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Improved Inference and Estimation in Regression With

Overlapping Observations

Abstract

We present an improved method for inference in linear regressions with overlapping

observations. By aggregating the matrix of explanatory variables in a simple way, our

method transforms the original regression into an equivalent representation in which

the dependent variables are non-overlapping. This transformation removes that part

of the autocorrelation in the error terms which is induced by the overlapping scheme.

Our method can easily be applied within standard software packages since conventional

inference procedures (OLS-, White-, Newey-West- standard errors) are asymptotically

valid when applied to the transformed regression. Through Monte Carlo analysis we

show that they perform better in finite samples than the methods applied to the original

regression that are in common usage. We illustrate the significance of our method with

two empirical applications.

JEL classification: C20, G12

Keywords: Long horizon, stock return predictability, induced autocorrelation



1 Introduction

Researchers in empirical finance often regress long-horizon returns onto explanatory variables.

Such regressions have been used to assess stock return predictability, to test the expectations

theory of the term structure of interest rates, to test the cross-sectional pricing implications of

the CAPM and consumption-CAPM, to investigate the forward premium puzzle, and to test

the efficiency of foreign exchange markets. These regressions involve overlapping observations

which raise econometric issues that are addressed in this paper.

Regressions with long horizon returns often show much higher R2’s than regressions with

one-period returns. But work by Valkanov (2003), Hjalmarsson (2006), and Boudoukh,

Richardson & Whitelaw (2008) suggests that long-horizon return regressions have no greater

statistical power to reject the null of no predictability than their short-horizon counterparts.

For testing predictability the use of long-horizon returns (as opposed to one-period returns)

would appear to be of little value.

Nonetheless, the analysis of long-horizon returns can contribute significantly to understanding

predictability (or dependence) and its economic significance. For example, one concern with

the interpretation of short-horizon regressions is measurement error. Cochrane & Piazzesi

(2005, p. 139) forecast annual bond returns using monthly data and claim that “to see the

core results you must look directly at the one-year horizon” and further find that estimating

a typical one-month return model “completely misses the single factor representation” due to

measurement error. Another reason for analyzing longer horizons is lengthy and uncertain

response times. A number of recent studies of the consumption-CAPM, including Daniel

& Marshall (1997), Parker (2001), Parker & Julliard (2005), Jagannathan & Wang (2005,

2007), and Malloy, Moskowitz & Vissing-Jorgensen (2005) measure consumption risk using

consumption growth and returns measured over several periods. In general this approach
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works better than the standard consumption-CAPM. If consumers face costs associated with

changing consumption, or if information acquisition is constrained, then consumption may

change more slowly than implied by the standard consumption-CAPM, and this justifies a

focus on returns and consumption growth measured over longer horizons.

Long-horizon return regressions potentially suffer from two econometric problems. The first

is bias in the usual OLS coefficient estimates. The bias is not caused by the presence of over-

lapping observations but arises when the predictor variable is persistent and its innovations

are strongly correlated with returns (see Gregory Mankiw & Shapiro (1986) and Stambaugh

(1999)). These conditions may also arise in short-horizon regressions.

Our paper does not address this problem of bias but focuses instead on the second problem,

one which is specific to overlapping observations: the strong autocorrelation pattern induced

by the overlapping scheme. It is now well known that commonly used methods to deal with

the autocorrelation are inadequate and can lead to misleading estimates of the confidence

intervals associated with coefficient estimates obtained from finite samples. Despite this,

many studies still resort to standard inference techniques such as applying White or common

Newey-West standard errors within an overlapping regression framework.1

This paper presents a simple procedure that can markedly improve inference in regressions

with overlapping observations. The beauty of our approach, for practical purposes, is that it

can be readily implemented in standard econometric software packages and no serious pro-

gramming is needed to obtain our inference statistics.

We consider an overlapping regression in which a multi-period return is regressed onto a set

1See for instance Lamont (1998), Lettau & Ludvigson (2001), Baker, Greenwood & Wurgler (2003), Evans &

Lyons (2005) and Bacchetta, Mertens & van Wincoop (2009).
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of regressors, and for which observations are available each period. This regression is trans-

formed into a non-overlapping regression in which one-period returns are regressed onto a set

of transformed regressors. The OLS coefficient estimates from the original and transformed

regressions are numerically identical, but inference based on the transformed regression is sim-

plified because the autocorrelation induced by overlapping observations is no longer present.

The procedure is equally applicable to time-series regressions and to panel regressions. It can

be applied to both predictive (forecasting) and contemporaneous (explanatory) regressions.

We show that standard inference procedures, such as OLS, White (1980) and Newey &

West (1987), are asymptotically valid when applied to the transformed regression. To as-

sess the finite-sample performance of our procedure we run Monte Carlo simulations. These

show that the standard inference procedures perform substantially better when based on the

transformed regression rather than on the original specification. Indeed, simpler procedures,

such as OLS and White, when applied to the transformed regression, perform better than

more sophisticated techniques such as Hansen & Hodrick (1980) and Newey-West applied to

the original regression. The superior performance of our procedure is most marked when the

return horizon in the original specification is long in comparison to the sample length, and

Hansen-Hodrick and Newey-West standard errors tend to be severely biased down. The stan-

dard errors obtained from our transformed regression have much less bias and lower standard

deviation. The result is that confidence intervals using our method have coverage probabili-

ties much closer to their nominal levels than confidence intervals constructed using standard

techniques.

Other papers have documented problems with conventional inference applied to long-horizon

regressions (for example Ang & Bekaert (2007), Nelson & Kim (1993), and Hodrick (1992))

and utilize or advocate simulation techniques for inference. Another strand of the litera-
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ture develops covariance estimators for specific cases, imposing additional structure on the

serial correlation of moment conditions. These structured estimators generally have excel-

lent small-sample properties, but their applicability is limited. For example, the estimator

of Richardson and Smith (1991) provides valid inference only under the null hypothesis that

returns are serially uncorrelated, and only when the explanatory variables are past returns.

Even then, valid inference requires the unpalatable assumption (for asset returns) of condi-

tional homoscedasticity.

The methodology that is most similar to ours is Hodrick (1992). He presents a structured co-

variance estimator that generalizes Richardson & Smith (1991) in that regressors need not be

past returns and returns need not be conditionally homoscedastic. A drawback of Hodrick’s

derivation is that it is complex, and as a result his estimator has not gained widespread

acceptance. For example Campbell, Lo & MacKinlay (1997) do not mention it in their well-

known textbook, despite having a detailed discussion on statistical inference in long-horizon

regressions. It has also not been widely used in the empirical literature, with the exception of

Ang & Bekaert (2007). They use Hodrick (1992) standard errors and argue that much of the

empirical evidence for the time-series predictability of stock returns has been overstated in the

literature due, in part, to the use of OLS or Hansen & Hodrick (1980) standard errors which

they find ’lead to severe over-rejections of the null hypothesis’. Our method is not complex,

easy to implement and therefore is more likely to be adopted by empirical researchers.

Our method naturally extends to cases where the error term in short-horizon regressions is

autocorrelated. By transforming the regression equation, the autocorrelation in the error

term induced by the use of overlapping data is stripped out. The researcher can then focus

on addressing any remaining autocorrelation present in short-horizon returns by applying the

standard econometrics toolbox.
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Jegadeesh (1991) and Cochrane (1991) advocate an approach which is similar in appearance

to ours. They bypass the problem of overlapping observations by regressing one-period re-

turns onto the sum of lags of the explanatory variable. However, this is strictly a procedure

for testing the null of no-predictability. It does not provide a coefficient estimate for a long-

horizon regression, and it is restricted to regressions with a single explanatory variable, so it

is of little use for understanding the sources of long-horizon predictability.

Our approach is particularly useful for panel data, where the complexity and size of the data

precludes some of the more sophisticated methods for dealing with overlapping observations

such as bootstrapping and the Hodrick (1992) procedure. The Fama-MacBeth methodology

is a simple approach that neatly accounts for cross-sectional correlation in errors. When

multi-period returns are involved, we can use our transformed regression approach in com-

bination with the Fama-MacBeth methodology to remove the serial correlation induced by

overlapping observations.

Section 2 develops the basic idea in the context of inference for a linear regression with over-

lapping observations. Section 3 presents results from Monte Carlo studies demonstrating the

advantages of our approach. Section 4 illustrates our approach with two empirical examples.

The first example analyses the predictability of long-horizon US stock market returns and the

second example analyses reversal in relative country stock index returns. Section 5 concludes.

2 Linear Regression with Overlapping Observations

Let r denote the T ×1 vector of one period log returns and A the (T −k+1)×T matrix, that

has entries aij = 1 if i ≤ j ≤ i+k−1 and 0’s otherwise, with i = 1, . . . , T −k+1. Thus, A is

the transformation matrix with 1’s on the main diagonal and the first k−1 right off-diagonals
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and 0’s otherwise. Hence, Ar is the (T −k+1)×1 vector of k period log returns2. X denotes

the (T − k + 1)× ℓ matrix of explanatory variables (with the first column of X consisting of

1’s). We consider the following (predictive) linear regression setup with overlapping returns

Ar = Xβ + u, (1)

in which u denotes the (T − k + 1)× 1 error term vector. The OLS parameter estimate of β

in equation (1) is given by

β̂ = (X ′X)−1X ′Ar. (2)

It can be rewritten as

β̂ = (X ′X)−1(A′X)′r, (3)

which shows that the OLS estimate of β can be rewritten in terms of the original non-

overlapping one period returns.

Moreover, β̂ as given in equation (3) can be obtained from an associated transformed regres-

sion

r = X̃β + ũ, (4)

in which X̃ is the T × ℓ matrix of transformed explanatory variables given by

X̃ ≡ A′X(X ′AA′X)−1X ′X, (5)

and ũ is the T × 1 error term vector of this transformed regression.3 To see this, note that

2We assume that the single period returns as well as the overlapping long period returns are available to the

researcher. This is generally the case, though the Hansen & Hodrick (1980) study of the foreign exchange

market is an exception since the returns in that case are on three month forward contracts, and the prices of

one week forward contracts are not available.
3We use the convention that the tilde marks quantities from the transformed regression throughout the paper.
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the OLS estimate of β in equation (4) is given by

β̂ = (X̃ ′X̃)−1X̃ ′r,

=
(

(X ′X(X ′AA′X)−1X ′AA′X(X ′AA′X)−1X ′X
)

−1
X ′X(X ′AA′X)−1X ′Ar,

= (X ′X)−1X ′Ar, (6)

which is indeed the same as the estimator in equation (2).

Substituting for Ar from (1) into (2), and for r from (4) into (6) gives the following pair of

equations for the error in the estimate of β which conventional inference procedures are based

on:

β̂ − β = (X ′X)−1X ′u,

β̂ − β = (X ′X)−1X ′Aũ. (7)

The benefit of using the second formulation is that the error depends explicitly on the autocor-

relation structure of ũ, the noise in the transformed, non-overlapping regression, rather than

on u, the noise in the overlapping regression. The autocorrelation structure of ũ is generally

much simpler than the autocorrelation structure of u since that part of the autocorrelation

in u induced by the deterministic aggregation scheme A is explicitly known and accounted

for. The efficiency gain lies in accounting for a known dependence pattern explicitly, without

the need to estimate it in a noisy way.

We do not claim that either model (1) or model (4) is the true data generating process. If

model (1) is misspecified so will be model (4) and thus issues such as inconsistency, bias,

endogeneity and omitted variable problems, are not addressed and cannot be mitigated by

the use of our transformation. However, our transformation will be of particular help in

improving the accuracy of the standard errors when the model is misspecified, because the

misspecification is likely to induce autocorrelation in the error terms. It is much easier to
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deal with this autocorrelation by itself (as in the transformed regression) rather than to deal

with both it and the autocorrelation induced by the use of overlapping observations at the

same time.

2.1 Inference on β

We now show how the asymptotic covariance matrix of β̂ derived from the overlapping regres-

sion (1) is related to the asymptotic covariance matrix of β̂ derived from the non-overlapping

regression (4). Let β̂(T−k+1) denote the OLS estimate of β from a data sample of size T−k+1

obtained from regression equation (1). Rearranging equation (1) yields

T − k + 1√
T − k + 1

(

β̂(T−k+1) − β
)

=

(

1

T − k + 1
X ′X

)

−1
1√

T − k + 1
X ′u,

and under certain regularity conditions4 we obtain a central limit theorem of the following

form

D
−1/2
(T−k+1)

(

β̂(T−k+1) − β
)

asy∼ N(0, Iℓ),

with

D(T−k+1) =
1

T − k + 1
Q−1

(T−k+1)S(T−k+1)Q
−1
(T−k+1),

where Q(T−k+1) is given by

Q(T−k+1) ≡ E

(

1

T − k + 1
X ′X

)

,

and S(T−k+1) is given by

S(T−k+1) ≡ V

(

1√
T − k + 1

X ′u

)

=
T

T − k + 1
V

(

1√
T
(A′X)′ũ

)

=
T

T − k + 1
S̃(T ).

4See for example White (2001) chapter 6.4 for the general case of dependent and heterogeneously distributed

observations.
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The second line follows by exploiting the relationship in (7), and it links the asymptotic

covariance matrix S(T−k+1) in the overlapping regression with its twin asymptotic covari-

ance matrix S̃(T ) in the non-overlapping regression in which the deterministic transformation

scheme A is explicitly visible. Under the assumption of consistent estimates ˆ̃
S(T ) for S̃(T )

and Q̂(T−k+1) estimated by Q̂(T−k+1) =
1

T−k+1
X ′X , a consistent estimate for the asymptotic

covariance matrix of β̂ can be obtained by

ˆ̃
D(T−k+1) =

T

(T − k + 1)2
Q̂−1

(T−k+1)
ˆ̃
S(T )Q̂

−1
(T−k+1). (8)

Alternatively it can be obtained under the assumption of consistent estimates Ŝ(T−k+1) for

S(T−k+1) as

D̂(T−k+1) =
1

T − k + 1
Q̂−1

(T−k+1)Ŝ(T−k+1)Q̂
−1
(T−k+1).

In this latter case, we do however lose the advantage of accounting for the deterministic trans-

formation scheme A a priori and the estimate Ŝ(T−k+1) will not be as precise as the estimate

ˆ̃
S(T ).

The most common procedure to estimate the covariance matrix of β̂ under the suspicion of

an unknown autocorrelation pattern in the error terms of a linear regression is to resort to the

Newey-West HAC covariance matrix. The Newey-West covariance estimate of ˆ̃
S(T ) is given

by

ˆ̃
S(T ) = Γ̂A′X(0) +

J
∑

j=1

w(j, J)
(

Γ̂A′X(j) + Γ̂A′X(j)
′

)

, (9)

with

Γ̂A′X(j) ≡
T−j
∑

t=1

(A′X)′t ˆ̃ut
ˆ̃ut+j(A

′X)t+j ,

and

w(j, J) ≡ 1− j

J + 1
,
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where J denotes the lag length and a subscript t denotes the tth row of a matrix. From the

definition of X̃ in equation (5) it can be seen that

X̃t(X
′X)−1(X ′AA′X) = (A′X)t,

so that

Γ̂A′X(j) = (X ′AA′X)(X ′X)−1Γ̂X̃(j)(X
′X)−1(X ′AA′X).

Substituting this expression into equation (9) and afterwards into equation (8) yields

ˆ̃
D(T−k+1) = T (X̃ ′X̃)−1

(

Γ̂X̃(0) +
J
∑

j=1

w(j, J)
(

Γ̂X̃(j) + Γ̂X̃(j)
′

)

)

(X̃ ′X̃)−1, (10)

which is the standard Newey-West HAC covariance matrix for the transformed non-overlapping

regression. This estimator is simple, it is consistent and it is guaranteed to be positive def-

inite. Without further knowledge of the autocorrelation structure in the error terms that

remains after correcting for the autocorrelation induced by the transformation A, it is the

most reliable estimator at hand.

The White heteroscedasticity consistent covariance matrix is obtained as a special case (J =

0) and can be used under the assumption of no further autocorrelation in the error terms ũ.

In this case equation (10) simplifies to

ˆ̃
D(T−k+1) = T (X̃ ′X̃)−1Γ̂X̃(0)(X̃

′X̃)−1. (11)

Our result is of key interest for practical purposes, since it shows that reliable standard errors

in the case of regressions with overlapping observations can be obtained simply by i) con-

structing the transformed regressor matrix X̃ , ii) running regression (4) and iii) relying on

conventional Newey-West HAC standard errors on the basis of this regression for parameter

inference. The beauty of this is that it can be achieved almost effortlessly in any standard

econometric software package.
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3 Monte Carlo Analysis

We have outlined the relationship between the asymptotic covariance of β in the transformed

and the overlapping regression. We argued that accounting for a known transformation

scheme a priori as done by the transformed regression will yield more precise estimates of

the covariance of β than applying conventional methods such as Hansen-Hodrick or Newey-

West directly to the overlapping regression. In this section we show that inference based

on the transformed regression has indeed better finite-sample properties than conventional

approaches based on the overlapping regression.

We run Monte Carlo simulations using a variety of values for k and for the length of the data

T . We compare the performance of procedures based on the transformed regression with the

more conventional approaches based on Newey-West and Hansen-Hodrick estimators of the

covariance matrix of β applied to the overlapping data regression.5

An alternative approach to improving the inference in the presence of auto-correlated er-

rors is to use pre-whitening, as in Andrews & Monahan (1992) and Sul, Phillips & Choi

(2005). In our simulations, pre-whitening at best performs comparably with the Newey-

West and Hansen-Hodrick estimators applied also to the overlapping regressions. For the

shorter datasets we consider, the estimation of the pre-whitening VAR comes so close to

non-stationarity that the estimated standard error is unstable. In the interests of space,

the simulations with the four alternative HAC estimators and with pre-whitening are not

reported here but are available from the authors’ website.

5Andrews (1991) examines and compares a variety of other HAC estimators, which differ from Newey-West

in their weighting function w(j, J). We have done the simulations using the four other HAC estimators he

considers (see Andrews (1991 p. 829)). The results are substantially unaltered.
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Our main finding is that the transformation we propose does indeed lead to substantial

improvements in inference for small samples. Conventional OLS standard errors obtained

from the transformed regression provide the most accurate small-sample inference for ho-

moscedastic data generating processes. In the presence of heteroscedasticity, White (1980)

heteroscedasticity-consistent standard errors from the transformed regression provide the

most accurate inference in small samples. For the case of autocorrelated error terms in

the non-overlapping data Newey & West (1987) from the transformed regression performs

best. When the forecast return horizon is long in comparison to the sample period, and when

the regressors are strongly positively autocorrelated, the Newey-West and Hansen-Hodrick

procedures produce standard errors that are severely biased downwards.

The underlying data generating process for our simulations of the one period return process

takes the following form

rt+1 = α + γ1X1t + νt+1,

where X1t is a stationary AR(1) processes with unit variance and AR parameter 0.8. We

consider four particular cases:

1) In the base case (Table 1) there is no predictability at any horizon (γ1 = 0) and the error

term νt+1 ∼ N(0, 1).

2) In the second case (Table 2) there is no predictability as in 1), but the error term νt+1 is

heteroscedastic with νt+1 = X1tεt+1, where εt+1 ∼ N(0, 1).

3) In the third case (Table 3) returns are predictable (γ1 = 0.5) and the error term νt+1 ∼

N(0, 1); the coefficient γ1 is chosen so that the R2 for one period returns is 20%.

12



4) The fourth case (Table 4) is included to show the implications of autocorrelation in the

non-overlapping observations. We induce the autocorrelation by using a misspecified model.

Returns are predictable as in 3), but instead of X1t a false regressor X2t is used in the regres-

sions. X2t is mutually uncorrelated with X1t and also follows a stationary AR(1) processes

with unit variance and AR parameter 0.8.

We consider two scenarios for the choice of the sample length T and overlapping periods k.

The first scenario is T = 250 and k = 3; and the second scenario is T = 100 and k = 12. The

overlapping regression in equation (1) is estimated. The standard error on β̂1 is reported. For

each data generating process, and for each sample length and return horizon we present re-

sults for four conventional covariance estimators applied to the overlapping regression: ’OLS’

is the standard OLS covariance estimator, ’White’ is the White (1980) heteroscedasticity-

consistent covariance estimator, ’NW’ is the Newey & West (1987) heteroscedasticity and

autocorrelation consistent (HAC) estimator, and ’HH’ is the heteroscedasticity-consistent

version of Hansen & Hodrick (1980). The choice of bandwidth for HAC estimators depends

on the assumed correlation structure. With an overlapping regression it is conventional to

use a bandwidth equal to the overlap or twice the overlap (see for example Cochrane & Pi-

azzesi (2005)). Since there is no qualitative difference between the results for a lag length

equal to J = k or J = 2k we only report the first case ’NW(k)’. In addition, we also report

Newey-West standard errors ’NW’ with the common lag length as suggested by Newey &

West (1987), which is J =
⌊

4
(

T
100

)2/9
⌋

.

We then present results for covariance estimators based on the transformed regression. We

consider the three estimators presented in the previous section: OLS, White, and Newey-West.

For each covariance estimator and each scenario we report the bias, standard deviation, and

RMSE (root mean squared error), as well as the true confidence levels of the nominal 99%,
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95%, and 90% regression coefficient confidence intervals. 50000 simulations are used for each

scenario.

Table 1 shows that the OLS and White estimators from the overlapping regression are severely

biased down since they fail to account for serial correlation induced by the overlapping scheme.

However, the Newey-West and Hansen-Hodrick estimators also exhibit a downward bias,

which is particularly strong when the return horizon is long and the sample length short.

For example with a forecast return horizon of 12 and 100 observations the bias in the NW

and HH estimators is sufficiently large to result in the 99% confidence intervals from these

estimators having coverage frequencies below 88%.

In contrast, the estimators based on the transformed regression have much better proper-

ties. In particular, the standard OLS estimator of covariance obtained from the transformed

regression performs very well in this situation, exhibiting low bias and coverage frequencies

that are close to their nominal levels. Note however that the Newey-West estimator applied

to the transformed regression is also biased down, though not by as much as the Newey-

West estimator applied to the overlapping regression. The bias is induced by the fact that

the estimated error has zero mean, and this gives rise to a spurious negative autocorrela-

tion. The Newey-West estimator is also noisier than the White and standard OLS estimator

because it estimates cross product terms that the other estimators set to zero by construction.
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Obs. k Variance Est. Bias Std. RMSE 99% 95 % 90 %

Overlapping Regression
250 3 OLS -0.019 0.003 0.020 89.4% 78.2% 70.0%

White -0.020 0.004 0.020 88.8% 77.5% 69.3%
NW(k) -0.008 0.008 0.011 96.8% 90.2% 83.5%
NW -0.005 0.009 0.011 97.4% 91.5% 85.4%
HH -0.007 0.009 0.011 97.0% 90.8% 84.4%

Transformed Regression
OLS 0.000 0.006 0.006 98.9% 94.9% 89.6%
White -0.001 0.007 0.007 98.8% 94.5% 89.3%
NW -0.002 0.009 0.010 98.1% 93.1% 87.6%

Overlapping Regression
100 12 OLS -0.629 0.077 0.634 71.0% 57.9% 49.9%

White -0.643 0.079 0.648 67.7% 54.8% 47.2%
NW(k) -0.386 0.293 0.485 88.2% 78.1% 70.5%
NW -0.443 0.220 0.494 86.9% 75.9% 68.1%
HH -0.442 0.222 0.495 86.8% 75.9% 68.1%

Transformed Regression
OLS -0.020 0.223 0.224 98.8% 94.8% 89.6%
White -0.033 0.259 0.261 98.6% 94.2% 88.7%
NW -0.129 0.309 0.335 96.9% 91.0% 84.7%

Table 1: Monte Carlo simulations: No return predictability. Homoscedastic error terms.

For each estimator, the bias in the estimate, its standard error, its root mean square error

and true confidence levels of 99%, 95% and 90% are shown.

Obs. k Variance Est. Bias Std. RMSE 99% 95 % 90 %

Overlapping Regression
250 3 OLS -0.063 0.002 0.063 69.7% 56.5% 48.7%

White -0.049 0.010 0.050 85.9% 73.8% 65.2%
NW(k) -0.023 0.024 0.033 96.1% 88.5% 81.3%
NW -0.017 0.028 0.033 96.8% 90.1% 83.4%
HH -0.020 0.027 0.034 96.3% 89.2% 82.2%

Transformed Regression
OLS -0.045 0.005 0.045 89.6% 78.4% 70.2%
White -0.003 0.023 0.024 98.6% 94.2% 88.6%
NW -0.010 0.030 0.032 97.7% 91.8% 85.8%

Overlapping Regression
100 12 OLS -0.718 0.059 0.721 66.2% 53.0% 45.4%

White -0.711 0.073 0.714 66.9% 54.1% 46.4%
NW(k) -0.485 0.285 0.562 87.0% 75.6% 67.5%
NW -0.521 0.221 0.566 86.1% 74.4% 66.2%
HH -0.522 0.224 0.568 85.9% 74.3% 66.0%

Transformed Regression
OLS -0.182 0.242 0.303 97.7% 92.0% 85.9%
White -0.037 0.465 0.466 98.9% 94.2% 88.5%
NW -0.153 0.483 0.506 97.6% 91.4% 84.9%

Table 2: Monte Carlo simulations: No return predictability. Heteroscedastic error

terms. For each estimator, the bias in the estimate, its standard error, its root mean

square error and true confidence levels of 99%, 95% and 90% are shown.
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Obs. k Variance Est. Bias Std. RMSE 99% 95 % 90 %

Overlapping Regression
250 3 OLS -0.021 0.003 0.021 90.4% 79.2% 70.7%

White -0.021 0.004 0.021 89.8% 78.4% 70.0%
NW(k) -0.009 0.008 0.012 96.9% 90.5% 83.9%
NW -0.006 0.010 0.011 97.5% 91.8% 85.8%
HH -0.007 0.010 0.012 97.2% 91.1% 84.8%

Transformed Regression
OLS -0.002 0.006 0.006 98.9% 94.7% 89.4%
White -0.002 0.007 0.007 98.7% 94.4% 89.1%
NW -0.004 0.010 0.010 98.0% 92.8% 87.1%

Overlapping Regression
100 12 OLS -1.319 0.112 1.323 68.2% 55.4% 47.6%

White -1.352 0.116 1.357 64.6% 51.9% 44.3%
NW(k) -0.923 0.439 1.022 83.2% 72.7% 65.2%
NW -0.973 0.335 1.029 84.4% 73.0% 65.1%
HH -0.973 0.340 1.031 84.1% 72.8% 65.0%

Transformed Regression
OLS -0.712 0.240 0.751 93.3% 83.5% 75.5%
White -0.734 0.281 0.786 92.5% 82.4% 74.3%
NW -0.638 0.431 0.770 92.4% 83.0% 75.6%

Table 3: Monte Carlo simulations: Return predictability. Homoscedastic error terms.

For each estimator, the bias in the estimate, its standard error, its root mean square

error and true confidence levels of 99%, 95% and 90% are shown.

Obs. k Variance Est. Bias Std. RMSE 99% 95 % 90 %

Overlapping Regression
250 3 OLS -0.051 0.005 0.052 82.9% 70.1% 61.7%

White -0.052 0.006 0.052 82.0% 69.2% 60.8%
NW(k) -0.028 0.015 0.032 94.7% 86.3% 78.9%
NW -0.022 0.018 0.028 96.0% 88.7% 81.9%
HH -0.023 0.018 0.029 95.7% 88.1% 81.2%

Transformed Regression
OLS -0.033 0.007 0.033 94.3% 85.3% 77.5%
White -0.033 0.009 0.034 94.0% 84.9% 77.0%
NW -0.019 0.018 0.026 96.4% 89.6% 83.1%

Overlapping Regression
100 12 OLS -1.656 0.200 1.668 68.0% 55.0% 46.9%

White -1.690 0.202 1.702 64.7% 51.7% 44.3%
NW(k) -1.030 0.753 1.276 87.9% 77.2% 69.2%
NW -1.188 0.567 1.316 85.7% 74.4% 66.3%
HH -1.184 0.574 1.315 85.8% 74.4% 66.4%

Transformed Regression
OLS -1.072 0.272 1.106 92.3% 81.8% 73.7%
White -1.103 0.307 1.145 91.2% 80.6% 72.6%
NW -0.919 0.546 1.069 92.3% 82.8% 75.3%

Table 4: Monte Carlo simulations: Misspecification. For each estimator, the bias in

the estimate, its standard error, its root mean square error and true confidence levels of

99%, 95% and 90% are shown.
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Table 2 reports results from simulations where the errors are conditionally heteroscedastic.

The presence of heteroscedasticity has a clear effect, significantly worsening the performance

of the OLS covariance estimates obtained from the transformed regression. Here, the White

(heteroscedasticity consistent) covariance estimate obtained from the transformed regression

performs very well and clearly better than the Hansen-Hodrick estimator in the overlapping

regression. The Newey-West estimator applied to the transformed regression is again inferior

to the White estimator, since there is no autocorrelation structure left that may be captured

by the Newey-West estimator.

Table 3 reports results from simulations where the regressors and errors follow the same pro-

cesses as in Table 1, but the actual returns are predictable with a one-period ahead R2- of

20% percent. The results are broadly similar to those in Table 1. Again the procedures based

on the transformed regression perform best, and the best performing estimator is again OLS

applied to the transformed regression. Note however that when returns are predictable, the

OLS covariance estimator applied to the transformed regression is biased down as it ignores

the serial correlation in one-period returns due to the predictability of returns. As in Table

1, the Newey-West estimator applied to the transformed regression is inferior to the OLS

estimator in respect of both noise and bias.

The data generating processes simulated so far have a noise term that is serially uncorre-

lated. Where there is some correlation structure in the noise, our approach should be helpful

in stripping out the autocorrelation induced by the overlapping scheme, making it easier to

account for any remaining underlying autocorrelation in estimating the standard error of the

parameter estimates. A very common cause of autocorrelated noise process is the use of a

misspecified regression model. To examine this case, we rely on the same data generating

model as in 3), but use a false regressor in the regression model.

17



The results, in Table 4, confirm our intuition. As in the previous tables, the covariance

estimators from the overlapping regression are severely biased downwards, with the use of

Newey-West and Hansen-Hodrick reducing but not eliminating the bias. The bias and cover-

age ratios are all much worse than in Table 1, the base case, because of the autocorrelation

in the error term. Again, the covariance estimators from the transformed regressions perform

better than ones from the original regressions, but the autocorrelation in the error term in-

duces significant bias in the OLS and White estimators. The biases are reduced by the use

of Newey-West, and the coverage ratios are closer to their nominal levels.

The broad conclusions drawn from these tables seem to be robust to the choice of parameters.

In particular, if the regressors are less persistent (AR parameter of 0.1 rather than 0.8)

simulations (not reported here) also show that the procedures performed on the transformed

regressions work best, with the Newey-West estimator being the best in presence of remaining

autocorrelation, the White estimator being the best in the presence of heteroscedasticity and

the OLS estimate being best otherwise.

4 Review of Two Financial Studies

Overlapping regressions have been central to the debate over the predictability of stock market

returns (Fama & French (1988); Campbell & Shiller (1988)). To illustrate the relevance of

our approach we conduct two analyses using real rather than simulated data. In the first

we re-examine the issue of the predictability of long-horizon US stock market returns using

Robert Shiller’s data on stock market returns and earnings. In the second we illustrate our

approach to Fama-MacBeth regressions by looking at the predictability of relative country

stock returns. Although we introduced our methodology only in the context of plain linear

regression it is straightforward to extend it to the Fama-MacBeth panel regression framework.
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It should be emphasised that the purpose of this analysis is to illustrate the approach to

overlapping regressions we have developed in this paper rather than to cast new light on

the debate over the predictability of stock prices. In particular, we have not attempted to

allow for other econometric issues raised by the use of a highly persistent regressor, or the

joint endogeneity of the dependent and independent variables. Here, we only show the effect

our methodology in terms of efficiency gains for standard errors under the same assumptions

under which they were originally derived in the literature.

4.1 US Stock Market Predictability

Taking data from Robert Shiller’s website (http://www.econ.yale.edu/ shiller/ data.htm) for

annual US stock returns (S&P 500) and price-earnings ratios from 1871 to 2008, we estimate

the regression

rt,t+k = βrt−k,t + ut+k

where rt,t+k is the k period log real return from t to t+ k. The results are set out in Table 5.

Where the dependent variable is the ten-year return (k = 10), the standard approach, with

either Newey-West or Hansen-Hodrick estimates of the covariance matrix, leads to severe

underestimates of the standard error, with corresponding over-estimates of the t-statistics,

in comparison to the analysis based on the transformed regression. This bias is observable

also in each of the sub-periods. The coefficient on the lagged return, which appears to be

significantly negative over the whole period and in the first half period, is indistinguishable

from zero when using the transformed regression. For the five year return, the position

is broadly similar except that the coefficient is not significantly different from zero in either

the standard or the transformed regression except when looking at the first half of the period.

We now examine the predictability of long-period returns from the price earnings ratio. We
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consider the regression

rt,t+k = β1Xt + β2rt−k,t + ut+k

where rt,t+k is the k period log real return from t to t + k and Xt the year t ratio of price

to smoothed earnings. The results are set out in Table 6. The results are similar to the pre-

vious regression in that the standard approach, with either Newey-West or Hansen-Hodrick

estimates of the covariance matrix, leads to severe underestimates of the standard error, with

corresponding over-estimates of the t-statistics, in comparison to the analysis based on the

transformed regression. This bias is observable also in each of the sub-periods. ’n/a’ indicates

cases in which the estimated Hansen-Hodrick covariance matrix is not positive definite. The

coefficient on the price earnings ratio is significantly negative at conventional significance lev-

els both over the period as a whole, and in the second half, under both the standard approach

and the transformed regression, but the standard errors are roughly doubled. This holds true

both for five and ten year rolling returns. The coefficient on lagged returns, which appears

to be significantly positive in the second half of the period for both 5 and 10 year returns,

and to be significantly negative in the first half for 10 year returns, turns out to be insignifi-

cantly different from zero when using the transformed variables. In almost every transformed

regression we observe the tendency that the Newey-West t-statistics are slightly higher than

the White ones, indicating that they are picking up some remaining autocorrelation pattern

left in the non-overlapping error terms.

20



Dependent Variance 1881-2008 1881-1944 1945-2008

variable Estimator β̂ t-stat β̂ t-stat β̂ t-stat

10-year log Overlapping Regression

real return NW(k) -.299 -2.70 -.489 -3.40 -.223 -1.60

NW -2.36 -3.10 -1.36

HH n/a -5.07 n/a

Transformed Regression

White -.299 -1.37 -.489 -1.24 -.223 -0.88

NW -1.41 -1.23 -1.02

5-year log Overlapping Regression

real return NW(k) -.123 -0.89 -.368 -2.68 .138 0.66

NW -0.89 -2.68 0.66

HH -0.85 -3.49 0.64

Transformed Regression

White -.123 -0.65 -.368 -1.33 .138 0.54

NW -0.67 -1.61 0.55

1-year log Standard Regression

real return White .034 0.35 0.001 0.01 .077 0.49

NW 0.41 0.01 0.73

Table 5: Estimation results for regression rt,t+k = rt−k,tβ+ut+k, where rt,t+k is the k-year

log real return on the S&P 500 index. The estimate of beta and its t-statistic are shown

for 10, 5 and 1 year returns, for a variety of different time periods. The estimates based

on overlapping regressions apply OLS to the data as is, and use Newey-West and Hansen-

Hodrick to estimate the covariance matrix. The transformed regression uses the methodology

described in this paper and uses White and Newey-West estimates for the covariance matrix.

The last row of each panel shows the non-overlapping case where annual returns are regressed

annually. The data are from http://www.econ.yale.edu/ shiller/data.htm.

21



Dependent Variance 1881-2008 1881-1944 1945-2008

variable Estimator

Panel A: Coefficient on the price earnings ratio (β1)

β̂1 t-stat β̂1 t-stat β̂1 t-stat

10-year log Overlapping Regression

real return NW(k) -.057 -3.09 -.012 -0.82 -.079 -3.16

NW -3.28 -0.89 -3.28

HH -2.84 -0.81 -3.34

Transformed Regression

White -.057 -2.13 -.012 -0.20 -.079 -2.52

NW -3.14 -0.31 -3.50

5-year log Overlapping Regression

real return NW(k) -.028 -3.58 -.036 -1.51 -.032 -5.95

NW -3.47 -1.51 -5.95

HH -3.07 -1.34 -6.53

Transformed Regression

White -.028 -2.27 -.036 -1.26 -.032 -2.27

NW -2.67 -1.12 -3.38

1-year log Standard Regression

real return White -.006 -2.73 -.013 -2.51 -.005 -2.02

NW -2.29 -2.12 -2.08

Panel B: Coefficient on lagged returns (β2)

β̂2 t-stat β̂2 t-stat β̂2 t-stat

10-year log Overlapping Regression

real return NW(k) .156 0.99 -.394 -2.42 .414 1.99

NW 0.96 -2.43 1.96

HH 1.15 -3.06 2.58

Transformed Regression

White .156 0.52 -.394 -0.57 .414 1.24

NW 0.84 -0.83 1.76

5-year log Overlapping Regression

real return NW(k) .150 1.05 -.056 -0.26 .472 2.87

NW 1.03 -0.26 2.87

HH 0.93 -0.28 2.37

Transformed Regression

White .150 0.65 -.056 -0.14 .472 1.69

NW 0.72 -0.16 2.17

1-year log Standard Regression

real return White .090 0.92 .120 0.91 .115 0.74

NW 1.10 0.90 1.07

Table 6: Estimation results for regression rt,t+k = Xtβ1 + rt−k,tβ2 + ut+k, where rt,t+k is

the k-year log real return on the S&P 500 index and Xt is the ten year rolling price earnings

ratio. The estimate of beta and its t-statistic are shown for 10, 5 and 1 year returns, for

a variety of different time periods. The estimates based on overlapping regressions apply

OLS to the data as is, and use Newey-West and Hansen-Hodrick to estimate the covariance

matrix. The transformed regression uses the methodology described in this paper and uses

White and Newey-West estimates for the covariance matrix. The last row of each panel

shows the non-overlapping case where annual returns are regressed annually. The data are

from http://www.econ.yale.edu/ shiller/data.htm.
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4.2 Country Stock Returns

Since our approach can easily be generalized to Fama-MacBeth panel regressions we illustrate

its implications by analyzing return predictability in international equity indices. Richards

(1997) documents reversal in the relative returns of international equity indices. Countries

that have done relatively well in the past period tend to under-perform their peers in the fu-

ture. The reversal is strongest at the three year horizon. The finding is confirmed by Balvers,

Wu & Gilliland (2000).

A natural way of exploring the predictability of relative country returns at different horizons is

to follow the Fama-MacBeth procedure using country stock indices as the assets. Specifically

we run the following cross-sectional regressions for every month t

rt,t+k = rt−k,tβt + ut+k, (12)

where rt,t+k is the vector of k-month returns across different countries from month t to t+ k.

We then test whether the estimated slope coefficient differs from 0. Like Richards (1997),

the country returns are the MSCI equity index returns less the return on the US market,

taken from Datastream. The period is January 1982 to May 2007, and the countries are

Austria, Australia, Belgium, Canada, Denmark, Germany, Hong Kong, Ireland, Italy, Japan,

Netherlands, Norway, Singapore, Sweden, Switzerland, and the UK. The results are shown

in Table 7.

The point estimate of beta is positive at the one year horizon. This is consistent with the

findings of Bhojraj (2006), and suggests some momentum in returns at shorter horizons. The

value of beta goes negative at longer horizons, taking its largest negative values at around

the six year horizon. According to the untransformed regression, the beta is significantly less

than zero for horizons of four years or more (the reason that no Hansen-Hodrick t-statistics

are available beyond 6 years is that the covariance matrix is not positive definite). According
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to the transformed regression with simple OLS standard errors, however, the positive beta at

the one year horizon is just significant, but at all other horizons the beta does not significantly

differ from zero. Using Newey-West standard errors in the transformed regression suggests

that no beta is significantly different from zero.

Horizon Mean t-statistic obtained from

in years β̂ Overlapping Regression Transformed Regression

NW(k) NW HH OLS NW

1 0.123 1.72 2.06 1.44 1.98 1.69

2 0.041 0.39 0.64 0.32 0.52 0.43

3 -0.083 -1.01 -1.59 -1.10 -0.84 -0.85

4 -0.179 -3.12 -4.23 -4.69 -1.59 -1.79

5 -0.172 -3.20 -5.19 -3.41 -1.25 -1.49

6 -0.240 -5.36 -9.81 -6.03 -1.61 -1.97

7 -0.212 -5.54 -5.92 n/a -1.47 -1.89

8 -0.174 -6.85 -7.14 n/a -1.22 -1.34

9 -0.139 -2.78 -4.04 n/a -0.84 -0.83

10 -0.096 -7.32 -3.69 n/a -0.50 -0.48

Table 7: The table shows the estimate of the regression coefficient of long horizon country index returns

on lagged returns. The basic regression is rt,t+k = rt−k,tβt + ut+k where rt,t+k is the vector of k-month

log returns (in excess of the US log return) across 22 different countries from month t to t+ k, and the

slope parameter estimates are then pooled and tested for whether the mean (’mean beta’) differs from

zero. Since the regressions are done each month, the data are overlapping, so the t-statistics are adjusted

for autocorrelation using a Newey-West (NW) or Hansen-Hodrick (HH) procedure. As an alternative

the regression is transformed as described in the text and the standard error is calculated from the

transformed regression (’transformed regression’). The data are from Datastream.

5 Conclusion

The main contribution of this paper is to introduce a simple transformation of the regres-

sor matrix which turns a long horizon regression with overlapping observations into a short

horizon regression with non-overlapping observations. This transformation greatly simplifies

parameter inference. We show that standard inference techniques such as OLS, White and

Newey-West parameter standard errors can be applied to the transformed regression and

perform better than more sophisticated methods utilized directly with the overlapping re-

gression. Our transformation can readily be implemented in standard software packages.
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We show, using Monte Carlo studies, that our method dominates conventional techniques

in all three cases of homoscedastic, heteroscedastic and autocorrelated error terms in small

samples. In the cases of homoscedastic and heteroscedastic error terms our method is asymp-

totically equivalent to Hansen-Hodrick type estimators, but when there is residual autocor-

relation (not induced by the overlapping scheme) our method dominates asymptotically as

well as in small samples.

The intuition behind the efficiency gain in our method is that we explicitly account for a

known deterministic aggregation pattern a priori and do not try to estimate it in a noisy

way, as for example through pre-whitening or through Hansen Hodrick or Newey-West type

approaches. The efficiency gain of our method in comparison to methods designed to account

only for the autocorrelation induced by the overlapping scheme (Hansen-Hodrick) is higher the

more autocorrelation structure is present in the error terms of the non-overlapping regression.

In this paper we introduce our methodology in the context of overlapping regressions, but

the methodology is applicable to a wider range of data aggregation schemes, as long as they

are deterministic and known to the researcher.

The importance of using more reliable standard errors have been shown by reviewing two

important empirical studies. The transformation of a long-horizon regression into a short-

horizon regression shows the limits to the statistical power of long-horizon regressions.
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