
              

City, University of London Institutional Repository

Citation: Yvon, C., Ramsden, C. M., Lane, A., Powner, M. B., Da Cruz, L., Coffey, P. J. & 

Carr, A-J. F. (2015). Using Stem Cells to Model Diseases of the Outer Retina. 
Computational and Structural Biotechnology Journal, 13, pp. 382-389. doi: 
10.1016/j.csbj.2015.05.001 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/15235/

Link to published version: https://doi.org/10.1016/j.csbj.2015.05.001

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Computational and Structural Biotechnology Journal 13 (2015) 382–389

Contents lists available at ScienceDirect

journa l homepage: www.e lsev ie r .com/ locate /csb j
Mini Review
Using Stem Cells to Model Diseases of the Outer Retina
Camille Yvon a, Conor M. Ramsden a,b,⁎, Amelia Lane a, Michael B. Powner a, Lyndon da Cruz a,b,
Peter J. Coffey a,c, Amanda-Jayne F. Carr a

a The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
b NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
c Center for Stem Cell Biology and Engineering, NRI, UC, Santa Barbara, USA
⁎ Corresponding author.
E-mail address: conor.ramsden.09@ucl.ac.uk (C.M. Ram

http://dx.doi.org/10.1016/j.csbj.2015.05.001
2001-0370/© 2015 Yvon et al. Published by Elsevier B.V. o
license (http://creativecommons.org/licenses/by/4.0/).
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 22 January 2015
Received in revised form 30 April 2015
Accepted 1 May 2015
Available online 6 May 2015

Keywords:
Disease models
Induced pluripotent stem cells
Retinitis pigmentosa
Age related macular degeneration
Leber congenital amaurosis
Inherited retinopathy
Retinal degeneration arises from the loss of photoreceptors or retinal pigment epithelium (RPE). It is one of the
leading causes of irreversible blindness worldwide with limited effective treatment options. Generation of in-
duced pluripotent stem cell (IPSC)-derived retinal cells and tissues from individuals with retinal degeneration
is a rapidly evolving technology that holds a great potential for its use in disease modelling. IPSCs provide an
ideal platform to investigate normal and pathological retinogenesis, but also deliver a valuable source of retinal
cell types for drug screening and cell therapy. In this review, we will provide some examples of the ways
in which IPSCs have been used to model diseases of the outer retina including retinitis pigmentosa (RP), Usher
syndrome (USH), Leber congenital amaurosis (LCA), gyrate atrophy (GA), juvenile neuronal ceroid lipofuscinosis
(NCL), Best vitelliform macular dystrophy (BVMD) and age related macular degeneration (AMD).
© 2015 Yvon et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural

Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Retinal degeneration is one of the leading causes of irreversible
blindness worldwide with limited effective treatment options. Retinal
degeneration is the end point of many differing disease processes. In
sden).

n behalf of the Research Network of C
2014, inherited retinopathies overtook diabetic related causes for
blind registration in the working population in the UK [1] and in older
individuals the major cause for sight loss is age related macular degen-
eration (AMD) [2] with over 40 million sufferers worldwide. The retina
is located in the posterior chamber of the eye, lining its inner surface and
comprisesmultiple layers of differing cell types. Themajority of primary
retinopathies affect the outer retina, which is primarily formed of the
photoreceptors and its monolayer of support cells termed the retinal
omputational and Structural Biotechnology. This is an open access article under the CC BY
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pigment epithelium (RPE) [3]. Inherited retinopathies can affect
the development of the light-sensitive photoreceptor cells of the retina,
the function of retinal and RPE cells, or can result in the premature
loss of these cells (Fig. 1). As the intrinsic regenerative capacity of
the retina and RPE is limited, one potential therapy is cellular replace-
ment [4].

Over the past decade, stem or progenitor cell transplantation as a
means of replacing tissue has evolved rapidly, with the development
of protocols to drive embryonic stem cells (ESCs) towards the fate of
both photoreceptors or the RPE [6] [5–15] Despite this, regenerative
therapy is only in the early stages of clinical trial and is currently
being developed primarily for the more common retinal degenerations
and each disease poses its own challenges. Therefore, in order to learn
more about these wide ranging pathologies, there is a need to develop
robust models to target therapies. Until recently in retinal biology, ani-
mals have been used primarily tomodel disease.While this has benefits
in examining an organ in relation to an organism, there aremajor draw-
backs in terms of increasing ethical objection to the use of animals in
research and critical differences between human and animal species,
for example the absence of a macular region in the common rodent
animal models.
Fig. 1. A diagrammatic comparison of healthy (A) and diseased (B) retina highlighting
the strong interdependence between photoreceptors and RPE. In the diseased retina, a
decreased number of cones (C) and rods (R) is associated with RPE cell loss. This may
lead to RPE detachment, where the RPE is lifted off the Bruch's membrane (BM) overlying
the choroid. In addition, there is a reduction of phagosomes (Ph) in the RPE, as well as
decreased phagocytosis of POS. In contrast, the neural circuits comprising bipolar cells
(BP) and ganglion cells (G) remain comparatively unchanged. INL inner nuclear layer;
ONL outer nuclear layer; GCL = ganglion cell layer. Adapted from Ramsden et al. [5].
In 2006, a major advance in stem cell technology produced a
new means with which to investigate inherited diseases, such as
retinopathies, in diseased patient cells in vitro. In a phenomenal series
of experiments, Takahashi and Yamanaka identified the embryonic
transcription factors that are required to turn an adult somatic cell
into a pluripotent stem cell. The group was able to reprogram mouse
[16] and subsequently humanfibroblasts [17] into stem cells, termed in-
duced pluripotent stem cells (IPSCs) using retroviral transduction with
the four transcription factors OCT4, SOX2, KLF4 and c-MYC. Using this
technology, fibroblast cells, which are readily accessible in the form of
a skin biopsy, can be taken from sufferers of retinal diseases and con-
verted into IPSCs. IPSC-derived eye cells will provide uswith a newplat-
form to investigate diseases in cell types, which have previously been
inaccessible. In this article, we explore the current state of published
outer retinal disease models using IPSCs and the technical difficulties
encountered in their generation.

2. Technical Challenges for IPS Generation, Differentiation and Use

IPSCs can be generated from a wide array of sources including
fibroblasts, keratinocytes, and T cells. The cell source can contribute
to the epigenetic memory and serves as a challenge for IPSC research.
Numerous studies have highlighted the varied growth and differentia-
tion characteristics of IPSC lines. This is thought to be caused by a com-
bination of genetic and epigenetic variation leading to subtle but
significant differences in endogenous signalling. [18–21] Therefore, re-
cent methods for deriving IPSCs from somatic cells may not always
yield uniform lineage competencies between lines [40]. This necessi-
tates optimization of IPSC-retinal cell differentiation protocols to suit
each IPSC line. This fact, in combination with the long time scales and
low efficiency of the majority of differentiation protocols makes for a
long and expensive period of research and development before a reli-
able method for generating retinal cells from IPSCs can be established.

Patient IPSC-derived cells/tissues can then be used to span a range of
applications from elucidating the mechanism of disease causing muta-
tions to drug and gene therapy testing (Fig. 2). The experimental pro-
cess requires that IPSC lines are also generated from healthy control
individuals in order to measure differences in the mutation carrying
patient cells [50]. An alternative strategy is to generate isogenic control
cell lines where the mutation of interest is corrected in patient cells
using gene editing technology. Control and test cell lines must then be
differentiated simultaneously into the target cell. In order to make
valid comparisons, it is ideal that the identity and maturity of the cells
derived from both test and control cell lines are equal. Extensive studies
of ESC lines has shown differences in their innate differentiation pro-
pensity [15,22]; thus it is likely that subjecting two cell lines to the
same protocol could generate a different array of cell types. This could
become problematic if retinal cells are identified and isolated from dif-
ferentiated stem cell cultures based on the expression of markers that
are also expressed in a range of neuronal cell types (e.g. Pax6, Chx10).
Similarly, markers that are specific to a level of cell maturity are impor-
tant. For example Recoverin is expressed early in human retinal devel-
opment [23] and persists thereafter; therefore, using Recoverin
expression as the de facto inclusion criteria for IPSC derived photorecep-
tors would include a range of cell types from developmentally imma-
ture progenitors to photoreceptors. If these potential pitfalls are not
properly accounted for, incorrect conclusions about disease aetiology
may be drawn.

The pure population of differentiated cells often has a limited prolif-
erative capacity necessitating continued derivation from the original
pluripotent IPSC bank [24]. IPSCsmay incurmutations and chromosom-
al loss over time in culture as well as a secondary shortening of their
telomere and reduced cell growth making the diligent maintenance of
the cell bank crucial [26,27].

Thus far IPSCs have been used to generate several cell types that are
implicated in retinal degenerative diseases, including RPE [28], retinal



Fig. 2. Application of patient specific IPSCs for disease modelling, drug discovery, gene therapy, small molecule screening and cell transplantation. Patient-specific IPSCs can be generated
via genetic reprogramming of dermalfibroblasts or blood cells to pluripotency using retroviral transductionwith the four transcription factors. This technology has emerged as a promising
tool for identification of disease causing mutations, examining efficacy of new therapeutics, and as a cell source for autologous retinal cell replacement.
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ganglion cells [29] and photoreceptors at various stages of maturity
fromprogenitors [30] to opsin expressing, inner segment bearing, ciliat-
ed cells [31,32] reminiscent of developing photoreceptors at foetalweek
12–15 of human development [23]. Three dimensional ‘optic cups’ con-
tainingmultiple cell types (rod and cone progenitors, inter-neurons and
ganglion cells) in a highly ordered structure have also been generated
[31,32]. Despite these successes it is widely acknowledged that coaxing
pluripotent cells to reliably and efficiently differentiate towards the
desired retinal lineage is a considerable challenge.

Protocols for the generation of retinal cells from IPSCs employ either
spontaneous or directed methods [33]. The former does not require
the addition of small molecules or growth factors but simply the with-
drawal of factors, which are required to maintain pluripotency from
the cell maintenance media (e.g. basic fibroblast growth factor). While
this technique has repeatedly proven to be a reliable and cost effective
method for generating RPE, the production of neural retinal cell types
requires a more directed procedure. Such methods commonly involve
the agonism or antagonism of developmentally critical signalling path-
ways with small molecules or recombinant growth factors. Photorecep-
tor generating protocols are notoriously laborious, time consuming and
highly dependent on the cell line used and epigenetic status, which can
vary over time in culture [18,34,35]. As such stem cell-derived RPE is a
much more easily producible, predictable and robust cell type in com-
parison to stem cell-derived photoreceptor-like cells.

Frequently the cell type of interest emerges alongside a myriad
of contaminating cell types — being able to identify and isolate the cells
of interest is critical to the success of these studies. The highly pigmented
RPE can be easily identified visually and separated manually or by fluo-
rescence activated cell sorting equipment (FACS). The isolated RPE cells
then have a degree of proliferative potential over a limited number of
passages, making it possible to generate sufficient material for experi-
ments. In contrast, non-pigmented neural retinal cells requiremore inno-
vative methods for their visual identification; for example ESC lines have
been developed with GFP tagged expression of early eye field marker
proteins to allow easy identification and purification [12].

Additionally once the desired cell type has been generated, the dis-
ease model may be hampered by the relative immaturity of the cells
generated. For example studies in human ESC derived RPE have found
its transcriptome to more closely match human foetal RPE than adult
cells [36,37]. Where degenerative retinal diseases with a late age of
onset are of interest, it will be necessary to consider whether the IPSC
derived cells are a model of a pre-symptomatic stage of the disease. In-
novative methods to artificially age cells in culture are being developed
to counter this problem in other disease models [38].

Finally, once the desired cell type has been generated in culture, the
use of this cell as a disease model may be affected by its isolation as a
single cell type. In vivo these cells would be exposed to exogenous
stresses, from a neighbouring cell type, the immune or vascular system.
Exposure to these types of stresses may be required to bring out the
disease phenotype in cultured cells, which may limit the utility of the
IPSC ‘disease in a dish’ paradigm.

3. Diseases Modeled

3.1. Retinitis Pigmentosa (RP)

Retinitis Pigmentosa is the most common form of inherited pro-
gressive retinal dystrophy that is both clinically and genetically
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heterogeneous. It is characterized by the progressive loss of rod pho-
toreceptors then RPE cells. Symptoms include night blindness and
progressive visual field loss, often leading to complete blindness.
No definitive treatment has been established yet. RP can be inherited
in autosomal dominant, autosomal recessive, X-linked, mitochondri-
al and genetically more complex modes [51,52]. Up to the present
time, over 60 different genes have been associated with RP, which
can occur in the retina alone or together with other syndromic disor-
ders [53]. As a result of the genetic heterogeneity, the roles of these
individual causative mutations have not been fully elucidated.

IPSC-derived retinal cells are an ideal in vitro model for disease
discovery. In effect, they enable a better appreciation of the molecular
and histological basis of diseases, including, RP, but also deliver a
means of identifying possible therapeutic strategies [7,54]. For example,
Jin et al. [54] obtained fibroblast cells from five RP patients with distinct
mutations in the RP1, RP9, PRPH2 or RHO gene, and generated patient-
specific IPSCs that were then differentiated into photoreceptor-like
cells, which expressed characteristic immunocytochemical markers
and electrophysiological properties. They found that, as occurs in
disease, the number of the patient-derived photoreceptor-like cells
decreased more rapidly in vitro than those derived from control lines.
Additionally, cells derived from patients with RP9 or RHO mutations
expressed markers for oxidative or endoplasmic reticulum (ER) stress.

The study also looked at stem cell therapy as a useful tool for screen-
ing of drug responses in RP. The authors identified α-tocopherol as a
potential therapeutic that could preserve RHO-positive cells in IPSC-
derived retinal cultures carrying the RP9 mutation. In effect, using
IPSC-derived cells in drug screens may ultimately help to narrow the
disease targets for experimental drugs, identify drugs for repurposing
and facilitate clinical trial design. Using IPSC-derived cells as a novel
platform for in vitro Phase 0 clinical trials would also provide important
information about the efficacy and efficiency of potential therapies long
before expensive clinical trials in patients. Drawbacks of this study in-
clude the use of limited photoreceptor markers and the small number
of mutations analysed. In effect, the four mutations are not representa-
tive of this heterogeneous disease entity. In addition, the study does
not take into account other factors that may have induced accelerated
photoreceptor cell loss.

Similarly, Yoshida et al. [55] generated an IPSC line from the somatic
cells of a patient with RP who carried a mutation in the RHO gene
(E181K). This IPSC line was subsequently used to derive rod photore-
ceptor like cells with the same mutation. These cells were used to
demonstrate that the mutation was indeed a pathogenic mutation and
were used to explore the underlyingmolecularmechanisms and poten-
tial therapeutic approaches. With the use of an adenoviral vector
gene transfer, the mutation was amended in the patients' IPSCs
and the cells were then differentiated to photoreceptor-like cells. The
study found a reduced survival rate in the photoreceptor cells with
the E181K mutation, which was associated with a higher expression of
ER stress and apoptotic markers. Furthermore, it was shown that nu-
merous reagents (e.g. rapamycin, PP242, AICAR, NQDI-1 and salubrinal)
promoted the survival of the patients' IPSC-derived photoreceptor-like
cells, with a concurrent decrease in ER stress and apoptosis markers.
This study is valuable as it draws attention to the use of IPSCs for review
of disease pathophysiology, aswell as for development of drug and gene
therapeutics.

Furthermore, Tucker and colleagues [56] derived IPSCs from a
patient with sporadic RP. Human IPSCs were used to confirm the path-
ogenicity of a homozygous Alu insertion into the causal gene via exome
sequencing. In this study, the authors demonstrated that the insertion of
the Alu sequence into exon 9 of the patient's male germ cell-associated
kinase (MAK) gene blocked the generation of a splice variant of MAK,
which is normally expressed only in retinal precursors. The abnormal
splicing of MAK impeded normal photoreceptor development, leading
to irreversible cell loss. In this study, IPSCs offered an effective means
of recognizing the disease mechanism by enabling the ex vivo study of
patient-specific retinal cells. Even thoughmutations inMAK only repre-
sent 1% of RP causes in the general population, they are quite common
among individuals of Ashkenazi Jewish descent (reported in one third
of cases) [57]. Nonetheless, the study acknowledges the drawbacks of
using exome capture methods, especially when studying autosomal
recessive diseases. In compound heterozygotes, both mutant alleles
are not always recognized and other plausible disease causing heterozy-
gous variants (e.g. ABCA4 and USH2A) cannot be discounted.

Schwarz et al. [58] generated IPSC derived RPE frompatientswith RP
carrying a premature stop mutation in the RP2 gene. RP2 protein was
undetectable in the patient cells, implying that themechanismunderly-
ing disease progression is caused by complete lack of RP2 protein. Using
translational read-through inducing drugs, Schwarz et al. [58] were able
to reinstate up to 20% of endogenous, full-length RP2 protein in cells
carrying themutation. This subsequently allowed the reversal of cellular
phenotypic defects seen in both the affected patient fibroblasts and
IPSC–RPE cells. The study successfully restored RP2 function, therefore
adding to therapeutic options for a wide range of diseases caused
by mutations that introduce premature stop codon into the coding
sequence. However, the study only focuses on one specific mutation,
therefore making it difficult to project or extrapolate results.

Li and colleagues [59] successfully used human IPSC–RPE cells as a
recipient for gene therapy to replace Membrane Frizzled-Related
Protein (MFRP); a gene implicated in RP that is expressed in the RPE
and is thought to control actin organization with the help of CTRP5.
Adeno-associated virus (AAV) 8-mediated delivery of MFRP into IPSC-
derived RPE from a patient with MFRP-associated RP appeared to suc-
cessfully restore actin organization observed in control cells. This gene
therapy approach also showed encouraging results in mouse models.
Overall, the study highlights that the successful restoration of MFRP
in diseased IPSC–RPE may be a good indicator for this therapeutic ap-
proach in subsequent clinical trials. However, the study only focuses
on one mutation, therefore making it difficult to extrapolate results
and limitations of AAV include vector production and the limited trans-
gene capacity of the particles [60].

3.2. Usher Syndrome (USH)

Usher syndrome is an autosomal recessive hereditary disorder
characterized by RP and congenital sensorineural hearing loss, with a
varying age of onset and extent of vestibular dysfunction. A number of
causative genes have been identified including the USH2A gene that is
expressed in the photoreceptor. Zahabi et al. [61] confirmed that several
retinal-disease specific IPSC lines (including USH) can be differentiated
into RPE cells, although it must be stressed that Usher's syndrome is pri-
marily a disease of photoreceptors not RPE and so limited conclusions
related to USH could be drawn from these cell lines. Tucker et al. [62]
performed exome sequencing on a patient with RP and identified
a probable causative mutation in USH2A. Sanger sequencing of the
USH2A gene introns revealed a second mutation in intron 40. In
order to further interrogate the pathophysiology, they reprogrammed
the keratinocytes of the patient into IPSCs and then used direct-
differentiation protocols to produce bilayered optic vesicle-like
structures, comprising RPE and primitive photoreceptor like cells.
cDNA analysis confirmed that the mutation in intron 40 caused expres-
sion of this intronic region, a frameshift and premature stop codon.
Scrutiny of the protein expression pointed towards misfolding and
potential endoplasmic reticulum stress.

3.3. Leber Congenital Amaurosis (LCA)

Leber congenital amaurosis is a rare degenerative inherited eye
disease that can lead to severe visual impairment before the age of
one [68]. It is thought to be caused by abnormal development of photo-
receptor cells, or by the premature degeneration of retinal cells [68]. It
is characterized by nystagmus, sluggish or no pupillary responses and



386 C. Yvon et al. / Computational and Structural Biotechnology Journal 13 (2015) 382–389
poor vision [69]. Mutations in 18 different genes have been reported to
cause LCA, which is an autosomal recessive disease. A third of patients
carry mutations in CEP290, a gene which normally produces a cilium-
associated protein that is involved in photoreceptor outer segment
(POS) trafficking and ciliogenesis [70–73]. Treatment options remain
limited [74], despite the emergence of therapeutic gene replacement
[65,66,75–80].

Understanding the pathophysiology and mutation-specific disease
severity in LCA patients is key to refining treatment and improving out-
comes. A study by Burnight et al. [66] demonstrated a ciliogenesis defect
in CEP290-associated LCA patient fibroblast cells. They showed that
lentiviral delivery of CEP290 to patient fibroblasts increased the propor-
tion of ciliated cells and the length of cilia in two out of three patient fi-
broblast lines compared to untransfected controls. This study was also
able to demonstrate that the range of CEP290 therapeutic dosage was
limited; with higher doses of wild-type CEP290 becoming toxic tofibro-
blasts cells in culture. Patient-specific IPSCs were then generated and
differentiated into cells that were immunoreactive for Otx2 (expressed
in almost all regions of the developing human brain) and cone opsin —
although no photoreceptor morphology primitive or otherwise was
demonstrated. These cellswere successfully transfectedwith a lentiviral
vectors containing full length CEP290 and the authors demonstrated ex-
pression of the full-length transcript and presence of the protein by
western blot in patient derived photoreceptor precursor cells. However,
the authors did not demonstrate a ciliogenesis defect in the photorecep-
tor precursor cells following transfection with full length CEP290, citing
difficulties in identifying cilia in differentiated structures.

Several studies were able to review pathologic formation of human
retinal cells in vitro, thereby facilitating disease modelling and drug
screening. As mentioned previously, Zahabi et al. [61] generated IPSC
lines from a number of patients with retinal dystrophies including
LCA. A directed differentiation protocol produced cells that were
pigmented and appear to be immunopositive for some RPE specific
markers including MitF and RPE65. Lustremant et al. [81] used LCA
patient-derived IPSCs to carry out differential transcriptome analysis
in order to find genes of interest likely to be causative in the affected
cell types. IPSC lines were derived from two patients with LCA carrying
undetermined mutations. The IPSCs were differentiated into RPE and
towards neural stem cells akin to the neural tube stage of development
(not yet restricted to the eye field lineage); cell types thatmay be affect-
ed by the disease. Comparison of diseased cells to healthy controls
identified 4 candidate genes that were differentially expressed in LCD-
derived cells and could correlate with disease mechanisms associated
with protein degradation and oxidative stress in this patient: tripartite
motif containing 61 (TRIM61) gene, the zinc finger protein 558 (ZNF558)
gene, glutathione S-transferase theta 1 (GSTT1) and neuronatin (NNAT).

3.4. Gyrate Atrophy (GA)

Gyrate atrophy is a progressive autosomal recessive disorder
that starts in childhood and induces diffuse atrophy of the choroid,
RPE and sensory retina. In GA, stem cell-based diseasemodels are useful
for pharmacological screening and the evaluation of new therapeutics.

Meyer et al. [7] reported the reinstatement of ornithine aminotrans-
ferase (OAT) enzyme activity in GA IPSC-derived RPE after vitamin B6
therapy. B6 supplementation is a recognized treatment for a subset of
GA patients. However, the patient in questionwas not predicted to ben-
efit from B6 using data derived from testing B6 effect on the OAT
enzyme in fibroblasts. This highlights how important tissue specific
drug testing is and showcases how powerful IPSC technology can be
in non-regenerating tissues.

3.5. Juvenile Neuronal Ceroid Lipofuscinosis (NCL)

Juvenile NCL, also known as Batten disease is a group of severe
neurodegenerative diseases characterized by intracellular accumulation
of autofluorescent wax-like lipid pigments (ceroid-lipofuscin) in neu-
rons. There are several subtypes based on mutations of the various
genes, disease onset, and severity of the neurological defects such as
progressive dementia, seizures and visual failure. The latter is normally
central in nature, due to degeneration of cones in the macula. Disease
progression is very aggressive and patients often die during their second
or third decade. It is inherited as an autosomal recessive genetic disor-
der and often caused by a genomic DNA deletion in the gene, ceroid
lipofuscinosis 3 (CLN3) [82]. There is currently no cure for this disorder
and the molecular mechanisms have not been fully elucidated [83].

Stem cell technology is a powerful tool for analysing the pathophys-
iology and for enhancing drug screening. A recent study by Lojewski
et al. [84] generated IPSC lines from patient with both late infantile
NCL (CLN2 mutation) and juvenile NCL (CLN3 mutation). Patient IPSCs
were differentiated into neuronal (not retinal) tissue. Abnormalities in
endosomal-lysosomal system were detectable in the patient IPSC, but
disease-subtype specific lysosomal storage was only evident in their
differentiated neuronal derivatives. This clearly shows the necessity of
IPSCs and IPSC differentiation technology to effectively model these
diseases.

The abnormalities could be corrected in patient cells by using adeno-
virus vector to overexpress wild type protein encoded by the CLN2
or CLN3 gene, confirming previous outcomes in animal models [85]
and lending support to AAVmediated gene therapy currently in clinical
testing (www.clinicaltrials.gov, NCT01161576). These IPSC-derived
neural progenitor cells were also used to screen potential pharmacolog-
ical modulators of the CLN2 encoded protein, demonstrating the use
of patient-derived IPSCs as a platform for testing new therapeutic
candidates.

3.6. Best Vitelliform Macular Dystrophy (BVMD)

Best vitellliform macular dystrophy is an autosomal dominant he-
reditarymaculopathywith childhood-onset accumulation of liposfuscin
in RPE. Affected individuals develop progressive central acuity loss, and
metamorphopsia, due to mutations in bestrophin, a chloride channel
[86]. There are different stages in the disease process including choroi-
dal neovascular membranes due to vitelliform lesions and geographic
atrophy in later stages [87,88].

Singh et al. [89] used human IPSCs to generate RPE from BVMD
patients and unaffected siblings in order to study the cellular and
molecular processes underlying this disease. Several differences were
observed between BVMD and normal sibling IPSC–RPE. The authors
noted that IPSC–RPE from patients had disrupted fluid flux, a build-up
of autofluorescent material and oxidative stress, a delay in rhodopsin
degradation and differences in stimulated calcium responses following
POS feeding. This study thus suggests a role for intracellular calciumreg-
ulation and oxidative stress in the disease mechanism. These important
and RPE-specific functional differences would have been impossible
to determine without access to actual patient RPE cells or the use of
patient-derived IPSC–RPE.

3.7. Age Related Macular Degeration (AMD)

AMD is a complex disease that can be subdivided into a “dry” and
“wet” type. It involves loss of the RPE/photoreceptor layers, thinning
of the outer plexiform layer, thickening of Bruch's membrane and atro-
phy of the choriocapillaris. In dry AMD, there is an accumulation of
lipid-like deposits (drusen) between the RPE and Bruch's membrane,
occurring typically in individuals over 50. Geographic atrophy is more
prominent in later stages, leading to photoreceptor cell loss. In wet
AMD, the choroidal vasculature can grow in the subretinal space,
termed “choroidal neovascularisation.” In view of the pathophysiology,
cell replacement therapy for retinal cell loss is very appealing, with
several clinical trials underway.

http://www.clinicaltrials.gov


Table 1
Summaryof disease causingmutations that have been identifiedand examinedusing IPSCs, andwhether these diseasemodels have led to drugdiscovery, gene introduction anddiscovery.

Disease Gene Mutation Drug discovery Gene introduction Gene discovery Reference

RP RP2 R120X ✔ [58]
RHO G188R [54]
RHO E181K ✔ ✔ [55]
RP9 H137L ✔ [54]
RP1 721Lfs722X [54]
RDS/PRPH2 W316G [54]
MFRP ✔ [59]

Sporadic RP MAK ✔ [56]
Usher USH2A ✔ [62]
LCA GUCY2D ✔ [81]

CEP290 ✔ ✔ [66]
Gyrate atrophy OAT A226V ✔ ✔ [7]
Best BEST1 A146K, N296H [89]
Juvenile NCL CLN2 ✔ ✔ [84]
AMD ✔ [90]
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Generating a diseasemodel for AMDmay be useful in understanding
its pathogenesis and in the development of effective therapeutic strate-
gies. AMD has a strong genetic characteristic with over 50 different loci
identified so far. These include two on chromosomes 1 and 10 leading
to a high-risk haplotype. The mutation associated with chromosome 1
affects the complement factor H gene and subsequently the complement
cascade. However, themechanism bywhich the chromosome 10q locus
leads to increased AMD risk remains unknown. Yang et al. [90] used an
unbiased proteome screen of patient specific IPSC-derived RPE cells
from patients with a high and low risk haplotype of 10q loci. By artifi-
cially aging the cells with A2E (one of the lipofuscin fluorophores that
accumulate in RPE cells with age), they noted a reduced superoxide
dismutase 2-mediated antioxidant defence in the high-risk haplotype.
This reduced protective response to A2E may cause increased levels of
oxidative stress in the RPE of affected patients. The study highlights sev-
eral underlying pathogenic mechanisms, opening the doors to potential
treatment options. Chang et al. [91] generated IPSCs from T cells of pa-
tients with dry AMD using integration free episomal vectors and differ-
entiated these cells into RPE using a directed differentiation method.
The AMD patient-derived RPE cells were found to have reduced antiox-
idant capability compared with control cells. The group then used the
IPSC-derived RPE to screen a panel of dietary supplements that have
previously been shown to have potential retinal protective or antioxi-
dant capabilities. Of these compounds, treatment with 10 μm curcumin
was shown to have a significant effect on cell viability. Pre-treatment
with curcumin protected these AMD-related RPE cells from H2O2-
induced cell apoptosis and upregulated the expression of several oxida-
tive stress-regulating genes. Although the systemic effects of such treat-
ments must still be evaluated in suitable animal models, this study
demonstrates the potential of IPSC-derived cells to screen for the activ-
ity of therapeutic candidates in the desired target cell type early in the
drug development process.
4. Conclusion

Stem cell technology is coming of age as a tool to model retinal de-
generation; IPSCs have already been used to recapitulate normal versus
abnormal retinal cell behaviour in vitro and to gain new mechanistic
insights into disease aetiology. Patient specific IPSCs may be used in
pharmaceutical screening and in the elucidation of new treatment
options for retinal diseases (Table 1). The potential benefits in terms
of reducing the attrition rate for drug candidates in early-stage clinical
trials and decreasing the requirement for animal models are an obvious
attraction. Many emerging developments in the field of stem cell tech-
nology offer an exceptional opportunity to treat inherited retinal degen-
erative diseases andfinally improve patients' lives. However, there exist
some obstacleswith the use of IPSCs, which need to be overcome before
clinical application.
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