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Abstract

We consider the problem of finding a model-free upper bound on the price

of a forward-start straddle with payoff |FT2 −FT1 |. The bound depends on the

prices of vanilla call and put options with maturities T1 and T2, but does not

rely on any modelling assumptions concerning the dynamics of the underlying.

The bound can be enforced by a super-replicating strategy involving puts, calls

and a forward transaction.

We find an upper bound, and a model which is consistent with T1 and

T2 vanilla option prices for which the model-based price of the straddle is

equal to the upper bound. This proves that the bound is best possible. For

lognormal marginals we show that the upper bound is at most 30% higher

than the Black-Scholes price.

The problem can be recast as finding the solution to a Skorokhod embed-

ding problem with non-trivial initial law so as to maximise E|Bτ − B0|.

1 Introduction

In this article we consider the problem of pricing forward start options. More

especially, if Ft is the forward price of a traded security and if T1 and T2 are

maturities with T0 < T1 < T2, where T0 is the current time, then we wish to price

a security paying |FT2 − FT1 |, ie a straddle with the strike set to be the prevailing

value at T1.

Our philosophy is that rather than pricing under a given (and inevitably mis-

specified) model, we assume we know the call prices for maturities T1 and T2, and

we use those prices to reduce the set of feasible price processes to those which

are consistent with these calls under a martingale measure, and then we search

over the feasible price processes to give the forward start straddle with the highest

price. The pricing problem can also be expressed in a different way as a dual prob-

lem where we identify the highest model price with the cheapest super-replicating

hedge. The resulting price is robust in the sense that it gives a model-free no-

arbitrage bound. This bound can be enforced by using calls (with maturities T1

and T2), and the forward as hedging instruments. Similar ideas have been applied
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to other path-dependent options, including barrier options and the lookback option,

by Hobson [11], Brown, Hobson and Rogers [4] and most recently Cox and Ob lój [6].

Part of the interest in the forward start straddle is that the model which attains

the maximum is such that, conditional on the price at T1, the price at T2 takes one

of two values (at least in the atom-free case with nice densities). As this conditional

distribution places mass at two-points it can be thought of as a distribution with

minimal kurtosis. In this weak sense at least, a long position in a forward start

option (suitably hedged using conventional options) is akin to a short position in

the kurtosis of the underlying asset.

The main result, expressed in financial language, is the following.

Theorem 1 Suppose that call prices are given for a pair of maturities T1 < T2

(for a continuum of strikes on each date) and that these prices are consistent with

no-arbitrage1. Consider the price of a forward start straddle2 on the forward price

of the asset. Then there exists a model-independent3 upper bound on the price of

this derivative; this bound can be enforced through the purchase of a portfolio of

call options and a single forward transaction. Moreover, there is a model which is

consistent with the observed vanilla prices for which the (appropriately discounted)

payoff of the forward start straddle is equal to the bound; hence the bound is a least

model-free upper bound.

The model-free upper bound on the price of the forward start option with payoff

|FT2−FT1 | is increasing in the final maturity T2. However, the bound on the price of

a forward start option is not necessarily decreasing in the starting maturity T1, and

there are examples where the price of a forward start straddle with payoff |FT2 −FT1 |
exceeds that of a vanilla at-the-money straddle with payoff |FT2 − FT0 |, where T0 is

the current time.

The lack of monotonicity in the starting maturity of the price of a forward start

straddle is one of the surprising results of this study.

As noted by Breeden and Litzenberger [3], knowledge of European call option

prices (for the continuum of strikes) is equivalent to knowledge of the marginal

distributions of the price process under a risk-neutral measure. Hence we will

assume that we know the laws of X ∼ FT1 and Y ∼ FT2 and that they are given

1We say that a set of traded securities is consistent with no arbitrage if there is no portfolio of

traded instruments (which in our case are the puts and calls with maturities T1 and T2, and the

riskless bond) which can be combined with a simple semi-static hedging strategy in the forward

(buy and hold over (0, T1] or (0, T2] or (T1, T2]) such that the initial cost is zero but the final payoff is

non-negative almost surely, and positive with positive probability. The fact that a butterfly spread

has a non-negative payoff means that it must have a non-negative price, else there is an arbitrage.

Hence option prices for a fixed maturity must be convex in the strike. Similarly, option prices

must be increasing in maturity. For further discussion, see, for example, Davis and Hobson [7].
2We generally work with the straddle, but from the identity |y − x| = 2(y − x)+ − (y − x) it is

clear that the results can be reformulated in terms of puts or calls.
3If the call prices with maturities T1 and T2 are consistent with no-arbitrage then we can ask for

what range of prices can we introduce the forward start straddle, such that the augmented set of

traded securities is consistent with no-arbitrage. The limits of this range give model independent

upper and lower bounds on the prices of the forward start straddle. This concept of a model-

independent bound is implicit in Hobson [11] and explicit in Föllmer and Schied [8], Cox and

Ob lój [6] and Hobson [10].
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by µ and ν respectively. By the martingale property we have E[Y |X ] = X so that

µ and ν have the same mean. Typically, we will use a shift of coordinate system

and assume the mean to be zero. However, in the sections on the financial context

where the marginals are derived from positive prices and the associated measures

lie on R
+, this is not appropriate and we will assume that the measures have equal

but positive means.

Define H(µ, ν) := sup E|Y −X |, where the supremum is taken over pairs of ran-

dom variables (X, Y ) with the appropriate marginals, and satisfying the martingale

condition E[Y |X ] = X . The problem of calculating H can be recast as a Skorokhod

embedding problem for Brownian motion B (Skorokhod [17], see also Ob lój [14]

for a thorough survey). The Skorokhod embedding problem (SEP) for Brownian

motion null at zero is, given a centred probability measure ν, to find a uniformly

integrable4 stopping time τ such that Bτ ∼ ν. Our problem is a variant on this

in the sense that instead of B0 ≡ 0 we have B0 ∼ µ. The problem becomes to

find the solution of a SEP with given initial and terminal laws with the additional

optimality property that E[|Bτ − B0|] is maximised. Since, in general, there is no

unique solution to the SEP, adding an optimality criterion has proved to be a useful

way of characterising solutions with particular properties (eg Azéma and Yor [1],

Perkins [15], Jacka [13] and Vallois [18], and, for the problem with non-trivial initial

law, Hobson and Pedersen [12]). The connection between the forward start option

and the SEP is made precise by identifying X with FT1 and B0, Y with FT2 and

Bτ , and noting that the martingale property of the forward price means that it is

a time-change of Brownian motion.

The first and most immediate question is to determine when the problem is

feasible, in the sense that given centred probability measures µ and ν, when does

there exist a martingale with initial distribution µ and terminal distribution ν.

By an application of Jensen’s inequality it can be seen that a necessary condition

for such a martingale to exist is that µ � ν in the sense of convex order — by

construction of solutions of the SEP this can also be seen to be sufficient.

We want to study H in the feasible case µ � ν.

Proposition 2 Suppose µ, ν, χ are centred probability measures, and that µ ≺ ν ≺
χ in the sense of convex order. Then H(µ, ν) ≤ H(µ, χ). However, it is not

necessarily the case that H(µ, χ) ≥ H(ν, χ).

This counter-intuitive result (see Lemma 4 and Example 5 below) is indicative

of some of the subtleties of the problem. Nonetheless it turns out that optimal

solutions always exist, and they always have a particular simple form whereby

conditional on X , Y takes one of two values (in the non-atomic case at least). In

the SEP setting, τ is the first exit time of B from an interval which depends on B0

alone.

A special case of the main theorem, Theorem 19, is the following:

Theorem 3 Suppose µ and ν are centred probability measures with bounded sup-

port, and suppose µ � ν and that µ has no atoms. Then, there exist increasing

4A stopping time τ for Brownian motion is said to be uniformly integrable if the family

(Bt∧τ )t≥0 is uniformly integrable.
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functions f and g with f(x) ≤ x ≤ g(x), such that if X ∼ µ and if conditional on

X = x, Y ∈ {f(x), g(x)} respects the martingale properties5, then Y ∼ ν. More-

over, f, g can be chosen such that the joint law maximises E[|Y −X |] amongst pairs

of random variables satisfying X ∼ µ, Y ∼ ν and E[Y |X ] = X, and then

H(µ, ν) =

∫

µ(dx)
(g(x) − x)(x − f(x))

(g(x) − f(x))
.

One unfortunate feature of the solution is that it is non-constructive, in the

sense that given general measures µ and ν we are not able to give explicit formulae

for f and g. (However, there are some simple examples where exact formulae can

be given, and it is always possible to reverse engineer solutions by fixing µ, f and

g, subject to some consistency conditions, and deducing the appropriate law for

ν.) This is reminiscent of the situation for the barrier solution of the SEP due to

Root [16].

The idea behind the proof is to write down a Lagrangian formulation of the

problem, and to derive relationships between the multipliers, which ultimately give

the characteristics of the optimal solution. The optimal multipliers are related to

a particular convex function, but it is possible to derive a bound from any convex

function. Hence, even in cases where it is difficult to determine H precisely, it is

straightforward to give families of simple and concrete bounds. Inequalities derived

in this fashion, see especially Example 6.2, may be of independent interest.

The remainder of the paper is structured as follows. In the next section we

describe the set-up and introduce notation. In Section 3 we consider the non-

monotonicity of H in the initial law. In Sections 4, 5 and we 6 we introduce

the Lagrangian approach and give examples. These sections provide intuition and

motivation for the later analysis. In Sections 7 and 8 we describe and prove the

main result, which follows by taking limits over discrete approximations to the initial

and terminal distributions. Sections 9 and 10 give further examples and financial

interpretation.

2 Notation

In this article we will use three different probabilistic set-ups. The financial set-

up involves the forward price process (Ft)0≤t≤T2 . The Brownian set-up describes

a Brownian motion (Bt)t≥0, with B0 non-trivial, and Brownian stopping times τ .

The random variable set-up consists of a pair of random variables X and Y . In

each case there is an implicit probability triple and filtration (Ω,F , F, P) (which

may change between the three set-ups, although we use the same symbol P in each

case).

The idea is that we identify FT1 with B0 and X and FT2 with Bτ and Y . The

relationship between F and B is based on the fact that any martingale (and the

forward price is a martingale under a risk neutral measure) can be written as a time-

change of Brownian motion. Thus we can identify price process with law µ at T1 and

law ν at T2 with solutions of the Skorokhod Embedding Problem for a Brownian

5Thus P(Y = f(x)|X = x) = (g(x) − x)/(g(x) − f(x)) = 1 − P(Y = g(x)|X = x)
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motion started with law µ and stopped to have law ν. Moreover, since the payoff

of the forward-start straddle depends only on the law of FT1 and FT2 (respectively

B0 and Bτ ) we can reduce the problem further to an analysis of constructions of

pairs of random variables X and Y such that E[Y |X ] = X . Hence, when we speak

about a feasible model we will typically be referring to a pair (X, Y ) with X ∼ µ

and Y ∼ ν, but this is connected via a solution of the SEP to B0 ∼ µ and Bτ ∼ ν

and thence via a time-change to a financial model with FT1 ∼ B0 and FT2 ∼ Bτ .

The fact that (Ft)t≥0 is a true martingale corresponds to τ being uniformly

integrable, and in turn to the fact that (X, Y ) satisfy the martingale condition

E[Y |X ] = X . Finally, all these conditions relate to µ and ν having the same mean.

Clearly, by a shift this mean can be taken to be zero, so that µ and ν are centred.

Let M be the set of feasible models, which, as discussed above, can be identified

with the set of pairs of random variables with the correct marginals, and satisfying

the martingale property:

M = M(µ, ν) = {(X, Y ) : X ∼ µ, Y ∼ ν, E[Y |X ] = X}.

There is a simple condition which determines whether M is non-empty, namely that

µ � ν in the sense of convex order (and we will use ≺ and � only in this sense),

or equivalently Uµ(x) ≤ Uν(x) uniformly in x, where for a centred probability

measure χ, Uχ(x) = E[|X − x| : X ∼ χ] is the potential. Note there is a one-to-one

correspondence between centred probability measures and potential functions U

with the properties U convex, |U | ≥ x and limx→±∞ U(x)−|x| = 0, see Chacon [5].

Then, provided M is non-empty we define

H(µ, ν) = sup
(X,Y )∈M(µ,ν)

E[|Y − X |],

and our primary concern is with identifying this object H .

In the exposition we will sometimes need to consider an iterated version of the

problem, so for centred probability measures µ � ν � η let

M(µ, ν, η) = {(X, Y, Z) : X ∼ µ, Y ∼ ν, Z ∼ η, E[Y |X ] = X, E[Z|Y ] = Y }.

Further, for a centred measure χ, let χm be the measure which is the law of Brownian

motion started with law χ and run until the process hits the set 2−m
Z = {2−mk; k ∈

Z}, so χm = L(Bτ ; B0 ∼ χ, τ = inf{u : Bu ∈ 2−m
Z}). Equivalently, χm is the

measure with potential Um where Um ≡ U on 2−m
Z and is obtained by linear

interpolation over intervals (k2−m, (k + 1)2−m) elsewhere.

Denote by δx the point mass at x. Finally, given increasing functions f, g with

f(x) < x < g(x), set τf,g,x to be the first time that Brownian motion leaves the

interval (f(x), g(x)) where B0 = x (we write τf,g,x = inf{u : Bu /∈ (f(x), g(x))|B0 =

x}) and let ν̂(f, g, µ) = L(Bτf,g,B0
; B0 ∼ µ).

3 Monotonicity properties, and lack thereof, for

H.

We begin with some simple properties of H , an example which shows that H also

has some counter-intuitive properties and a useful lemma.
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Lemma 4 (i) For µ ≺ ν, H(µ, ν) ≤ H(δ0, µ) + H(δ0, ν), and hence for centred

probability measures we have H(µ, ν) < ∞.

(ii) If µ � ν � χ then H(µ, ν) ≤ H(µ, χ). Hence if νn ↓ ν then H(µ, ν) ≤
lim inf H(µ, νn).

Proof: (i) Irrespective of the martingale condition, E[|Y −X |] ≤ E[|Y |] + E[|X |] =

H(δ0, µ) + H(δ0, ν). Note that E[|Y |] = UL(Y )(0) is independent of the joint law of

X and Y .

(ii) If µ ≺ ν ≺ χ then there are constructions of random variables (X, Y, Z) such

that E[Z|Y ] = Y and E[Y |X ] = X with the appropriate marginals. If we take a

supremum over these constructions only then we find

H(µ, χ) ≥ sup
M(µ,ν,χ)

E[|Z − X |].

By the conditional version of Jensen’s inequality E[|Z − X |] ≥ E[|Y − X |] and

sup
M(µ,ν,χ)

E[|Z − X |] ≥ sup
M(µ,ν,χ)

E[|Y − X |] = sup
M(µ,ν)

E[|Y − X |] = H(µ, ν)

�

Example 5 Given µ � ν � χ we have that H(µ, ν) ≤ H(µ, χ) and it would be

nice to be able to conclude also that H(µ, χ) ≥ H(ν, χ). (Then we would have

that H was monotonic in its first argument, which would facilitate approximating

µ with a sequence µn.) However this is not the case, and we can have either

H(µ, χ) < H(ν, χ) or H(µ, χ) > H(ν, χ).

The more usual and expected case is that H(µ, χ) > H(ν, χ). For a simple

example take ν ≡ χ 6= µ. For an example in the less expected direction take µ = δ0,

ν to be the uniform measure on the two-point set {±1}, and χ to place mass 1/2n

at ±n and mass 1−1/n at the origin. Then H(δ0, χ) = 1. However, if Y ∼ ν and if

we set Z = nY with probability 1/n and Z = 0 otherwise, then Z ∼ χ, E[Z|Y ] = Y

and H(ν, χ) ≥ 2(n−1)/n. (In fact it is easy to see that there is equality in this last

expression.) Provided n > 2 we have H(δ0, χ) < H(ν, χ). �

Recall the definition of νm and observe that ν � νm.

Lemma 6 Suppose µ � ν. Then H(µ, ν) ≤ H(µ, νm) ≤ H(µ, µm) + H(µm, νm) ≤
H(µm, νm) + 2−m

Proof: The only inequality which is not immediate is the middle one. Let σm =

inf{u ≥ 0 : Bu ∈ 2−m
Z; B0 ∼ µ} and let τm be an embedding of νm based

on initial law µ. Then, necessarily, τm ≥ σm, and if θt(ω) is the shift operator

θt(ω) = σm(ω) + t, if B̃t = Bθt
and if τ̃ = τm − σm then τ̃ is an embedding of

νm for the Brownian motion B̃ started with initial law B̃0 ∼ µm. By the triangle

inequality, E|Bτm − B0| ≤ E|Bτm − Bσm | + E|Bσm − B0|. But E|Bτm − Bσm | =

E|B̃τ̃ − B̃0| ≤ H(µm, νm) and σm is the unique, uniformly integrable embedding of

µm for Brownian motion started with law µ so that E|Bσm − B0| = H(µ, µm). �
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4 Upper bounds and a financial interpretation

Suppose we can find α, β and γ such that for all x and y we have L(x, y) ≤ 0 where

L(x, y) = |y − x| − α(x) − β(y) − γ(x)(x − y). (1)

If so then for all elements of the sample space,

|Y − X | ≤ α(X) + β(Y ) + γ(X)(X − Y ),

and, taking expectations and using the martingale property,

H(µ, ν) ≤
∫

α(x)µ(dx) +

∫

β(y)ν(dy).

The following simple example is a first illustration of the method and gives a

sample result. For k > 0, 0 ≤ k(|b| − 1/k)2/2 and so, with b = Y − X , and using

(Y − X)2 = Y 2 − X2 + 2X(X − Y ), we have

|Y − X | ≤ k

2

(

Y 2 − X2 + 2X(X − Y )
)

+
1

2k
.

Hence, (recall we are assuming E[Y |X ] = X) for any k, E|Y −X | ≤ (kA2/2)+1/2k

where A2 = E[Y 2]−E[X2] = E[(Y −X)2]. Minimising over k we find k = A−1, and

so

E|Y − X | ≤ A ≡
√

E[Y 2] − E[X2].

We can get this result directly (ie without writing down the pathwise inequality)

just from Jensen’s inequality:

E|Y − X | ≤ (E[(Y − X)2])1/2 = A

but one advantage of the method based on inequalities of the form L(x, y) ≤ 0 is

that the various terms can be meaningfully identified in the financial context as

static hedging portfolios. Thus α(X) is a portfolio of options with maturity T1,

β(Y ) is a portfolio of options with maturity T2, and γ(X)(X −Y ) is the gains from

trade on the forward market from a strategy of going short γ(X) forwards over the

period [T1, T2]. It is also possible to identify when the bound is tight. In this case

we must have |Y − X | = 1/k = A, so that Y = X ± 1/k.

Lemma 7 Consider the problem of hedging a forward-start straddle on the forward

price Ft with payoff |FT1 − FT2 |. Suppose that α, β and γ are such that (1) holds,

and that α and β are twice differentiable6. Then there is a super-replicating strategy

involving puts and calls on Ft which costs
∫

α(x)µ(dx)+
∫

β(y)ν(dy) where µ is the

law of FT1 and ν is the law of FT2 .

Proof: By the arguments of Breeden and Litzenberger [3] it is possible to recreate

a (sufficiently regular) payoff of Γ(FT ) as a portfolio of put options with strike K:

Γ(FT ) = Γ(0) + FT Γ′(0) +

∫ ∞

0

Γ′′(k)(k − FT )+dk.

6We need to give a suitable interpretation to α′′ and β′′, so that a weaker sufficient condition

is that α and β are each the difference between a pair of convex functions. In fact for the optimal

construction β is always convex.
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Note that (k − FT )+ is the payoff of a put with strike k and maturity T .

Consider the strategy of purchasing a portfolio of puts with maturity T1 which

recreates a payoff α(FT1 ) and a portfolio of puts with maturity T2 which recreates

a payoff β(FT2).

In addition, if at T1 the price FT1 = x, go short γ(x) units of the forward over

the period [T1, T2].

The final value of this portfolio is α(FT1 ) + β(FT2 ) + γ(FT1)(FT1 − FT2 ) which

super-replicates |FT2 − FT1 |. Since the forward transaction is costless, the cost of

the super-replicating strategy is as claimed. �

Remark 8 (i) We should emphasise that our forward-start straddle is written on

the forward price which we denote Ft. If the forward-start straddle is written on a

traded security St which in a constant interest rate world has drift r, then we can

set Ft = e−rtSt and then e−rT2 |ST2 − ST1 | = |FT2 − λFT1 | with λ = e−r(T2−T1) a

deterministic factor. Some of the ideas of this paper can be extended immediately

to this situation, for example we replace (1) with L(x, y) = |y−λx|−α(x)−β(y)−
γ(x)(x − y), but other elements of the story cannot be generalised so easily. The

case λ = 1 is already quite intricate, so we do not consider λ 6= 1.

(ii) In this article we concentrate on model-independent upper bounds for the

prices of forward-start options. This naturally leads to the question as to the

existence and form of lower bounds. Preliminary analysis has shown that the cor-

responding extremal process involves a trichotomy of potential values of Y for each

possible value of X (in the nice case where µ and ν have densities). However, the

form of the solution is much more involved, and we will not attempt to describe the

solution here.

5 The Lagrangian Approach

We take a Lagrangian approach, which has proved useful in several papers on prob-

lems of this type, see, for example, Brown et al [4]. To motivate the analysis and

explain the methods we begin the exposition by assuming that we are in the nice

case where the functions we work with are differentiable, and the measures have

densities. In particular, we suppose µ(dx) = η(x)dx and ν(dy) = ξ(y)dy, and let

the joint density of (X, Y ) be ρ(x, y)dxdy. The problem is to maximise
∫ ∫

|y − x|ρ(x, y)dxdy,

subject to the marginal and martingale conditions
∫

ρ(x, y)dy − η(x) = 0,

∫

ρ(x, y)dx − ξ(y) = 0,

∫

ρ(x, y)(x − y)dy = 0.

If the constraints have Lagrange multipliers α(x), β(y), γ(x), then the problem be-

comes to maximise over ρ
[∫

α(x)η(x)dx +

∫

β(x)ξ(y)dy +

∫ ∫

ρ(x, y)L(x, y)dx dy

]

8



where L(x, y) is as given in (1). For the maximum to be finite we must have

L(x, y) ≤ 0, and the issue is to choose α, β and γ to make this true, in such a way

that
∫

α(x)η(x)dx +
∫

β(x)ξ(y)dy is minimised.

From the dependence of L on y, for each x we expect there to be equality

L(x, y) = 0 at two points y = f(x) and y = g(x) with f(x) < x < g(x). At these

points the y-derivative of L is zero. Hence β′(g(x)) = γ(x) + 1 and β′(f(x)) =

γ(x) − 1.

β(y)

(x,−α(x))

f(x) g(x)

2
x

Figure 1: The relationship between the various quantities which can be derived from β.

The points f(x) and g(x) are two values in the horizontal direction such that the difference

in the slope of β at these two points is 2, and such that these tangents intersect at a point

with horizontal coordinate x. The height of the intersection point is −α(x), and γ(x) is

such that the slopes of the tangents are γ(x) ± 1.

The key insight is that the best way is to find suitable β is via its convex

dual. The construction begins with a convex function G(x) normalised such that

G(0) = 0 = G′(0−). Set φ to be the increasing function given (where G′ is well

defined) by φ(x) = G′(x), and define β via

β(y) = sup
x
{xy − G(x)}; (2)

note that φ = (β′)−1. Then G(x) = xφ(x) − β(φ(x)) and

g(x) = φ(γ(x) + 1) f(x) = φ(γ(x) − 1). (3)

From the definition of L and g we have

0 = L(x, g(x))

9



= g(x) − x − α(x) − β(g(x)) − γ(x)(x − g(x))

= (1 + γ(x))φ(1 + γ(x)) − β(φ(1 + γ(x))) − α(x) − x(1 + γ(x))

= G(γ(x) + 1) − x − α(x) − xγ(x). (4)

Similarly,

0 = L(x, f(x)) = G(γ(x) − 1) + x − α(x) − xγ(x) (5)

and subtracting these last two expressions we obtain

2x = G(γ(x) + 1) − G(γ(x) − 1). (6)

If we then define H and γ via

H(z) = (G(z + 1) − G(z − 1))/2; γ = H−1. (7)

then (6) holds. Note that H is increasing so that γ is well defined and increasing,

and since β′ and φ are also increasing we have that g and f are increasing.

Finally, adding (4) and (5) we find

α(x) = −xγ(x) +
1

2
[G(γ(x) + 1) + G(γ(x) − 1)] . (8)

An alternative expression involving β is

α(x) = (g(x) − x)β′(g(x)) − β(g(x)) (9)

= (f(x) − x)β′(f(x)) − β(f(x)). (10)

For a given convex G this completes the construction of a trio (α, β, γ) for which

L(x, y) given by (1) satisfies L ≤ 0.

In determining (α, β, γ) it is convenient to assume that G is continuously differ-

entiable and strictly convex. However, this is by no means necessary, and the only

issues are in choosing the appropriate inverse γ to H in (7), which then enters the

definition of α. The easiest way to determine the correct form for the quantities α

and γ (and f and g) is via the graphical representation in Figure 1.

Theorem 9 Let µ and ν be a pair of centred probability measures which are in-

creasing in convex order. Let G be convex with G(0) = 0 = G′(0−), and define

β ≡ βG and α ≡ αG via (2) and (8), where γ ≡ γG is defined in (7). Then, for all

(X, Y ) ∈ M(µ, ν)

E[|Y − X |] ≤
∫

α(x)µ(dx) +

∫

β(y)ν(dy). (11)

Proof: We simply need to show that L(x, y) ≤ 0. To see this, for y > x (the case

y < x is similar)

L(x, y)

= (y − x) + xγ(x) − 1

2
[G(γ(x) + 1) + G(γ(x) − 1)] − β(y) + γ(x)(y − x)

= y(1 + γ(x)) − G(γ(x) + 1) − β(y)
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But β(y) ≥ zy − G(z) for all z including z = 1 + γ(x). Hence L(x, y) ≤ 0.

Thus, given G we have a bound on E[|Y − X |] of the form

E|Y − X | ≤
∫

α(x)µ(dx) +

∫

β(y)ν(dy)

where α = αG and β = βG.

Remark 10 The normalisation of G such that G(0) = G′(0−) = 0 is convenient,

but not important. If instead we set G̃(x) = G(x − c) + d, then we find β̃(y) =

β(y) + cy − d, γ̃(x) = γ(x) + c and α̃(x) = α(x) − cx + d, so that the bound in (11)

is unchanged. In finance terms, any super-replicating strategy that involves options

positions at times T1 and T2 and a forward position over [T1, T2] can be trivially

modified by adding a long position at T1, a short position at T2 and an offsetting

forward position.

Remark 11 The construction begins with G and this is the primary object used

to calculate g and f from (3). Combining these with µ we can deduce the law

ν̂ = ν̂f,g,µ of Y :

ν̂((−∞, y]) = P(Y ≤ y) = µ((−∞, g−1(y)]) +

∫ f−1(y)

g−1(y)

g(x) − x

g(x) − f(x)
µ(dx) (12)

Alternatively, given the convex duality between β and G, we can also start with β

as the primitive object. In this way we can choose convex functions G and initial

laws µ so that there is equality in (11) and hence optimality, for a certain law ν̂.

In this sense it is easy to produce examples for which the bound is tight. However,

the real aim is to start with laws µ and ν and to construct G and the bound. This

will prove to be much harder.

Remark 12 Recall the definitions of f and g, which for the purposes of this remark

we assume to be differentiable. Then they satisfy a certain consistency condition.

From (3) we have

β′(g(x)) − 1 = γ(x) = β′(f(x)) + 1 (13)

and so

β′′(g(x))g′(x) = f ′(x)β′′(f(x)) (14)

Also, from (9) and (10) we obtain

β(g(x))−g(x)β′(g(x))−(β(f(x))−f(x))β′(f(x))+x(β′(g(x))−β′(f(x)) = 0. (15)

Using (13), differentiating, and then using (14) we get

2

g(x) − f(x)
= β′′(g(x))g′(x) = f ′(x)β′′(f(x)) (16)

so that in the appropriate domains

β′′(y) =
2

f ′(f−1(y))(g(f−1(y)) − y)
(17)

11



and

β′′(y) =
2

g′(g−1(y))(y − f(g−1(y)))
. (18)

Alternatively we can rewrite (15) as

0 =

∫ g(x)

f(x)

(y − x)β′′(y)dy (19)

which after substituting with (17) and some manipulations yields

0 =

∫ f−1(y)

g−1(y)

(g(z) − f−1(y))

g(z) − f(z)
dz. (20)

Substituting using the first inequality in (16), then changing variable and integrat-

ing, and finally using (13) we obtain

∫ x

g−1(f(x))

2

g(z) − f(z)
dz =

∫ g(x)

f(x)

β′′(y)dy = 2, (21)

so that

1 =

∫ f−1(y)

g−1(y)

1

g(z) − f(z)
dz, (22)

and then (20) is equivalent to

∫ f−1(y)

g−1(y)

g(z)

g(z) − f(z)
dz = f−1(y) (23)

with a related expression interchanging the roles of f and g.

y = x

y = f(x)y = g(x)

Figure 2: A representation of functions f and g.

In particular, given f and g we can define a candidate convex function β via

(17) and (18), but when the construction of Section 5 is applied to this candidate
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β we will only recover the original f and g if (23) holds. Equations (22) and (23)

play the role of global consistency conditions on the functions f, g which determines

whether they are associated with optimal constructions. Note that it is a non-local

condition in that it relates f and g over whole intervals and not at isolated points.

We will use this consistency condition to select the optimal solution (f, g) from the

many which lead to embeddings.

Remark 13 The bound is attained if Y ∈ {f(X), g(X)}, or equivalently if the

stopping rule τ is of the form τ = τ(f, g, B0) = inf{u : Bu ∈ {f(B0), g(B0)}}. In

that case we have an alternative representation of the bound7 as

2E

[

(g(X) − X)(X − f(X))

(g(X) − f(X))

]

, (24)

at least in the case where µ and ν have densities and f , g and their inverses are

continuous and differentiable. The expression (24) follows directly from the fact

that P(Y = f(x)|B0 = x) = (g(x) − x)/(g(x) − f(x)). This expression can also be

derived via calculus from (12) using the definitions of α and β.

6 Examples

6.1 Example: Quadratic functions G(x) = x2/2k.

In this case β(y) = ky2/2, H(z) = z/k, γ(z) = zk, α(x) = (1 − k2x2)/2k. We

immediately recover the result in the opening remarks of Section 4: E[|Y − X |] ≤
kE[Y 2 − X2]/2 + 1/2k. This result can be optimised by appropriate choice of k.

We have g(x) = x + k−1 and f(x) = x + k−1. If k = 1 and µ ∼ U [−1, 1], then

recalling that ν̂(f, g, µ) = L(Bτ : B0 ∼ µ, τ = inf{u > 0 : Bu ∈ {f(B0), g(B0)}}),

we have that ν̂ ∼ U [−2, 2] and H(µ, ν̂) = 1.

6.2 Example: Entropy

For this example it is natural to assume that X and Y are non-negative random

variables, scaled to have unit mean.

Take G(x) = Aex/ξ. Then

β(y) = ξ(y ln y − y ln(A/ξ) − y)

γ(w) = ξ ln(w/A sinh(1/ξ))

and

α(x) = −ξ(x ln x) + ξx ln(A sinh(1/ξ)) + x coth(1/ξ)

The bound is

E[|Y − X |] ≤ E[β(Y ) + α(X)] = ξE[Y ln Y − X ln X ] + J(ξ)

7Observe that f(x) ≤ x ≤ g(x) and so (g(x) − x)(x − f(x))/(g(x) − f(x)) ≤ min{g(x) − x, x −

f(x)}. Hence in (24) it is appropriate to use the convention that 0 × 0/0 = 0.
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where

J(ξ) = ξ ln ξ − ξ + ξ ln(sinh(1/ξ)) + coth(1/ξ).

Note that J is a decreasing convex function on R
+, with J(0) = 2. (The fact that

J(0) = 2 corresponds to the trivial bound E|Y − X | ≤ E|Y | + E|X | = 2.)

Let J̃ be the convex dual to J , so that

J̃(z) = inf
ξ>0

(ξz + J(ξ)).

Then

Proposition 14 Let X and Y be positive random variables each with unit mean

and such that E[Y |X ] = X. Suppose that E[Y ln Y − X ln X ] ≤ ∆. Then

E|Y − X | ≤ J̃(∆).

The bound is tight, in the sense that for each ∆ > 0 there exists a pair (X, Y ) with

E[Y ln Y − X ln X ] = ∆ for which E|Y − X | = J̃(∆).

Corollary 15 We have J(ξ) ≤ min{1/(2ξ), 2}, and then J̃(z) ≤
√

2z∧2. It follows

that E|Y − X | ≤
√

2∆ ∧ 2.

Corollary 16 If X and Y satisfy the hypotheses of Proposition 14 but have mean

c then E|Y − X | ≤ cJ̃(∆/c).

Note that, unlike in the quadratic example, the pre-multiple A plays no role in

the final bound. Note further that as for the quadratic example, α takes the same

functional form as β, so we get this very nice inequality involving the entropies of

the two distributions. This makes the resulting inequality particularly attractive,

but is a special feature of these examples.

We discuss the financial implications of this bound in Section 10 below. For this

example we have that g(x) = xe1/ξ/(ξ sinh(1/ξ)) and f(x) = xe−1/ξ/(ξ sinh(1/ξ)).

Both these functions are linear which makes it particularly simple to construct

examples where the bound is attained. If X has an exponential distribution, then

the construction yields Y which is a mixture of two exponentials.

6.3 Example: Multiplicity of Embeddings

Suppose µ ∼ U [−1, 1] and ν ∼ U [−2, 2]. We know from Example 6.1 that H(µ, ν) =

1, and that for the optimal construction f(x) + 1 = x = g(x) − 1. Our goal in this

example is to show that this is not the only pair (f, g) for which ν̂(f, g, µ) = ν.

Fix a ∈ (−1, 1) and suppose we have increasing functions f : [−1, 1] 7→ [−2, a]

and g : [−1, 1] 7→ [a, 2]. For ν̂(f, g, µ) to equal ν we must have

g′(z) =
2(z − f(z))

g(z) − f(z)
, f ′(z) =

2(g(z) − z)

g(z) − f(z)
.

Define va(z) = (4 − 4az + a2)1/2. Then, recall g(−1) = a = f(1) and g(1) = 2 =

−f(−1), g(z) = z + a/2 + va(z)/2 and f(z) = z + a/2 − va(z)/2. For each a ∈
(−1, 1) this construction defines an embedding of ν. However at most one of these
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constructions can be associated with the embedding which maximises E|Y − X |,
and this will be the one for which f and g satisfy the global consistency condition.

We can define a candidate β from (19) and then β′′(y) = wa(y) where wa(y) =

(1 − ay + a2)1/2. However, if we consider (20) for y = a we get

∫ f−1(a)

g−1(a)

g(x)

(g(x) − f(x))
dx =

∫ 1

−1

x + a/2 + va(x)/2

va(x)
dx = 1 +

2

3
a

This is equal to f−1(a) = 1 if and only if a = 0, so that out of the many pairs

(f, g) which embed (µ, ν) only the pair defined from a = 0 is consistent with a

construction based upon a convex function β.

7 Constructing bounds given the marginals

In the previous section we derived upper bounds on E[|Y −X |] by considering fami-

lies of functions derived from a convex function G. There is a one-to-one relationship

between G and β, and so from either it is possible to deduce expressions for α and

γ, and thence, at least in the regular case where G and β are smooth and strictly

convex, we can obtain expressions for the monotonic functions f and g. Finally,

conditional on the law µ for X we can find a bound for E[|Y − X |].
The construction gives a bound for any feasible law ν of Y but the bound is

attained only for a particular law ν = ν̂(f, g, µ).

The issue is to reverse this construction, and given µ and ν to find G or β for

which we can construct a best bound. Alternatively, given µ and ν we want to

minimise the right-hand-side of (11) over G and more especially to prove this gives

the lowest possible upper bound on H(µ, ν). A related problem is to find functions

f(x) < x < g(x), such that a construction of the form Y ∈ {f(X), g(X)} is optimal

for the problem. This is complicated by the fact that it is not sufficient simply to

find f, g such that if X ∼ µ and both E[Y |X ] = X and Y ∈ {f(X), g(X)} then

Y ∼ ν.

Lemma 17 Suppose f, g are strictly increasing, continuous and differentiable and

f, g solve (22) and (20). Then if β is given by the solution of (16), G is the convex

dual of β and α = αG then

H(µ, ν) =

∫

α(x)µ(dx) +

∫

β(y)ν(dy).

where ν = ν̂(f, g, µ).

Proof: Given f and g satisfying (22) and (20) we can define β via (16), or the

equivalent expressions (17) or (18). Given that (17) and (18) define β′′ in two

different ways it should be checked that these two definitions do not lead to an

inconsistency or self-contradiction. In fact differentiation of (22) shows that (17)

follows from (18) and vice-versa.

It follows from (20) and (17) that

0 =

∫ g(x)

f(x)

(y − x)β′′(y)dy.
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Integrating the right-hand-side it follows that (15) holds and we can define α

via either (9) or (10). From the equivalence of these two representations (and

β′′(g(x)g′(x) = β′′(f(x)f ′(x)) we deduce as in (21) that 2 = β′(g(x)) − β′(f(x)).

Let γ(x) = β′(g(x))−1 = β′(f(x))+1, then we have a triple α, β, γ. Moreover, since

the tangents to β at f(x) and g(x) intersect at (x,−α(x)) it is clear that when we

define φ(γ(x) + 1) and φ(γ(x) − 1) we recover g and f respectively. By hypothesis,

τ(f, g, µ) embeds ν so that H(µ, ν) = H(µ, ν̂(f, g, µ)) ≥
∫

α(x)µ(dx)+
∫

β(y)ν(dy),

the inequality following from the fact that H(µ, ν) is a supremum over all embed-

dings. The reverse inequality follows from Theorem 9. �

The lemma provides a partial result, but it still remains to show that it is possible

to find f, g which solve (22) and (20) and the embedding condition (12). It seems

very difficult to exhibit f, g which solve this problem. Instead we will approximate

ν with a discrete distribution for which we can prove that an appropriate function

β exists, and derive the required result by taking limits.

8 Optimal upper bounds

The goal of this section is to find the value of H(µ, ν) for arbitrary measures on R
+,

by finding an upper bound, and by showing the bound is attained. The approach

is to begin with a point mass µ and a discrete measure ν, and to progress to the

full problem via a series of extensions.

8.1 The discrete case: preliminary results

Suppose that X ∼ µ and Y ∼ ν (with µ � ν) are discrete, centred random variables

with finite support. Denote the atoms by µi = µ({xi}) and νj = ν({yj}), where

the points {xi} and {yi} are ordered such that x1 < x2 < · · · < xm and y1 < y2 <

· · · < yn. The problem is to find sup(X,Y )∈M(µ,ν) E|Y − X |. In this simple setting

this can be written as a finite linear programme:

max
ρij





∑

i,j

ρij |yj − xi|



 (25)

subject to the constraints

∑

j

ρij = µi,
∑

i

ρij = νj ,
∑

j

ρij(xi − yj) = 0, ρij ≥ 0. (26)

The associated dual problem is to find

min
αi,βjγi





∑

i

αiµi +
∑

j

βjνj



 ,

where αi, βj , γi are chosen to satisfy L(xi, yj) ≤ 0 for all i and j, where, in turn,

L(xi, yj) = |xi − yj | − αi − βj − γi(xi − yj).

By the complementary slackness condition we have that for an optimum ρijL(xi, yj) =

0.
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Given the constants βj we can define a function β(y) via β(yj) = βj and by

linear interpolation between these points, with β(y) = ∞ outside [y1, yn]. Then

also we can define L(xi, y) = |xi − y| − αi − β(y) − γi(xi − y).

The primal problem is feasible and therefore has a solution and the values of the

primal and dual problems are equal, (for this fundamental result see Gale, Kuhn

and Tucker [9], or for a recent treatment Vanderbei [19]).

Lemma 18 The solution of the linear programme is such that β(y) is convex in y

and γi is increasing in i. Further, if yj > xi and ρij > 0 then ρkl = 0 for all (k, l)

for which (k < i, l > j) and if yj < xi and ρij > 0 then ρkl = 0 for all (k, l) for

which (k > i, l < j).

Proof: Suppose β(y) is not convex. Then for some j ∈ {2, . . . , n − 1}

βj > βj+1
(yj − yj−1)

(yj+1 − yj−1)
+ βj−1

(yj+1 − yj)

(yj+1 − yj−1)
.

Fix i and suppose first that xi ≤ yj. Then from the fact that L(xi, yk) ≤ 0 for

k = j ± 1 we obtain

βj+1 ≥ αi − (1 + γi)xi + (1 + γi)yj+1

βj−1 ≥ αi − (1 + γi)xi + (1 + γi)yj−1

and we conclude that βj > αi − (1 + γi)xi + (1 + γi)yj . Hence L(xi, yj) < 0 and

ρij = 0.

A similar argument (but replacing (γi + 1) with (γi − 1)) applies if xi > yj and

then ρij = 0 for all i. Hence
∑

i ρij = 0, a contradiction.

Now consider the monotonicity of γ. We want to show that if xk > xi then

γk > γi. We consider two cases depending on whether (xk,−αk) lies above or

below the tangent to β with slope γi + 1.

Suppose (xk,−αk) lies strictly below the line y = −αi + (1 + γi)(x − xi). This

condition can be rewritten as (αi + xi(1 + γi)) < (αk + xk(1 + γi)).

We know there exists y > xk for which L(xk, y) = 0. (In particular, there exists

ρkj > 0 for which the associated yj > xk and then L(xk, yj) = 0.) Then

0 = L(xk, y) = (y − xk)(1 + γk) − αk − β(y)

= [(y − xi)(1 + γi) − αi − β(y)] + [(y − xk)(γk − γi)]

+[(αi + xi(1 + γi)) − (αk + xk(1 + γi))].

The first and last of the square-bracketed terms are negative since L(xi, y) ≤ 0 and

by the hypothesis that (xk,−αk) lies below the tangent, and hence γk > γi.

If (xk,−αk) lies at or above the line y = αi + (1 + γi)(x − xi), then it must lie

strictly above the tangent to β with slope γi−1, so we must have (αi +xi(γi−1)) >

(αk + xk(γi − 1)). Then by a similar argument to before we find for some y < xk

that 0 = L(xk, y) > (xk − y)(γi − γk).

Finally, suppose ρij > 0 for yj > xi and ρkl > 0 for (k > i, l < j). We want to

obtain a contradiction. By definition,

0 ≥ L(xk, yj) + L(xi, yl)
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= ((yj − xk)(1 + γk) − βj − αk) + ((yl − xi)(1 + γi) − βl − αi)

= L(xi, yj) + L(xk, yl) + (γk − γi)(yj − yl)

= (γk − γi)(yj − yl) > 0

The reverse case for yj < xi is similar. �

In the discrete case, β is piecewise linear or equivalently β′′ is a purely atomic

measure. For this reason φ ≡ (β′)−1 is not uniquely defined and the same applies to

f and g. For this reason we need an alternative parameterisation. The same issue

can arise whenever µ has atoms, and in these cases it is convenient to introduce

some independent randomisation.

Define FX(x) = µ((−∞, x]) and let U be a uniform random variable on [0, 1].

Then F−1
X (U) ∼ µ, and our approach for considering the case where X is not

a continuous random variable is to condition on U rather than X , and to define

a trio of increasing functions, p < q < r with domain [0, 1]. In particular, we

suppose B0 ≡ X = q(U) (so that q ≡ F−1
X ), and we try to find p : [0, 1] 7→ R and

r : [0, 1] 7→ R such that if

τp,q,r = inf{t : Bt /∈ (p(U), r(U))|B0 = q(U)} (27)

then Y ≡ Bτ ∼ ν. The relationships between f, g and p, r are that f ≡ p ◦ q−1 and

g ≡ r ◦ q−1.

The embedding condition (recall (12)) becomes

ν((−∞, y]) =

∫ 1

0

duI{r(u)≤y} +

∫ 1

0

duI{p(u)≤y<r(u)}
r(u) − q(u)

r(u) − p(u)
(28)

Note that he embedding condition is easiest to express in terms of the functions p, q

and r, whereas it is more natural to describe the ‘global consistency condition’ as

conditions on f and g.

8.2 The discrete case: determining p, q and r for the case of

constant X

Suppose that µ = δx, the unit mass at x. If ν = δx then we take p(u) = q(u) =

r(u) = x. Otherwise, suppose that Y has law mean x and takes values yk1 < . . . <

ykm
< x ≤ yj1 < . . . < yjn

with probabilities νk1 , . . . , νkm
and νj1 , . . . νjn

.

The aim is to construct increasing functions p(u) < x < r(u) such that if

U ∼ U [0, 1] and τ(u) = inf{s ≥ 0 : Bs ∈ {p(u), r(u)}} then Bτ(U) ∼ ν. (The

resulting construction is the analogue of Skorokhod’s original solution of the SEP,

Skorokhod [17]).

The construction proceeds by induction: clearly if m = 1 = n, then we take

p ≡ p(u) = yk1 and r ≡ r(u) = yj1 and the martingale condition forces νj1 =

(x − yk1)/(yj1 − yk1). Note that in this case

E|Y − X | = 2
(r − x)(x − p)

(r − p)
= 2

∫ 1

0

[

(r(u) − x)(x − p(u))

r(u) − p(u)

]

du.

So suppose m + n > 2. Let u1 = (yj1 − yk1) min{νj1/(x − yk1), νk1/(yj1 − x)}.

For u ≤ u1 we set p(u) = yk1 and r(u) = yj1 . Without loss of generality, suppose
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Figure 3: The functions p, q, r in the discrete case. In this example the measure ν places

mass on {y1 < · · · < y6} and µ places mass on {x1 < · · · < x4}.

νj1/(x − yk1) ≤ νk1/(yj1 − x). (This will necessarily be the case if yj1 = x.) Then

P(Y = yj1 , U ≤ u1) = u1(x − yk1)/(yj1 − yk1) = νj1 and P(Y = yk1 , U ≤ u1) =

u1(yj1 − x)/(yj1 − yk1) ≤ νk1 . Conditional on U ≤ u1 we have embedded the mass

at yj1 and some of the mass at yk1 , and so conditional on U > u1 we must have that

Y does not take the value yj1 . Since, U conditioned on U > u1 is again a uniform

random variable we can use the inductive hypothesis to complete the construction.

In this way we construct increasing functions p and r with p(0) = yk1 , p(1) =

ykm
, r(0) = yj1 , r(1) = yjn

. It also follows that E[|Y − X |] = u1E[|Y − X ||U ≤
u1] + E[|Y − X |; U > u1], and applying the inductive hypothesis to the latter we

again get

E|Y − X | = 2

∫ 1

0

[

(r(u) − x)(x − p(u))

r(u) − p(u)

]

du.

8.3 The discrete case: determining p, q and r for the case of

general X

The extension to random variables X taking finitely many values is straightforward

— if X = q(U) then conditioning on the value X = x is equivalent to conditioning

on q−1(x−) < U ≤ q−1(x+) — and then the solutions for individual x can be

pasted together. The results of Lemma 18 concerning where the joint measure ρ

places mass are sufficient to ensure that r and p from this concatenation of solutions

are increasing.

For discrete measure we have X = q(U) and Y ∈ {p(U), r(U)}, and by con-
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struction Y ∼ ν. For the optimal p, r we have

H(µ, ν) = 2E

[

(r(U) − q(U))(q(U) − p(U)

r(U) − p(U)

]

.

In particular, if

µ =

m
∑

i=1

µiδxi
, ν =

n
∑

j=1

νjδyj
,

then let (η
(i)
j )1≤j≤n be the distribution on {yj}1≤j≤n given by η

(i)
j = ρij/µi. For

each i we use the solution of Section 8.2 to produce functions pi(u) < xi < ri(u),

such that, if B
(i)
0 ∼ δxi

, Ui ∼ U [0, 1] and τi(u) = inf{s ≥ 0 : B
(i)
s /∈ (pi(u), ri(u))}

then B
(i)
τ(Ui)

∼ η(i).

Now, with q = F−1
X and U ∼ U [0, 1], we define p and r via

(p(u), r(u)) =

(

pi

(

u −
∑

l<i µl

µi

)

, ri

(

u −
∑

l<i µl

µi

))

∑

l<i

µl < u ≤
∑

l≤i

µl.

Then, the condition from Lemma 18 that yj < xi and ρij > 0 implies ρi+1,l = 0 for

l < j ensures that p and r so defined are increasing.

8.4 General bounded measures by approximation

The idea to cover general centred measures is to approximate µ and ν with finite

measures µm and νm. For these discrete problems we find the associated increasing

pm, qm, rm. We have to show that these sequences converge and that the limits

p, q, r are associated with a construction which embeds ν and is optimal.

Suppose that X and Y have bounded support, and suppose µm and νm are

the approximations for µ and ν with support 2−m
Z (recall Section 2 where ηm is

defined as an approximation of η from above), and let pm, qm, rm be the associated

increasing functions, the construction of which is as described in Section 8.3. For

each fixed m the pair (Xm, Y m) attains H(µm, νm).

By Helley’s Selection Theorem (eg Billingsley [2]) there exists a subsequence

down which each of pm, qm, rm and their inverses converge to p, q, r, p−1, q−1 and

r−1, at least at points of continuity of the limit functions. Write P m for the inverse

to pm with similar expressions for qm, rm, p, q and r.

We have that

νm((−∞, y]) =

∫ 1

0

duI{rm(u)≤y} +

∫ 1

0

duI{pm(u)≤y<rm(u)}
rm(u) − qm(u)

rm(u) − pm(u)
(29)

and that νm((−∞, y]) → ν((−∞, y]) at least at continuity points of ν. Moreover,

∫ 1

0

duI{u≤Rm(y)} →
∫ 1

0

duI{u≤R(y)}

since Rm(y) → R(y) and

∫ 1

0

duI{pm(u)≤y<rm(u)}
(rm(u) − qm(u))

rm(u) − pm(u)
→

∫ 1

0

duI{p(u)≤y<r(u)}
(r(u) − q(u))

r(u) − p(u)

20



since the limit function has only countably many discontinuities, and except at

these discontinuities the integrand converges (and is bounded). It follows that (28)

is satisfied, and τ = τp,q,r embeds ν.

It remains to show that this construction is optimal. Even if it is not we have

the bound

H(µ, ν) ≥ E[|Bτ − B0|] = 2E

[

(r(U) − q(U))(q(U) − p(U))

r(U) − p(U)

]

. (30)

On the other hand, by Lemma 4, H(µ, ν) ≤ lim inf H(µm, νm). But

H(µm, νm) = 2E

[

(rm(U) − qm(U))(qm(U) − pm(U))

rm(U) − pm(U)

]

→ 2E

[

(r(U) − q(U))(q(U) − p(U))

r(U) − p(U)

]

by bounded convergence, so there is equality throughout in (30).

8.5 Distributions on R
+.

The final task is to extend the results of the previous section from bounded measures

to measures on R
+. Observe that results for centred distributions with bounded

support extend by translation to any pair of distributions with bounded support

and the same mean.

Suppose that µ and ν have support on R
+, and that both have mean c.

From the put-call parity relation we have |Y −X | = 2(X − Y )+ + (Y −X) and

so

Ĥ(µ, ν) := sup
(X,Y )∈M

E[(X − Y )+]

satisfies Ĥ(µ, ν) = H(µ, ν)/2.

For each n set X̃(n) = X ∧ n and Ỹ (n) = Y ∧ λ(n) where λ(n) is chosen so that

E[X̃(n)] = E[Ỹ (n)]. It can be shown that λ(n) ≥ n. Then for any joint distribution

of (X, Y ) we have

E(X − Y )+ = lim
n↑∞

E[(X − Y )+I{X<n}] (31)

and

E[(X − Y )+I{X<n}] = E[(X̃(n) − Ỹ (n))+I{X̃(n)<n}]

≤ E[(X̃(n) − Ỹ (n))+]

≤ Ĥ(µ(n), ν(n)), (32)

where IA denotes the indicator function of the set A and µ(n) and ν(n) denote the

laws of X̃(n) and Ỹ (n). Both X̃(n) and Ỹ (n) are bounded random variables and so

by the results of the previous section,

Ĥ(µ(n), ν(n)) =

∫ 1

0

(r(n)(u) − q(n)(u)(q(n)(u) − p(n)(u))

(r(n)(u) − p(n)(u))
du
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for appropriate functions 0 ≤ p(n)(u) ≤ q(n)(u) ≤ r(n)(u). Then

(r(n)(u) − q(n)(u)(q(n)(u) − p(n)(u))

(r(n)(u) − p(n)(u))
≤ q(n)(u) − p(n)(u) ≤ q(n)(u) ≤ q(u).

This last inequality follows by construction, since q and q(n) are inverse distribution

functions of X and X̃(n) respectively.

Down a subsequence if necessary we have that p(n) and r(n) converge to p and

r say, and then by dominated convergence

Ĥ(µ(n), ν(n)) →
∫ 1

0

(r(u) − q(u)(q(u) − p(u))

(r(u) − p(u))
du. (33)

Combining (31), (32) and (33) we conclude that the right hand side of (33) is an

upper bound for Ĥ(µ, ν). Moreover, by the same limiting arguments as before, p,

q and r define a feasible construction of a random variable Y and hence

H(µ, ν) = 2

∫ 1

0

(r(u) − q(u)(q(u) − p(u))

(r(u) − p(u))
du

as required.

We have proved:

Theorem 19 Suppose that µ and ν are probability measures on R
+ each with mean

c, and suppose that µ � ν in convex order. Let U be a uniform random variable on

[0, 1].

There exist increasing functions p, q, r such that X = q(U) and Y ∈ {p(U), r(U)}
with E[Y |U ] = E[X |U ] satisfy X ∼ µ, Y ∼ ν and E[Y |X ] = X, and the pair (X, Y )

is such that H(µ, ν) = E[|Y − X |]. Moreover,

H(µ, ν) = 2

∫ 1

0

(r(u) − q(u))(q(u) − p(u))

r(u) − p(u)
du.

If µ has no atoms then there exist increasing f and g such that X ∼ µ, Y ∈
{f(X), g(X)} with E[Y |X ] = X satisfy Y ∼ ν and the pair (X, Y ) is such that

H(µ, ν) = E[|Y − X |] Moreover,

H(µ, ν) = 2

∫

(g(x) − x)(x − f(x))

g(x) − f(x)
µ(dx).

Further, if f and g are strictly increasing, continuous and differentiable, then if β is

given by (17)-(18), and then α is defined from β as in Section 5, then an alternative

expression is

H(µ, ν) =

∫

β(y)ν(dy) +

∫

α(x)µ(dx)

Proof: The first part of the theorem was proved at the beginning of this section,

and the second part follows immediately from the identification f ≡ p ◦ q−1 and

g = r ◦ q−1, note that the hypothesis is sufficient to ensure that q−1 is continuous

and well defined. The final part follows from Lemma 17. �
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9 Numerical examples

In this section we present results from two numerical examples. In the first case

we consider a pair of (continuous) uniform random variables and in the second

case we consider a pair of normal random variables. The first step in each case is to

approximate the initial and target random variables with discrete random variables.

The problem of determining the joint law which maximises the expected value of

E|Y − X | can then be reduced to a finite linear programme of the form (25)-(26).

The results of these programmes are presented in Figures 4 and 5 in the form of

the associated functions f and g. In particular, it is implicit in these figures that

the linear programme has found a solution where either Y = f(X) or Y = g(X) for

increasing functions f and g as required by the analysis of Section 4.
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uniform, vol = (10%, 15%), #nodes = (40, 200)

Figure 4: The functions y = f(x) and y = g(x) for a numerical example in which X ∼
U [−0.1, 0.1] and Y ∼ U [−0.15, 0.15]. In fact both random variables are approximated by

discrete uniform random variables on 40 and 200 points respectively. The linear programme

finds an optimum which places mass at a ‘cloud’ of points on a grid; these points have

been smoothed to improve the clarity of the figure.

10 Efficiency of the bound in the lognormal case

Suppose that X and Y have lognormal distributions. In particular suppose that µ

and ν are the laws of

ceσ
√

T1G1−σ2T1/2 and ceσ
√

T2G2−σ2T2/2

respectively, for a pair of standard Gaussian random variables G1 and G2.

A candidate martingale model for which the prices satisfy FT1 ∼ µ and FT2 ∼ ν

is the Black-Scholes model

dFt = σFtdBt F0 = c.
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Figure 5: The functions y = f(x) and y = g(x) for a numerical example in which

X ∼ N(0, σ2
X) and Y ∼ N(0, σ2

Y ) where σX = 0.1 and σY = 0.15. Both random variables

are approximated by discrete random variables such that X is approximated with a dis-

tribution consisting of 40 atoms, and Y is approximated by a random variable with 200

atoms.

Under that (complete market) model the price E ≡ E(V ) for the forward start

straddle is given by

E(V ) = E[|FT2 − FT1 |] = E[FT1 ]E[|FT2/FT1 − 1|]
= cE[|eσ

√
T2−T1G−σ2(T2−T1)/2 − 1|]

= 2cP(−
√

V /2 ≤ G ≤
√

V /2)

where V = σ2(T2 − T1) and G is standard Gaussian. When V is small this is

approximately E(V )
.
= c

√
V

√

2/π.

Now consider the upper bound on the price of the option across all models which

are consistent with the marginal distributions and the martingale property. We are

going to use the entropy criterion to give a bound on H(µ, ν). Since the family

of lognormal distributions is closed under multiplication, we might hope that the

entropy bound is moderately tight. It can be shown that for lognormal distributions

it always outperforms the bound based on quadratic functionals and the Cauchy-

Schwarz inequality.

We have

E[Y ln Y − X ln X ] =
cV

2
;

and then by Corollaries 15 and 16

H(µ, ν) ≤ cJ̃(V/2) ≤ c
√

V .

If we compare (the bound on) the model-free upper bound with the Black-Scholes
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model-based price we find that the ratio of the prices satisfies

1 ≤ H(µ, ν)

E(V )
≤ J̃(V/2)

4Φ(
√

V /2) − 2
.

The model-based price, the entropy-based upper bound and the ratio of these

quantities are plotted in Figure 6. Note that the smallest upper bound H is a

function of σ2T1 and V ≡ σ2(T2 −T1) whereas both the Black-Scholes model-based

price and the entropy-based bound depend on V alone.
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Figure 6: A plot of E(V ) (the Black-Scholes model-based price, dashed line) and J̃(V/2)

the entropy-based bound (solid line), scaled such that c = 1. The ratio between these

prices is also shown; for small V the limit ratio is
p

π/2, for large V the limit is 1. We

have 0 ≤ E(V ) ≤ H(µ, ν) ≤ J̃(V/2) ≤ 2 ∧
√

V . It should be noted that most plausible

parameter combinations are represented by low values of V , so the left-hand side of this

figure is the most relevant.

Consider two agents (of different sexes) who wish to price a forward start straddle

and who are in a market with vanilla call and put prices which are consistent with

lognormal distributions for the asset price. The first agent assumes that prices

follow a Black-Scholes model and charges E(V ). If he delta-hedges the straddle,

and if the price realisation is consistent with the constant volatility model then

he will hedge perfectly. The second agent makes no modelling assumptions. She

charges a higher price for the straddle (but at worst 30% higher, and typically less)

and uses the premium to purchase a portfolio of puts and calls and at T1 makes an

investment in the forward market. Under optimal portfolio choice, then whatever

the realisation of the price process she will super-replicate.

The second agent charges more for the option, but not much more. Her hedging

strategy is also much simpler (it is semi-static, which may be a significant advantage

in a environment with transaction costs) and, most importantly, it is robust to model

misspecification, and deviations from a Black-Scholes world.
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