set of coordinates as shown in equation 4.9. Then the output synthetic light

field is created interpolating the input light field using as a base the new set

of coordinates. The flow chart can be seen in figure 4.16
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Figure 4.16: Flow chart of the operator shearing.

4.6 Results of the Simulations

To test and explore the potentials of the synthetic refocusing algorithm the

wave optics simulation toolbox described in section 2 has been used. The

System simulated is the one described in section 3.3.1 and shown in figure

4.17. The optical parameters can be found in the following table. These

parameters have been chosen in order to minimize the phase aliasing in the

lens, to avoid diffraction induced cross-talk between the lenslets and to match

the f-number of the main lens with the lenslets.

Main lens focal length f 120 mm
Lens aperture D 3.6 mm
Micro lens focal length fµ 10 mm
Micro lens diameter d 150 µm
Micro array pitch p 150 µm
Sensor size 20 mm
f-number 33.6
sensor resolution 3030 by 3030 pixel

Table 4.1: Simulations parameters.
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Figure 4.17: Set up of a plenoptic 1.0 camera replicated in the simulations.

With this set up the final rendered image resolution iss 101 × 101 pixel.

Each pixel of the final image corresponds to a lenslet, therefore the spatial

resolution the final image is equal to the diameter of a single lenslet. Each sub

image has 30 × 30 pixels, meaning that the full set of directional coordinates

is sampled by Nsub = 30 samples. The angular resolution is therefore:

δθ =
∆θ

Nsub

=
NA

Nsub

(4.11)

and is equal to δθ = 2.510−4rad.

The first object to be imaged was a volume V of dimension 20 mm × 20

mm × 100 mm containing three point sources. Each point source has been

simulated by a circle of 10 µm diameter and are positioned as shown in figure

4.18
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Figure 4.18: Position of the point sources imaged inside the volume V simu-
lated. The planes B and A are the boundaries of the volume considered.

Each plane has been imaged independently setting the distance z1 equal

to the sum of the distance of the main lens focal plane and the defocus δz.

The Coordinates of the points are:

• A: x1 = −3mm, y1 = −3mm, z1 = −50mm

• B: x2 = 0mm, y2 = 0mm, z2 = 0mm

• C: x3 = +3mm, y3 = +3mm, z3 = +50mm

Following the simulated propagation of the three planes through the system,

the final output raw image has been obtained by summing the three separate

raw images normalized by the total amount of energy contained. This can be

done since the Fresnel simulation toolbox is time independent. Figure 4.19

shows the total raw image and the rendered image integrated without any

refocusing.
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Figure 4.19: Raw image on the left and rendered image on the right. In-
tensity is shown in false colour in order to appreciate variations in energy
distribution.

The central spot is in focus, since the point source is at a distance of z =

2f on the main lens focal plane. For a defocus of 50 mm the factor α′ can be

obtained from the lens equation. For the 2f system simulated and referring

to figure 4.14 for notations:

1

f
=

1

F ′
+

1

(z + ∆z)
(4.12)

Since α′ = F/F ′, and in a 2f system F=2f=z:

1

f
=
α′

2f
+

1

(2f + ∆z)
(4.13)

Resolving for α′ becomes:

α′ =
2f + s∆z

2f + ∆z
(4.14)

Figure 4.20 shows the values of α′ obtained by equation 4.14 for defocus

varying between plus and minus 10 cm.
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Figure 4.20: Values of the refocusing factor α′ as a function of the defocus.
A positive defocus means that the object it further away with respect to the
main lens, a negative defocus indicates an object that is closer.

Figure 4.20 shows that, as expected, the refocus factor is not linear with

defocus and therefore the axial resolution in not linear. When the object is

closer to themain lens, small variations in the defocus give large variations in

α′ while the opposite happens when the object is further away with respect

to the main lens.

Figure 4.21 shows the refocused imaged obtained from shearing the light field

extracted by the raw image in figure 4.19 on the left. According to equation

4.14, the point A is refocused for a value of α′ equal to 0.7 and point B for

α′ = 1.17.

176



SIMULATIONS OF A PLENOPTIC 1.0 SYSTEM

Refocused Image. Alpha =1.1724

Position (m)

P
o

si
ti

o
n

 (
m

)

 

 

−6 −4 −2 0 2 4 6

x 10
−3

−6

−4

−2

0

2

4

6

x 10
−3

0.5

1

1.5

2

2.5

3

x 10
−5

Refocused Image. Alpha =0.73684

Position (m)

P
o

si
ti

o
n

 (
m

)

 

 

−0.01 −0.005 0 0.005 0.01

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

2

4

6

8

10

12

14

x 10
−6

A

A

B

B

Figure 4.21: Refocused images of the three point sources in figure 4.19. In the
top one the point A is refocused, in the bottom one the point B is refocused.
When the point source is refocused, the intensity distribution is higher with
respect to the out of focus points.

The effects of the refocusing operator can be appreciated by looking the
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intensity values of the refocused point sources. In the top image of figure

4.21 the point labelled with the letter A is refocused, and the majority of the

light present in the image concentrates on its location. The same happens in

bottom figure, where the brightest point, indicated in red according to the

colour bar, is the refocused one (B). This is a proof of the fact that the refo-

cusing operator, shearing the four dimensional light field, moves the intensity

from a location to another. The total energy of the image remains unchanged.

4.7 Focal Stack Depth Estimation

The synthetic refocus algorithm provides a method to estimate the depth of

a point source in a volume. This is an original contribution to the field and

it is a proof of concept that depth information can be evaluated from the

blur of the image. It has been treated only for the case of imaging a point

source for simplicity. Further work should be done to extend it to larger more

complex objects. Looking at the Fourier transform of a rendered image of a

point source before and after the refocusing operation shows that when the

point source is in focus, its spectrum is broader than the blurred one. This

fact is true for general images as well, when the presence of sharp details

in the focused image, causes its spectrum to have a larger amount of high

spatial frequencies, and therefore more energy at high frequencies. Figure

4.22 is shows the difference between the spectrum of the out of focus image

(blue) and the in focus image (red) for a defocus of 5 cm.
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Figure 4.22: Spectrum of out of focus image (blue) and spectrum of the
refocused image (red).

The action of shearing the light field produces a redistribution of the

power spectrum of the signal towards high frequencies.

This effect can be used to estimate the depth of the object imaged by eval-

uating its level of blur. This blur based depth estimation is an original

contribution of this work to light field literature. The method consists in

creating a focal stack by shearing the light field at different values of the

coefficient α′, that correspond to different focal planes, and rendering the

images. After the focal stack is created the power spectrum of each image

is calculated using the fast Fourier transform algorithm. The low frequency

terms are then removed by high pass filtering the images and the total energy

contained in the high frequency term is calculated by integrating the Fourier

spectra. The bandwidth of the high pass filter has been calculated in order
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Estimated α′ Real α′ Error Defocus
0.85 0.738 0.1132 -0.05 m
0.925 0.8837 0.0413 -0.025 m
1.080 1.0943 -0.0143 +0.025 m
1.105 1.1724 0.0674 +0.05 m

Table 4.2: Comparison between the estimated and the real values of the
refocusing factor α

to remove the central lobe of the spectrum. Plotting the values of energy as a

function of the different α′ coefficients a curve with a maximum in the prox-

imity of the most in focus image is obtained. This maximum corresponds to

the image in the focal stack that best estimates the actual value of α′. Figure

4.23 shows the energy as a function of the refocus parameter α′ for a point

source placed at different depths. The vertical red line indicates the position

of the maximum. The values of the estimated α′ and the real one are shown

in table 4.7.

Figure 4.24 shows the distribution of the estimated values of α′ versus

the actual values obtained from equation 4.14. The estimated values for a

defocus of -0.1 m and - 0.08 m are equal to 1 as if the image would lie on the

focal plane. These are clearly wrong estimations and represent a limitation

for the method described. It is interesting to see that for negative defocus

the parameter α′ is over estimated and the error is positive while for positive

defocus the error is negative. The minimum error is present for values of

defocus corresponding to positions close to the focal plane. The error in the

estimation of the refocusing factor is plotted in figure 4.25.

Having seen these results the method has a better accuracy in a range of
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depth around the focal plane and performs worse when the absolute value of

the defocus increases. These results show that the depth evaluation depends

on the distance of the object from the camera. This is a natural consequence

of the non linearity of the lens equation. A way to have a linear dependency

of the parameter α′ with the refocusing distance is to have an array of lenslet

with variable focal length [71, 18], or changing the focal length of the lenslets

dynamically using electro optics effects [69].
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Figure 4.23: Energy contained in the spectrum of the rendered image plotted
as a function of the refocusing factor α′. In red is indicated the value of α′

corresponding to the image with the maximum energy.
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Figure 4.25: Distance between the estimated values of α′ and the actual
theoretical values.

The great difference between the theoretical and the estimated values of

α′ for defocus smaller than -0.02 m indicates that the method is not reliable
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when the object is too close to the main lens. Therefore those values should

be discarded. This methods represents a proff of concept for a more elaborate

development in a future work. It only works with point sources.

4.8 Conclusions

This chapter showed the results obtained simulating a plenoptic 1.0 imaging

system using the Fresnel simulation toolbox described in chapter 2. With

these simulation was possible to evaluate for the first time the effects of

diffraction on the final image. An important result of this chapter is that the

post processing algorithms obtained from ray optics theoretical models can

be used to process raw images generated with a wave optics approach. This

wave optics approach also led to the evaluation of the effects of diffraction

on a plenoptic 1.0 system. A lenslet can be considered as a circular aperture

whose diffraction pattern os the well known airy disk. If the fringes of the

diffraction pattern of a lenslet extend on the neighbouring lenslet, cross-talk

arise. To avoid the minimum diameter of a lenslet as indicated in equation

4.3.

The next step was to apply the rendering algorithm based on ray optics

considerations already presented in literature and apply them on the raw

images obtained from the wave optics simulations. All these methods gave

the expected results proving that the simulation toolbox is capable to pro-

duce realistic data. Particular attention was given to the depth estimation

algorithm. With the help of the simulations it was possible to better under-

stand and verify how the depth of an object can be estimated looking at the

phase space. For a point source in focus the phase space look like a vertical
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straight line. If the point source is closer to the main lens the phase space

will have a negative slope, while if it is further away from the main lens it

will have a positive slope. This results perfectly match the theory. The syn-

thetic refocus algorithm was also extensively analysed. Although this is not

an original contribution to the field, it has been used to develop an original

depth estimation method based on the creation of a focal stack of a point

source refocused at different depth. It consist in refocusing the image of a

point source at different depths and evaluate its power spectrum. The depth

of the focal plane whose spectrum has the minimum energy will be value that

better approximate the actual depth of the point source.

In conclusion, this chapter represents a link between the ray optics theoreti-

cal analysis of plenoptic imaging system extensively present in literature and

its extension to wave optics.
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Chapter 5

Simulation of a Plenoptic 2.0
System

This chapter describes the simulations done to characterize the optical per-

formance of a focused plenoptic imaging system. The scope of this work is to

investigate the behaviour of a plenoptic 2.0 imaging system at its diffraction

limit under a wave optics approach. All simulations described in this chapter

have been run using the Fresnel Simulation Toolbox described in chapter 2.

In a plenoptic 1.0 imaging system the resolution is limited by the dimensions

of the lenslets [21] and the final rendered image has a much lower resolution

then a conventional image. In a focused plenoptic system, as explained in

section 1.7, the resolution of the final rendered image is not linked any more

to the number of lenslets in the micro array and it is possible to recover the

full sensor resolution pushing it even to sub-pixel resolution [43, 44, 16]. This

characteristic makes plenoptic systems suitable to a wider range of applica-

tions where high spatial resolution is required [71]. In the past years further

effort has been made to push plenoptic 2.0 system to achieve super-resolution

performance [22, 16, 6]. Here the term super-resolution does not refer to the
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achievement of a resolution beyond the diffraction limit[13] but to a digital

sub pixel resolution only. When applied to microscopy diffraction still repre-

sents a big limitation for plenoptic imaging systems. This chapter will discuss

how diffraction affects the optical resolution of an imaging system and how

it is linked to the spatio-angular trade off [20]. Numerical simulations will

be implemented using the toolbox described in chapter 2.

5.1 Rendering in Plenoptic 2.0

As introduced in chapter 1, rendering an image from plenoptic 2.0 raw data

is based on integrating for each position all the correspondent directional

coordinates. This is an already existing algorithm. While in plenoptic 1.0

each position is sampled by a single lenslet, which causes the loss of resolution

in the final image, in plenoptic 2.0 each position is sampled by several lenslets.

Therefore with reference to figure 5.1, the spatial coordinate (x,y) of point

A will be sampled by the lenslets 1, 2 and 3, therefore A is represented by 3

sub images. Each sub image is a different point of view of A and directional

coordinates are sampled by these three points of view simultaneously. The

number of sub images into which the point A is imaged depends on the

magnification m=b/a of the lenslet array and is given by:

Nsub =
1

m
=
a

b
(5.1)

a is the distance of the micro array from the main lens image and b is the

distance of the array from the sensor plane.
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Figure 5.1: Top: the point A is imaged by the main lens into the point A′.
It is imaged by the lenslet array into a number of sub images depending by
the magnification of the micro array stage, in this case m=0.333. Bottom:
particular of the raw image of the point source A and phase space diagram.
The three sub images 1, 2 and 3 are three different points of view of the
object.

From a computational point of view the basic rendering is performed

directly on the raw sensor image and has the following steps:

• the single sub images are isolated from each other

• depending on the magnification m the number of angular samples to

be extracted from each sub image is calculated.

• the angular samples are extracted from the sub image and tiled all

together forming the rendered image.
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5.1.1 Extracting Sub Images

The effects of distortion must be taken into account when extracting the sub

images from the raw data. This is a standard optical effect and the solution

proposed is derived from standard plenoptic theory and from geometric optics

considerations. The radial distortion is due to the fact that the sub images

are shifted of a certain amount because the lenslets are imaging off axis. The

shift is proportional to the distance from the centre of the micro array [55]

hence the effects of this distortion are larger on the sub images at the edges

of the raw data sub images array. These sub images are therefore misaligned

with respect to the regular square grid of the micro lens array. With reference

to figure 5.2:

x

z + a
=
x′

b
(5.2)

Therefore each sub image under the lenslet is scaled of a quantity:

x′ =
xb

z + a
(5.3)

Since z ≈ z + a each sub image is scaled of a quantity equal to:

x′ = x
b

z
(5.4)
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Figure 5.2: Relation between the position of the centre of a lenslet x and the
position of the centre of the correspondent sub image x+ x′.

In figure 5.2 x is the position of the centre of a micro lens and its cor-

responding sub image will be shifted of a quantity x′ which depends on the

distance of the image plane from the main lens z and the distance of the

sensor from the micro lens b. Once the centres of the sub images have been

localized it is possible to extract each sub image from the raw data and per-

form the rendering. The images on the edges are also larger than the images

on the centre of the array. This difference is negligible after the correction is

applied and therefore is ignored.

5.1.2 Basic Rendering

This section will describe how the basic rendering algorithm works as seen

in section 1.8 and as described by Georgiev and Lumsdaine [17, 44]. The

raw image on the sensor plane is an image of the main lens image plane [17].

Each sub image represents a single point of view of an area of the main lens

image plane. Referring to figure 5.3, if the micro array is composed of N
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× N lenslets, the raw sensor image will be composed of an N × N array of

sub-images. Each sub-image has a dimension of P × P where P is the micro

lens pitch.

N

N

P

P

M

µ

µ

Figure 5.3: Basic rendering algorithm. The Rendered image is made by tiling
together patches extracted by each sub image. The patch size is dependent
on the magnification of the micro array stage.
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The magnification of the micro array is m=b/a and each micro lens maps

the main lens image on the sensor plane on a sub image magnified by a quan-

tity m. Therefore from each sub image a patch is selected with a dimension

equal to:

µ = P
b

a
= Pm (5.5)

The patch size depends on the magnification of the lenslets array. The next

section will demonstrate how this fact can be used to recover depth informa-

tion from the raw sensor images.

5.1.3 Depth Based Rendering

The patch size µ as seen in equation 5.5 depends on the magnification of

the micro array stage. If the point imaged is out of focus, its image will be

formed on a different plane that is not the main lens image plane. Hence the

main lens image will be blurred and so will the sub images on the sensor.

During the rendering process the fact that a point at a different depth with

respect to the main lens focal plane will be imaged at a different distance

from the micro lens array is taken into account. Therefore it is possible to

define a new value of magnification m′ to which will correspond a new patch

size µ′. Rendering with the new patch size allows refocusing at a different

plane.

With reference to figure 5.4, the points that belong to the plane shown rep-

resented by the dashed red line placed at a distance d from the object plane,

will be imaged on a plane in between the main lens and the main lens image

plane. It is possible to define a virtual micro array stage with respect to this

plane for which its points will be imaged in focus on a virtual sensor plane.
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The parameters characterizing the virtual micro array stage are the distances

a′ and b′ and a magnification m′ = b′/a′.

b a z
2

z
1

sensor
virtual 

micro 

array

main lens object plane

Copernican Con!guration 

a’b’ z’
2 def

Figure 5.4: The points that belong to out of focus object plane represented
in red are imaged on a virtual main lens image plane. This plane is relayed
on a virtual sensor plane by a virtual micro array whose parameters are a’
and b’ and m’ = b’/a’.

The distance between the main lens image plane and the virtual main

lens image plane, defined as ā = a − a′, is called virtual depth [56]. The

magnification of the virtual lenslet array defines the patch size to use to

render the point at that particular depth. The link between the magnification

m’ and m can be defined by applying the lens law twice, once for the main

lens and once for the micro array stage. Therefore the virtual main lens plane

corresponding to a defocus d is located at:

z′2 =
(z1 + d)f

(z1 + d) + f
(5.6)
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where f is the focal length of the main lens. The corresponding virtual depth

value is given by subtracting the quantities z′2 and z2

ā = z′2 − z2 (5.7)

Then from the virtual depth ā the values a’ and b’ for the virtual micro

array can be obtained. a
′ = a− ā

b′ =
a′f

a′ + f

(5.8)

And the magnification for the virtual plane is:

m′ =
b′

a′
(5.9)

Values of the magnification m′ plotted as a function of defocus are shown in

figure 5.5
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Figure 5.5: Values of the magnification used to determine the patch size for
the plenoptic 2.0 rendering plotted as a function of the defocus.
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The patch size corresponding to the new focal plane is therefore:

µ′ = Pm′ = P
b′

a′
(5.10)

Rendering with the new patch size allows refocusing at a different plane. If

the defocus in not know, as in the majority of the cases, it is possible to

estimate the depth information of the scene imaged and use this information

to render the final image. These algorithms are based on cross correlating

each sub image with its closest neighbours in order to evaluate the relative

shift due to a change in depth across the lenslet[29, 36]. In this way it is

possible to determine the patch size that results in the best match with all

of its neighbours [17, 43].

The axial resolution of a plenoptic 2.0 system is determined by considering

that the minimum detectable shift between sub images formed by neighbour-

ing lenslets is one equal to one pixel.

5.2 Description of the system

The system simulated is shown in figure 5.6. The main lens is in a 2f config-

uration, therefore z1 = z2 =2f.

baz
2

z
1

object plane main lens
main lens 

image plane

micro array

sensor 

plane

Figure 5.6: Ray diagram of the system simulated.
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The main objective of the simulation on a plenoptic 2.0 system was to in-

vestigate its behaviour at the diffraction limit as well as to better understand

the trade-offs in resolution and how the different parameters affect it. Dif-

ferent combinations of the optical parameters of the system, including main

lens aperture, micro array pitch and magnification, have been tested. The

Fresnel simulation toolbox allows us to easily change the simulation param-

eters independently and collect results. The system parameters are defined;

these are the dimension and the number of pixels on the sensor, the pitch

and focal length of the lenslet array, the focal length of the main lens and

the magnification m of the micro array stage. The simulation toolbox is

capable of automatically setting all other simulation parameters to respect

the f-number matching between the main lens and the lenslet array. In a

plenoptic 2.0 imaging system the f-number is matched when:

z2
d

=
b

p
(5.11)

If the lenslet array has a focal length equal to fµ and a pitch equal to p, the

value of the distance from the sensor b can be obtained from the magnification

m as:

b = mfµ

(
1 +

1

m

)
(5.12)

That becomes the linear relation:

b = mfµ + fµ (5.13)

Equation 5.12 has been obtained by substituting the expression of the mag-

nification m = b/a into the lens equation 1/a + 1/b = 1/fµ. Values of the

parameter b as a function of the magnification can be seen plotted in figure

5.7
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Figure 5.7: Values of the parameter b correspondent to values of magnifica-
tion varying from 0.1 to 0.5.
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Figure 5.8: Values of the parameter a corresponding to values of magnifica-
tion varying from 0.1 to 0.5.

Once b is defined the distance of the micro lens array from the main lens
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image is calculated by solving the lens law for a:

a =
bf

b− f
(5.14)

Values of a as a function of the magnification can be seen in figure 5.8: Now

that the relay system has been defined, the software defines the aperture of

the main lens matching its f-number to the one of the lenslet using equation

5.11:

rlens =
z2p

b
(5.15)

where rlens is the radius of the lens aperture. Values of lens aperture radius

as a function of the magnification can be seen in figure 5.9
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Figure 5.9: Aperture radius of the main lens as a function of the magnification
in order to respect the f-number matching condition.

Therefore the simulation defined by the user, the remaining parameters

are automatically set depending on the constraints discussed above, making
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Array size 5.8 × 5.8 mm
Micro lens focal length fµ 5.3 mm
Micro array pitch p 150 µm
sensor size 5.8 × 5.8 mm
sensor resolution 3500 × 3500 pixel
pixel size 1.67 µm
number of lenslet 39 × 39
main lens focal length 60 mm

Table 5.1: Microarray parameters

Magnification a b main lens aperture
0.5 15.6 mm 7.8 mm 2.3 mm
0.3 22.5 mm 6.8 mm 2.7 mm
0.25 26.0 mm 6.5 mm 2.8 mm

Table 5.2: Values of the a, b and of the lens aperture for different magnifi-
cation values.

the launching procedure of each simulation easy and quick. The micro lens

array is set with the characteristics listed in table 5.1

And the values obtained for a,b and the main lens aperture corresponding

to the magnification investigated are listed in table 5.2

5.3 Optical Performances of a Focused Plenop-

tic System

This section shows the results obtained running simulations of the system

described is section 5.2 at its diffraction limit. Three different configurations

of the micro lens array stage have been tested, corresponding to the parame-

ters a and b set in order to have magnification m = b/a equal to 0.5, 0.3 and
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0.25. The first simulation presented is the image of a single focused point

source. A comparison between the main lens image and the rendered image

will be done to understand the differences in optical resolution and to evalu-

ate the noise induced by the rendering algorithm. The optical resolution of

an imaging system is defined by its impulse response, known as point spread

function [25, 55]. If the input is a point source in focus, the output image

for an unaberrated circular aperture has a well known intensity profile, the

Airy disk. The Airy disk defines the broadening that a point source undergo

after being imaged by an optical system, hence it is a good estimation of the

minimum feature resolvable by the system [25, 31]. The Airy disk is shown

in figure 5.10.

The total extension of the central lobe is defined as the distance between the

first two zeros as:

∆x = 2.44λF# = 2.44λ
b

p
(5.16)

The central lobe contains approximately 90% of the total energy of the optical

field [25], therefore its extension defines the spread that each point undergoes

in the final image.
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Figure 5.10: The extension of the central lobe of the Airy disk is defines
the lateral resolution of optical system. Intensity profile acquired using the
parameters listed in table 5.1

∆x is defined as the optical resolution of the imaging system. In a plenop-

tic 2.0 system there are two elements that influence the optical resolution,

the main lens and the micro lens array. Because of the f-number matching

condition, the optical resolution in the two imaging stages should be the

same. But because of the magnification present in the micro array stage,

which is different from the magnification of the main lens, the coordinates in

the main lens image plane are rescaled by a factor equal to the magnification

m when imaged by the micro array on the sensor [25]. Using the coordinates

x′ and y′ of the main lens image plane, the sub image coordinates will be

given by: 
x =

x′

m

y =
y′

m

(5.17)

Therefore if a pixel on the main lens image samples a feature size of δx, on

200



SIMULATIONS OF A PLENOPTIC 2.0 SYSTEM

the sensor the same pixel will sample a quantity δx/m. Because m is smaller

than 1, the spread of a point on the sensor plane will be bigger than the

one on the main lens image plane. The same pixel samples a bigger area of

the object in the image. This leads to a loss in optical resolution [67]. The

smaller the magnification, the broader the point spread function and as a

consequence the band pass of the micro lens array becomes narrower. The

optical cut off frequency is defined as:

νcutoff = m
1

λf#
= m

b

λp
(5.18)

Substituting b with its expression in equation 5.13 the relation between the

magnification and the cut off frequency becomes:

νcutoff =
m2fµ +mfµ

λp
(5.19)

Figure 5.11 shows the values of the lateral resolution plotted as a function

of the magnification of the micro array stage, while figure 5.12 shows the

corresponding values of the optical cut off frequency.
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Figure 5.11: Lateral resolution as a function of the magnification.
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Figure 5.12: Optical cut-off frequency as a function of the magnification.

This means that in a plenoptic 2.0 imaging system there is an intrinsic

trade-off between optical resolution and spatio-angular resolution. The trade
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off between spatial and angular resolution has been described in section 1.6.

A further trade off is now present and it is due to diffraction. A low mag-

nification enables good sampling of the direction and therefore a finer axial

resolution when evaluating depth, but a magnification that is too low will

filter out high frequency components of the object.

The next sections will investigate in detail the optical performances of a

focused plenoptic system, performing simulations to better understand the

trade off between spatio-angular resolution and optical resolution. The trade

off due to the magnification will be evaluated in more detail and quantified.

This is the first study in plenoptic research whose goal is to evaluate the

effects of the optical parameters of a focused plenoptic system on its optical

resolution using a wave optics approach.

5.4 Impulse Response of a Focused Plenoptic

system

The first simulation performed was designed to obtain the impulse response

of a focused plenoptic system. The point source has been simulated using a

pupil with a diameter of 10 µm.

As explained in section 5.1, the magnification of the lenslet array gives the

number of points of view that sample an image. To have directional infor-

mation, a point of the object should be sampled at least by two points of

view, therefore by two lenslets. In this way two sets of directional coordi-

nates are captured on the sensor and each point is repeated four times in

the raw image, twice horizontally and twice vertically.This is the case for a

magnification of 0.5. With a magnification of 0.3 each point is expected to
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be replicated 3 times, and with a magnification of 0.25 four times.

Figures 5.13, 5.14, and 5.15 show the raw sensor images and the rendered

images of a point source when the magnification is 0.5, 0.3 and 0.25.

Raw Image Rendered Image

Figure 5.13: Left: raw sensor image of a point source, Right: rendered image.
Artifacts are present. Magnification of the lenslet array: 0.5

Raw Image Rendered Image

Figure 5.14: Left: raw sensor image of a point source, Right: rendered image.
Artifacts are present. Magnification of the lenslet array: 0.3.
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Raw Image Rendered Image

.

Figure 5.15: Left: raw sensor image of a point source, Right: rendered image.
Artefacts are present. Magnification of the lenslet array: 0.25

From figure 5.16 it is possible to appreciate the broadening effects of

the central lobe of the rendered image intensity profile, in red, with respect

to the main lens image. The central lobe size is also dependent on the

magnification used as seen in figure 5.11. With a small magnification, the

number of sub images that sample a single point source increase, and due to

the nature of the rendering process explained in section 5.1.2, the number

of artefacts increases, broadening the central lobe and making the lateral

resolution worse.
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Magnification ∆x (m) ∆x′ (m) ∆x/∆x′

0.5 7.848× 10−5 2.000× 10−4 0.39
0.3 6.848× 10−5 2.698× 10−4 0.25
0.25 6.514× 10−5 3.574× 10−4 0.18

Table 5.3: Values of the resolution obtained in the final rendered image, ∆x′,
compared with the resolution of the non plenoptic image calculated from the
Airy disk pattern ∆x. On the far right is it shown the ratio between these
two quantities.

Table 5.4 shows the values of the central lobe size of the main lens image,

∆x, of the rendered image ∆x′ and the ratio between them. The error in the

ratio is due to the presence of artefacts generated by the rendering algorithm

that increases with the decrease of the magnification. These artefacts are

present because the sub images are truncated as discussed in section 1.8.

Also the presence of aberration of non-alignment in defining the rendering

grid enhance these artefacts. These artefacts can be minimized adjusting

the rendering greed, or operating a more efficient selection of the sub images

in order to isolate them better from the background. Further study and

analysis of the artefacts are no present in this work and should be considered

for further developments of the field.
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Figure 5.16: From top to bottom: comparison between the main lens image
profile, in blue, and the rendered image profile, in red, for magnification
values of 0.5, 0.3 and 0.25. The central lobe of the rendered image increase
with the magnification, as well as the number of artefacts.
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5.5 Two Point Resolution

Another important instrument to evaluate the resolution of an imaging sys-

tem is the Rayleigh criterion of resolution. It states that two point sources

whit a phase difference of π/2 imaged coherently are resolved by a diffraction

limited imaging system when the centre of the Airy disk intensity pattern

generated by one point source falls exactly on the first zero of the Airy disk

generated by the other point source [25]. The Rayleigh criterion of resolution

states that for two point sources of light the minimum distance to resolve

them both in the image plane is given by:

δx = 1.22λ
z

d
(5.20)

Where d is the lens aperture and z is the propagation distance. In the simu-

lation the two point sources were placed at a distance equal to the Rayleigh

distance and they have been imaged by a plenoptic 2.0 system where the mi-

cro lens array had a magnification of 0.5. The purpose of this experiment is

to prove that the magnification of the micro lenses limits the optical resolu-

tion of the system. Figure 5.17 shows the main lens image and the rendered

image with their respective intensity profiles, of two point source with a di-

ameter of 10 µm separated by a distance δx = 40µm. The imaging system

simulated is the same described in section 5.2. While in the main lens image

the two point sources are at the limit of resolution and the two points are

still resolvable, in the rendered image the two spot sizes are merged together

and are no longer resolvable.
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Figure 5.17: On the top left there is the main lens image of two point sources
separated by the Rayleigh distance δx. On the top right its corresponding
rendered plenoptic image obtained with a magnification of 0.5. As expected
from the theory, the resolution of the rendered image is half the one af the
main lens image, and the two points are no more distinguishable as confirmed
by the intensity profiles of the two images on the bottom.

If the separation between the point sources is doubled in the object plane

they should be resolved in the rendered image too while keeping the magni-

fication 0.5. Figure 5.18 shows the simulations results for a δx = 80µm:
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Figure 5.18: The image on the top left shows the main lens image of two
point sources separated by the Rayleigh distance 2δx. On the top right there
is its corresponding rendered plenoptic image obtained with a magnification
of 0.5. Doubling the Rayleigh distance the rendered image is at the limit of
resolution, where the maximum of the Airy pattern of one point falls on the
first zero of the second point.

These results obtained by simulating wave optics propagation in the

plenoptic imaging system confirm the fact that the magnification affects the

resolution of the final rendered image and it is the first experiment of this
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kind. The magnification of te lenslet affects the lateral resolution of the final

rendered image. When imaging an object with a plenoptic 2.0 system the

loss of resolution due to the magnification should be taken into account in

order not to lose useful information in the sample, or a suitable lenslet array

configuration should be chosen.

5.6 Frequency Analysis of a Focused Plenop-

tic System

This section will describe the frequency response of a focused plenoptic sys-

tem and its dependency on the magnification of the lenslet array stage. The

spatial frequencies that are transferred from the object to the image plane

in an optical system are defined by its modulation transfer function (MTF).

The MTF is defined as the square modulus of the Fourier transform of the

impulse response h(x,y) of an optical system [25].

It is then:

H(fx, fy) = |F{h(x, y)}| (5.21)

It represents the weighting factor applied by the system to all the frequency

components of the optical field coming from the object. The visibility and

the contrast of the points corresponding to the different values of spatial

frequency changes according to the modulation imposed by the MTF. When

it goes to zero, no energy is transmitted for that particular frequency and

the detail is no longer present in the image.

The value of spatial frequency for which the MTF goes to zero is called

optical cut-off frequency. In this section the effects of the magnification on
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the value of the optical cut-off frequency is investigated. The first result

presented is obtained by calculating the modulation transfer function of the

plenoptic 2.0 system described in section 5.4, with magnification values of

0.5, 0.3 and 0.25. The MTF for these three cases are shown in figure 5.19

and have been obtained by applying equation 5.21 to the intensity profiles

in figure 5.16. In all the three figures green represents the MTF of the single

lens imaging system, without the lenslet array stage, and red represents the

MTF of the plenoptic system.

From figure 5.19 it is possible to see that the cut off frequency of the single

lens system increases with the decreasing of the magnification, while the cut-

off frequency decrease with the decreasing of the magnification if the lenslet

array stage is added. This result is in accord with what was seen in section

5.3 and is consistent with the simulation results shown in section 5.4. The

magnification of the micro lens array reduces the optical resolution. This is

a direct consequence of the intrinsic trade-of between optical resolution and

the spatio-angular resolution. While reducing the magnification of the micro

array stage increases the number of directional samples, at the same time,

it makes the optical bandwidth narrower, reducing the lateral resolution.

The decrease in the optical cut-off frequency is directly proportional to the

decrease of the magnification as predicted in the theory with equation 5.18

and proved by the numerical simulation. The values of the cut-off frequencies

obtained by the simulations are:
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Magnification Rendered fcut−offm
−1 Main lens fcut−offm

−1

0.5 1.00× 104 3.00× 104

0.3 0.76× 104 3.50× 104

0.25 0.63× 104 3.60× 104

Table 5.4: Comparison between the cutoff frequencies of the main lens image
and of the rendered image for different values of magnification. The cutoff
frequency in the rendered image decreases of a quantity proportional to the
decreasing of the magnification.
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Figure 5.19: Modulation transfer functions of the main lens (green) and the
overall imaging system (red) for a magnification value of m = 0.5 , top,
m = 0.3, central, and m = 0.25, bottom.
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f1 0.10× 104m−1

f2 0.80× 104m−1

f3 1.52× 104m−1

f4 2.22× 104m−1

f5 2.94× 104m−1

Table 5.5: Frequencies contained in the grating. The grating is not continous
as well as the frequency variation.

The second set of simulations done evaluates the effects of the magni-

fication in more detail. A varying frequency sinusoidal grating is imaged

incoherently, as explained in chapter 2, by the system with the same three

different configurations of the micro array stage. The grating contains five

different frequencies :

f
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Figure 5.20: The object imaged in this simulation is a sinusoidal grating
containing five different frequencies.

Figure 5.21 shows the raw image, the main lens image and rendered im-

ages of the sinusoidal grating shown in figure 5.20, imaged with a magnifi-
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cation of m = 0.5. The two rendered images are obtained with the basic

rendering explained in section 5.1. To remove digital artefacts given by the

tiling of the sub images patches on the rendered images a low pass Gaussian

filter with σ = 1.162× 104 has been applied.

Raw Image

Rendered Image

Main Lens Image

Rendered Image !ltered

.

Figure 5.21: Top: on the left is the raw sensor image, on the right the main
lens image. Bottom: On the left there is the rendered image, on the right
the same image has been low pass filtered to remove some of the rendering
artefacts. Magnification was 0.5
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Figure 5.22: On the left: intensity profiles of the main lens image, top and
of the rendered image,bottom. On the right the spatial frequencies modu-
lated according to the MTF as shown by the power spectra of the main lens
image on the top right and of the rendered image on the bottom right. The
magnification of the lenslet array is m = 0,5 and the first zero frequency of
the system is fcut−off = 104m−1

The normalized intensity profile of the optical field at the main lens image

plane compared with the intensity profile of the rendered image is shown in

figure 5.22 on the left side while on the right the power spectra of the main

lens image and of the rendered image is presented. The modulation transfer
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function of the main lens and of the full plenoptic system has been added in

red.

As expected the amplitude of the oscillations in both the main lens image

and the rendered image follow the profile of the modulation transfer function

of the two stages.

Not all the frequency components of the object field are transmitted through

the different stages of the plenoptic imaging system. In fact it acts as a low

pass filter, whose bandwidth depends on the magnification used in the lenslet

array stage. The low pass filtering action is shown in figure 5.23.

It is interesting to see also that the rendered image presents some artefacts

which are responsible for some extra frequencies present in the spectrum of

the output rendered image. The cut off frequency of the imaging system with

a magnification equal to 0.5 is 104m−1 therefore only the first two frequencies

will be transmitted to the rendered image, as shown in figure 5.22. If the

magnification drops to m = 0.3 the bandwidth of the system gets narrower,

and fewer frequencies are transmitted in the rendered image.

Figure 5.24 shows the raw image, the main lens image and rendered images

of the sinusoidal grating shown in figure 5.20
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Figure 5.23: Evolution of the spectrum of the optical field as it propagates
through the imaging system. First step the field is propagated through the
main lens and its frequency content is modulated by its MTF whose band-
width is ∆ν1. Then modulated field passes through the lenslet array stage
and because of the magnification that is less than one its bandwidth is re-
duced further to ∆ν2. Since ν1 > ν2 the imaging system is modelled as a
linear low pass filter with a bandwidth ∆ν1 defined by the magnification of
the micro array stage.
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Main Lens Image Raw Image

Rendered Image !lteredRendered Image

.

Figure 5.24: Top: on the left it is shownthe main lens image , on the right
the raw sensor image. Bottom: On the left there is the rendered image, on
the right the same image has been low pass filtered to remove some of the
rendering artefacts. Magnification was 0.3.

As for the previous case figure 5.25 shows a comparison of the intensity

profile of the main lens image with the rendered image one and of their

respective power spectra:
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Figure 5.25: On the left: intensity profiles of the main lens image, top and of
the rendered image,bottom.On the right: spatial frequency modulation done
by MTF. The first zero frequency of the system is 0.756× 104m−1

Figure 5.25 shows that the frequency f2 gets attenuated more with re-

spect to the previous case because it is closer to the first zero frequency of

the system. The spectrum of the rendered image allows us to discriminate

between frequencies due to artefacts and digital aliasing in the rendering

process. Their frequency is smaller than that predicted by the modulation

transfer function for that location in the rendered image. These frequencies
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are indicated in figure 5.25 with an arrow as artefacts. Low frequency compo-

nents generated by digital aliasing in the main lens image, have been picked

up by the micro array relay stage and transmitted to the rendered image as

indicated in figure 5.25. These effects can be seen in detail in figure 5.26:
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Figure 5.26: Aliased frequencies transmitted to the rendered image.

If the magnification is 0.25 the situation becomes the one in figure 5.27

and figure 5.28.
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Rendered Image Rendered Image !ltered

Main Lens ImageRaw Image

.

Figure 5.27: Top: raw sensor image, on the right the main lens image. Bot-
tom: On the left there is the rendered image, on the right the same image
has been low pass filtered to remove some of the rendering artefacts. Mag-
nification was 0.3.
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Figure 5.28: On the left: intensity profiles of the main lens image, top and
of the rendered image,bottom.On the right there are the spatial frequencies
modulated according to the MTF. The first zero frequency of the system is
0.6× 1041/m

In the results shown in figure 5.28 there is a lower magnification and the

digital aliasing frequencies are no longer transmitted to the rendered image.

This is due to the fact that with a narrower bandwidth of the modulation

transfer function these frequencies are filtered out of the signal. The same

happens to the frequency f2 of the object field, since the cut off frequency
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for a magnification equal to 0.25 is lower that the signal frequency f2.

5.7 Conclusions

In this chapter a frequency analysis of a focused plenoptic system has been

done to investigate its behaviour at its diffraction limit. The optical perfor-

mance of the plenoptic imaging system was analysed. It was treated as a

linear system with a finite bandwidth that depends on the magnification of

the lenslet array. The distances a and b not only define the angular resolu-

tion of the system and the trade off with spatial resolution, but also allows

us to quantify the limits of the system in terms of optical resolution. This

is a new contribution to the field, first presented in 2014 [67]. Knowing how

the optical frequencies are transmitted though the system allows us to design

its components in order to satisfy the requirements imposed by the practical

application encountered. The optical resolution degradation with increasing

angular resolution represents an intrinsic limitation to plenoptic 2.0 imaging

systems especially in applications regarding microscopy in which it is the

diffraction that limits the resolution.

There are three ways to overcome this limitation: optically, computationally

and a hybrid one. The first approach consists in improving the basic opti-

cal elements of the system, that is choosing low f-number optical elements,

larger arrays of micro lenses and sensors, or improving the optics before the

micro array stage in order to deliver pre processed optical frequencies that

will not be affected by the loss of resolution in the relay stage. It is also

possible to act on the micro lens array, creating an array of lenslets with

different focal lengths [18]. This approach could result in expensive devices,
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and it is preferable to approach this issue computationally. Raw plenoptic

data can be treated in post processing and can lead to a full sensor resolu-

tion rendering, and even a super resolution rendering as done by Georgiev

et al. [16, 22, 14, 13, 23], by Favaro and Bishop [11, 5, 4, 6] and Shroff et

al. [60, 61]. Another way to overcome the loss of resolution is to design a

hybrid system composed of two branches, a plenoptic branch and a conven-

tional high resolution branch. These hybrid systems [42, 7], are based on

the simultaneous acquisition of a plenoptic and a high resolution image, the

latter being used as a base to interpolate the plenoptic data in order to fill

the gaps in resolution.

In the next chapter the knowledge and the experience acquired designing and

testing simulated plenoptic imaging systems through simulation will be used

to design and build a laboratory optical setup, and the results obtained will

be discussed.
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Chapter 6

Light Field Microscope

The laboratory setup of a light field microscope was developed to verify the

results obtained in the simulations and to extend the knowledge of plenoptic

imaging systems from theory to practice. This prototype is a versatile and

flexible instrument built with the purpose to test and explore all the potential

of light field imaging for microscopy applications. The philosophy was to

realize a setup with the maximum number of degrees of freedom possible in

order to test a wide variety of configurations of the optical parameters as

done previously in the simulation platform.

In the next sections the design parameters and guidelines used to develop

the setup will be presented. A protocol to acquire and render images will be

described and examples of rendered images acquired with the experimental

setup will be shown.

6.1 From Simulation to Reality

The results obtained in the simulation have been used as a guideline for the

process of developing a working system. It has been clear since the beginning
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that a 1.0 system would not be the best option for a laboratory setup as:

• a plenoptic 1.0 imaging system, as explained in section 1.4, requires

the lenslet array to be conjugated to the object plane, and the sensor

plane to be conjugated with the main lens. To satisfy this condition

along with the f-number matching, the micro array should be placed at

a distance to the sensor equal to its focal length with great precision

[52, 53, 41, 48]. To achieve this degree of precision advanced machinery

and a clean room is needed in order to fabricate a custom lenslet array.

Ideally its focal length should be equal to the lenslets substrate thick-

ness and then stuck it to the sensor. A solution to bypass this issue is

to build a relay system of lenses between the micro lens array and the

sensor, as done by Adelson and Wang in 1992, [2] adding complexity

and cost to the system.

• the spatial resolution is limited by the number of lenslets in the array.

The ideal condition to achieve high resolution images is to have an array

with a small pitch and a large number of lenslets. The sensor should

also be large with small pixel size, increasing the costs. For example to

achieve a resolution of 1000 by 1000 pixels in the final rendered image,

if the lenslets have an aperture diameter of 150 µm as the one used

in section 4.2, the array should be 15 by 15 cm wide and the sensor

should have a resolution of 30000 by 30000 pixels.

Hence from a practical point of view building a proper plenoptic 1.0 system

can be expensive and complicated considering the performance achieved in

terms of resolution.
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A plenoptic 2.0 on the other hand it is easier to build and gives better results

in terms of spatial and directional resolution trade off. The key variable to

control is the distance between the micro lens array and the sensor. In order

to replicate some of the simulations done, a system with a tunable micro

array position was designed and developed as explained in detail in the next

sections.

6.2 Description of the System

The system has been designed following the guidelines given by Georgiev and

Intwala [15]. The assembly of the system uses Linos microbench system and

components (Qioptip, USA). With reference to figure 6.1, a system working

in transmission was built. It is composed of four main parts:

• Illumination: composed of an LED array lamp, a diffuser and a con-

densing lens are used to concentrate the maximum area of the light

source on the sample. A Köhler illumination lens has been added in

order to generate an even illumination on the sample removing artefacts

generated by imaging the light source on the object [38, 39].

• The main optics: its role is to form an image of the object in front of

the micro lens array. It consists of a 2f system, with a single lens as

described in chapter 1.

• Micro lens array: The micro lens array is a relay system between the

main lens image and the sensor of the microscope. It defines the trade-

off between optical and spatio-angular resolution.
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• Sensor plane: it records the light field. It should be large enough to

capture all the light coming from the lenslet array and it should provide

enough resolution to have high resolution sub images.

Figure 6.1 shows a schematic diagram of the setup. The illumination system

was made by an LED light source (Thorlabs Inc. LED array LIU630), with a

central wavelength of 630 nm, an output power of 208 mW and an emission

spectrum shown in figure 3.12 with a full width half maximum of 20 nm as

already discussed in 3.4.4.

A condensing lens with a focal length of 27 mm has been placed in front of the

light source to maximise the light reaching the sample reducing the divergence

of the LED array light source. The image formed by the condensing lens has

been relayed by the Köhler lens on the main lens of the system. In this way

the structure of the light source is not affecting the quality of the image [38].

To make it even more uniform a diffuser has been placed between the LED

source and the condensing lens, as shown in figure 6.1.

The main optics consisted of two plano-convex lenses with a focal length of

120 mm each placed one next to the other as shown in figure 6.1 so that they

form a main lens with a total focal length of 60 mm. The two lenses have

been mounted with the flat surface facing outwards to minimize spherical

aberrations. The main lens was in a 2f configuration, producing an image

with a magnification of -1 on the main lens image plane.
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Figure 6.1: Schematic diagram of the light field microscope. The values of
the distances are: zc=27 mm, zk=120 mm, z1=z2=120 mm.

The plenoptic stage is the most complex part of the system. Its optical

properties are defined by the magnification of the micro array stage [67, 17],

therefore in an optical setup this parameter should be tuned with high accu-

racy in order to produce a rendered image with the desired resolution. The

correct tuning of the magnification is achieved by defining the appropriate

values for the lengths a and b. Because of the parabolic nature of the lens

law small variations in one of the parameters could produce undesired effects

on the image.

The technical solution adopted was to use two micrometric mechanical trans-

lation stages to move with precision both the whole plenoptic stage with re-

spect to the main lens and the sensor as illustrated in figure 6.2. The first

translator moves the whole plenoptic stage, made of the sensor and microar-

ray, with respect to the main lens tuning the distance between the main

lens image and the micro lens array (a). Once a is set the second translator

moves the sensor with respect to the microlens array, setting the distance be-

tween the microarray and the sensor b. For each pair (a, b), only one value

of the micro array magnification is defined. A further degree of freedom is

represented by the possibility to move the micro array perpendicularly to the
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optical axis in x and y in order to centre the array with the sensor. Figure

6.3 shows the assembled light field recording stage and the locations of the

two micro metric translators are indicated.

b a

micro 

array
sensor main lens 

plane

11.25 25.06 9.92

20

Micro lens

stage
Sensor

stage

40

3.8

20 9

Micro array mount 

front view

Micro lens array

Figure 6.2: Schematics of the light field recording stage. The first micro
metric translator moves both the sensor and micro array stages. The second
only moves the micro array stage with respect to the sensor stage.

First translator

Second 

translator 

Sensor stage

Microarray stage

Figure 6.3: Assembled light field recording stage with.

The micro array used (MLA150-5c-M, Thorlabs Inc, USA) has a 10 mm

× 10 mm square grid made of 146 µm diameter plano-convex lenslets on
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a substrate of fused silica. The lenslet pitch is 150 µm. All the geometric

parameters of the lenslet array can be seen in figure 6.4 where r is the radius

of curvature of the lenslet, s is the height of the lenslet from the substrate,

p is the pitch, t the thickness of the substrate and f is the focal length. It is

linked to the radius of curvature by the relation:

f =
r

n− 1
(6.1)

where n is the refractive index of the lenslet array. Assuming the diameter

of each lenslet almost equal to the pitch, the radius of curvature is linked to

the other geometrical parameters by the relation [31]:

r =
s2 + p2

4

2s
(6.2)

s

r

t

f

p

t = 1.24mm

p = 150 µm

s = 1.12 µm

r = 2.380 mm

f = 5.2 mm

Figure 6.4: Lenslet array parameters.

The raw image is recorded using a 10 megapixel CMOS technology sensor

with 3840 by 2748 pixels extracted from a digital camera (UI-1490LE-C-HQ,
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IDS Imaging Development System GmbH, Germany). Its pixel size is 1.67

µm with a sensor size of 6.413 mm × 4.589 mm mounted at on the back of

the translation stage.

In order to control the position of the micro array the two translators should

be shifted by a quantity c and d. c is the shift of the first translator and

set the parameter a while d is the shift to apply to the second translator,

setting b. The values of c and d are listed in table 6.2. For each pair (c,

d), table 6.2 shows for the corresponding optical parameters: the f-number

F#, the numerical aperture NA the cut-off frequencies of the main lens and

of the plenoptic stage ν. This parameters define the theoretical optical per-

formances of the prototype and have been calculated with the same method

used in section 5.3.
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6.3. IMAGE ACQUISITION PROTOCOL

6.3 Image Acquisition Protocol

The development of a new imaging system required the definition of a pro-

tocol to correctly record and render the plenoptic raw image. The protocol

can be summarised as follows:

• according to the magnification desired the parameters a and bs are

set by moving the two translation stages by the quantities c and d

indicated in table 6.2;

• the object is removed in order to capture a calibration image using a

uniform pattern of monochromatic light;

• the aperture of the main lens is changed in order to satisfy the f-number

matching condition;

• if necessary the position in x,y of the micro array is adjusted as ex-

plained in detail below;

• the object is put back in place and the raw image is captured;

• the final image is rendered using the basic rendering algorithm ex-

plained in section 5.1.

The calibration image is required to verify the correct alignment of the lenslet

array and that the f-number matching condition is respected. It is also used

as a guide to create the sub-images grid to render the final image. According

to the calibration image, the position in x and y of the micro lens array can

be adjusted translating it in x and y, rotating it and if necessary tilting it.

These degrees of freedom allow to fine tune the position of the lenslets with
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respect to the sensor. This operation is performed manually checking the

correct alignment on the monitor connected to the camera sensor. Figure 6.5

shows the four main conditions of micro array misalignment.

Incorrectly alligned arrays

Rotated Shifted horizontally

Shifted vertically Tilted

Figure 6.5: Common causes of bad alignment between the micro lens array
and the sensor.

The same image is used to match the f-number of the main lens with the

one of the lenslet array according to the configuration of a and b chosen.

This is done manually by changing the aperture placed in front of the main

lens until sub images touch each others. Figure 6.6 shows the case where the

aperture of the main lens is too small, and the gap between the sub images

is too large while figure 6.7 shows the calibration image obtained once the

aperture of the main lens has been adjusted to match the f-number.

After the f-number is matched, it is possible to proceed with the acquisition

of the raw image of the sample. In this case a USAF resolution target has

been used as an object. Figure 6.8 shows the raw images obtained with
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6.3. IMAGE ACQUISITION PROTOCOL

magnifications equal to 0.5 and 0.4, while figure 6.9 shows the raw images

obtained with a magnification of 0.3 and 0.25.

Figure 6.6: Calibration image with f-number not matched.

Figure 6.7: Calibration image with matched f-number.
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Magni�cation: 0.5

Magni�cation: 0.4

Figure 6.8: Raw plenoptic 2.0 image of the USAF resolution target obtained
by the prototype system built in lab. The top image has a magnification of
0.5, the bottom 0.4.
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Magni�cation: 0.3

Magni�cation: 0.25

Figure 6.9: Raw plenoptic 2.0 image of the USAF resolution target obtained
by the prototype system built in lab. The top image has a magnification of
0.3, the bottom 0.25.
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These raw images show how the different features of the target object are

decomposed into sub images. The number of times each point of the main

lens image is replicated under the lenslet array increases with decreasing

magnification as explained in chapter 1 and then verified from the simulations

in chapter 4.
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6.4. RENDERING OF EXPERIMENTAL DATA

6.4 Rendering of experimental data

Rendering images from raw data acquired by the prototype of the light field

microscope is more complicated then the case of the simulated raw data.

While in a simulation the lenslet array is perfectly aligned with the other

optical components, in a real system this is not true any more. Small tilts

and non-alignments between the micro lens array and the sensor can produce

inhomogeneity of the magnification along the grid. As a consequence the sub

images size will vary along the grid. Although these differences are extremely

small, usually around 10-15 pixels, they causes a distortion along the grid

that is not predictable or quantifiable. For this reason it cannot be easily

corrected, like in the case of the computer generated raw data in section 5.1.1

and artefacts will be produced during the rendering process. To avoid this a

method to extract the information on the positions of the sub images from

the calibration image has been defined. The evaluation of the sub images

grid should be performed each time that the magnification is changed. It

consists of the following steps as shown in figure 6.10:

• the user selects a row and a column of sub images in the calibration

image

• the intensity profile of the row and the column are displayed and the

user sets a threshold that will be used by the software to discriminate

the boundaries of the sub images

• a grid is formed in correspondence with the detected sub images

• the grid is shown superimposed on the calibration image. Usually off-

242



LIGHT FIELD MICROSCOPE

sets are present and can removed manually by the user.

• the image is rendered as explained in section 5.1 using the grid created

from the calibration image to isolate the single sub images.

Coloumn selection (y)

Row

selection(x)

t
x

t
y

0 500 1000 1500 2000 2500 3000 3500 4000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
y cross section

0 500 1000 1500 2000 2500 3000
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
x cross section

Figure 6.10: From the calibration image a row and a column of sub images
are selected by the user with the red lines on the top if the figure. Two
intensity cross sections are generated (un the bottom) and the user manually
sets a threshold to discriminate one sub image from the other. This algorithm
could be automated and further effort should be spend in future research on
this subject.

The final rendered images can be seen in figure 6.11.
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0.3

0.4 0.5

0.25

Figure 6.11: Rendered images of a 1951 USAF resolution target. The cor-
respondent raw data are in figures 6.8 and 6.9. Magnifications are from top
left to bottom right: 0.25 0.3 0.4 and 0.5.

As expected from the simulated data and the theory of diffraction, res-

olution drops dramatically with decreasing magnification. From a qualita-

tive analysis, the image gets more blurred for low magnification values, in

agreement with what was seen in previous chapters. This is due to the loss

of resolution due to the dependence of the optical cut-off frequency on the

magnification of the plenoptic stage.

If the grid is not correctly evaluated the results is a rendered image with a

great number of artefacts. In particular the edges of the tiled sub images will

not match as figure 6.12 shows.
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O�set

Wrong 

Detection

Wrong rendering example

Figure 6.12: Top: Rendered image obtained from the same raw data used
to render the image on the bottom right in figure 6.11. In this case the grid
used to select the micro images is not correctly set, presenting an offset of
15 pixel for every sub image and errors in detecting the sub image as the
bottom figure shows.

6.5 Future Work

This chapter described the optical setup of a plenoptic 2.0 microscope devel-

oped in the laboratory. The results obtained from the images captured by

the setup confirm the predictions of the simulations. This part of the work
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is still at a very early stage and collecting more data from the prototype to

compare its output images with the simulations is one of the priorities for

future developments.

The preliminary results presented in this chapter are encouraging even if

more should be done to improve the output image quality. The rendering

process must be improved and made more robust, augmenting the level of

automation to reduce errors in the grid definition.

The system could be designed to be able to perform the calibration process

automatically. A micro-controller could be used to command two stepper

motors to move the two translators according to the desired magnification.

Then a calibration image is taken and analysed by a remote pc and the same

micro-controller board commands an actuator to change the aperture of the

main lens until the f- number matching condition is satisfied. This would

be the first self-calibrating plenoptic imaging device ever produced. At the

present time commercial systems require a quite long and complex calibra-

tion procedure.

Great attention should be given to the characterization of the system. First

a full study of the optical resolution as a function of the optical parameters

of the light field microscope setup should be done in analogy with what has

been done for the simulation platform in chapter 4. In addition to that the

theoretical performance values listed in table 6.2 should be verified with a

set of practical tests on the system.

Once the theoretical performance is verified the instrument must be fully

characterized with a set of performance tests using a method similar to what

has been done for diffuse imaging devices by Pifferi et al. [57] and Re et
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al. [59]. The light field microscope belongs to a different class of optical

instruments and its characterization protocol will be focused on verifying

plenoptic specific characteristics, such as the axial resolution linearity, lat-

eral resolution linearity, stability and the capability of the instrument to give

the same results for the same measured conditions over time. The behaviour

of the system should also be tested in conditions far from the ideal standard

behaviour and defining a range of operation of the instrument according to

different applications and external factors. All this information will then be

useful to define a set of tuning parameters to guarantee a certain level of

performance even in the worst case scenario.

This future work will represent an important improvement for plenoptic

imaging and will add to the literature a method to test and characterise this

new class of instruments, enabling future investigations into their practical

applications.

247



6.5. FUTURE WORK

248



Chapter 7

Conclusions and Future work

This work explored the characteristics of plenoptic imaging using a wave op-

tics simulation toolbox to understand and evaluate its performance at the

diffraction limit. This research work can be divided in two parts.

The first part involved the design and the development of a wave optics

simulation platform for light propagation in an optical system. The Fresnel

simulation toolbox was developed using MATLAB and at the time this re-

search started represented the first attempt to apply wave optics propagation

to a plenoptic imaging system.

The second part described the simulations performed to understand and test

this new class of imaging systems. The information collected during this

second section was useful to determine the potential as well as the drawback

of this technique and to design and develop a working prototype of plenoptic

microscope.

Chapter one provides an overview of this technology describing the work

done by other research groups. A detailed description of the geometric op-

tics principles that describes the behaviour was given. The light collected

by the optical system can be described using the concept of phase space
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which is a representation of the ray’s distribution on the image plane. The

phase space has the property that all the linear operations on its elements

are invertible. Therefore it is possible to apply linear operators to the light

distribution in the phase space so to enable several interesting post process-

ing features.

The second chapter describes the simulation software designed and developed

in MATLAB. This wave optics approach represents an important innovation

for the field since it extends and improves on the ray tracing techniques

that preceded it. An optical system is modelled as a combination of two

basic operators: free space propagation and lens operator. The free space

propagation operator was derived form the scalar theory of diffraction. A

particular solution of the Helmholtz equation gives an expression to compute

the optical field after a propagation of a distance z, the Fresnel approxima-

tion approach. Its drawback is that the output field has a different resolution

than the input field. To overcome this fact a second method that keeps the

resolution of the propagating field constant along the propagation path was

described: this is the multi step Fresnel method. Its drawback is the long

computational time due to the fact that for each step of the propagation the

computation of a Fourier transform is required. In addition to that, noise

keeps on adding at every step.

To address these issues the free space propagation operator was implemented

using the Angular Spectrum of plane waves. Propagation is seen as a lin-

ear filter operating on the input field with a characteristic transfer function

whose bandwidth depends on the propagation distance z. This method keeps

the same resolution in both the input and output field and requires only two
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Fourier transforms for any propagation distance z. Its drawback is aliasing

which arises in the propagation transfer function in the case of large prop-

agation distances. To avoid aliasing the Band Limited Angular spectrum

method and the Corrected Band Limited Angular Spectrum method were

developed. These methods apply the Nyquist theorem to the transfer func-

tion so that the bandwidth of the propagation transfer function is truncated

at the Nyquist frequency. The larger the propagation distance, the narrower

the transfer function bandwidth will be and important information might be

lost. The main novel contribution from this chapter is the Corrected Band

Limited Angular Spectrum method. It extends the bandwidth of the trun-

cated transfer function to a value determined by considering the aperture of

the main lens and the propagation distance. This method provides a better

signal to noise ratio since the noise due to the aliasing does not have such

an adverse effect on the image as the loss of information due to the excessive

limitation of the transfer function bandwidth.

The third chapter focusses on simulating a plenoptic 1.0 system. After de-

scribing the simulation set up, a set of experiments to validate the results

found in literature on the optical performances of plenoptic 1.0 were pre-

sented. A new contribution to light field imaging is the definition of a

threshold on the micro array design in order to avoid cross talk between

sub images due to diffraction. This result would have been impossible with

a conventional ray tracing approach. An important result of this chapter is

the verification that using wave optics of the post processing rendering algo-

rithms described by Ng [52] and based on geometrical optics considerations

work on generated data. Therefore a wave optics simulation toolbox can
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accurately simulate plenoptic images. Another achievement is the definition

of the synthetic refocusing operator as a shearing operator acting on the four

dimensional array describing the light field. This matrix-operator approach

is not intuitive but it is very efficient from a computational point of view be-

cause of the matrix oriented nature of the MATLAB programming language.

In fact operating a single shearing operation on a four dimensional array is

computationally more efficient than obtaining the same results with nested

for loops on the two dimensional raw data. This is only valid if using the

MATLAB runtime engine.

The last important achievement presented in this section is the development

of depth estimation method based on the creation of a focal planes stack

and on the evaluation of the sharpness of each rendered image. Future work

should focus on finding ways to optimise the accuracy of this method and to

develop more efficient and automated algorithms.

The fourth chapter applies the simulation platform developed in chapter 2 to

a plenoptic 2.0 system. After validating the theory of Georgiev and Lums-

daine [17] a detailed study of the diffraction effects on plenoptic 2.0 imaging

system was done. The most important result presented is the definition and

the characterization of the effects of the micro lens array magnification on

the optical resolution in the rendered image. This has been done using the

simulation platform to analyse the impulse response of the system with differ-

ent configurations of the micro lens array as well as evaluating the Rayleigh

criterion of resolution. A more accurate frequency analysis was done by simu-

lating a varying frequency sinusoidal pattern. The main result of this section

is a quantification of the trade-off between directional and optical resolution
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in a plenoptic 2.0 imaging system. All these achievements have never been

formalised in literature.

The fifth chapter describes a laboratory optical setup designed and realised

using the experience and the understanding of plenoptic imaging achieved

while working on the simulation platform. The result is a prototype of a

plenoptic microscope whose optical and directional resolution can be changed

by varying the position of the micro lens array. The experimental results

matched the simulation results, providing a further proof of the robustness

and reliability of the Fresnel propagation simulation toolbox.

This work represents an important milestone in the field of computational

imaging since it provides a complete view of the behaviour of this class of

instruments including at the diffraction limit. When wave optics is taken

into account the trade off between spatial and angular resolution typical of a

plenoptic imaging system must be expanded to include the optical resolution

as well. The effects of diffraction in plenoptic 1.0 cameras are cancelled by

the low resolution of the final rendered image. The only wave optics effect

that comes into play is the cross talk between neighbouring lenslets, an effect

that can be avoided using the design requirements explained in chapter 4. In

plenoptic 2.0 diffraction effects have a bigger influence on the final rendered

image. Since the angular resolution is linked to the directional resolution

future research should be focused on finding ways to improve the optical res-

olution without limiting too much the set of directional coordinates sampled

by the device.

This can be achieved either by improving the optics of the device or the

computational rendering algorithms. Most of the literature to date describes
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methods to recover the full sensor resolution, even pushing to sub pixel res-

olution. But the problem of loss of information from adding a micro lens

array between the main lens and the sensor plane remains.

This is an intrinsic characteristic of plenoptic imaging. The finite dimensions

of the lenslets together with the wave nature of light produce a physical limit

to the amount of information that can be achieved sampling the optical fields

with those kind of devices. The set of directions of the rays of light collected

by a plenoptic device describe all the possible features of the object imaged.

Some of these directions are lost because of the finite aperture of the main

lens, of the lenslets and because of diffraction.

In addition to that there is the trade off between spatial and directional

resolution. In plenoptic 1.0 spatial resolution depends on the number of

lenslets, and directional resolution on their size. Bigger lenslets give better

directional resolution and poor spatial resolution. On the other hand small

lenslets would give higher spatial resolution and a lower number of directional

samples. Research presented in this thesis has enhanced this understanding

by adding the effects of cross talk between lenslets; this is larger for small

lenslets due to increased diffraction effects. In plenoptic 2.0 spatial resolu-

tion is not linked any more to the number of lenslets, and therefore high

resolution rendered images are possible even with a small number of lenslet

in the micro array. The presence of the micro lens array though, represents

a limitation to the optical resolution. This results in a loss of information in

the rendered image if compared with an image obtained from a conventional

optical system. A way to overcome this intrinsic limitation is to remove the

micro array stage for sampling the light field with other methods, such as
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compressive imaging. To conclude this work a few words should be said on

the future direction that research in plenoptic imaging should take.

Plenoptic imaging devices record the direction of the rays of light. Since a

wave front is defined as the surface perpendicular to the direction of the rays,

plenoptic imaging devices can be used to reconstruct the wave front of the

propagating optical field along all the propagation path. This would enable

applications in aberration evaluation and correction. Due to the non linear-

ity of the effect of aberrations on images it is not possible to simply define

an operator to recover the non-aberrated wave front from raw data of an

aberrated image. A more complex analysis should be performed and further

investigations on the mathematical instruments needed to perform such a

transformation should be carried on. Methods from this thesis could be used

to perform a digital adaptive optics loop, where the same instrument could

measure the wave front and the image, estimates an appropriate transforma-

tion of the set of rays in the phase space and perform this transformation

directly on the four dimensional array leading to an image in which the aber-

rations have been corrected.

In conclusion, plenoptic imaging is a very complex and mostly unexplored

field. From creating the tools to do this investigation, the Matlab toolbox,

some important results have been achieved on the effects of wave optics and

especially in quantifying how diffraction represents a limitation in plenoptic

imaging performance. This work still resides in the family of the preliminary

studies and its purpose is to give a general view of the effects of diffraction

on this class of instruments.
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Fresnel Simulation Toolbox:
Function list

List of the main functions used in the toolbox.

Function Description
OutField = Angular(InField, distance, wave-
length)

Gives the monochromatic optical
field after a propagation set by
the parameter distance using the
angular spectrum method

OutField = AngularBL(InField, distance,
wavelength)

Gives the monochromatic opti-
cal field after a propagation set
by the parameter distance using
the band-limited angular spec-
trum method

OutField = AngularBLC(InField, distance,
wavelength)

Gives the monochromatic opti-
cal field after a propagation set
by the parameter distance using
the Corrected band-limited angu-
lar spectrum method

[Grid, centres] = getMicroarray-
Grid(Resolution, subimgeResolution, b,
z)

Returns the grid to separate the
sub images in a plenoptic 2.0 raw
data image and the centres of the
sub images. Input parameters are
the total reolution of the sensor,
the sub image resolution, the pa-
rameter b and the disance z of the
microarray from the main lens
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Function Description
L = LightField(rawImage, microlensNum-
ber)

returns the 4-dimentional light
field for the plenoptic 1.0 raw
image rawImage obtained by
a square microarray contining
microlensNumber microlens per
side.

M = MakeArray(f,d,sensorSize, sensorReolu-
tion, lambda)

Returns a phase mask simulating
an array of microlens with focal
length f, diameter d on a sensor
wize a size sensorSize in meters,
and a resolution of sensorResolu-
tion pixels. lambda is the wave-
length of the simulated light.

IMG = makeImage(L) returns the rendered image from
the 4-dimentional light field L

Lens = Makelens(f, size, radius, resolution,
wavelength)

Returns a phase mask represent-
ing a thin lens with focal length f,
in a plane whose size is equal to
the parameter size and resolution
equal to the parameter resolution,
with a radius given by radius for
ligth with wavelength wavelength

OutField = Propagate(InField, distance,
wavelength)

Gives the monochromatic opti-
cal field after a propagation set
by the parameter distance using
the multi-step fresnel propagation
method

IMG = render20(raw,m,b,z,res) returns the rendered image from
a plenoptic 2.0 raw data raw, ob-
tained by a system with magni-
fication m, distance mcroarray-
sensor b, distance microarray-
main lens z and resolution res

258



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Function Description
Mask = randPhase(coherenceIndex, resolu-
tion)

Returns a phase mask to simulate
partially spatial coherence given
the coherence index and the reso-
lution of the mask

refocused = refocus20(raw, def, z1, z2, fLens,
fMicro, a)

Returns the refocused rendered
image from the plenoptic 2.0 raw
data raw, a defocus of def and sys-
tem parameters indicated in the
argument of the function.

L1 = shear(L, defocus) returns the 4-D light field L1 ob-
tained shearing the original light
field L of a quantity proportional
to the defocus indicated
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Code examples

Simple 2f system

Code used to implement the system described in figure 3.4.

\%repeats the cycle for n times in order to created and\\ \%incoherent image with n snapshots\\

for k=1:n

\%creates random phase pattern\\

Y=randphaseSources(coherenceDegree,m);\\

\%multiply the random phase by the optical field\\

buffer=P.field.*Y;\\

Pbuffer.field=buffer;\\

\%propagates the optical field of 2f \\

F=AngularBLC(Pbuffer,z1,lambda);
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\%lens \\

F1=throughlens(F,L,lambda);\\

\%second propagation\\

F2=AngularBLC(F1,z2,lambda);\\

\%add the optical field to the one previously calculated\\

FIELD=FIELD+abs(F3.field);\\

end\\

OutField=FIELD; \\

Plenoptic 1.0 system

Code used to implement the system described in figure 4.1

for k=1:n

\\

\%creates random phase pattern\\

Y=randphaseSources(coherenceDegree,m);\\

\%creates random phase optical field

\\
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buffer=P.field.*Y;

Pbuffer.field=buffer;

\%propagates the optical field \\

F=AngularBL(Pbuffer,z1,lambda);\\

\%lens \\

F1=throughlens(F,L,lambda);\\

\%second propagation \\

F2=AngularBL(F1,z2,lambda);\\

\%microlens array\\

F2.field=F2.field.*M.field;\\

\%Propagation microarray sensor\\

F3=AngularBL(F2,z3,lambda);\\

\%add the optical field to the one previosly calculated\\

FIELD=FIELD+abs(F3.field);\\

end
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F3.field=FIELD;

Plenoptic 2.0 system

Code used to implement the system described in figure 5.6

for k=1:n\\

\%creates random phase pattern\\

Y=randphaseSources(coherenceDegree,m-1);\\

\%creates random phase optical field\\

buffer=P.field.*Y;\\

Pbuffer.field=buffer;\\

\%propagates the optical field\\

F=AngularBLC(Pbuffer,z1,lambda);\\

\%lens \\

F1=throughlens(F,L,lambda);\\

\%second propagation\\

F2=AngularBLC(F1,z2+a,lambda);\\

\%microlens array\\

F2.field=F2.field.*M.field;
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\%Propagation microarray sensor\\

F3=AngularBLC(F2,b,lambda);\\

\%add the optical field to the one previosly calculated\\

FIELD=FIELD+abs(F3.field);\\

end \\
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