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Abstract

We measure the skew risk premium in the equity index market through the skew

swap. We argue that just as variance swaps can be used to explore the relationship

between the implied variance in option prices and realized variance, so too can skew

swaps be used to explore the relationship between the skew in implied volatility and

realized skew. Like the variance swap, the skew swap corresponds to a trading strategy,

necessary to assess risk premia in a model-free way. We find that almost half of the

implied volatility skew can be explained by the skew risk premium. We provide evidence

that skew and variance premia are manifestations of the same underlying risk factor in

the sense that strategies designed to exploit one of the risk premia but to hedge out the

other make zero excess returns.
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1 Introduction

The implied volatility skew has been a well-recognized feature of the equity index market ever

since the crash of 1987. The skew is due to the asymmetric distribution of index returns and

to a skew risk premium. This paper seeks to quantify the relative importance of these two

factors. It does so by looking at the profitability of a skew swap, a contract that pays the

difference between the implied skew and the realized skew, which can be synthesized from

standard options and forward contracts. We show that the risk premium accounts for about

half the implied skew. We also find that the skew risk premium and the variance risk premium

compensate for the same risk.

Risk premia cannot be measured directly because the conditional physical density is not

observable; all that can be observed is a particular realization of the distribution. Researchers

commonly estimate risk premia by repeating a trading strategy over a number of periods

and testing the trading profits for predictability. Coval and Shumway (2001) and Bakshi and

Kapadia (2003) look at holding returns on option positions – typically at-the-money (ATM)

– that are delta neutral, and show that the average return is significantly negative. Since

the principal risk to which delta-hedged options are exposed is volatility risk, this can be

seen as evidence for the existence of a volatility risk premium. Bollen and Whaley (2004),

and Driessen and Maenhout (2007) have documented the high negative returns earned by

the buyers of out-of-the-money (OTM) index puts. This can be interpreted as evidence of a

specific premium for crash risk. Bakshi et al. (2010) show that there are also negative returns

from holding high strike calls and digitals, and interpret this as evidence for a U-shaped pricing

kernel.

These buy-and-hold strategies face a generic problem. As options age, their risk charac-

teristics change. Their exposure to particular risk factors depends not only on the passage

of time but also on the evolution of the price level and of the volatility surface. An ATM

index straddle may start with zero market exposure and high volatility exposure, but if the

market moves far from its initial value, the position will have high market exposure and little

volatility exposure. It is hard to draw inferences from the profitability of an option strategy

to the pricing of risk factors in the economy when the strategy’s exposure to those factors is

itself stochastic. Nor is it easy to tell whether two profitable strategies are manifestations of

the same or different priced risks. In the case of the negative OTM put returns for example,

Bondarenko (2003) and Broadie et al. (2009) question the statistical significance of the trading

profits (since they are so highly skewed) and also argue that the negative buy-and-hold OTM

put returns could be explained by other risk factors including market and volatility risk.
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The obvious solution to the ageing problem is to rebalance the portfolio so that its risk

exposure remains constant. The challenge is to do so in a way that is not model-dependent.

As Anderson et al. (2000) have noted, use of a misspecified model can generate spurious risk

premia. Within a given model, implementation of a dynamic hedging strategy requires the

choice of hedging securities, and the profits from the strategy may well be sensitive to the

particular securities chosen, making the interpretations of profitability still more difficult. In

the case of variance risk, Carr and Wu (2009) solve the problem by using a variance swap

which can be synthesized from vanilla options. The key feature of the swap is that innovations

in its mark-to-market value are perfectly correlated with innovations in the implied variance

of the market - in other words, it is a pure play on variance.

In this paper we use an analogous trading strategy, which we call a skew swap, that is a

pure play on skew. It involves holding a portfolio of long OTM calls and short OTM puts.

Risk characteristics of the portfolio are maintained by subsequently trading the options. This

is done in a way that is effectively model-free. The fixed leg of the skew swap is dependent

on the implied skew at inception; if the implied volatility smile is symmetric, the value is

identically zero. The floating leg turns out to equal the covariation between the returns on

the index and changes in its implied variance. Following Neuberger (2012), we argue that it is

natural to call this covariation the realized skew. The skew swap has a simple interpretation:

the fixed leg is the implied skew and the floating leg is the realized skew. The expected

difference between the implied skew and the realized skew, the expected payoff from the skew

swap, is the skew risk premium.

The implied skew measure we develop differs from that of Bakshi et al. (2003). The reason

for departing from the standard definition is that we want to use the difference between the

implied skew and the physical skew as an estimate of the skew risk premium. With the

standard definition, the two can differ in expectation even when there is no risk premium.1

With our definition, the difference between the physical and implied quantities has a mean of

zero in the absence of risk premia.

We apply the skew swap technology to S&P 500 option data, and provide evidence that

there does indeed exist a skew risk premium in the US equity index market. We show that

almost half of the implied skew in index option prices with one month to maturity can be

explained by the risk premium, with the other half reflecting the negative correlation between

returns and volatility. Skew risk turns out to be closely related to variance risk. The excess

return on skew swaps is highly correlated to the excess return on variance swaps (in our data

1This claim is supported by an example in Appendix A.
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the correlation is nearly 0.9). The profitability of betting on the slope of implied volatility

is thus highly correlated with the strategy of betting on its level. But this high correlation

depends on continual rebalancing to ensure that the two strategies remain pure bets on skew

and variance, and do not pick up other exposures. Under the corresponding buy-and-hold

strategies the correlation between the excess returns on skew and variance drops to 0.3.

We also show that that the risk premia associated with variance and skew have a common

source. When one type of swap is hedged with the other, the expected profit is indistinguish-

able from zero. Furthermore, there is consistent evidence that the risk premium on both skew

swaps and variance swaps is time-varying, and that a common factor drives both premia. This

finding is important for asset pricing. It suggests that models of equity market returns, while

they need to take account of the clear evidence for the existence of both variance and skew

premia, do not need to allow for separate channels to generate them.

Our results are related to a growing literature uncovering spurious risk factors. In par-

ticular, Ferson and Harvey (1999) and Ferson et al. (1999) show that the failure to account

properly for time variation in market exposure may lead to spurious evidence of additional

priced risk factors in cross-section of stock returns. In examining hedge fund performance,

Bollen and Whaley (2009, Abstract) note that “The standard measure of performance is the

abnormal return defined by a hedge fund’s exposure to risk factors. If exposures are assumed

constant when, in fact, they vary through time, estimated abnormal returns may be incorrect.”

The remainder of the paper is organized as follows: Section 2 sets out the model-free

approach to constructing the skew swap and shows how to quantify the skew risk premium.

Section 3 describes the data. Section 4 presents the empirical results, and Section 5 concludes.

Section A of the Appendix discusses the use of central moments in risk premium measurement,

Section B contains proofs of propositions not included in the main text, and Section C contains

robustness checks.

2 Trading Variance and Skew

This section sets out our approach to defining and estimating the risk premia associated with

moments of returns. We show how to construct a trading strategy which is exposed to the

desired return moment alone. The risk premium is the expected profit from such a strategy.

The estimation of the variance risk premium as the expected profit from a variance swap (Carr

and Wu 2009) is a special case of our general approach.

Previous work on risk premia, whether in equity, bond, currency or other asset markets,

4



has largely been concerned with the first moment of returns. Researchers examine the pre-

dictability of excess returns in order to estimate the asset risk premium. An excess return can

be interpreted as the profit from a trading strategy. In this case the strategy is to enter into

a forward contract on the asset at time t, and hold it until expiry at time T . In a market free

from frictions and other imperfections, the expected excess return is interpreted as a premium

for risk bearing.

We extend this approach to estimate risk premia associated with other moments of returns.

To do this, one must be able to trade options on the underlying asset as well as forward

contracts as we will show below. We take a world with a single risky asset with a forward

contract traded on it with fixed maturity T . The forward price of the asset at time t is

Ft,T , the log forward price is ft,T and the log return from t to T is rt,T ≡ fT,T − ft,T . With

calls and puts available for all strikes, one can create a portfolio of options that has any

desired payoff using the results from Bakshi and Madan (2000) and Carr and Madan (2001).

In particular, one can buy a portfolio at time t that has payoff at time T of g(rt,T ) for an

arbitrary (twice-differentiable) function g. There is also a bond in the market with price Bt,T ,

where BT,T = 1.

Denoting the physical measure by P and the forward pricing measure for a maturity T by

Q, the forward price of the payoff g is

Gt,T ≡ EQ
t [g(rt,T )] . (1)

The net profit at time T from the buy-and-hold strategy is

g(rt,T )− EQ
t [g(rt,T )] , (2)

and the risk premium associated with this strategy is

EP
t [g(rt,T )]− EQ

t [g(rt,T )] . (3)

As a way of measuring the risk premium associated with the function g over the period

[t, T ], this buy-and-hold strategy has two defects: it is in general exposed to directional risk,

so the estimated risk premium is contaminated by any risk premium that is associated with

a position in the underlying asset. The second defect is that the risk characteristics of the

strategy change over time. At a future time τ the investor is holding a contract that pays

g(rt,T ) and not g(rτ,T ), meaning that the risk exposure at time τ depends on the essentially
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arbitrary choice of the point of inception of the strategy.

To formalize the notion of a strategy that is a pure bet on g-risk we normalize g(0) = 0,

which implies that GT,T = 0. Given a self-financing trading strategy, we introduce the wealth

process Wt as the profit from the strategy to date. More specifically, we define Wt as the value

of the portfolio at time T if the portfolio were liquidated at time t and the proceeds were

invested in the risk-free bond until time T . We normalize W0 = 0. All transactions take place

in the forward market, and no cash flows occur prior to time T . Define the residual process as

Yt,T ≡ Wt,T −Gt,T . (4)

If a trading strategy has a residual process that is predictable, so the stochastic components

of the increments in G and W are the same, we call a trading strategy a perfect hedge for g.

If such a trading strategy exists (and we show below that it does, and how to construct it)

then the expected change in W can be interpreted as the risk premium associated with g.

To remove the exposure to the market we introduce delta hedging. We define the delta of

g as

∆t,T ≡ EQ
t [g′(rt,T )] /Ft,T . (5)

It can be computed at time t from the prices of options, and does not depend on a specific

model.

A delta-hedged g-swap is the payoff to a dynamic trading strategy where at each time t

when the portfolio is rebalanced, the portfolio is invested in the claim with payoff of g(rt,T ), a

holding of −∆t,T forward contracts, and the rest of the portfolio is invested in risk-free bonds.

Note that with g(rt,T ) changing over time, this strategy involves trading in the options market

as well as in the forward market. Our main result is

Proposition 1. If the price of the underlying asset and options on it follow a joint diffusion

process, the continuously rebalanced delta-hedged g-swap is a perfect hedge for g.

Proof. First consider a discretely rebalanced delta-hedged g-swap. If it is rebalanced succes-

sively at times t and t+ δt, the change of the value of the position is

δWt,T ≡ Wt+δt,T−Wt,T = EQ
t+δt [g(rt,T )]−EQ

t [g(rt,T )]−∆t,T (Ft+δt,T−Ft,T ) = δGt,T +δYt,T , (6)
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where

δYt,T = EQ
t+δt

[
g(rt+δt,T + δft,T )− g(rt+δt,T )−

(
eδft,T − 1

)
EQ
t [g′(rt,T )]

]
, and

δft,T = ft+δt,T − ft,T = rt,T − rt+δt,T .
(7)

Summing over the wealth gains (6), and recalling that W0 = GT,T = 0, we get that2 WT =∑
δYt,T − G0,T . This justifies the description of the strategy as a swap, since it synthesizes

a contract where the investor receives the floating leg
∑
δYt,T and pays the fixed leg G0,T .

Importantly, the fixed leg is independent of the rebalancing frequency.

As shown in Appendix B.1, if prices follow a diffusion and if the hedge is rebalanced

continuously, the residual process Yt,T satisfies the stochastic differential equation

dYt,T = dG′t,Tdft,T +
1

2

(
G′′t,T −G′t,T

)
(dft,T )2 , (8)

where G′t,T ≡ EQ
t [g′(rt,T )] and G′′t,T ≡ EQ

t [g′′(rt,T )]. From (8) it can be seen that Yt,T is

predictable, as there are no Brownian increments on the right-hand side, and the delta-hedged

g-swap is therefore a perfect hedge for g.

With the continuously rebalanced g-swap being a perfect hedge for g, it is reasonable to

regard the expected profit under the P measure from a g-swap as the risk premium associated

with g. In practice it is only possible to rebalance discretely, and the discretely rebalanced

swap only approximates a perfect hedge. In our empirical work we use the average profit from

a g-swap that is rebalanced daily as an estimate of the risk premium associated with g.

2.1 A Variance Swap

To create a variance swap, consider the g-function gV (r) = −2r. The fixed leg of the gV -swap

is, from the Bakshi and Madan (2000) formula

vLt,T ≡ GV
t,T = −2EQ

t

[
ln
FT,T
Ft,T

]
=

2

Bt,T

{∫ Ft,T

0

Pt,T (K)

K2
dK +

∫ ∞
Ft,T

Ct,T (K)

K2
dK

}
, (9)

where Pt,T (K) and Ct,T (K) are prices of European put and call options at time t on the spot

underlying with strike K and maturity T . GV is increasing in the price of options of all strikes.

It can readily be shown that in a Black-Scholes world with constant volatility σ, the

2The portfolio adjustments take place at discrete times, not necessarily equidistant, between time t and
T . To avoid excessive subscripting we write

∑
to denote the sum taken over all adjustment times.
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fixed leg GV
t,T = σ2(T − t). So vLt,T is the implied Black-Scholes variance at time t of a Log

Contract that matures at time T and pays ln(FT,T ). It is the same as the model-free implied

variance (MFIV) from Britten-Jones and Neuberger (2002) and corresponds to the square of

the popular VIX implied variance contract scaled with time. It is therefore reasonable to

follow established usage and regard gV as a measure of variance.

Proposition 1 shows that the continuously rebalanced delta-hedged gV -swap is a perfect

hedge for variance (at least in a diffusion world). From (8) the floating leg of the variance

swap can be seen to be

dY V
t,T = (dft,T )2 . (10)

This is identical to the definition of quadratic variation used in Andersen et al. (2003).

Where the gV swap differs slightly from the literature is in the discretely rebalanced case (or

when there are jumps), where (7) shows that

δY V
t,T = 2

(
eδft,T − 1− δft,T

)
. (11)

Andersen et al. (2003) however measure the realized volatility in discrete time as δf 2
t,T , and

it is this definition that is used in practice to compute the floating leg of a variance swap.

The formulation in (11) has previously been proposed by Bondarenko (2010). The difference

between the two floating legs is locally cubic in the log return, which is why it vanishes in the

diffusion world. The gV -swap where the fixed leg is vL and the floating leg is given by (11)

can be replicated perfectly at zero cost for any data-generating process. This is not true for

the standard variance swap.

2.2 A Skew Swap

Now consider gS(r) = 6r (1 + er). We show in Proposition 2 below that in this case the

gS-swap captures skewness. To see this note first that

st,T ≡ GS
t,T = EQ

t

[
6

(
1 +

FT,T
Ft,T

)
ln
FT,T
Ft,T

]
. (12)

Using the Bakshi and Madan (2000) formula again, the fixed leg can be replicated from

puts and calls
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st,T =
6

Bt,T

{∫ ∞
Ft,T

K − Ft,T
K2Ft,T

Ct,T (K)dK −
∫ Ft,T

0

Ft,T −K
K2Ft,T

Pt,T (K)dK

}
. (13)

The fixed leg s is the value of a position that is long OTM calls and short OTM puts. In a

Black-Scholes world, its value is zero. The level of s therefore depends on the skew of implied

volatility, and the gS-swap in this case can be regarded as a hedge for skewness. From (12), s

can be written as the difference between the implied Black-Scholes variances of two contracts:

the Log Contract from Section 2.1, and the Entropy Contract that has payoff FT,T ln(FT,T ).

st,T = 3(vEt,T − vLt,T ), where

vEt,T ≡ 2EQ
t

[
FT,T
Ft,T

ln
FT,T
Ft,T

]
.

(14)

In a diffusion world, the floating leg of the skew swap is given by (8), and equals

dY S
t,T = 3dvEt,Tdft,T . (15)

With discrete rebalancing or with jumps, the floating leg is given by (7) as

δY S
t,T = EQ

t+δt

[
gS(rt+δt,T + δft,T )− gS(rt+δt,T )− (eδft,T − 1)GS′

t,T

]
= 3δvEt,T (eδft,T − 1) + h(δft,T ), where

h(x) = 6(2− 2ex + x+ xex) = x3 +O(x4).

(16)

As we show below, s locally approximates the third moment of returns. To make it closer

to the conventional coefficient of skewness we scale the gS-swap entered into at time t by

dividing both the fixed and the floating legs by
(
vLt,T
)3/2

which gives a fixed leg of

skewt,T ≡ 3
vEt,T − vLt,T
(vLt,T )3/2

(17)

We summarize the properties of the skew swap in the following

Proposition 2. The scaled difference skewt,T between the entropy implied variance and the

log implied variance has the following properties:

1. if implied volatility across strikes is symmetric about the forward price, skewt,T = 0;

2. holding vLt,T constant, skewt,T is increasing in the implied volatility of high strike (strike

9



above the forward price) options and decreasing in the implied volatility of low strike

options;

3. to first order, skewt,T is equal to the skew of the distribution of log returns on the asset

(under the pricing measure);

4. with continuous trading in a diffusion world

st,T = EQ
t

[∫
s∈[t,T ]

3dvEs,Tdfs,T

]
, (18)

and measures the covariation between index returns and changes in index variance (the

leverage effect).

Proof. In Appendix B.2.

The skew swap, in a diffusion world, hedges changes in the implied skew perfectly. In our

empirical work we use the average profit from a daily rebalanced scaled skew swap, expressed

as a percentage of the initial implied skew, as an estimate of the skew risk premium.

2.3 Alternative Formulations

We now explain why we have chosen our measures of variance and skew over perhaps more

obvious ones, and why we use raw rather than central moments.

The natural choice for g-functions for second and third moments might appear to be

g(r) = r2 and g(r) = r3, respectively. As we will show, while it is indeed possible to design

feasible variance and skew swaps using these functions, the mathematics are more complicated,

and the corresponding definitions of implied variance and implied skew lack some of the

appealing properties of our preferred definitions. In our empirical work we show that changing

the definitions would have no significant impact on the measurement of variance and skew

risk premia.

The fixed leg of a variance swap under this alternative formulation (a quadratic swap) is

vQt,T ≡ EQ
t

[(
ln
FT,T
Ft,T

)2
]

= 2

∫ Ft,T

0

(
1 + ln

Ft,T

K

Bt,TK2

)
Pt,T (K)dK + 2

∫ ∞
Ft,T

(
1− ln K

Ft,T

Bt,TK2

)
Ct,T (K)dK.

(19)
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Similarly, the fixed leg of a cubic swap is given by

sCt,T ≡ EQ
t

[(
ln
FT,T
Ft,T

)3
]

= 3

∫ ∞
Ft,T

ln K
Ft,T

(
2− ln K

Ft,T

)
Bt,TK2

Ct,T (K)dK − 3

∫ Ft,T

0

ln
Ft,T

K

(
2 + ln

Ft,T

K

)
Bt,TK2

Pt,T (K)dK.

(20)

The expression for vQt,T is not only more complex than its counterpart equation (9), but

also vQ is actually declining in C(K) for very high strikes. Similarly, in a cubic swap the

replicating portfolio for the fixed leg is generally short OTM puts and long OTM calls, like

the skew swap, but is actually short OTM calls for very high strikes.

In the diffusion case the floating legs are given by

dY Q
t,T = −dvLt,Tdft,T +

(
1 + vLt,T/2

)
(dft,T )2 , and (21)

dY C
t,T = 3dvQt,Tdft,T −

3

2

(
vQt,T + vLt,T

)
(dft,T )2. (22)

These expressions are much more complicated than their counterparts, equations (10) and

(15).

As we demonstrate below, the payoffs to the quadratic swap and to the variance swap are

highly correlated, and similarly for the cubic and skew swaps. But in view of the substantially

greater simplicity of the variance and skew swaps we prefer them to their quadratic and cubic

counterparts.

The other aspect of our definitions that is worthy of comment is that we do not demean

or center our statistics. The reason is that central moments cannot be perfectly hedged.

Proposition 1 does not help us since it only applies to expectations of functions of the return

on the asset; central moments cannot be expressed in this way. The implied central moment

can of course be computed readily. The problem is with the realized leg. It is not possible to

design a trading strategy whose payoff is (rt,T − EP
t [rt,T ])n unless EP

t [rt,T ] is known and this

is generally not the case.

3 Data and Methodology

For the empirical analysis of the skew risk premium, we use European options written on

the S&P 500 spot index traded on the CBOE. The options mature every month. The data
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are from OptionMetrics, and cover the period January 1996 to January 2012. The data set

includes closing bid and ask quotes for each option contract along with the corresponding

strike prices, Black-Scholes implied volatilities, the zero-yield curve, and closing spot prices of

the underlying. From the data we filter out all entries with non-standard settlements.

Suppose that at time t call and put options that mature at the end of month T are traded

at N + 1 different strike prices Ki which are ordered from K0 to KN . Given the set of option

prices Ct,T (Ki) and Pt,T (Ki) for different strike prices taken as the average of the bid and ask

quotes we compute the implied variances of the log and entropy contracts, vLt,T and vEt,T , and

the implied third moment st,T in the following way. Define the function

∆I(Ki) ≡

{
Ki+1−Ki−1

2
, for 0 ≤ i ≤ N (with K−1 ≡ 2K0 −K1, KN+1 ≡ 2KN −KN−1)

0, otherwise.

Then according to formulae (9) and (14) we compute3

vLt,T = 2
∑

Ki≤Ft,T

Pt,T (Ki)

Bt,TK2
i

∆I(Ki) + 2
∑

Ki>Ft,T

Ct,T (Ki)

Bt,TK2
i

∆I(Ki) (23)

vEt,T = 2
∑

Ki≤Ft,T

Pt,T (Ki)

Bt,TKiFt,T
∆I(Ki) + 2

∑
Ki>Ft,T

Ct,T (Ki)

Bt,TKiFt,T
∆I(Ki). (24)

The implied third moment is st,T = 3(vEt,T − vLt,T ) and the implied skew skewt,T is computed

using (17). We compute the fixed legs of the quadratic and cubic swaps in a similar fashion.

The floating legs for the variance and skew swaps (realized second and third moments)

assume daily rebalancing4 and are computed using (11) and (16)

rvt,T =
T∑
i=t

[2 (eri,i+1 − 1− ri,i+1)] (25)

rst,T =
T∑
i=t

[
δvEi,T (eri,i+1 − 1) + 6(2− 2eri,i+1 + ri,i+1 + ri,i+1e

ri,i+1)
]
. (26)

We define the realized skew as

rskewt,T ≡ rst,T/
(
vLt,T
)3/2

. (27)

3The way we compute implied variances is standard (e.g., see Bollerslev et al. (2009). Some papers
however extrapolate volatilities outside the minimum and maximum strike prices (e.g. Carr and Wu (2009)).
We perform extrapolation-interpolation procedure for robusness check and present the results in Appendix C.

4We consider strategies with less frequent adjustments to decrease transaction costs in Appendix C.
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Figure 1: Excess returns from trading skew and variance swaps

The figure shows the time series of the realized excess returns on monthly skew and variance swaps, xst and
xvt. The data ranges from January 1996 to January 2012.
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Finally, we define the excess return (profit per $1 investment in the fixed leg) as

xst,T ≡ rskewt/skewt − 1 (28)

xvt,T ≡ rvt,T/v
L
t,T − 1. (29)

Our empirical analysis concentrates on trading strategies that run for a month, from the

first trading day after one option expires to the next month’s expiration date. To simplify

notation we use a single subscript t to relate to the trading month. So skewt is the implied

skew at the beginning of month t and rskewt is the realized skew over month t.

3.1 Descriptive Statistics

Figure 1 plots the time series for variance and skew swap excess returns. We can see that

there is substantial common variation between the two. Panel A of Table 1 contains summary

statistics of implied variance, realized variance, implied and realized skew coefficients of the

S&P 500 index options and variance and skew premia. The average realized variance is

13



Table 1: Descriptive statistics

This table presents descriptive statistics for the variables used in the analysis. vL denotes monthly implied
variance of the Log contract on the S&P 500 index options, rv is realized variance and xv denotes the excess
return from the variance swap defined as xvt ≡ (rvt/v

L
t −1), skew is the implied skew defined as the fixed leg of

the skew contract scaled by (vL)3/2, rskew is the realized skew defined as the floating leg of the skew contracts
scaled by (vL)3/2 and xs is the excess return from the skew swap defined as xst ≡ (rskewt/skewt−1). In Panel
A, columns under Mean, Std. Dev., Min, Median and Max report the sample average, standard deviation,
minimum value, median and maximum value, respectively. Panel B presents the correlations among the
variables. Bold values are significant at the 1% level. The data are for non-overlapping monthly periods from
January 1996 to January 2012.

Panel A: Descriptive Statistics
Variable Mean Std. Dev Q1 Median Q3

vL × 100 0.475 0.508 0.223 0.358 0.523

rv × 100 0.382 0.612 0.113 0.219 0.415

xv -22.25% 66.06% -56.29% -36.83% -18.53%

skew -1.808 0.722 -2.225 -1.748 -1.243

rskew -1.001 2.241 -0.853 -0.532 -0.323

xs -42.09% 117.55% -83.30% -68.20% -44.79%

Panel B: Correlations
rv xv skew rskew xs

vL 0.731 0.037 0.283 0.025 0.039

rv 1.000 0.574 0.235 -0.345 0.497

xv 1.000 0.048 -0.843 0.897

skew 1.000 0.128 0.054

rskew 1.000 -0.922

substantially lower than the implied variance. Also, average realized skew is substantially

smaller (in absolute terms) than average implied skew, pointing to the existence of a skew

risk premium. Implied skew is negative throughout the sample period and realized skew is on

average negative. So the writer of a skew swap who receives fixed and pays floating generally

receives and pays negative amounts, and on average loses money. Almost half (42.09%) of the

implied skew in index option prices can be explained by the risk premium, with the other half

reflecting the negative correlation between returns and volatility. The variance risk premium

is smaller, accounting for less than a quarter (22.25%) of the implied variance. The sample

averages of the excess return of skew and variance swap strategies (estimates of skew and

variance risk premia) are negative.

The negative variance risk premium is consistent with the literature (see, for example,

Bakshi and Kapadia 2003, Carr and Wu 2009, Egloff et al. 2010). Writing variance swaps,

receiving fixed and paying floating, is on average profitable. The negative return on skew

swaps is consistent with Bakshi et al. (2003), who show theoretically that, within a power-
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Table 2: Correlations: variance and skew swaps vs. quadratic and cubic swaps

This table presents correlations between the implied moments and premia computed using different method-
ologies. Panel A contains correlations between the following variables: vL and vE (monthly implied variances
of the Log and Entropy contracts, respectively), skew (the implied skew defined as the fixed leg of the skew
swap scaled by (vL)3/2), vQ (fixed leg of the quadratic swap), sC (fixed leg of the cubic swap), vcent and
skewcent (implied second and third central moments defined as in Bakshi et al. (2003)). Panel B presents
pairwise correlations between excess returns from variance and skew swaps and excess returns from quadratic
and cubic swaps defined as in equation (5) of Bakshi et al. (2003) respectively. Bold values are statistically
significant at the 1% level. The data are for non-overlapping monthly periods from January 1996 to January
2012.

Panel A: Correlations of Implied Moments
vE vQ vcent skew skewC skewcent

vL 0.999 0.999 0.999 0.283 0.240 0.272

vE 1.000 0.998 0.998 0.299 0.255 0.287

vQ 1.000 0.999 0.264 0.221 0.253

vcent 1.000 0.265 0.222 0.254

skew 1.000 0.984 0.985

skewcent 1.000 0.999

Panel B: Correlations of Risk Premia
xv xvQ xs xsC

xv 1.000 0.999 0.897 0.874

xvQ 1.000 0.909 0.808

xs 1.000 0.991

utility economy where returns are leptokurtic, the implied skew is greater in magnitude than

the physical skew.

Panel B of Table 1 reports pair-wise correlations between variables. Implied variance is

negatively correlated with skew, so when implied variance goes up, the absolute size of the skew

also increases. Realized variance is positively correlated with implied variance, as is realized

skew with implied skew. Realized variance and realized skew are negatively correlated with

each other. Variance and skew swaps excess returns are highly positively correlated.

In the rest of the paper, we report excess returns computed from variance and skew swaps.

Table 2 shows that the use of alternative measures of variance and skew based on quadratic

and skew swaps, described in Section 2, would make little practical difference. Panel A records

that the different measures of implied variance have pairwise correlations in excess of 0.998,

while the correlations for implied skew are in excess of 0.98. Panel B shows similar correlations

between the corresponding excess returns estimates.
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4 Empirical Results

We use the technology developed in this paper to deepen our understanding of the relation

between implied and realized skew in the equity index market. In the absence of risk premia,

one would expect variations in implied skew to predict variations in realized skew, and we

examine whether this is the case. We go on to see whether the excess returns on skew swaps

can be explained by a simple one-factor model. Bakshi et al. (2003) have shown theoretically

that the size of the skew risk premium should also depend on the higher moments of the

conditional distribution of log returns, and in particular on the excess kurtosis. So we use

predictive models of the skew risk premium using proxies for the moments as well as for

macro-economic factors.

Given the high correlation we have observed between skew and variance swap excess re-

turns, we analyze variance swap returns in parallel with the skew swap returns, and test

whether they are driven by the same combination of priced risk factors.

4.1 Predictive Power of Implied Skew

Implied skew, with a mean of -1.81 and a standard deviation of 0.72, varies significantly over

time. We run a standard expectations hypothesis regression to test whether the variations in

implied skew reflect changes in the expected realized skew,

rskewt = α0 + α1skewt + ut. (30)

To provide a comparison, we also estimate the corresponding variance regression

rvt = α0 + α1v
L
t + ut. (31)

These are predictive regressions; the implied quantities are known at the beginning of month

t, while the realized quantities are only known at the end of the month.

Table 3 shows that implied skew does forecast realized skew and implied variance does

forecast realized variance. The slopes are both highly significant, and the two intercepts are

insignificantly different from zero.

Given the existence of statistically significant skew and variance risk premia, it is not

surprising that we strongly reject the expectations hypothesis that α0 = 0 and α1 = 1 for

both regressions. We also reject the simple hypothesis that α1 = 1 in both regressions,

suggesting that there is a significant variation in the risk premia.
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Table 3: Realized skew vs. implied skew

This table presents the estimation results of regressions rskewt = α0 +α1skewt +ut, and rvt = α0 +α1v
L
t +wt

based on one month S&P 500 index options. Standard t-statistics are given in parentheses. “F (α0 = 0, α1 =
1)” column provides values of the F-statistic and the corresponding p-values for a Wald test with H0 : α0 = 0
and α1 = 1. The “F (α1 = 1)” column provides values of the F-statistic and the corresponding p-values for a
Wald test with H0 : α1 = 1. Standard errors use the Newey and West (1987) correction. The sample period
is from January 1996 to January 2012.

Const skew vL R̄2 F (α0 = 0, α1 = 1) F (α1 = 1)

rskew
-0.282
(-0.75)

0.398
(2.59)

1.11% 12.07 (0.000) 6.46 (0.012)

rv
-0.001
(-1.52)

0.880
(10.1)

53.28% 5.27 (0.006) 3.99 (0.047)

4.2 The Relation between Skew and Variance Risk

To better understand the source of the skew and variance risk premia we next ask whether

they can be explained by the Capital Asset Pricing Model. To answer this we estimate

xst = α0 + α1xmt + ut, (32)

xvt = β0 + β1xmt + wt, (33)

where xmt denotes the excess market return over month t. The estimation results are provided

in Table 4. In both models the market beta is negative and highly significant, suggesting that

buyers of variance and skew swaps are exposed to the market. However, the intercepts in both

equations remain statistically significant, and they do not differ greatly from the unconditional

average excess returns from both swap strategies. Our findings, so far as the variance risk

premium is concerned, are consistent with Carr and Wu (2009, Table 4). Thus, we conclude

that the simple market model cannot fully explain variance and skew risk premia.

We now seek to establish whether the skew risk premium reflects an independent risk

factor from the variance risk premium, or whether the profitability of buying skew swaps can

be explained by exposure to both equity and variance risk. To do this, we regress the skew

swap excess returns on the variance swap and market excess returns

xst = α0 + α1xvt + α2xmt + ut. (34)

We also estimate a similar regression for the variance risk premium to verify if it can be

17



Table 4: Skew and variance excess returns vs. the market return

This table presents OLS estimation results of the skew and variance risk premia regressions: xst = α0 +
α1xmt + ut and xvt = β0 + β1xmt + wt. Variables xs and xv denote excess returns from skew and variance
swaps, xm denotes the market excess return. Newey and West (1987) t-statistics are given in parentheses.
The data are monthly, from January 1996 to January 2012.

Const xm R̄2

xv
-0.193
(-4.66)

-8.531
(-4.69)

34.68%

xs
-0.382
(-4.46)

-11.217
(-3.43)

18.69%

explained by the skew risk premium5

xvt = β0 + β1xst + β2xmt + wt. (35)

The high correlation between skew and variance swap returns makes it hard to find ev-

idence of separate risk premia through contemporaneous regressions. To improve efficiency

we estimate the two equations as a system using the Seemingly Unrelated Regression (SUR)

approach.6 The estimation results are in Panel A of Table 5. They highlight the close rela-

tionship between variance and skew swaps. Table 1 shows that the buyer of a skew swap on

average earns a risk premium equal to 42.09% of the implied skew. But in doing so, the buyer

takes on significant variance risk. Once that is hedged by buying variance swaps, and market

risk is also hedged, most of the premium is lost, and the buyer of the skew swap earns a

return of 0.216% that is both economically small and statistically insignificant. Similarly the

writer of a variance swap is exposed to skew risk (the connection of the variance risk premium

and the well-known leverage effect, has been highlighted in the literature (Carr and Wu 2009,

Bollerslev et al. 2009, Driessen and Maenhout 2007, Jones 2003)), and once that is hedged

away the profit from writing variance swaps also vanishes.

The other striking feature about Table 5 is the very high R2 for all the regressions. Around

80% (84%) of the risk of a skew (variance) swap can be hedged using variance (skew) swaps,

and index forwards.

We do not observe the expected profit (risk premia) from the skew and variance swaps

but only the actual realization. This creates an errors-in-variables problem. Moreover, the

5Chabi-Yo (2009) finds that Fama-French factors also explain variation in index options returns. We have
estimated the above specification but including Fama-French and momentum factors and the results remain
unchanged. We report them in Appendix C.

6The results of OLS estimations of each equation separately are qualitatively similar.
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Table 5: Skew vs. variance risk premia

This table presents results for the skew and variance risk premia regressions: xst = α0 + α1xvt + α2xmt + ut
and xvt = β0 +β1xst +β2xmt +wt. Variables xs and xv denote excess returns from skew and variance swaps,
xm denotes the market excess return. Panel A presents Seemingly Unrelated Regression estimation results.
Panel B shows results using three-stage least squares, where we use the following predetermined instrumental
variables: tedt, the TED spread defined as the difference between 3 month LIBOR and the 3 month U.S.
T-bill rate at the beginning of month t; kst, the implied normalized excess kurtosis as defined in equation
(36); and st, the implied third moment. Newey and West (1987) t-statistics are given in parentheses. The
data are monthly, from January 1996 to January 2012.

Panel A: Seemingly Unrelated Regressions

Dep.Var. Const xv xs xm R̄2

xv -0.002 (-0.11) 0.500 (38.4) -2.927 (-6.88) 84.41%

xs -0.002 (-0.06) 1.969 (38.4) 5.584 (6.16) 80.59%

Panel B: Three-Stage LS Regressions

First Stage Regressions
Const kst tedt st × 100 R̄2 F

xv -0.366 (-2.47) 0.144 (0.70) 0.500 (1.99) 1.197 (1.70) 12.62% 10.10

xs -0.474 (-1.89) 0.712 (1.80) 0.770 (2.13) 1.659 (1.58) 10.71% 8.56

Third Stage Regressions
Const xv xs xm R̄2

xv 0.003 (0.17) 0.514 (25.0) -2.768 (-5.84) 83.94%

xs -0.007 (-0.16) 1.946 (25.1) 5.386 (5.16) 80.80%

estimators based on the SUR approach might suffer from simultaneity bias. To deal with

this, we use instrumental variables and estimate the system of equations by three-stage least

squares.

As candidates for instrumental variables we use predetermined variables which are theo-

retically motivated and can predict excess returns of the two swap strategies. Bakshi et al.

(2003) and Bakshi and Madan (2006) show that skew and variance risk premia can be ex-

plained by higher moments of the distribution of log returns. So we include as candidates

implied variance, implied skew and implied kurtosis, realized variance and skew, and variance

of variance (defined as monthly variance of daily levels of VIX index). Theorem 2 of Bakshi

et al. (2003) has an explicit expression for the skew risk premium in terms of the kurtosis of

returns, so we include as a candidate instrumental variable

kst =
(kurtcentt − 3)

√
vcentt

skewcentt

, (36)
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where kurtcentt is the implied excess kurtosis defined in Equation (6) of Bakshi et al. (2003).

We use implied moments rather than physical moments, because the conditional physical

moments are not directly observable, and we divide by skew since the dependent variable is

the swap return rather than the difference between implied and realized skew.

Other candidates we consider as instrumental variables include lagged macroeconomic

variables (the levels and changes in price-earnings, price-dividend and consumption-wealth

ratios, TED, term and default spreads, and the excess market return), and market variables

(put-call trading volume ratio, and option open interest).

There are only three variables which have power to predict excess returns (are significant

at the 10% level in the first stage regressions): tedt, the spread between 3 month LIBOR and

the 3 month U.S. T-bill rate at the beginning of month t; kst, defined in equation (36); and

st, the beginning of the month implied third moment. We drop the other variables to avoid

multicollinearity issues and the loss of efficiency of our estimators.

Estimation results are given in Panel B of Table 5. In the first stage, we regress the risk

premia on the chosen instruments. The F-statistics from the first-stage regressions are signifi-

cant at the 1% level, firmly rejecting the hypothesis that our chosen instrumental variables are

weak. The third-stage estimation results are qualitatively the same as in the SUR estimation

confirming our earlier conclusions.

In Appendix C we demonstrate that the empirical results are robust to the choice of time

period, the method of computing the implied moments, the omission of illiquid options and

the presence of transaction costs.

4.3 Common Time Variation in Two Premia Series

In the previous section we have shown that unconditionally one cannot make significant profits

by buying a skew swap and simultaneously hedging against variance and market risk. We can

go further and test whether the same result holds conditionally. Given that there is significant

time variation in premia, we can ask whether the time variation is the same for the two types

of risk.

Following Cochrane and Piazzesi (2005) we test the specification

xst = λ0

(
γ0 + γ1z

1
t−1 + ...+ γnz

n
t−1

)
+ ut, (37)

xvt = λ1

(
γ0 + γ1z

1
t−1 + ...+ γnz

n
t−1

)
+ wt, (38)

for predetermined predictors zit, i = 1, ..., n. Here, we use the same predictive variables as in
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Table 6: Skew and Variance Risk Premia

This table presents the estimation results of the following two predictive regressions (columns xs-unrestr and
xv-unrestr)

xst = α0 + α1kst + α2st + α3tedt + ut,
xvt = β0 + β1kst + β2st + β3tedt + wt.

xs and xv denote excess returns from skew and variance swap strategies, ks is the variable defined in equation
(36), s denotes the implied third moment and ted is the TED spread (the difference between 3 month LIBOR
and the 3 month U.S. T-bill rate) at the beginning of month t. Columns xs-restr and xv-restr present the
corresponding coefficients from the following system of restricted regressions

xst = λ0 (γ0 + γ1kst + γ2st + γ3tedt) + ut,
xvt = λ1 (γ0 + γ1kst + γ2st + γ3tedt) + wt,

where the coefficients γ0, ..., γ3 are estimated from the model (xst + xvt)/2 = γ0 + γ1kst + γ2st + γ3tedt + εt.
t-stat column presents the values of t-statistics for testing the individual coefficients in the unrestricted model
being equal to the value of the corresponding coefficients in the restricted model. F -stat raw reports the values
of the Wald test statistics that the above restrictions are not binding.

xs-unrestr xs-restr t-stat xv-unrestr xv-restr t-stat

Const -0.474 (-1.89) -0.544 0.28 -0.366 (-2.47) -0.296 -0.47

kst 0.712 (1.79) 0.534 0.45 0.144 (0.69) 0.321 -0.86

st × 100 1.659 (1.59) 1.783 -0.12 1.197 (1.70) 1.073 0.17

tedt 0.770 (2.14) 0.793 -0.06 0.500 (1.99) 0.477 0.18

R2 12.13% 12.07% 14.01% 13.83%

F -stat 0.03 0.10

Table 5. As noted by Cochrane and Piazzesi (2005), the coefficients λi and γi are not separately

identified by (37) and (38), and we impose the additional constraint that (λ0 + λ1)/2 = 1.

We estimate the model in two steps. First, we estimate the γ’s by running a regression of

the average of the two risk premia on all the z’s,

(xst + xvt)/2 = γ0 + γ1z
1
t−1 + ...+ γnz

n
t−1 + εt. (39)

Then we estimate the λ’s by running the two regressions

xst = λ0zt−1 + ut (40)

xvt = λ1zt−1 + wt, (41)

where zt = γ̂0 + γ̂1z
1
t + ... + γ̂nz

n
t . The single-factor model is a restricted model and we can

test for these restrictions using a Wald test.

Consistent with the results in Table 3, Table 6 confirms that there is significant predictabil-

ity in both risk premia. Both risk premia decline in absolute value after the stock market
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Table 7: Correlations: dynamic vs. static strategies

This table presents pair-wise correlations among excess returns from dynamically hedged variance (xv) and
skew swaps (xs) and excess returns from delta-hedged buy-an-hold variance (xvstat) and skew (xsstat) swaps.
Bold values are statistically significant at the 1% level. The data are for non-overlapping monthly periods
from January 1996 to January 2012.

xv xvstat xs xsstat

xv 1.000 0.643 0.897 0.003

xvstat 1.000 0.487 0.311

xs 1.000 0.032

declines, when the implied distribution is less negatively skewed, and when the TED spread

is high. The Wald test results show that one cannot reject the null that both risk premia

are driven by a single factor. Moreover, none of the individual coefficients in the unrestricted

model is statistically different from its counterpart in the restricted model. So, both the con-

ditional and unconditional evidence is consistent with the hypothesis that skew and variance

risk premia are driven by a common factor.

4.4 Static Strategies

We have argued for the importance of rebalancing to ensure that the risk characteristics of the

strategy remain constant over time. In this section we compare the performance of the daily

rebalanced skew swap with its static counterpart. At the beginning of the month, the writer

of the skew swap buys OTM calls and writes OTM puts, and goes short forward contracts

so as to have a delta-neutral position. The position is a pure bet on the slope of the implied

volatility surface. Suppose now that the index rises substantially. With no rebalancing, the

OTM puts would become deep out-of-the-money, and the portfolio would be dominated by

the long call position, so the position would be long volatility. The delta would also become

positive. To maintain a pure exposure to skew, the swap writer sells options at all strikes and

also sells forward contracts.

Under the static strategy the portfolio is not rebalanced, and the skew swap picks up

exposure to implied volatility (positive or negative exposure depending on whether the index

is above or below its initial level) and also exposure to the underlying (with the exposure

always being positive and increasing as the price moves further away from its initial level).

Similarly, the static variance swap picks up delta exposure, with the direction of the exposure

depending on whether the price is above or below the initial level. So both swaps pick up risks
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Table 8: Skew vs. variance risk premia: static strategies

This table presents estimation results of the following skew and variance risk premia regressions: xsstatt =
α0 +α1xv

stat
t +α2xmt +ut and xvstatt = β0 +β1xs

stat
t +β2xmt +wt. Variables xsstat and xvstat denote excess

returns from static buy-and-hold skew and variance swap strategies, xm denotes the market excess return.
Panel A presents Seemingly Unrelated Regression estimation results, Panel B contains estimation results using
three-stage least squares. For the latter method we use the following predetermined instrumental variables:
tedt, the TED spread defined as the difference between 3 month LIBOR and the 3 month U.S. T-bill rate at
the beginning of month t; kst, the implied normalized excess kurtosis as defined in equation (36), and st, the
beginning of the month third moment. T-statistics are given in parentheses. Standard errors use the Newey
and West (1987) correction. The data are monthly, from January 1996 to January 2012.

Panel A: Seemingly Unrelated Regressions

Dep.Var. Const xvstat xsstat xm R̄2

xvstat 0.139 (2.47) 0.746 (17.3) -14.19 (-13.6) 38.86%

xsstat -0.331 (-5.65) 1.023 (17.3) 16.59 (13.6) 38.36%

Panel B: Three-Stage LS Regressions

First Stage Regressions
Const kst tedt st × 100 R̄2 F

xvstat -0.591 (-3.35) 0.105 (0.36) 0.479 (1.65) 1.806 (2.72) 7.29% 5.96

xsstat -0.749 (-3.86) 0.469 (0.96) 0.384 (1.37) 0.874 (0.90) 3.26% 3.12

Third Stage Regressions
Const xvstat xsstat xm R̄2

xvstat -0.010 (0.17) 0.560 (13.4) -12.56 (-12.2) 45.84%

xsstat 0.017 (0.16) 1.784 (12.6) 22.41 (11.1) -26.76%

other than skew and variance, and this masks the strong relationship we have seen between

variance and skew risk. The correlation between excess returns on the variance and skew swaps

drops from 0.897 (Table 1) when rebalanced daily to 0.311 (Table 7) when not rebalanced at

all.7

Table 8 is similar to Table 5 except that it uses excess returns from static rather than

dynamic strategies. It shows that if the excess returns of the skew and variance swaps are

regressed on each other and the market, the R2’s drop from over 80% with daily rebalancing

to under 40%. More importantly, the intercepts now become both highly significant, and

large in absolute terms. The estimated skew risk premium, after hedging variance and market

risk, is -33%, while the hedged variance risk premium is +14%. The static results, taken in

7We define the realized leg of the static buy-an-hold variance and skew swaps according to formulae (11)
and (16), but using monthly forward return and monthly change in the entropy variance rather than daily
rebalancing.
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isolation, could be interpreted as evidence that the skew and variance risk premia are rewards

for taking distinct risks. But the fact that the intercepts from the daily rebalanced strategies

are both small and insignificant shows that these intercepts are driven by the random risk

exposures generated by not rebalancing rather than by skew and variance.

Panel B of Table 8 supports this conclusion. When we use instrumental variables with

the same set of instruments as before, the intercepts in both equations become insignificant.

This confirms that the significant intercepts in the SUR model were attributable to an errors-

in-variables problem. Even though the instrumental variable method deals well with the

endogeneity problem, there is a substantial decline in the first-stage F-statistics, showing that

the instruments are weaker in predicting static rather than dynamic excess returns, and this

leads to higher standard errors.

5 Conclusions

We have developed a trading strategy for investigating the skew risk premium in the equity

index market. The strategy involves buying low-strike puts and writing high-strike calls, and

subsequently trading options and forwards on the underlying. The strategy has a number

of advantages over a simple buy-and-hold strategy. It has a risk profile that is stable over

time. It has a simple interpretation that is independent of any assumptions about asset price

dynamics; it replicates a skew swap which pays the difference between the implied skew in

option prices and the realized skew as determined by the covariance between returns and

variance shocks.

We apply the technology to options on the US S&P 500 index, which exhibit a pronounced

and consistent skew. We show that the skew is only partly accounted for by the negative cor-

relation between returns and volatility (the leverage effect). We find that there is a substantial

skew premium. The finding is robust to the presence of transactions costs.

The absolute size of the skew is highly correlated with the level of volatility and the profit

from buying skew swaps is highly correlated with the profit from writing variance swaps.

When implied variance rises unexpectedly, the writer of the variance swap loses money (on a

mark-to-market basis); but the rise in implied variance tends to be associated with an increase

in the covariation between variance and returns, thereby causing the buyer of the skew swap

to lose money. This suggests that variance swaps and skew swaps create similar kinds of risk

exposure. A strategy of buying skew swaps and hedging out variance risk by buying variance

swaps generates no significant excess return.
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Further evidence for the close connection between variance and skew risk comes in the

time series. Both, skew and variance risk premia exhibit time variation. We present evidence

that the same combination of priced risk factors drives both risk premia.

These results depend heavily on the use of dynamic hedging to maintain a constant risk ex-

posure. Static strategies to exploit the skew and variance risk premia are exposed to stochastic

risk exposures that give the spurious appearance that the two premia are rewarding different

risks. The problem of identifying priced risk factors when the trading strategy’s loading on

the factors is time-varying is not unique to option trading. It has been much discussed in

hedge fund performance analysis (Bollen and Whaley (2009)). In option trading however it

is somewhat easier to allow for since we can design dynamic strategies to have constant risk

exposures.

We conclude that there is powerful evidence for the existence both of variance and skew

risk premia in the equity index market. The magnitudes are sufficiently large that one would

expect them to be reflected in an asset pricing model. They do not appear to be explained

by the equity risk premium, but the evidence presented here suggests that a single channel is

sufficient to explain both premia. There is no need to provide separate channels for volatility

and skew risk premia.
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APPENDIX

A Implied Central vs. Observed Population Moments

The conditional distribution of returns under P is not directly observable. In practice, it is

common to make inferences about the P distribution by looking at returns over many periods.

The question then arises about the relation between the P moments estimated from a long

series of returns, and the average conditional Q moments computed over the same period from

option prices.

To analyze this, assume a world with no risk premia. In that case

EP [rnt,T ] = EP [EQ
t

[
rnt,T
]]
, (42)

so that mean option-implied moments converge to the (unconditional) population moment.

The conclusion does not apply to central moments, however, since equation (42) does not hold

due to the centering conditional P expectation. Indeed it is easy to think of examples where

there are no risk premia and population moments differ from average implied moments. Take

for instance the discrete-time model

rt,T = −1

2
vt +
√
vtεt,T , (43)

where vt is known at time t and εT is standard normal. In the absence of risk premia, the

implied variance in period [t, T ] is vt, so the mean implied variance is v̄ (the unconditional

mean variance). The population variance is

EP [(rt,T − E [rt,T ])2] = v̄ + var(vt)/4. (44)

This example shows that significant differences between average implied central moments and

population central moments do not themselves show the presence of risk premia.

B Proofs

B.1 Trading Strategy with Diffusions

Start from (7)
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δYt,T = EQ
t+δt

[
g(rt+δt,T + δft,T )− g(rt+δt,T )−

(
eδft,T − 1

)
EQ
t [g′(rt,T )]

]
.

Expanding we obtain

δYt,T = EQ
t+δt

[
δft,Tg

′(rt+δt,T ) +
1

2
δf 2

t,Tg
′′(rt+δt,T ) +O(δf 3

t,T )

]
−
(
δft,T +

1

2
δf 2

t,T +O(δf 3
t,T )

)
EQ
t [g′(rt,T )] .

(45)

With δft,T known at time t+ δt, and using the definitions of G′ and G′′ gives

δYt,T = δft,TG
′
t+δt,T +

1

2
δf 2

t,TG
′′
t+δt,T − δft,TG′t,T −

1

2
δf 2

t,TG
′
t,T +O(δf 3

t,T ) (46)

Rearranging we obtain

δYt,T = δft,T δG
′
t,T +

1

2

(
δG′′t,T −G′t,T +G′′t,T

)
δf 2

t,T +O(δf 3
t,T ). (47)

Finally, taking the limit as δt→ 0 under the diffusion assumption we obtain

dYt,T = dft,TdG
′
t,T +

1

2

(
G′′t,T −G′t,T

)
df 2
t,T (48)

B.2 Proof of Proposition 2

Part 1. Through a change of variables (13) can be written as

st,T =
6

Ft,TBt,T

(∫ ∞
1

(
a− 1

a2

)
{Ct(aFt,T )− aPt(Ft,T/a)} da

)
. (49)

If there is put-call symmetry8 in the sense of Carr et al. (1998), so that the implied volatility

plotted against log strike is symmetrical about the forward price, then the risk reversal term

in curly brackets in the second line costs nothing. This means that in the presence of put-call

8Carr et al. (1998) define put-call symmetry to mean that prices of out-of-the-money puts and calls are
related

Ct(αFt,T ) = αPt(Ft,T /α), all α > 0.

Put-call symmetry is equivalent to requiring that σI
t (k), the Black-Scholes implied volatility of a call or put

option with strike k and maturity T at time t, is symmetrical about the forward price

σI
t (αFt,T ) = σI

t (Ft,T /α).
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symmetry st,T = 0.

Part 2. The claim follows from the positivity of the integrands in (13).

Part 3. From the definition of the Log and the Entropy Contract

vLt,T = −2EQ
t [lnFT,T − lnFt,T ] , and vEt,T = 2EQ

t

[
FT,T
Ft,T

(lnFT,T − lnFt,T )

]
. (50)

Writing xt for the return ln
FT,T

Ft,T
we have

vLt,T = −2EQ
t [xt] = −2EQ

t [xt − ext + 1] , and vEt,T = 2EQ
t [xte

xt ] = 2EQ
t [xte

xt − ext + 1] . (51)

Using a Taylor series expansion

vLt,T = EQ
t

[
x2
t + x3

t/3 + · · ·
]
, vEt,T = 2EQ

t

[
x2
t + 2x3

t/3 + · · ·
]
, (52)

and therefore

st,T = 3(vEt,T − vLt,T ) = EQ
t

[
x3
t +O(xt)

4
]
. (53)

Part 4. With a self-financing portfolio strategy, starting from zero wealth, we have absence

of arbitrage EQ
0 [WT −W0] = 0 and as a consequence

G0,T︸︷︷︸
fixed leg

= EQ
0


∫
t∈[0,T ]

{
dG′t,Tdft,T +

1

2
(G′′t,T −G′t,T )(dft,T )2

}
︸ ︷︷ ︸

realized leg

 . (54)

This is the payoff to a swap contract in continuous time. Using g = gS gives the desired result.

C Robustness Checks

In this section we check whether the results are driven by the the choice of risk factors, specific

sample selection, discreteness of strike prices, and whether the results disappear once account

is taken of transaction costs.
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Table 9: Skew vs. variance risk premia: Fama-French and momentum factors

This table presents estimation results of the following skew and variance risk premia regressions:

xst = α0 + α1xvt + α2xmt + α3smbt + α4hmlt + α5umdt + ut

xvt = β0 + β1xst + β2xmt + β3smbt + β4hmlt + β5umdt + wt.

xs and xv denote excess returns from skew and variance swaps, xm denotes the market excess return, smb
and hml denote Fama-French factors and umd is the momentum risk factor. The system is estimated using
three-stage OLS. The instrumental variables used for the estimations are kst, st and tedt. Market excess
return, Fama-French and momentum factors are treated as exogenous. Newey-West t-statistics are given in
parentheses. The data are monthly, from January 1996 to January 2012.

Const xv xs xm smb hml umd R̄2

xv
0.011
(0.60)

0.526
(22.3)

-2.947
(-5.28)

0.231
(0.36)

0.187
(0.32)

-0.581
(-1.49)

83.47%

xs
-0.021
(-0.53)

1.901
(22.4)

5.602
(4.63)

-0.439
(-0.36)

-0.355
(-0.31)

1.104
(1.46)

81.14%

C.1 Fama-French and Momentum Factors

We start by checking whether the inclusion of Fama-French and momentum risk factors into

equations (34) and (35) changes our conclusions. Specifically, we re-estimate the following

system of equations using three-stage OLS

xst = α0 + α1xvt + α2xmt + α3smbt + α4hmlt + α5umdt + ut (55)

xvt = β0 + β1xst + β2xmt + β3smbt + β4hmlt + β5umdt + wt, (56)

where smb and hml denote Fama-French factors and umd is the momentum risk factor. As

before, we use the three instrumental variables: kst, st and tedt. The market excess return,

Fama-French and momentum factors are treated as exogenous. The estimation results are

given in Table 9. As before, excess returns from skew and variance swaps and the market

returns remain significant in both equations, while Fama-French and momentum factors do

not. The intercepts in both equations remain economically and statistically insignificant.

C.2 Subsample Analysis

We look separately at the first and the second half of our dataset: from January 1996 to

December 2003 and from January 2004 to January 2012. For each sub-period we estimate

equations (34) and (35) using three-stage OLS. The estimation results are given in Table 10.

The strong correlation between skew and variance risk premia is manifest in both sub-periods,
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Table 10: Skew and variance risk premia: sub-samples

This table presents estimation results of the skew and variance risk premia regressions xst = α0 + α1xvt +
α2xmt + ut, and xvt = β0 + β1xst + β2xmt + wt across two periods: January 1996 – December 2003 and
January 2004 – January 2012. xs and xv denote excess returns from skew and variance swaps, xm denotes
the market excess return. The system is estimated using three-stage OLS. The instrumental variables used
for the estimations are kst, st and tedt. Newey-West t-statistics are given in parentheses.

January 1996 – December 2003
Const xv xs xm R̄2

xv -0.010 (-0.20) 0.512 (5.86) -2.107 (-2.80) 62.27%

xs 0.007 (0.07) 1.900 (6.01) 3.871 (1.98) 63.94%

January 2004 – January 2012
Const xv xs xm R̄2

xv 0.016 (0.59) 0.507 (10.0) -3.507 (-3.53) 91.48%

xs -0.032 (-0.62) 1.969 (10.0) 6.876 (2.67) 88.45%

with the relationship being stronger in the second half. In both sub-samples the intercepts

are economically small and statistically insignificant.

C.3 Robustness in Computation of Implied Moments

Exact computation of implied skew and implied variance requires a continuum of option prices

at all strikes. To check whether the results are sensitive to the methodology used to compute

moments we use a different approach. We generate 1,500 option prices for strikes from $10 to

$3,000, with step $5, from the available option quotes. At each maturity we interpolate implied

volatilities across all available strike prices using a cubic spline method. For strike prices below

and above the lowest and the highest available strikes we use the implied volatilities at the

lowest and the highest strike price respectively; this is the same procedure as in Jiang and

Tian (2005) and Carr and Wu (2009).

Having recomputed the skew and variance risk premia, we estimate equations (34) and

(35). The regression results are in Panel A of Table 11, which are similar to those in Table 5.

Our results rely on the accuracy of prices in the database. Option prices for contracts

having no open interest and zero trading volume may be inaccurate or stale. We replicate our

results using only options with non-zero open interest and trading volume. Panel B of Table

11 contains the estimation results. Coefficient estimates remain qualitatively similar. Both

intercepts are statistically insignificant and R2’s remain high suggesting that our results are

not driven by the prices of illiquid options.
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Table 11: Skew and variance risk premia: robustness in computations

This table presents estimation results of the skew and variance risk premia regressions xst = α0 + α1xvt +
α2xmt +ut and xvt = β0 +β1xst +β2xmt +wt. xs and xv denote excess returns from skew and variance swap
strategies, xm denotes the market excess return. Panel A uses the interpolation-extrapolation techniques from
Jiang and Tian (2005) and Carr and Wu (2009) and Panel B computes implied moments using options with
non-zero open interest and trading volume. The system is estimated using three-stage OLS. The instrumental
variables used for the estimations are kst, st and tedt. Newey-West t-statistics are given in parentheses. The
data are monthly, from January 1996 to January 2012.

Const xv xs xm R̄2

Panel A: Interpolation-Extrapolation
xv 0.012 (0.60) 0.505 (31.0) -2.871 (-6.00) 82.04%

xs -0.025 (-0.61) 1.981 (31.0) 5.688 (5.51) 77.92%

Panel B: Non-zero Interest
xv 0.008 (0.39) 0.527 (23.6) -2.731 (-5.59) 83.35%

xs -0.016 (-0.39) 1.899 (23.7) 5.184 (4.92) 80.68%

C.4 Transaction Costs

Replication of the variance swap involves setting up an option position at inception and then

dynamically trading the underlying asset. By contrast, replication of the skew swap requires

dynamic option trading as well as dynamic trading in the underlying asset. With significant

bid-ask spreads in the options market, the question naturally arises as to whether the results

obtained previously, which assume that options can be traded at the mid-price between the

bid and the ask, go away once transaction costs are taken into account. Since transaction

costs in the spot index market are very much lower than in the options market we continue

to assume they are zero.

Consider the case of an agent replicating a long position in a skew swap. At inception,

the agent buys high-strike options and writes low-strike options. With the negative skew in

option prices, this is cash-flow positive. The position is delta-hedged in the forward market.

As the underlying rises, the agents sells entropy contracts - by selling conventional options

at all strikes; conversely when the underlying falls, the agent buys conventional options. In

the presence of transaction costs, the agent buys options at the ask and sells at the bid. The

transaction costs reduce the profits from the strategy. The agent could reduce the impact of

transaction costs by rebalancing less frequently, but this would make the replication noisier.

Rather than solving for the optimal hedging strategy under transaction costs, we assume

that the agent rebalances at the end of a day only when the index has moved by more than

some threshold of κ% from the last time the portfolio was rebalanced. The skew swap continues
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Figure 2: Returns and standard deviations of skew swap strategy under
transaction costs vs. no transaction costs

The figure presents average excess returns and their standard deviations for a long position in one-month skew
swap under different rebalancing frequencies. std(xs) and xs correspond to standard deviation and excess
returns for the case of no transaction costs (options traded at the mid-quotes) while std(xs tc) and xs tc
denote standard deviation and returns under transaction costs (options traded at bid and ask prices). The
x-axis is the filter which controls the rebalancing frequency. The trader rebalances the portfolio only when
the index prices changes more than κ%. The sample period is January 1996 to January 2012.
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to be a self-financing strategy after transaction costs subject to the interpretation that vEt is

the bid entropy variance (computed using the bid prices of all options) at time t if the index

has risen since the portfolio was last rebalanced, and the ask if the index has fallen. The fixed

leg st is computed from the bid price of low strike puts and the ask price of high strike calls.

If the threshold is set low enough, the portfolio is rebalanced daily. The effect of transaction

costs is then substantial. The average monthly return9 drops to 4.78%. If the threshold κ

is raised, the portfolio is rebalanced less frequently, leading to smaller transaction costs but

more noise. Figure 2 presents the means and standard deviations of monthly returns for

different values of κ. The variation of the excess returns increases as the rebalancing frequency

decreases. The results suggest that the skew risk premium is a real phenomenon that remains

even after accounting for transaction costs.

9We compute returns as profit net of transaction costs divided by the absolute value of the mid-quote
implied skew.
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