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Abstract. This paper presents a new way of applying Bayesian assessment to systems, which consist of many 

components. Full Bayesian inference with such systems is problematic, because it is computationally hard and, far 

more seriously, one needs to specify a multivariate prior distribution with many counterintuitive dependencies between 

the probabilities of component failures. The approach taken here is one of decomposition. The system is decomposed 

into partial views of the systems or part thereof with different degrees of detail and then a mechanism of propagating 

the knowledge obtained with the more refined views back to the coarser views is applied (recalibration of coarse 

models). The paper describes the recalibration technique and then evaluates the accuracy of recalibrated models 

numerically on contrived examples using two techniques: u-plot and prequential likelihood, developed by others for 

software reliability growth models. The results indicate that the recalibrated predictions are often more accurate than 

the predictions obtained with the less detailed models, although this is not guaranteed. The techniques used to assess 

the accuracy of the predictions are accurate enough for one to be able to choose the model giving the most accurate 

prediction. 

 
Keywords: Bayesian reliability assessment, fault tolerance, prediction accuracy.   

 

1. Introduction 
Off-the-shelf (OTS) components containing software are used widely for both development of new systems and 

upgrading existing (i.e. legacy) ones as part of their maintenance. The main reason for the trend is the low cost of 

OTS components compared with a bespoke development. 

Dependability assessment of systems built with off-the-shelf components, however, is problematic [1]. The 

components are assessed typically in isolation or as part of their working in different operational environments. 

Porting the knowledge about their dependability acquired in one operational environment to a new operational 

environment is problematic. Unless software is free of design faults a good reliability record in the past in a 

different operational environment does not guarantee that it will also work reliably in the new operational 

environment, although the past record can be used to back a priori expectations for reliable operation in the new 

environment.  

This difficulty in reusing assessment results has led some industries to look for solutions of assessment/certification 

without reference to the particular operational environment. For instance, the automotive industry introduced the 

concept of “Safety Element out of Context” (ISO 26262) to allow for certification of off-the-shelf components 

outside a specific operational environment. It remains to be seen how this idea will be used in practice – we hope 

“Safety Element out of Context” will be used as evidence of an adequate process and, thus, inform a reasonable 

belief in good quality, rather than as a substitute for assessment in the intended operational environment. 

This paper applies Bayesian dependability assessment when a white-box model of a system built with components 

is used. There are several reasons to choose the white-box over the black-box model: 

- Black-box model is not practicable for assessing ultra reliable software [2]. Indeed, using Bayesian 

assessment to get high confidence in ultra-high reliability will require an unrealistic amount of statistical 

testing unless one starts the assessment with ultra-strong prior belief. With white-box the confidence may 

grow faster [3]. 

- Even if black-box is adequate as a model for the intended new operational environment, one needs to build 

a prior distribution for system reliability, e.g. system probability of failure on demand (pfd) from the 

available evidence about reliability of the components used in the system. In this case one would ideally 

like to use all the evidence available in the prior– good reliability record about the part of the system which 

remains unchanged and a good record, possibly in a different operational environment, about the new 

components added to the system. Defining a prior distribution for the system reliability, which accounts for 

these sources of evidence, requires a white-box model of the system.  

Bayesian assessment with a white-box, however, poses its own difficulties: 

- For any Bayesian inference defining an adequate prior is problematic. With a white-box system model a 

multivariate inference is needed for which the usual difficulty of justifying the prior becomes even more 
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difficult. Counterintuitive dependencies – how a change of my belief about X should influence my belief 

about Y – need to be quantified, which is really very hard [4].  

- Using conjugate families [5] to alleviate the difficulty in defining multivariate distributions may have 

unpleasant consequences as reported in [3].  

- Applying Bayesian inference numerically is a computationally intensive problem as it requires computing 

of multiple integrals over multivariate distributions of typically very small probabilities (e.g. the 

probabilities of failure of software components and of multiple software components failing together).  

This paper’s approach to the problem is pragmatic. System reliability is assessed by decomposing the system into 

manageable views. Each of the views focuses on a particular, typically small, part of the system. The key element in 

the approach is that the views are defined in such a way that each subsystem appears in multiple views: e.g. one in 

which the particular sub-system is treated as a black-box (a coarse view) and one in which the same subsystem is 

shown in greater detail (a refined view). Bayesian inference can be applied with each of the views. Thus for a 

subsystem included in two views two predictions of this subsystem pfd will exist – from the coarse and from the 

refined views. The key element of the approach presented here is ‘recalibrating’ the coarse view using the 

predictions obtained with the refined view.  

A central part in our approach is measuring the accuracy of the predictions obtained with the coarse and recalibrated 

view and choosing the one that is most accurate for the data at hand. For this we adapt techniques developed in 

software reliability growth modelling and discuss their suitability to our context.  

The paper is arranged as follows. Section 2 states the problem addressed in the paper; Section 3 presents the 

approach of multi-views Bayesian assessment. Section 4 evaluates the approach using a series of contrived 

examples and Section 5 discusses the findings and their practical implications. Section 6 summarises the relevant 

research. Finally, Section 7 summarises the results and outlines directions for future work. 

2. The problem 
Consider the system schematically shown in Figure 1. It represents a legacy system subject to an upgrade: the rest of 

the system (ROS) is upgraded with a 1-out-of-2 fault-tolerant component (FT-component), which in turn consists of 

two components, channel A and channel B, which are integrated with the rest of the system via an interface. An 

example of an FT-component might be a reliable smart sensor in which two or more devices of similar 

functionality, but based on different physical principle for measurement are used. An upgrade of the FT-component 

is a typical practical problem for safety-critical applications with very long life. For such applications it is typical 

that long before they are decommissioned the components used in the original design are likely to cease to be 

manufactured by the respective vendors due to technological improvements. If the FT component has to be replaced 

the only viable option is for it to be upgraded with newer components.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A ‘legacy’ system with a fault-tolerant component subject to an upgrade. The fault-tolerant component is a 1-out-of-2 

system, the two channels of which are integrated with the ‘rest of the system’ (ROS) through an interface. As a result of the 

upgrade the entire sub-system – both channels and the interface – will be replaced. ROS remains unchanged. 

Before we give a probabilistic description of the model presented in Figure 1 a few words about the ‘components’ 

of the system. ROS and the two channels, A and B, are self-explanatory. The fourth box, ‘Interface’, encompasses 

both the tangible substance of making it possible for the two channels to work with the ROS, e.g. wiring and signal 

processing hardware, and also the design of the interaction such as protocols, constraints, which may be 

implemented in software. The ‘Interface’ may fail in different ways – as a result of a fault in either its tangible part 

or as a result of a design fault. In a sense when it comes to modelling the failures of the system the ‘Interface’ will 

take the ‘blame’ for all failures which cannot be attributed to the other three components.  

2.1. Bayesian inference 

A Bayesian approach to reliability assessment of an upgraded on-demand system is used in this paper. The 

probability of failure on demand (pfd) is the measure of interest. The pfd of any component and of the system itself 

are treated as random variables to express the epistemic uncertainty about the value of the respective pfds. Some 

values of pfd are more believable than some other values and this is expressed by a probability distribution 

associated with the random variables.  
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Prior to observing the system in operation various sources of knowledge, e.g. previous experience with similar 

systems, are used to justify the use of a particular distribution as an adequate representation of uncertainty of the 

assessor about the pfd in question. When the system is put in operation its failures/successes in processing different 

demands provide new evidence about the reliability of the system and of the components thereof. As a result, the 

assessor’s belief may change. Intuitively, frequent system failures should decrease the assessor’s confidence in high 

reliability (i.e. low values of the corresponding pfd become less believable than higher values of the pfd) while very 

rare failures will increase confidence in high reliability.  

If we treat the system as a black box, i.e. we can only distinguish between system failures and successes (Figure 2), 

the inference proceeds as follows. Denoting the system pfd as p, the posterior distribution of p after seeing r failures 

in n demands can be expressed as: 

)()|,(),|( xfxrnLnrxf pp  ,         (1) 

where )|,( xrnL  is the likelihood of observing r failures in n demands if the pfd were exactly x. This is given in this 

case (of independent demands) by the binomial distribution,
rnr xx

r

n
xrnL 








 )1()|,( . )(pf  is the prior 

distribution of p, which represents the assessor’s belief about p, before seeing the results of how the system 

processes n demands.  

The paper uses the convention of upper case letters to denote a random variable, e.g. PA, while lower case letters 

are used to refer to the values that a random variable takes, i.e. pA 

 

 

 

 

 

 

 

 

Figure 2. Black-box model of a system. The internal structure of the system is unknown and cannot be used in the inference. 

Only the system scores on each demand – success or failure – are recorded on each demand and are fed into the inference 

procedure. 

With the white-box model the scores at the outputs of the sub-systems (i.e. 0 - success or 1 - failure) are explicitly 

taken into account. They are recorded for every demand processed by the system and are then used in the inference. 

The system score can be a deterministic or a non-deterministic function of the scores of the sub-systems. If the 

system score is a deterministic function (called structure function, [6]) the system pfd can be expressed using the 

pfd of the components. Typical examples are serial and parallel systems, but the structure function of systems with 

more components may be significantly more complex.  

If the system failure is a non-deterministic function of the components, the system score needs to be modelled 

explicitly. 

A more refined analysis with the white-box model would require knowledge of how many times each of the sub-

systems is executed per demand (the control flow of executing a demand). This paper limits analysis to assuming 

that all sub-systems are used exactly once per demand.  

The example of an upgraded system, Figure 1, has a vector of component scores of four components, 

SROSSInterfaceSChASChB, and, hence, 16 different score combinations (0000, 0001, …, 1111) can be observed on a 

demand. 0000, for instance, represents the demands on which none of the components fails; 0001 represents the 

demands on which ROS, the Interface, and channel A, do not fail while channel B fails, etc. Finally, 1111 

represents the demands on which all four sub-systems coincidentally fail. Each of these score combinations can be 

observed on a randomly chosen demand.  

Probabilities: p0000, p0001, …, p1111 are associated respectively with each of the possible outcomes. Clearly, these 

probabilities sum up to 1 (with certainty one of the score vectors will be observed when the system is called upon), 

i.e.: 

11111111011011100101110101001

100001110110010101000011001000010000





ppppppp

ppppppppp
 

In other words, there are 15 degrees of freedom in describing the joint behaviour of the system. The probabilities, 

p0000, p0001, …, p1111, are clearly related to the pfd of the sub-systems. For instance, the probability of failure of ROS, 

pROS, is the sum of the probabilities p1XXX, where ‘X’ can be either 0 or 1, i.e. when ROS has failed no matter 

whether the other sub-systems failed or not on the same demand. Formally, this can be expressed as follows: 

 

PROS = p1000 + p1001 + p1010 + p1011 + p1100 + p1101 + p1110 + p1111. 

 

Similar expressions can be derived for the marginal probabilities of failure of the other components: pInterface, and the 

two channels of the fault-tolerant sub-system pChannelA and pChannelB. 

Sub-system A 

Sub-system B 

OR 

Demands System output 
Output A 

Output B 
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White-box Bayesian inference in the system (Figure 1) will, thus, require a 15-variate prior distribution to be 

defined, which the Bayesian inference will transform to a posterior distribution using the prior and the score vectors 

observed in operation. The variates of the joined distribution can be any 15 out of the 16 probabilities listed above, 

p0000, p0001, …, p1111, or any function defined on these probabilities, e.g. some of the marginal probabilities of the 

components. The joint distribution will describe the assessor’s belief/knowledge about the system’s failure 

behaviour prior to and after the observations, respectively.  

Various distributions of interest can be derived from the joint posterior distribution, e.g. the pfd of any of the 

components, subsystem or system pfd in case these are deterministic functions of the pfds of the components. If the 

pfd of interest is explicitly a variate in the used posterior distribution, deriving the marginal distribution of the pfd 

merely requires integrating out the nuisance parameters of the posterior distribution. If the pfd of interest is not 

explicitly represented in the joint distribution, then a transformation is required of the prior/posterior joint 

distribution to another distribution in which the pfd of interest appears explicitly as one of the variates of the 

distribution. Such a transformation is a standard operation from calculus. From the transformed joint distribution the 

marginal distribution of interest will be derived by integrating out the nuisance parameters.  

If system failure is a non-deterministic function of the sub-system scores, we will need to add an extra variate – the 

system score. For our problem this addition will require a 31-variate distribution in order to describe 

probabilistically the failure behaviour of the system. 

Clearly the full model of the system, Figure 1, is very complex. Even if the system score is a deterministic function 

of the component scores, one needs (at least) a 15-variate distribution and to do inference with it! The problems 

associated with a multivariate Bayesian inference (difficulty to define sensibly multivatiate priors and 

computational difficulties with the inference itself) make a good case for an effort to simplify the multivariate 

distribution used in the inference. Using a simplified inference, however creates a new problem – controlling the 

error due to the simplifications introduced. In both cases there will be errors: in the former case this will be the error 

due to poor prior while in the latter case – the error due to the model simplification made. It is far from obvious 

which is better – using a full inference starting with a poor prior, i.e. one which captures poorly the true belief of the 

assessors or using a simplified prior which defines the problem more simply, requires fewer parameters from the 

assessor and thence may capture more accurately the true belief of the assessor, but ignores some aspects of the 

system model, which may turn out to be important.  

2.2. Simplifying the prior distributions  

An extreme case of simplifying the model of the system is treating the system as a black-box. This simplification 

can be applied to any system. In this case only a univariate distribution of the system pfd is required and the 

inference is computationally trivial but, as discussed above, is problematic for ultra-high reliability ranges [2] and in 

integrating in the prior the previous knowledge that might be available about the reliability of components.  

If the system is modelled as a white-box several options exist for simplifying the system model, which in turn will 

reduce the complexity of the prior and of the inference.  

 Assume that some of the components are perfect. In the case of an upgrade (Figure 1), for instance, assuming 

that the interface between ROS and the upgraded components is perfect (i.e. does not contain design faults) 

may be relatively easy to justify, e.g. if the integration is ‘trivial’ or can be tested exhaustively. Such a 

simplification in the example system will reduce the size of the distribution needed to a 7-variate distribution. 

Although this is a significant reduction in comparison with the 15-variate case, it still poses difficulties for the 

assessor to specify a sensible prior.  

 Assume some form of independence between the variates in the joint prior distribution. Assuming 

independence between the uncertainties associated with the variates in the prior, for instance, one might be able 

to justify assuming independence between the uncertainties associated with the pfd of ROS and of the fault-

tolerant component by lack of evidence on the contrary. Note that such an assumption is different from 

assuming that the components fail independently, an assumption for reliability of hardware components [7]. In 

the former case we merely assume that the pfds of the ROS and of the FT-component are independently 

distributed random variables, while in the latter case we postulate that whatever the ‘true’ probabilities of 

failure of the individual channels the probability of their failing together will be a product of these ‘true’ 

probabilities. In other words in the latter case we postulate that we know with certainty how to derive the 

probability of simultaneous failure from the marginal probabilities of failure of ROS and of the FT-component 

and that the only uncertainty in the model is associated with those marginal probabilities. The two assumptions 

of independence have very different implications. In the former case (independent distributions) an erroneous 

assumption can be ‘fixed’ when the system is observed in operation and the collected data suggest that the 

components tend to fail non-independently. On the contrary, once the failures of the components are assumed 

to be independent, even very strong evidence against the assumption cannot fix the error.  

 The model can also be simplified by making various conditional independence assumptions. This alternative 

line of reasoning is not pursued in this paper but is discussed briefly in Section 5.   

 Simplify the inference by decomposing the system model into simpler ‘views’, each of which is tractable both 

computationally and in terms of defining plausible priors. The example system from Figure 1 can be 

decomposed as shown in Figure 3 using two ‘views’, the course view of the system and the refined view of the 
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FT components. Each of these models consists of two components and their probabilistic description (3-variate 

joint distributions) can be derived from the full multivariate distribution by integrating out different nuisance 

parameters. The two 3-variate models are significantly simpler than the full white-box system model. Each of 

the models can be used on its own for Bayesian assessment of the subsystem it represents. A key element of the 

paper proposes a way of combining the results of the two inferences, by recalibrating the posterior derived 

with the coarse view using the posterior derived with the refined view. In order to be able to do that we require 

that the views be chosen to allow for alternative ways of expressing the same variate – in this example the pfd 

of the FT-component.  

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Two-tier view on the system: In the ‘coarse view’ the FT-component is represented as a black-box. In the ‘refined 

view’ this black-box is detailed as a 1-out-of-2 system. In the ‘coarse’ view the system consists of two components – ROS, 

and the FT-component. The refined view consists of the channels of the FT-component only. 
 

Note that the coarse view is more detailed than a black-box view of the system. The coarse view allows us to use 

the knowledge accumulated to date about the quality of ROS when specifying the prior for this view, while if the 

black-box view is used this is not explicitly required, instead the black-box view only requires a distribution of the 

system pfd to be specified, which will clearly be affected by the pfd of ROS, but in a complex way. The refined 

view, on the other hand, allows us to use the detailed information about the two channels of the fault-tolerant 

component and distinguish between the four possible observations of these two channels in operation (each may fail 

or succeed on a demand); such detailed knowledge is ignored in the coarse view. In summary, although each of the 

two views defined above differs from the full white-box inference of the system, they account for important aspects 

of the components of the system.  

Decomposing the system model into partial views replaces the problematic full white-box inference with new 

problems: 

- how to combine the two posteriors derived with the two partial models, and 

- finding out if combining the two models improves the prediction accuracy in comparison with the simpler 

alternatives such as using the coarse view or the black-box model of the system. 

Assessing the predictive accuracy of any inference is a problem relatively separate from the inference itself. 

Prediction accuracy has been studied in software reliability growth modelling. Techniques for assessing prediction 

accuracy objectively have been developed such as u-plot and prequential likelihood [8], which are applied here to 

the problem.  

Note at this point that we may construct three different prediction models of system pfd:  

 the black-box model, ignoring entirely any knowledge about the internal structure of the systems; 

 the coarse view (ignoring details about the FT-component structure);   

 recalibrated model which uses the predictions of the pfd of the FT-component to recalibrate the coarse model 

and obtain a prediction of the system pfd.  

3. The solution: a multi-view Bayesian inference 
This section describes the main contribution of the paper, a multi-view inferences procedure.  

3.1. The coarse system model: the FT-component viewed as a black-box 

Sub-systems ROS and UG (Figure 3) are assumed imperfect and their probabilities of failure are assumed uncertain, 

quantified using a probability distribution. We further assume that the ‘Interface’ component (Figure 1) is perfect, 

i.e. does not contain faults (design or any other). The scores of the sub-systems, which can be observed on a 

randomly chosen demand, are summarised in Table 1 (1 is used when the component fails to process the demand 

correctly, 0 – when the demand is processed correctly by the component). 

A 3-variate joint distribution is defined in which the variates can be any three out of the four probabilities listed in 

column three of Table 1, e.g. ),,(
111001 ,, pppf , or derived from them. 

Given a set of observations, r1, r2, and r3 in n demands, the posterior distribution will be: 

Coarse view of system 
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111001111001
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111001321

1
)!(!!!

!
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n
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    (3) 

is the multinomial likelihood of the observation (r1, r2, and r3 in n demands). 

 

Table 1 

Component scores  
ROS UG Probability  Observations in n demands 

0 0 p00 r0 

0 1 p01 r1 

1 0 p02 r2 

1 1 p11 r3 

Table 1. The combinations of component scores, which can be observed on a randomly chosen demand, are shown in the first 

two columns. The notations, used for the probabilities of these combinations on a randomly chosen demand, are shown in the 

third column. Finally, the number of times the various score combinations are observed in n trials (n = r0 + r1 + r2 + r3), are 

shown in the last column of the table. Note that r2 represents the number of failures of the fault-tolerant component UG, i.e. 

when both channels of this FT-component fail simultaneously. The individual channel failures are tolerated and not counted in 

this view. 

 

It is intuitively easier to express the prior in terms of probability of failure of the components ROS and UG. Clearly, 

the probabilities of failure of these, pROS and pUG, respectively, can be expressed as: 

1110 pppROS   and 1101 pppUG  . 

pROSUG represents the probability of simultaneous failure of both ROS and UG on the same demand, hence, p11  

pROSUG. The prior distribution ),,(
111001 ,, pppf  can be transformed to a new set of variates, pROS, pUG, and pROSUG, 

),,(,, 
UGROSUGROS pppf , which can be easier for an assessor to work with

1
. Given the same observation, (r1, r2, and 

r3 in n demands), it can be shown that the posterior distribution can be expressed as: 






ABBA

UGROSUGROS

UGROSUGROS

UGROSUGROS

ppp

UGROSUGROSppp

UGROSUGROSPPP

ppp
dxdydzppprrrnLzyxf
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(4) 

where 
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is the likelihood of the observation for the new set of variates used in the prior/posterior distributions. 

Up to this point the inference will be the same no matter how the event ‘system failure’ is defined. The marginal 

distribution of the system pfd, however, is affected by the structure model, i.e. how system failure is defined. In this 

paper we consider a serial system of ROS and UG (Figure 1): a failure of either of these two sub-systems leads to a 

system failure. Deriving the distribution of system failure would require a transformation of the posterior 

distribution, ),,,|,,( 321,, rrrnf
UGROSUGROS ppp 


, to a new distribution, ),,,|,,( 321,, rrrnf
SUGROS ppp  , where for any 

values of PROS, PUG and PROSUG the new variable PS is defined as: PS = PROS + PUG – PROSUG. From the transformed 

joint distribution ),,,|,,( 321,, rrrnf
SUGROS ppp   the marginal distribution of PS, ),,,|( 321 rrrnf

Sp  , will be derived 

from ),,,|,,( 321,, rrrnf
SUGROS ppp    by integrating out the nuisance parameters PROS and PUG.  

3.2. The refined model: a white-box model of the upgraded FT-component 

This model is practically identical to the coarse model, the only difference being the notations used.  

The channels A and B of the FT-component are both assumed imperfect and their probabilities of failure are 

assumed uncertain, the uncertainty being quantified by a probability distribution, which is detailed below. The 

scores of the channels, which can be observed on a randomly chosen demand, are summarised in Table 2. 

                                                           
1 The transformation (change of variable) is a standard procedure in calculus which requires the Jacobian to be computed for the 

old and the new set of variates. For the particular transformation dealt with here, the Jacobian is equal to 1. 
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A 3-variate joint distribution must be defined in which any three of the probabilities shown in Table 2 can be used 

as variates. Let us choose to use the probability distribution ),,(,, 


BABABA

pppf . 

        Table 2 

Channel scores   
Channel A Channel B Probability  Observations in n demands 

0 0 

BA
p  r4 

0 1 
BA

p   r5 

1 0 

BA
p  r6 

1 1 
BA

p  r7 

Table 2. The combinations of channel scores, which can be observed on a randomly chosen demand, are shown in columns one 

and two. The notations used for the probabilities of these combinations are shown in column three while the number of times the 

score combinations are observed in n trials, r4 – r7, respectively (n = r4 + r5 + r6 + r7), are shown in the last column of the table.  

 

Given a set of observations, r5, r6, and r7 in n demands, the posterior distribution will be: 
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            (6) 

is the multinomial likelihood of the observation (r5, r6, and r7 in n demands). 

It may be intuitively easier to express the prior in terms of the probability of failure of the channels, A and B, which 

can be expressed as follows: 

BABA
A ppp    and 

BABA
B ppp   . 

PAB represents the probability of coincident failures of both channels, A and B, on the same demand. The prior 

distribution ),,(,, 


BABABA

pppf  can be transformed to a new set of variates, PA, PB, and PAB, ),,(,, 
ABBA pppf , 

which can be easier for an assessor to work with. 

Given the same observation, (r5, r6, and r7 in n demands), it can be shown that the posterior distribution can be 

calculated as: 
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is the likelihood of the observation for the new set of variates used in the prior/posterior distributions. 

In this model we are only interested in the probability of failure of the FT component, i.e. in PAB, which can be 

derived from the posterior distribution (7) after integrating out the nuisance parameters, PA and PB. 

3.3. Recalibrated model: combining the coarse and the refined views  

Now the procedure of recalibrating the posterior obtained with the coarse view using the posterior from the refined 

view on the FT component is described. 

One of the variates of the distribution, ),,,|,,( 321,, rrrnzyxf
UGROSUGROS ppp 

, used with the coarse model (4), is PUG. 

In the refined view the same pfd, PAB, is expressed differently (7). Even if the coarse and refined views are used 

with consistent marginal priors, e.g. )()( 
UGAB pp ff , due to using different information in both inferences the 

posterior distributions, in general, will be different, i.e. ),,,|(),,,|( 321765 rrrnfrrrnf
UGAB pp  . The reader should 

have noticed by now that r7 = r1 + r3, i.e. the total number of failures of the FT-component (i.e. simultaneous 



 

 8 

failures of channel A and channel B in the refined view) is equal to the number of observations when the UG 

component fails on its own or simultaneously with ROS. 

In the coarse view, Section 3.1, by observing the system in operation we have learned about the epistemic 

uncertainties about the probabilities of failure of ROS and UG (including the dependencies between the variates). In 

the refined view this knowledge is not acquired. Instead, the refined view concentrates on learning how effective 

fault tolerance is for the FT-component, but ignores how it relates to ROS, i.e. whether there is evidence that ROS 

and the FT-component are failing independently or their failures are correlated – positively or negatively.  

The recalibration proposed here is based on the following rationale. We assume that the coarse system model 

captures accurately the epistemic uncertainty about the pfds of ROS and UG and their dependence. Formally, this is 

represented by the conditional distribution: 

)(

),,(
)|,(

,,

|,
zf

zf
zPf

UG

UGROSUGROS

UGUGROSROS

p

ppp

UGppp


 


      (8) 

We postulate that the conditional distribution (8) remains unaffected by the recalibration.  

In other words, we postulate that the recalibrated posterior, ),,(,, zf
UGROSABROS ppp 


, is defined as: 

)(
)(

),,(

)()|,(),,(

,,

|,,,

zf
zf

zf

zfzPfzf

AB

UG

UGROSUGROS

ABUGUGROSROSUGROSABROS

p
p

ppp

pUGpppppp









.     (9) 

4. Validation 
The inferences with the coarse and the recalibrated models differ significantly in complexity. Recalibration requires 

inferences with both the coarse and the refined models and in addition a transformation of the entire posterior 

distribution obtained with the coarse model as suggested by equation (9).  

The obvious question is whether the extra complexity of recalibrated inference brings advantages in comparison 

with the simpler inferences. If it does, are they guaranteed whatever the priors and the observations or is more 

detailed analysis needed to identify whether recalibrated inference brings advantages with the specific problem at 

hand. The essential question is whether we can trust the predictions obtained with either of the two models. If they 

are the same, can we assume that they are accurate or despite their being similar do we still have to validate their 

accuracy? If, instead, the predictions obtained with the two models are different can we trust any of them and if so 

which one? The answers to these questions are not obvious. Clearly, both views ignore some aspects of system 

behaviour and thus introduce errors. We would like to scrutinise various aspects of these errors and come up with a 

practical advice on deciding if any of the predictions are accurate or not. 

This section starts with a contrived example to illustrate that the predictions obtained with the recalibrated inference 

may differ significantly from the predictions obtained with coarse system model. It then proceeds with a more 

detailed analysis of accuracy using contrived numerical examples.  

4.1. An example 

Consider an example parameterisation of the system, which uses the two views identified above and define the prior 

distributions as follows.  

- The FT-component. The prior, ),,(,, 
ABBA pppf  is constructed under the assumption that )(

Apf  and )(
Bpf  

are both Beta distributions, ),,( B , in the interval [0, 01] and are independent of each other, i.e. 

)()(),(, 
BABA pppp fff . The parameters α and β used in the examples for the two distributions are: αA = 2, 

βA = 2 for channel A and αB =3, βB = 3 for channel B, respectively. The conditional distributions, 

),|(,| BBAAppp pPpPf
ABAB

 , for every pair of values of PA and PB, are defined as Beta distributions, 

),,( baB   in the range [0, min(pA, pB)] with parameters αAB = 2, βAB = 2. These conditional distributions 

together with the defined above joint distributions ),(, 
BA ppf completely define the tri-variate prior 

distribution, ),,(,, 
ABBA pppf , used in the refined view of the FT-component. The marginal distribution 

)(
ABpf  is derived from ),,(,, 

ABBA pppf  and used in the prior of the coarse view. No claims are made that the 

priors used in the examples should be used for practical assessment. They serve illustrative purposes only and 

yet, have been chosen from a reasonable range. Each of the channels, for instance, has an average pfd of 5.10
-3

, 

which is a value from a typical range for many applications.  

- The coarse system view. The system prior, ),,(,, 
UGROSUGROS pppf , is constructed under the assumption that 

the pfd of the ROS and of the UG component are independently distributed, i.e. )()(),(, 
UGROSUGROS pppp fff .  

)(
ROSpf  is assumed to be a Beta distributions, ),,( B , in the interval [0, 01] with parameters αROS = 3, βROS 

= 3, while )()( 
ABUG pp ff  is as derived from the refined view of the FT-component. The conditional 
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distributions, ),|(,| UGUGROSROSppp pPpPf
UGROSUGROS




 for every pair of values of PROS and PUG, are defined 

as Beta distributions, ),,( B  in the range [0, min(pROS, pUG)] with parameters αROSUG = 2, βROSUG = 2.  

- The observations. n = 4000 trials, rROS = 4, rA = rB = 10, rAB =  2; rROSUG =  2. In other words, the failures of 

the ROS coincide with failures of the FT-component. OTS channels fail with 20% of the channel failures being 

simultaneous.  

This example represents a complex relationship between the failures of the channels of the FT-component on the 

one hand and the failures of ROS and of the FT component on the other hand.  

Figure 4 shows the difference in the predicted pfd of the FT-component obtained with the coarse and the refined 

model, while Figure 5 shows the system pfd obtained with the coarse and the recalibrated models. 

 
 

 
The disagreement between the coarse and the refined views on the posterior pfd of the FT-component is significant 

(e.g. the confidence associated with a target pfd = 0.003 is 40% in the case of refined mode and almost 70+% with 

the coarse model). The refined posterior is clearly significantly more pessimistic than the one derived with the 

coarse model. Indeed, in 20% of the cases the channels of the FT-components fail simultaneously. 

The disagreement between the coarse and the refined views on the posterior system pfd is significant, too, (e.g. the 

confidence associated with a system target pfd = 0.004 is 50% with the coarse model and almost 80% with the 

recalibrated model). The recalibrated posterior is clearly significantly more optimistic than the one derived with the 

coarse model. Intuitively this is plausible. The coarse model has captured the strong positive correlation between 

the UG (the FT-component) and the ROS – all observed failures of the two happen to be simultaneous. But the 

system is a serial one and for it positive correlation between the failures of the components means that their failure 

regions (on the demand space) overlap significantly, thus reducing the probability of system failure. Non-

overlapping failure regions would have implied a greater probability of system failure for the same probability of 

failure of the components. Applying recalibration, i.e. a more pessimistic prediction of the FT-component than in 

the coarse model, leads to a more optimistic system pfd (implying larger overlap of the failure regions between the 

FT-component and ROS). Note also that both predictions are significantly more optimistic than the prior – in other 

words, this is an example of using clearly a pessimistic system prior and the recalibrated prior allows us to 

overcome the pessimism in the prior more quickly. 

4.2. Accuracy of Bayesian predictions 

The difference between the predictions obtained with and without recalibration is not surprising, as already 

discussed. To these two prediction models we can, of course, add a black-box model, which operates with even less 

detailed data than the coarse model does.  

Figure 4. The FT-component pfd derived 

with the coarse and the refined models. 

The pfd derived with the coarse model is 

significantly worse than the posterior 

derived with the refined model. Both are 

significantly worse than the prior. 

Figure 5. The posterior system pfd when 

ROS and the UG component form a serial 

system. The posterior obtained with the 

coarse model is significantly worse than 

the predictions obtained with the 

recalibrated model. Both clearly indicate 

that the system is better than was assumed 

in the prior. 
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Littlewood et al. developed techniques for assessment of prediction accuracy of various software reliability growth 

models [8]. These methods allow one to compare objectively how two prediction models compare in terms of 

prediction accuracy (i.e. which of them gives systematically more accurate predictions) and even, under certain 

conditions, to assess whether the predictions are optimistic or pessimistic. The two techniques, prequential 

likelihood and the u-plot, are used to assess the accuracy of predictions obtained with the available models - the 

black-box, the coarse and the recalibrated models. Appendix 1 provides a summary of the techniques.  

4.3. More examples 

We now study the prediction accuracy of the models using data generated via Monte-Carlo simulation of the 

behaviour of the system under consideration (Figure 1). Four different systems are simulated using parameters as 

shown in Table 3. These are the true values of the probabilities that we try to estimate using Bayesian inference.  

Table 3 

 System1 System2 System3 System4 

PROS 0 0 0.001 0.001 

PA|ROS failed 0 0 0.5 0.5 

PA|ROS did not fail 0.005 0.005 0.001 0.002 

PB|A did not fail, ROS did not fail  0 0.0035 0.005 0.002 

PB|A did not fail, ROS failed  0 0 0.5 0.002 

PB|A failed, ROS did not fail 1 0.3 0.005 0.002 

PB|A, ROS both failed 0 0 0.01 1.0 

Number of demands simulated 50,000 50,000 100,000 50,000 

PROS marginal 0 0 0.001 0.001 

PA marginal 0.005 0.005 0.0015 0.0025 

PB marginal 0.005 0.00498 0.00525 0.0025 

 

The choice of parameters was motivated by trying to cover a range of plausible scenarios. The difference between 

System1 – System4 is in the reliability of individual components (the marginal probabilities of failure are shown at 

the bottom of the table) and in the level of correlation between the failures of the channels of the FT-component and 

between the failures of the FT-component and ROS.  

 

In addition to the ‘observations’ collected by simulation the impact of the prior on the predictions was studied by 

defining different priors, ),,(,, 
UGROSUGROS pppf , and ),,(,, 

ABBA pppf , for the coarse model of the system and the 

refined model of the FT-component, respectively, which were constructed by making assumptions similar to those 

in the example given at the beginning of this section using a set of parameters: A, A, B, B, AB, AB. A, A for 

channel A, B, B for channel B, respectively, describe the uncertainty associated with the pfds of the two channels. 

AB, AB characterise the uncertainty about the conditional probability of simultaneous failure of channel A and B. 

Similarly, ROS, ROS, ROSUG, ROSUG, characterise the uncertainty about the probability of failure of ROS and 

the simultaneous failure of ROS and the FT-component, respectively. The parameters used in the study are shown 

in     Table 4. 

                Table 4 

 Prior1 Prior2 Prior3 Prior4 

A 2 20 1 10 

A 2 20 10 10 

B 3 20 1 10 

B 3 20 10 12 

AB 1 1 1 1 

AB 1 1 1 3 

ROS 3 1 1 1 

ROS 10 10 10 200 

ROSUG 3 3 1 1 

ROSUG 3 3 10 10 

 

Priors were chosen so that the degree of uncertainty in the pfds of the two channels of the FT-component, A and B 

and the uncertainty in the pfds of ROS and the failure correlation between ROS and UG also varied to enable study 

of how the prior affects the predictions. 

 

The findings are now illustrated, grouping the observations as summarised in Table 5 below. In the first four 

examples inference was applied using the first 5,000 observations of the simulated 50,000 demands of System1 and 
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System2, respectively, using a fixed testing campaign size of 100 demands. In the other two examples the size of the 

‘testing campaigns’ varied between 25 and 200 showing the results with 200 campaigns, thus using between 5,000 

and 40,000 of the simulated demands for System3 and System4, respectively.  

Table 5 

 Prior  

(refer to Figure 4) 

Observation 

(Table 3) 

Number of 

campaigns 

Demands per 

campaign 

Total number 

of demands 

Data1 Prior1 System1 50 100 5,000 

Data2 System2 50 100 5,000 

Data3 Prior2 System1 50 100 5,000 

Data4 System2 50 100 5,000 

Data5 Prior3 System3 25 200 5,000 

Data6 Prior4 System4 200 200 40,000 

 

Bayesian inference is applied to each of Data1-Data6 using the three models – black-box, coarse, and recalibrated – 

starting with consistent priors, calculated as follows: from the prior defined for the FT-component, the marginal 

distribution, )(
ABpf , is derived and used as marginal distribution of the UG component in the coarse model. This 

distribution together with )(
ROSpf , defined as a Beta distribution, ),,( ROSROSB  , and the conditional 

distributions ),|(,| UGROSppp PPf
UGROSUGROS




 defined as Beta distributions, ),,( UGROSUGROSB    define the joint 

distribution of the coarse model from which, in turn, the marginal distribution of the system pfd is derived and used 

as a prior for the black-box model.  

The u-values and the PLR values were calculated for the number of system failures observed in each campaign. The 

values thus computed were then used to plot the respective graphs and compare the accuracy of the models on the 

simulated data. At the end of each testing campaign the coarse model was recalibrated using equation (9). The 

posteriors derived with the respective models at the end of each campaign (marginal in the case of black-box or 

joint in the case of coarse and recalibrated models) were then used as a prior in the next campaign, etc. 

Analysing the u-plots one would notice that the values of the u-values (on the Y-axis that is, e.g. Figure 6) do not 

start from 0. The u-values are constructed for the random variable ‘the number of the system failures within a 

campaign of a given size’. Given the size of the campaign is between 25 and 200 tests for the examples shown here 

and the distributions of the system pfd are limited by the priors to small values (a upper bound of 0.02 and 

distribution mass often concentrated within a range much shorter than [0,0.02]) the probability of observing no 

system failures, P(0), may be significant, 0.75+ in the examples studied. Thus the u-plot values will be bound to be 

within the range [P(0), 1]. We plotted the u-plots using as an estimate of the P(0) the smallest u-value computed 

with each of the models.  

Clearly increasing the size of the campaigns will lead to a decrease of P(0). As shown in the Appendix for a 

campaign size of 1000 demands, P(0) can be very close to 0. 

4.3.1. Data 1 

 

  

Figure 6. Distribution of system pfd 

before and after testing. There is 

stochastic ordering between the posterior 

distributions – the black-box model 

produces the most optimistic predictions, 

while the recalibrated posterior is the 

most pessimistic. The predictions of the 

coarse model are in between.  
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4.3.2. Data 2 

    

    
 

Figure 9. The plot shows that the prior 

chosen has been very conservative. The 

posteriors are very close: there is 

ordering between the three with the 

recalibrated model giving the most 

optimistic prediction, coarse – the most 

pessimistic, the black-box is in between. 

Figure 8. Prequential likelihood ratio 

shows minor superiority of the 

recalibrated model over the other two 

models with a tendency of all models 

eventually converging – they become 

indistinguishable, especially after 

3,500 demands. 

Figure 10. Interestingly, the PLR shows 

that the recalibrated model performs best 

– the difference is noticeable with the 

coarse model and practically negligible 

in comparison with the black-box model.  

 

Figure 7. U-plot shows that most of the 

time the plots of all three models give 

pessimistic predictions. The ordering is 

the same as in Figure 6. 
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4.3.3. Data 3 

    

    
 

    

Figure 11. The u-plot reveals that all 

three models give generally pessimistic 

predictions. One may conclude, therefore, 

that the predictions of the recalibrated 

model, although most optimistic are still 

likely to be pessimistic and can be chosen 

even if one would like to be conservative 

about the true system pfd.  

 

Figure 12. This plot shows a case with an 

optimistic prior. All posteriors are moving 

towards more conservative ranges. The 

black-box and the coarse models offer very 

close posteriors, while the recalibrated 

model is significantly different and more 

pessimistic.   

 

Figure 13. Now, the PLR clearly shows 

the superiority of the recalibrated model at 

the early campaigns: it outperforms both 

the black-box and the coarse, which are 

indeed practically identical (their ratio 

remains close to 1). 

 

Figure 14. The observations from the 

PLR are now further corroborated by the 

u-plot. It looks like all predictions are 

pessimistic most of the time (the 

beginning of the curves which represents 

campaigns with no system failure – the 

initial curve, and a single failure – the 

first step of the plot), but when more than 

one failure occurs (the last fragments of 

the curves) the predictions by all three 

models seem optimistic. Clearly, we do 

not have a model that provides 

consistently pessimistic or optimistic 

predictions. 
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4.3.4. Data 4 

    

 

    

 

    

4.3.5. Data 5 

    

Figure 15. This case is an example of a 

very pessimistic prior. It is also 

interesting in that there is no ordering 

between the posteriors – the cdfs of the 

recalibrated posterior crosses over the 

posteriors obtained with the other two 

models. The black-box and coarse 

predictions seems stochastically ordered: 

the black-box being more pessimistic. 

Figure 16. The PLR shows an increasing 

trend in favour of the recalibrated model, 

although the gain is minimal. 

 

Figure 17. This plot, however, shows that 

the predictions of zero system failures by 

the recalibrated model are optimistic, 

noticeably so, while those by the other two 

models are generally pessimistic.  

Figure 18. This case is an example of how 

the three models may become 

indistinguishable. Looking closely at the 

parameterisation we notice that the failures 

of the two channels of the FT-component 

(Table 4) are highly correlated. Thus, fault 

tolerance brings practically no benefits. 

Observation wise, the recalibrated model 

brings no benefits in comparison with the 

coarse model. Even the black-box model 

‘sees’ everything that is important.  
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4.3.6. Data 6 

    

    
 

Figure 19. This plot, too, shows no 

difference between the three models.  

 

Figure 20. The same here – the u-plots of 

the three models are indistinguishable. 

 

Figure 21. This example is at the other 

extreme. Fault tolerance works very well 

with the FT-component: many individual 

channel failures occur, and few failures of 

all three components. Now the recalibrated 

model ‘sees’ much more than either of the 

other two models, Indeed many single 

channel failures occur which are masked by 

fault-tolerance. Not surprisingly, the 

predictions are different. The predictions by 

the coarse model are much more optimistic 

than the other two – the black-box is more 

pessimistic than the recalibrated model. 

 

Figure 22. Clearly, the predictions by the 

coarse model are optimistic. For the other 

two models the usual pattern is observed: 

pessimistic u-values for the case of zero 

system failures. 
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4.4. Selecting the best prediction model 

The plots shown in the previous section allow one to appreciate how the PLR and the u-plot differ between the 

predictions obtained with the different models. The examples also illustrate how the accuracy of the different 

models may change over time. The PLR and the u-plot were produced over the entire set of testing campaigns. 

Clearly, a more refined analysis is possible, e.g. by computing these on a sliding window of predictions as shown in 

Figure 25.  

 

 

Clearly, Figure 25, offers a basis for one to select the best performing model. A possible selection criterion at any 

point in time might be the value of the PLR computed on the last 20 consecutive predictions at any point of 

prediction. A value of the PLT over 1 will give preference to the recalibrated system, while values smaller than 1 

will give preference to the coarse model. One can apply different criteria to increase the confidence in the selection 

of the best performing model, e.g. the recalibrated can be preferred when the PLR is greater than a number greater 

than 1, e.g. 10, while for lower values the evidence is insufficient for preferring the recalibrated model.    

Figure 23. This plot clearly shows the 

drastic superiority (notice that PLR reaches 

values of 7000) of the recalibrated model 

over the coarse model. 

 

Figure 24. Here we remove the ratio 

between the recalibrated and the coarse 

model, shown above (Figure 23) and look at 

how the other pairs compare. Clearly the 

recalibrated initially performs well and 

outperforms the black-box model. However, 

as the number of tests increases the black-

box becomes more accurate, although the 

trend suggests that the superiority may 

decrease.  

 

Figure 25. The PLR for Data 6 example is 

computed on a sliding window of 20 

consecutive predictions prior to a particular 

point in time. The shape differs from the 

aggregated figure shown in Figure 23.  
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5. Discussion 
The interesting question for anyone faced with using alternative models of Bayesian assessment (compared here and 

indeed in any other inference model) is which of the alternative predictors one should trust. In the context of safety-

critical systems a prudent view would be to choose from the available alternatives the most conservative prediction 

[9]. There may be two aspects in this regard which are worth considering: 

 Is the most conservative prediction conservative at all? If all available alternatives are optimistic, e.g. as a result 

of starting the inference with unrealistically optimistic prior, then choosing the least optimistic may still be 

inadequate. 

 Even more interestingly – do we need to use the most conservative prediction at all? If we know that all 

alternatives are conservative, then any alternative, even the least conservative one, can be used for conservative 

predictions. An example of this possibility is given in Figure 11. 

A separate line of reasoning would be to consider the cost of being conservative. Using a conservative prediction to 

demonstrate that a specified target is met is effectively equivalent to asking for the cost of the assessment to be 

increased (e.g. by running longer testing campaigns), which may be simply unnecessary. Had we used an accurate 

prediction (instead of the most conservative) it might be possible to demonstrate that the set target on system 

reliability can be met more cheaply, e.g. with a shorter test. The numerous examples included in this paper show 

that the more detailed inference in some cases delivers more accurate predictions. The superiority of the most 

advanced of the three models – the recalibrated – works better than the other two in most of the chosen examples. 

An important point to make is that the recalibrated model tends to work best when there are significant mismatches 

between the priors and the ‘true’ system reliability, especially when the channels of the FT-component are truly 

‘diverse’, i.e. show failure diversity.  

These examples seem to suggest that a feasible Bayesian inference, significantly less complex than a full inference, 

may result in more accurate predictions than is currently possible with simplistic models of the system such as the 

black box or the coarse models which ignore some details of the system structure. The proposed approach to multi-

view Bayesian inference seems a significant improvement at acceptable price, compared with the Bayesian 

assessment typically used. 

However, the results have also shown that the recalibrated model should not be trusted a priori and always used. 

The contrived examples have been chosen carefully to cover various scenarios of how the predictions obtained with 

different models may be related to each other. The important outcome of the work is that the known techniques for 

assessing the prediction accuracy of competing models seem sufficient for one to be able to assess objectively which 

of the models gives the most accurate prediction and use that model.  

It is important also to appreciate the fact that the best performing model can change over time. This manifested 

itself with some of the examples although in the simulated systems their reliability remained unchanged. The reason 

for the change of the models’ performance seems to be the mismatch between the prior and the true reliability of the 

assessed systems. Different models converge to true reliability with a different speed, which results in their 

prediction accuracy being different. There are cases, however, when in addition to the mismatch between the prior 

and the true reliability, the true reliability of the assessed system may change over time, e.g. as a result of a change 

of the usage profile. The important point here is that PLR and u-plot seem sufficient to identify the most accurate 

model whatever the reason for the different accuracies of the predictions. As we have seen, being able to capture the 

trend of accuracy of the predictive models depends on the testing campaign (the intervals between applying 

recalibration). The size of the campaign should be chosen sensibly. Too long a campaign would imply that only 

slow changes of system reliability could be dealt with, while too short campaigns will make the techniques for 

assessing the accuracy (especially the u-plot) less useful. Indeed reducing the campaign size to a single demand will 

reduce the space of the possible observations to just 0 and 1, hence the u-plot values will be limited to a very short 

range, e.g. [0.9+ 1]. 

Another aspect that has not been discussed so far is exploring the space of possible views. Currently one of the 

many possible ways of simplifying the full inference has been chosen for the given system structure: I chose to look 

in a separate view at the FT-component for obvious reasons. Data 5, however, clearly shows that there is no gain 

from using the FT-component view. It seems pretty clear that whether the recalibration will ‘work’, i.e. will produce 

more accurate predictions than the alternative models, depends on whether it captures the ‘important dependencies’ 

between the failures of the components. With Data 6 the model of the FT-component captures observations of 

individual channel failure which are masked by the fault tolerance and remain ‘invisible’ for the other models. The 

model of the FT-component, however, will not see dependence (i.e. correlation – positive or negative) between the 

failures of ROS and one of the channels of the FT-component. Using a separate view (different from the view of the 

FT-component, e.g. a model of the ROS and the particular channel of the FT-component) to capture such 

dependence might turn out to make the predictions more accurate than can be achieved with the current choice of 

views. These are important aspect which will be addressed in more detail in future work. I would like to stress, 

however, that with many different partial views the approach presented here will also work: we will simply have to 

deal with a larger space of models including many different recalibrated models. The objective, however, will 

remain the same – compare alternative predictions of system pfd and choose the model (possibly the particular way 

of recalibration) that gives the best prediction. 
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Finally, in the examples used only one step of recalibration was applied – the predictions of the coarse model were 

recalibrated with the predicted distribution of the pfd of the FT component. We could, however, use multiple layers 

of refinement. Consider again our example in Figure 3, which was simplified by making an assumption that the 

component Interface is perfect. If such an assumption is not plausible, three different views of the system could 

have been defined, as shown in Figure 26. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 26. The example system is shown in which the Interface component can also fail. Now a new view is defined – the 

Refined view of UG component, which consists of two components, the Interface and the FT component modelled as a serial 

system, i.e. a failure of either the Interface or of the FT component will lead to a failure of UG subsystem. The third view – of 

the FT component – is as before; it consists of the two channels A and B, which are modelled as a 1-out-of-2 parallel system.   

For this model of the system we could envisage two recalibrations: The pfd of the FT component will be used to 

recalibrate the posterior of the Refined view of UG subsystem in a way similar to 3.3. The difference is that the pfd 

of this subsystem, will be derived from the joint posterior, ),,(,, 
FTInterfaceFTInterface pppf  by first transforming it to a 

suitable form in which the system pfd (of a serial system), PUG is explicitly used and then integrating out the 

nuisance parameters. The marginal distribution )|( dataf
UGp 

 
is then used to recalibrate the coarse model as 

described in 3.3.  

Clearly, the approach scales up – a structure of arbitrary complexity can be partitioned suitably into views which 

offer chains of model refinements by adding more detail on the system structure. Using a particular chain one can 

make use of all parts of the respective model and data of the behaviour of its parts under the simplifications 

imposed by the particular chain.  

Clearly, with a complex system structure, a number of alternative chains might be possible. In this case, each chain 

will offer an alternative way of assessing system reliability and different refinements. In other words, in addition to 

the black-box, the coarse system model and a single model with recalibration as discussed in Sections 3 and 4 we 

will have to compare several alternative recalibration-based predictions. The task of selecting the most accurate 

prediction, however, does not change – simply the space of available solutions from which one has to choose gets 

larger. 

Finally, I note that the motivation of the work presented here was based on demonstrating the difficulties in using a 

complete Bayesian inference with a system build with multiple software components. In this case, the inference 

would rely on a model with many degrees of freedom, which is typically difficult to parameterise. As a result the 

benefits from a complete inference may be cancelled out by parameterisation inaccuracies. During the discussion of 

the paper with my colleagues we realised that the motivation could have been based on practical considerations: 

refining a model is only a good idea if data is available that can be made use of. From this point of view, the 

procedure presented here may be seen as a ‘natural’ way of adding details to the model when more detailed data 

about the behaviour of the channels of the FT component becomes available from more detailed measurements 

either during the testing or from operational use. The black-box view on the FT component may be useful at some 

point in the assessment and in the absence of information about the failures of its channels may be the only useful 

model of the FT component. As operational data becomes available about the behaviour of the parallel channels, 

however, one may decide to make use of this data (instead of throwing it away with a black-box model) and revise 

the model accordingly. The proposed approximate inference clearly offers one way of using the more detailed data.  
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6. Related research 
The issue of Bayesian assessment of software built with off-the-shelf components attracted some interest. In a 

number of papers Kuball et al. advocated a model of software of arbitrary complex structure built with off-the-shelf 

software components under the assumption that the components fail independently, [10], [11]. I scrutinised their 

results, [12], and contrary to the assertions by those authors that the prediction errors due to the assumption of 

independence of failures lead to conservative predictions, observed that the sign of predictions is unknowable – the 

predictions that result can be overestimation or underestimation of system reliability, which poses questions about 

the usefulness of the models based on assuming independence of failures for practical assessment. Models of 

systems built with independent components have been studied very extensively and general results obtained [7].  

In a previous paper, [3], we presented a Bayesian reliability assessment of 2-channel fault-tolerant software. In 

particular we were interested in whether a white-box inference allows us to be confident that a predefined reliability 

target is met, faster than if this knowledge is ignored and the system is treated as a black box. We succeeded in 

demonstrating that using an inference procedure which takes into account the system structure and more detailed 

observations leads to predictions which generally differ from the black-box predictions. The predictions thus 

obtained may be more pessimistic or more optimistic than the ones obtained with the black-box inference.  In 

general even the sign of the difference is unknowable in advance, i.e. it is impossible to know in advance what error 

one is making by using the black-box inference. This depends on both the prior and the observations. 

Surprisingly, it turned out that some convenient priors likely to be considered by an assessor in practical 

assessment, because they simplify the inference, lead to counterintuitive results: 

 When a Dirichlet distribution
2
 is used as a prior, the black-box and white-box inferences give exactly the same 

posterior predictions on the probability of system failure no matter the observations. Hence using a white-box 

inference with Dirichlet gives no advantage over black-box inference, which is simpler. 

 If the probabilities of failure of the two channels are assumed known with certainty, then the Bayesian inference 

may lead to counterintuitive predictions (posteriors). For instance, if no failure of either of the channels is 

observed (i.e. both channels passed all tests), the predicted system reliability is worse than what was assumed 

for it a priori. More precisely, the probability that the system meets a given reliability target gets lower than 

was assumed a priori after observing no channel failures (i.e. the best possible outcome), which is clearly 

counterintuitive. The reason for this counterintuitive result is the assumed certainty in the reliability of the two 

channels and suggests that assuming certainty in the priors can have serious consequences and should be used 

only after a very careful justification (e.g. that it is impossible to observe no channel failure). 

In an interesting study, Kristiansen et al. [13], established empirically that for systems built with software 

components the system dependability is typically more sensitive to dependencies between parallel components than 

to dependencies between serial components. They advocate that an inference procedure must account explicitly for 

dependencies between the parallel components, while those between the serial components can be ignored without 

significant loss of accuracy. The choice of the refined model of the FT-component happens to follow these authors’ 

recommendation. Whether the empirical observation by Kristiansen et al. is universally true is unclear.  

The proposed approach based on recalibration is somewhat similar to the Bayesian procedure developed in [14] for 

components with independently distributed pfds, in which the authors use a combination of black-box inference on 

system reliability and inferences on components’ reliability in several steps: after the posterior is derived using a 

black-box model (called a preliminary posterior), using the system configuration (the structure function) to derive a 

consistent prior for the components’ reliability. Then the data is used to derive posteriors for the components’ 

reliabilities, which are then used to derive the final posterior system reliability. This procedure seems to use what 

we called recalibration from the system model to the component models (to define priors for the components 

consistent with the preliminary system posterior) and back from the component models to derive the final system 

posterior. As [7] suggests the procedure of propagating (i.e. recalibrating) between the system/component models is 

quite generic and a number of variations for systems built with components with independently distributed pfds 

have been developed since the publication of [7]. The difference of the approach proposed here in comparison with 

these previous models is that it does not require that the pfds of the components be independently distributed.  

The work presented here is also related to Bayesian Belief Nets (BBN) which have attracted interest in the past 

decade. The multi-view approach to assessment is a way of dealing with complexity. BBNs address this problem of 

complexity using conditional independence assumptions, which need to be justified. The inference procedure 

presented here does not depend on making assumptions of conditional independence. Instead of building a model of 

the entire system (i.e. a single BBN which involves a graph which shows the assumed conditional independencies 

between the variates) it deals with the multiple partial views in which a subset of the variates are integrating out. 

The approach with BBNs is different – the BBN structure states explicitly the conditional independence properties 

between the variates. Once the conditional independence assumptions are made they will stay in the model 

whatever the data. Wright and Littlewood have demonstrated that with a given set of conditional independence 

assumptions a number of different BBNs can be built, all consistent with the stated assumptions. The process of 

                                                           
2  The Dirichlet distribution is the multivariate generalisation of the Beta distribution and forms a conjugate family with the 

multinomial likelihood (3). If the prior is defined as a Dirichlet distribution, the posterior is also a Dirichlet with parameters that 

can be easily computed from the parameters of the prior and the observed counts of failure and success of the components. 
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deriving the set can be automated and thus the space of possible BBNs explored in detail. In a sense, using BBNs is 

an alternative to the chains of views described in this paper. In this sense the approach and the BBN are 

complementary.  

7. Conclusions and future research 
This paper presents an approach to Bayesian reliability assessment of complex system, which consists of many 

software components. The presented results suggest that the approach can solve two problems: 

- Bayesian inference can be decomposed into manageable steps, each of which deals with a partial view on the 

system or parts thereof with simple structure. As a result, the steps do not require complex multivariate priors. 

Instead, they only depend on relatively simple and intuitive priors, eliciting which is practicable; 

- The accuracy of Bayesian predictive models can be controlled using well known and relatively simple 

techniques developed in the past. With the proposed method many alternative predictive models are built and 

the system is assessed using all of these. Their predictions are compared and the optimal one for the specific 

context is chosen, e.g. one that gives the most accurate predictions or which satisfies some additional 

constraints, for instance giving the least pessimistic predictions among the available alternatives. 

The method is illustrated on a range of contrived examples, for most of which the method performed better than the 

alternative simplistic models, although its superiority is not guaranteed. 

Among the areas for future research I envisage the following: 

- Deciding on the optimal set of partial models possible with a system requires further study. Using partial 

models inevitably throws away some of the information about the possible dependencies between the failures 

of the components – this is the real price of not using the full model. Deciding a priori, which dependencies are 

important may be difficult, possibly impossible. Exploring the space of partial models may be on the other 

hand too costly computationally which warrants further scrutiny. 

- Even with relatively simple systems like the one used in this paper, the computational complexity of the 

assessment increases significantly. For instance in comparison with a black-box inference, the proposed 

method is many-fold more expensive in terms of computation resources required. For off-line assessment the 

speed of the inference does not pose a problem. There are, however, many potential applications, which may 

require fast inference on live data, such as critical infrastructures, cloud computing, etc. For this category of 

applications the speed of the inference becomes an issue and this will be addressed in future work. 

- This work has not addressed how difficult it is algorithmically to choose the best model: the selection was 

based on processing visually the u-lot and PLR. Being able to automate the selection of the best model is 

important, e.g. in case of continuous on-line assessment, and this concern will be addressed in future work.  
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Appendix 1 
A short summary of these methods is given here in order to make this report self-contained. The text given here is 

based on [8]. A more detailed study of the techniques applied to discrete models, i.e. in which the parameter of 

interest is the number of failures in a fixed number of demands, was undertaken by Wright [15].  

A.1.1. The u-plot 

Let us assume that we have a series of observations, t1, t2, …, tn, of a random variable T
3
. The u-plot uses the 

predictor  tF i



, the estimate of the distribution    tTPtF ii  , via: 

 iii tFu


  

where ti is the later observed realisation of the random variable Ti. Thus ui is the value of the cumulative distribution 

function (cdf) corresponding to the observation ti. If the sequence of predictions {  ii tF


} is good, then {ui} will 

tend to be uniformly distributed.  The u-plot is the sample cdf of the sequence {ui}.  

In reliability growth models the random variable of interest for which the u-plot is calculated are the inter-failure 

times (e.g. the number of demands between the failures) [8], but the method does not prevent us from using any 

other observable random variable.  

In this case if we divide the overall number of tests, N, into ‘testing campaigns’, n1, n2, …, (e.g. of fixed size, 50, 

100, 250, 500, 1000 demands), then the number of observed failures (of the system or of any subsystem thereof), 

m1, m2, …, will be realisations of a random variable, M, with a binomial distribution, B(ni, p), where ni is the 

number of tests in the campaign and p is the system pfd, which in turn is a random variable distributed as defined by 

the respective prior distribution of the system pfd (prior to the particular ‘testing campaign’).  

Let us denote that the probability density function of the distribution of the system pfd at the beginning of the i-th 

testing campaign as  
isysf . Then the u-plot value from this testing campaign is: 
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Indeed this is the cdf of observing up to mi failures in ni trials (demands) when the probability of failure in a trial is a 

random variable with a density function  
isysf .  

A.1.2. The prequential likelihood 

Let us assume that the predictive distribution  tF i



 as a probability density function (pdf): 

   tFtf ii



 '  

For predictions Tj+1, Tj+2, Tj+n, the prequential likelihood (PL) is defined as: 
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A comparison of two prediction systems, A and B, over a range of predictions of Tj+1, Tj+2, Tj+n can be made via 

their PL ratio: 
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It has been shown that if   t,jPLRn as n  prediction system B is discredited (i.e. has worse performance) 

in favour of system A. It is worth pointing out that while the u-plot indicated the type of inaccuracy – pessimistic or 

optimistic – the  t,jPLRn  just indicates which of the two predicting systems gives more accurate predictions 

without indicating the sign of the error of either of the predicting systems. 

In our case we can see the testing as a series of campaigns and use the probability of the particular observation, i.e. 

the number of successes/failures, during the campaign as  tf i



, from which to calculate the  t,jPLRn .  

Similarly to the u-plot, we will divide the overall testing into testing campaigns with n1, n2, …, etc. demands in each 

of them and the number of observed failures during these campaigns, m1, m2, …, etc. . Each of the compared models 

                                                           
3 In [8] the description is given for ‘next time to failure’, but applies for any random variable. 
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– black-box, coarse, and recalibrated – models will have produced a distribution of the system pfd, which is denoted 

as  j

sysi
f .  

In detail, for each of the campaigns, i, for model, j, we compute 
j

ipr : 
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The new values (to be precise the ratio of the respective 
j

ipr s) are counted in computing the value of the 

prequential likelihood accumulated up to campaign i.  

A.1.3. Illustrations 

How the two techniques work is illustrated here with two examples, called Case 1: optimistic prior, and Case 2: 

pessimistic prior. Details of the particular data used to compute the plots are omitted as the purpose of the plots is 

purely illustrative. 

One can appreciate how different the two cases are. The u-plot with Case 1 is above the unit slope, which is an 

indication that the predictions obtained are systematically optimistic. The u-plot in Case 2 is under the unit slope 

which indicates that the predictions are systematically pessimistic. 

The PLR plot reveals that in Case 1 we can barely prefer one prediction to another – the black-box is the best (but 

the difference is not really significant – the ratio computed on a relatively large number of campaigns remains 

modest), the coarse model is marginally better that the recalibrated. The recalibrated in this case turns out to be the 

worst. The fact that we can hardly differentiate between the models is clear from the u-plot, too – the u-plots are 

very close to each other. 

A slightly different picture is revealed by Case 2. The u-plots show that the predictions of all three models are 

pessimistic, but the degree of pessimism is different: the coarse model is the least pessimistic, while the recalibrated 

is the most pessimistic. The PLR plot reveals further details. At the beginning, up to the 20
th

 campaign the black 

box prediction is the best – it outperforms both the coarse and the recalibrated model. Starting from the 21
st
 

campaign, however, it outperforms the black-box system and there is a clear trend for the superiority to increase, i.e. 

the coarse system model best captures the system behaviour. 

 

    
 

    
 

 


