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A�������: Using Hirota’s direct method and Bäcklund transformations we construct ex-

plicit complex one and two-soliton solutions to the complex Korteweg-de Vries equation,

the complex modified Korteweg-de Vries equation and the complex sine-Gordon equation.

The one-soliton solutions of trigonometric and elliptic type turn out to be PT -symmetric
when a constant of integration is chosen to be purely imaginary with one special choice

corresponding to solutions recently found by Khare and Saxena. We show that alterna-

tively complex PT -symmetric solutions to the Korteweg-de Vries equation may also be
constructed alternatively from real solutions to the modified Korteweg-de Vries by means

of Miura transformations. The multi-soliton solutions obtained from Hirota’s method

break the PT -symmetric, whereas those obtained from Bäcklund transformations are

PT -invariant under certain conditions. Despite the fact that some of the Hamiltonian
densities are non-Hermitian, the total energy is found to be positive in all cases, that is

irrespective of whether they are PT -symmetric or not. The reason is that the symmetry
can be restored by suitable shifts in space-time and the fact that any of our N-soliton

solutions may be decomposed into N separate PT -symmetrizable one-soliton solutions.

1. Introduction

PT -symmetrically deformed nonlinear wave equations have been found to possess various
interesting properties [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In general, the PT -symmetric
deformations destroy the integrability of models with that property, although some rare

cases pass the Painlevé test [5] indicating that they remain integrable. Furthermore, it was

shown [4] that it is possible to construct specific PT -symmetric deformations that preserve
the supersymmetry of some models. Some PT -symmetrically deformed nonlinear wave
equations possess very intricate shock wave structures [10].

Most notably when the PT -symmetrically deformed models are of Hamiltonian type,
with densities H[u(x, t), ux(x, t), . . .] depending on some field u(x, t) and its derivative, the

PT -symmetry will ensure that the energy on symmetric intervals [−a, a]

E =

� a

−a
H[u(x, t)]dx =

�

Γ
H[u(x, t)]

du

ux
, (1.1)
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remains real despite the fact that the Hamiltonian density is complex [2]. The reasoning

to establish this is similar to the one applied to quantum mechanical models, although the

quantity E as defined in (1.1) will not play the role of the energy in the quantum theory

for reduced models as explained in more detail in [8].

The simplest way to obtain complex solutions is to keep the form of the original

equation intact and just take the field u(x, t) to be complex by demanding that the com-

plexified equations remain invariant under the antilinear transformation PT : x → −x,
t → −t, i → −i and u → u or u → −u. For such a setting Khare and Saxena [12] have
recently found some interesting apparently novel PT -symmetric solutions to various types
of nonlinear equations that appear to have been overlooked this far. Their approach is

to start off from some well-known real solutions to these equations and then by adding

a term build around that solution a suitable complex Ansatz including various constants.

In many cases they succeeded to determine those constants in such a way that their ex-

pressions constitute solutions to the different types of complex nonlinear wave equations

considered.

One of the purposes of this note is to demonstrate that these solutions may be derived

in a more constructive, systematic and generic way. We focus here on nonlinear wave

equations for which we use Hirota’s direct method [13] to derive complex solutions including

those of [12] as special cases. Some of the one-soliton solutions produced in this manner turn

out to be PT -symmetric, whereas the multi-soliton solutions obtained from this method

break the PT -symmetry in general. Subsequently we employ Bäcklund transformations
to construct new PT -symmetric multi-soliton solutions from some previously constructed
complex solutions. For a specific case we evaluate the time-delay in the real and imaginary

parts of these solutions.

Computing the energies E corresponding to our solutions we find that all of them are

real irrespective of whether they are PT -symmetric or not. While this is to be expected
for the PT -symmetric solutions, this is less obvious for the PT -broken solutions. We will
present the argument and mechanism responsible for this behaviour. Our analysis is carried

out for the complex Korteweg-de Vries (KdV) equation in section 2.1, complex modified

Korteweg-de Vries (mKdV) equation in section 2.2, both considered also in [12], and in

addition for the complex sine-Gordon equation in section 2.3. Our conclusions are stated

in section 3.

2. The construction of complex multi-soliton solutions

At first we employ here Hirota’s direct method [13]. The general principle of this approach

is to convert the nonlinear equation of interest into Hirota’s equation of bilinear form by

means of a dependent variable transformation

P (D1,D2, . . . ,Dn)τ · σ = 0, (2.1)

with P (D1,D2, . . . , Dn) being a polynomial in the Hirota derivatives (D1,D2, . . . , Dn) act-

ing on the product of the two functions τ and σ both depending on (x1, x2, . . . , xn). The
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general expressions for the Hirota derivatives in terms of ordinary derivatives may be ob-

tained from the generating function

τ(x1 + y1, . . . , xn + yn)σ(x1 − y1, . . . , xn − yn) = ey1D1+y2D2+...+ynDnτ · σ, (2.2)

by reading off powers in yi. In particular, we shall require below the expressions

Dtτ · σ = τxσ − σxτ, (2.3)

D2
xτ · σ = τxxσ − 2τxσx + τσxx, (2.4)

D3
xτ · σ = τxxxσ − 3τxxσx + 3τxσxx − τσxxx, (2.5)

D4
xτ · σ = τxxxxσ − 4τxxxσx + 6τxxσxx − 4τxσxxx + τσxxxx, (2.6)

DxDtτ · σ = τxtσ + τxtσ − τxσt − τ tσx. (2.7)

The solution procedure is then to expand the functions τ and σ in powers of λ as τ =�
∞

k=0 λ
kτk, σ =

�
∞

k=0 λ
kσk and subsequently solve the bilinear Hirota equation order by

order in λ. It turns out that one can systematically set τk = σk = 0 for some j ≤ k.

The constant λ may then be absorbed into the τk and σk so that the terminated series

constitute an exact solution to the Hirota equation and therefore, after re-transformation,

to the original nonlinear equation.

2.1 The complex Korteweg-de Vries equation

The KdV equation for the complex field u(x, t) may be considered as a set of coupled

equations for the real fields p(x, t) and q(x, t)

ut + 6uux + uxxx = 0 ⇔
�
pt + 6ppx + pxxx − 6qqx = 0

qt + 6 (pq)x + qxxx = 0
, (2.8)

when taking u = p+ iq. The coupled equations reduce to the Hirota-Satsuma [14] and Ito

system [15] when setting (pq)x → pqx and qxxx → 0 in the second equation, respectively.

Evidently these equations remain invariant for PT : x → −x, t → −t, i → −i, u → u,

p→ p, q →−q. We stress here that, although there are many PT -symmetric solutions to
(2.8), not all solutions to (2.8) need to be PT -symmetric since the symmetry could map
one solution, say u1(x, t), into a new one u1(−x,−t) = u2(x, t) 	= u1(x, t). Unlike as in

the linear quantum mechanical scenario the sum of these two solution would of course not

constitute a new PT -symmetric solution, as the KdV equation is nonlinear. In fact, it
would not be a solution at all, unless (u1u2)x = 0.

2.1.1 Complex solutions from the Hirota method

Since the original work of Hirota [13] it is well known that the KdV equation (2.8) can be

converted into Hirota’s bilinear form

�
D4
x +DxDt

�
τ · τ = 0, (2.9)
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by means of the variable transformation u = 2(ln τ)xx together with (2.6) and (2.7). Equa-

tion (2.9) is solved easily with the above mentioned expansion for τ . At order λ0 the

equation is trivially satisfied and at order λ1 we have to solve

�
D4
x +DxDt

�
(1 · τ1 + τ1 · 1) = 2(τ1)xt + 2(τ1)xxxx = 0. (2.10)

Thus the original problem to solve a nonlinear equation has been reduced to the much

simpler task of just solving a linear equation. We may now take

τ1 = eη1 with ηi = kix+ ωit+ µi, ki, ωi ∈ R, µi ∈ C, (2.11)

with nonlinear dispersion relation k31 + ω1 = 0 to solve (2.10), stressing at this point that

the constant of integration µ1 might be complex. At order λ
2 we need to solve

�
D4
x +DxDt

�
(τ1 · τ1) = −

�
D4
x +DxDt

�
(1 · τ2 + τ2 · 1) (2.12)

= −2(τ2)xt − 2(τ2)xxxx. (2.13)

Using Dm
x Dn

t (e
kix+ωit+µi · ekjx+ωjt+µj ) = (ki − kj)

m(ωi − ωj)
nekix+ωit+µiekjx+ωjt+µj for

n,m ∈ N0 this is easily achieved by setting τ2 = 0. Then all higher order terms vanish by

setting τk = 0 for k > 2. Thus an exact τ -function and corresponding solution to the KdV

equation are simply

τµ,β(x, t) = 1 + eβx−β
3t+µ, and uµ,β(x, t) =

β2

2
sech2

�
1

2
(βx− β3t+ µ)

�
, (2.14)

where we have set ω1 = −β3, k1 = β, µ1 = µ in order to satisfy the dispersion relation and

λ = 1. The standard choices are here µ = 0 and µ = iπ giving rise to the well-known real

solutions

u0,β(x, t) =
β2

2
sech2

�
1

2
(βx− β3t)

�
and uiπ,β(x, t) = −

β2

2
csch2

�
1

2
(βx− β3t)

�
,

(2.15)

that may also be obtained from direct integration of the KdV equation with appropriate

boundary condition assuming the solutions to be travelling waves. However, it is clear that

any choice for which µ is purely imaginary, i.e. µ = iθ with θ ∈ R, would constitute a finite
PT -invariant solution. Separating this solution into its real and imaginary part we obtain

uiθ,β(x, t) =
β2 + β2 cos θ cosh(βx− β3t)
	
cos θ + cosh(βx− β3t)


2 − i
β2 sin θ sinh(βx− β3t)
	
cos θ + cosh(βx− β3t)


2 . (2.16)

This form also allows explicitly to identify the solutions to the coupled equation (2.8)

by just reading off the real and imaginary parts. For the choice θ = ±π/2 this solution
reduces precisely to the one found by Khare and Saxena in [12], up to an overall minus

sign due to the difference in (2.8). We notice that while the PT -invariance of uµ;β(x, t) is
apparent, the one for the corresponding τ -functions τµ;β(x, t) are not immediately obvious,

in fact they are not PT -invariant. This is due to the ambiguity in those functions, as for
instance τ(x, t)→ u1(x, t) exp [c1x+ c2 + f(t)] with arbitrary constants c1, c2 and function

— 4 —
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f(t) will give rise to the same solution u(x, t) to the KdV equation. Instead of taking the

standard form in (2.14) we may start from τ̂µ;β(x, t) = cosh
	�
βx− β3t+ µ

�
/2


leading

also to the same uµ;β(x, t) in (2.14). In this form the PT -invariance is directly evident.
In other words the τ -functions do not need to be PT -symmetric in order to generate a
PT -symmetric solution for the KdV equation.

Let us next construct a two-soliton solution. As a starting point we take

τ1 = eη1 + eη2, (2.17)

which naturally solves (2.10) with nonlinear dispersion relations k3i + ωi = 0 for i = 1, 2.

At order λ2 we determine from (2.12) that

τ2 = γeη1+η2 . (2.18)

with γ = (α− β)2/(α+ β)2. The equation resulting at order λ3

�
D4
x +DxDt

�
(1 · τ3 + τ1 · τ2 + τ2 · τ1 + τ3 · 1) = 0, (2.19)

is solved by τ1 and τ2 given in (2.17) and (2.18) when setting τ3 = 0. Once again all higher

order equations are also satisfied when setting τk = 0 for k ≥ 3, so that with λ = 1

τ = 1 + eη1 + eη2 + γeη1+η2 , (2.20)

becomes an exact solution to the Hirota equation (2.9), with µi as defined in (2.11) possibly

being complex. Translating the τ -function back to the u-variable we obtain thee two-soliton

solution

uHµ,ν;α,β(x, t) =
2α2eαx−α

3t+µ + 2β2eβx−β
3t+ν + 4(α− β)2eαx−α

3t+µ+βx−β3t+ν

(1 + eαx−α3t+µ + eβx−β
3t+ν + γeαx−α3t+µ+βx−β

3t+ν)2
(2.21)

+
2γ
�
α2eαx−α

3t+µ+2(βx−β3t+ν) + β2e2(αx−α
3t+µ)+βx−β3t+ν

�

(1 + eαx−α3t+µ + eβx−β
3t+ν + γeαx−α3t+µ+βx−β

3t+ν)2
.

Notice that (2.21) is not PT -symmetric, even for the real solution when taking µ = ν = 0.

It is evident that further multi-soliton solutions constructed by means of the Hirota method

will also not be PT -symmetric. However, as we will show in section 2.2 that does not
mean that all multi-soliton solutions have broken PT -symmetry. Moreover, it will turn
out that despite having broken PT -symmetry their corresponding energies are real. In the
next subsection we shall demonstrate that PT -symmetric multi-soliton solutions may be
constructed from Bäcklund transformations instead.

2.1.2 Complex solutions from Bäcklund transformations

Converting the KdV equation (2.8) into an equation for the quantity w, defined via u = wx,

the KdV-Bäcklund transformations are well known to relate two different solutions u,w

and u′, w′ as

wx +w′x = κ− 1

2
(w−w′)2, (2.22)

wt +w′t = (w −w′)(wxx −w′xx)− 2[w2x +wxw
′

x + (w′x)
2]. (2.23)

— 5 —
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A “nonlinear superposition principle” is then obtained by relating four different solutions

as w0
κ1→ w1, w0

κ2→ w2, w1
κ2→ w12 and w2

κ1→ w12. Using the corresponding four versions of

(2.22) all differentials may be eliminated, such that one can construct a new solution w12
to the KdV equation from three known solutions w0, w1 and w2 as

w12 = w0 + 2
κ1 − κ2
w1 −w2

. (2.24)

With wµ;β(x, t) = β tanh
	
1
2(βx− β3t+ µ)



, resulting from uµ;β(x, t) in (2.14), we identify

κ = β2/2 from (2.22) when taking w = w0;β = 0 and w′ = wµ;β . A new solution to the

KdV equation is therefore

wµ,ν;α,β =
α2 − β2

wµ;α −wν;β
, (2.25)

with corresponding wavefunction

uBµ,ν;α,β(x, t) =
α2 − β2

2

β2 sech2
	
1
2(βx− β3t+ ν)



− α2 sech2

	
1
2(αx− α3t+ µ)




	
α tanh

	
1
2(αx− α3t+ µ)



− β tanh

	
1
2(βx− β3t+ ν)



2 . (2.26)

Figure 1: PT -symmetric KdV two-soliton solution with α = 6/5, β = 1 and µ = ν = iπ/2.

Notice that, unlike for uHµ,ν;α,β , for real values of µ and ν the denominator of uBµ,ν;α,β
vanishes at certain values for x and t. Thus complex values for µ and ν can be used to

regularize this expression. We observe further that while the PT -symmetric one-soliton
solutions may formally be obtained simply from complex shifts in space or time from one

basic solution u0;β(x, t), neither the broken PT -symmetric two-soliton uH nor the PT -
symmetric two-soliton uB is obtainable from a known two-soliton solution in this simple

manner when µ 	= ν. However, we may use real shifts in space or time to restore the

PT -symmetry for the broken PT -symmetric one-soliton solution uµr+iµi , with µr, µi ∈ R,
as

uµr+iµi;β


x− µr

β
, t

�
= uµr+iµi;β


x, t+

µr
β3

�
= uiµi;β (x, t) . (2.27)

To achieve this restoration for the broken PT -symmetric two-soliton solution we require a
simultaneous shift in space and time

uBµr+iµi,νr+iνi;α,β


x+

β3µr − α3νr

α3β − αβ3
, t+

βµr − ανr

α3β − αβ3

�
= uBiµi,iνi;α,β (x, t) . (2.28)

— 6 —
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In figure 1 we display the two-soliton solution uBµ,ν;α,β for a PT -symmetric choice of
the parameters µ = ν. We observe Re[uB(x, t)] = Re[uB(−x,−t)] and also Im[uB(x, t)] =

− Im[uB(−x,−t)]. The real part exhibits the typical features of a two-soliton scattering,
that is being separated into two one-soliton solutions in the past and regaining the original

shapes with exchanged positions in the future, with a time-delay as the only residual

effect. For the complex solutions this behaviour is now accompanied by a smooth scattering

structure for the imaginary part. In as similar fashion as in [16, 17, 18] we compute the

time-delay for the real and imaginary parts as

lim
t→±∞

Re
�
uBiπ/2,iπ/2;α,β (x, t)

�
∼ Re

	
uiπ/2;β (x, t∓∆β)



+Re

	
uiπ/2;α (x, t±∆α)



, (2.29)

lim
t→±∞

Im
�
uBiπ/2,iπ/2;α,β (x, t)

�
∼ Im

	
uiπ/2;β (x, t∓∆β)



− Im

	
uiπ/2;α (x, t±∆α)



, (2.30)

where the time shifts are given by

∆x =
1

x3
ln

�
α+ β

α− β

�
. (2.31)

We confirm our analytic results by numerical computations displayed in figure 2.

Figure 2: Time delay in the KdV complex two-soliton scattering uBµ,ν;α,β for µ = ν = iπ/2,

α = 7/5 and β = 4/5. The scattered solitons are the one-solition solutions at the shifted times as

indicated in the legend and the thin solid black lines are the unshifted one-soliton solutions at time

t = −20,−20, 20, 20 from the left to the right.

We observe a perfect match between the two-soliton solutions and the ∆x-shifted one-

soliton solution in the real as well as in the imaginary part. The faster soliton, i.e. the one

related to α in our choice of parameters, in the two-soliton solution is shifted to the left in

the past and to the right in the future. These shifts are in the opposite direction for the

slower soliton related to β. The details of the derivation for (2.29), (2.30), (2.31) together

with a some further analysis are presented elsewhere [19].

As seen in figure 3 the qualitative behaviour does not change in the broken regime,

with the only difference that two solutions for some specific values t′ and −t′ are no longer
symmetric around x = 0, similarly as for the solution uB. Taking µ different from ν we

can modulate the shapes of the different solutions as displayed in figure 4.

— 7 —
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Figure 3: Broken PT -symmetric KdV two-soliton solution with α = 6/5, β = 1, µ = 5+ iπ/2 and

ν = iπ/2.

Figure 4: PT -symmetric KdV two-soliton solution from different types of one-solitons with α =

6/5, β = 4/5, µ = iπ/6 and ν = iπ/2.

2.1.3 Real energies from PT -symmetric and broken PT -symmetric solutions

Having obtained various types of solutions, we will now compute the corresponding energies

resulting from the expression (1.1). The Hamiltonian density leading to the KdV equation

in the form (2.8) is given by

H(u, ux) = −u3 +
1

2
u2x. (2.32)

From the KdV Bäcklund transformation (2.22) with w′ = 0 and the observation that

(uµ;β)x/uµ;β = −wµ;β = −β tanh
	
1
2(βx− β3t+ µ)



, we derive the identity (uµ;β)xx =

(uµ;β)
2
x/uµ;β − u2µ;β. These relations allow us to write the Hamiltonian density as

H [uµ;β , (uµ;β)x] =

�
1

10

�
(uµ;β)x
uµ;β

�5
+

1

2

�
(uµ;β)x
uµ;β

�2
(uµ;β)x + uµ;β(uµ;β)x

�

x

. (2.33)

The corresponding energy then simply results to

Eµ;β =

�
∞

−∞

H[uµ;β , (uµ;β)x]dx =
1

2

�
1

5

�
(uµ;β)x
uµ;β

�5
+

(uµ;β)
3
x

u2µ;β
+ (u2µ;β)x

�∞

−∞

= −β5

5
,

(2.34)
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when using asymptotically vanishing boundary conditions for the wave function and its

derivative limx→±∞ uµ;β = limx→±∞(uµ;β)x = 0 together with limx→±∞ (uµ;β)x/uµ;β =

∓β. Notice that as long as β is real this energy is real at all times t, irrespective of whether
uµ;β is PT -symmetric or not. The reason is simple: Taking µ to be of the form µ = µr+iµi,

the PT -symmetry of H is broken when µr 	= 0. However, a simple shift in time or space, as

explained in (2.27), will restore the PT -symmetry of the integrand. Both type of shifts are
permitted, as the shift in x can be absorbed in the limits of the integral and the shift in t is

allowed since H is a conserved quantity in time. As argued before, having a PT -symmetric
integrand the complex part does not contribute to the overall value of Eµ;β.

For the two-soliton solutions uH,Bµ,ν;α,β(x, t), we compute numerically that the total en-

ergy is the sum of the individual one-soliton solutions

EH,Bµ,ν =

�
∞

−∞

H
�
uH,Bµ,ν;α,β(x, t),

�
uH,Bµ,ν;α,β(x, t)

�

x

�
dx = Eµ;β +Eν;α = −α5 + β5

5
. (2.35)

Once again we notice that we obtain real energies also for the PT -symmetrically broken
scenario. In this case we can restore the PT -symmetry by a simultaneous shift in x and

t as explained in (2.28). While this explains the reality of the spectrum, it does not yet

account for the concrete values in (2.35). However, as we have seen in (2.29) and (2.30)

for one specific case, asymptotically the two-soliton solution separates into two from each

other isolated one-soliton solutions, in both the real and imaginary part. These one-soliton

solutions contribute separately to the total energy, which is the same value at all times.

As the latter argument applies to any N-soliton solution we expect their energies to be

the sum of all their N asymptotic individual one-soliton solutions. However this still needs

verification [19].

2.2 The complex modified Korteweg-de Vries equation

Using the variable transformation v = ŵx the mKdV equation can be written in the two

equivalent forms

vt + 24v2vx + vxxx = 0 ⇔ ŵt + 8ŵ3x + ŵxxx = 0. (2.36)

Unlike the KdV equation, the mKdV equation allows for two alternative types of PT -
symmetries PT ±: x → −x, t → −t, i → −i, v → ±v. With the further substitution
ŵ = arctan(τ/σ) the latter equation in (2.36) can be converted into Hirota’s bilinear form

[20] �
Dt +D3

x

�
τ · σ = 0, and D2

x (τ · τ + σ · σ) = 0, (2.37)

when using the relations (2.3)-(2.7). Taking now σ = 1 the equations (2.37) reduce to

τ t + τxxx = 0, and ττxx − τ2x = 0. (2.38)

The exact solutions to these equations with corresponding solution to the mKdV equation

(2.36) are

τµ;β(x, t) = eβx−β
3t+µ, and vµ;β(x, t) =

β

2
sech

	
βx− β3t+ µ



. (2.39)

— 9 —
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It is well known that the mKdV and the KdV equation are related by a Miura transforma-

tion. Here we find that the solutions (2.14) and (2.39) to the KdV equations and mKdV

equation (2.8) and (2.36), respectively, are related as

uµ±iπ
2
;β(x, t) = 4v2µ;β(x, t)± i2∂xvµ;β(x, t). (2.40)

This means for instance that the real solution v0;β(x, t) to the mKdV equation leads in-

evitably to the complex PT -symmetric solutions u±iπ
2
;β(x, t) for the KdV equation. Thus

we have obtained yet another way to derive the solutions reported in [12]. The complex

part simply results from scaling the more familiar transformation u = v2+ vx, that relates

the mKdV with nonlinear term −6v2vx to the KdV equation with nonlinear term +6uux,

to the present forms (2.8) and (2.36).

The latter argument may also be applied to solutions in terms of Jacobi elliptic func-

tions1. Starting with the shifted known solution to the mKdV equation

v̂µ;β(x, t) =
β

2
dn
	
βx− β3t(2−m) + µ,m



, (2.41)

we obtain from (2.40) the corresponding solution to the KdV equation

û±µ;β(x, t) = β2 dn2 [ẑ,m]± imβ2 cn [ẑ,m] sn [ẑ,m] , (2.42)

where we abbreviated the argument ẑ := βx− β3t(2−m) + µ. The elliptic parameter is

denoted by m as usual. Likewise from the shifted known solution to the mKdV equation

ṽµ;β(x, t) =
β

2

√
m cn

	
βx− β3t(2m− 1) + µ,m



(2.43)

we construct

ũ±µ;β(x, t) = mβ2 cn2 [z̃,m]± i
√
mβ2 dn [z̃,m] sn [z̃,m] , (2.44)

with z̃ := βx− β3t(2m− 1) + µ. Thus the solutions v̂0;β(x, t) and ṽ0;β(x, t) to the mKdV

equation, which could be real for specific values, lead to the complex PT -symmetric so-
lution for the KdV equation reported in [12], see for instance also [8, 22] for construction

procedures of such type of sultions. It is clear that this is only one possibility as other

choices for purely imaginary µ also respect the PT -symmetry.

2.2.1 Real energies from PT -symmetric and broken PT -symmetric solutions

Next we compute the energy resulting from the mKdV Hamiltonian density leading to the

equation of motion (2.36) after variation

H(v, vx) = −2v4 +
1

2
v2x. (2.45)

For the solution vµ;β in (2.39) we compute the energy

Eµ;β =

�
∞

−∞

H
	
vµ;β(x, t), (vµ;β(x, t))x



dx = −β3

12
, (2.46)

1We use here the conventions of [21].
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which has the same properties as the energy of the KdV one-soliton, that is being real for

all values of µ. The elliptic solutions have the two periods 4K(m)/β and i4K(1−m)/β in

x with K(m) denoting the elliptic integral of the first kind. Thus we have to restrict the

domain of integration in (1.1) in order to obtain finite energies. For the solution v̂µ;β in

(2.39) we compute the real energies

Êµ;β =

� 2K(m)/β

−2K(m)/β
H
	
v̂µ;β(x, t), (v̂µ;β(x, t))x



dx (2.47)

=
β3

24
[(m− 2)E [am (4K(m)|m) ,m] + 4K(m)(m− 1)] ,

where am(u|m) denotes the amplitude of the Jacobi elliptic function and E [φ,m] the

elliptic integral of the second kind. Similarly for the solution ṽµ;β in (2.43) we find

Ẽµ;β =

� 2K(m)/β

−2K(m)/β
H
	
ṽµ;β(x, t), (ṽµ;β(x, t))x



dx (2.48)

=
β3

24

	
(1− 2m)E [am (2K(m)|m) ,m]− 4K(m)(3m2 − 4m+ 1)



.

We observe that limm→1 Êµ;β = limm→1 Ẽµ;β = 2Eµ;β. For the same reason as for the

hyperbolic solutions all energies are real, irrespective of whether the Hamiltonian densities

are PT -symmetric or not.

2.3 The complex sine-Gordon equation

The quantum field theory version of the complex sine-Gordon model has been studied for

some time [23, 24, 25, 26, 27, 28]. Here we demonstrate that its classical version also

admits interesting PT -symmetric solutions with similar properties to those constructed in
the previous subsections. We consider the equation in the form

φxt = sinφ, (2.49)

using light-cone variables, which we still call x and t with a slight abuse of notation.

We observe that this equation admits various symmetries for PT (n)± : x → −x, t → −t,
i→−i, φ→±φ+ n2π with n ∈ Z, with PT (n)

−
and PT (0)+ squaring to 1 as expected for a

proper PT -symmetry. In [29] Hirota showed that the sine-Gordon equation (2.49) can be
converted into the bilinear form

DxDtτ · σ = τ · σ, and DxDtτ · τ = DxDtσ · σ, (2.50)

when using the relations (2.3)-(2.7) and the transformation φ = 4arctan(τ/σ). Taking

σ = 1 these equations reduce to

τxt = τ and ττxt = τxτ t. (2.51)

The exact solutions to these equations and therefore the corresponding solutions to the

sine-Gordon equation (2.49) are easily found. For instance, we obtain the well-known kink

solution as

τµ;β(x, t) = eβx+t/β+µ, and φµ;β(x, t) = 4arctan
�
eβx+t/β+µ

�
. (2.52)
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Recalling that arctan z = − arctan z−1 ± π/2 for Re z><0, we note that the solution for

µ = iθ with θ ∈ R is PT (±)− -symmetric. Let us separate off the real and imaginary

parts of the solution for these values of µ by using the well-known relation arctan z =

−i/2 ln [(i− z)/(i+ z)]. For the principle value of the logarithm we obtain

φiθ;β(x, t) = 2arg

�− sinhϕ+ i cos θ

coshϕ+ sin θ

�
− i ln

�
sinh2 ϕ+ cos2 θ

(coshϕ+ sin θ)2

�
, (2.53)

where we abbreviated ϕ = βx + t/β. Using the relation between the argument function

and the arctan function equation (2.53) can be converted into the more practical form

φiθ;β(x, t) =






4 arctan

�√
sinh2 ϕ+cos2 θ+sinhϕ

cos θ

�
− i ln

�
sinh2 ϕ+cos2 θ

(coshϕ+sin θ)2

�
for θ 	= ±π

2

−i ln
�

sinh2 ϕ

(coshϕ±1)2

�
for θ = ±π

2

.

(2.54)

The real part is PT (±)− -symmetric and the imaginary part respects a PT (0)− -symmetry, such
that overall φiθ;β is PT

(±)
−
-symmetric. As depicted in figure 5 for θ 	= ±π/2 the real part

of the solution constitutes a kink solution accompanied by a one-soliton solution in the

imaginary part. For θ = ±π/2 the real part of the solution vanishes and the imaginary
part becomes a cusp type solution as can be found for instance in [30].

Figure 5: Complex sine-Gordon solution with kink as real part and soliton as imaginary part at

different values of time for α = 4/5 and µ = iπ/4.

Let us now construct a two-soliton solution from the sine-Gordon complex solitons

using the Bäcklund transformation which associates two different types of solutions φ and

φ′ via the two solutions

φx + φ′x
2

=
1

κ
sin

�
φx − φ′x

2

�
, and

φt − φ′t
2

= κ sin

�
φx + φ′x

2

�
. (2.55)

In this case the “nonlinear superposition principle” relates four solutions φ0, φ1, φ2, φ3 as

tan

�
φ3 − φ0

4

�
=

κ1 + κ2
κ1 − κ2

tan

�
φ1 − φ2

4

�
. (2.56)

Taking now φ′ = 0, φ = φµ;α we identify the constant in (2.55) as κ = 1/α. Then taking

φ1 = φµ;α, φ2 = φν;β and φ3 = φµ,ν;α,β equation (2.56) leads to the new complex two-
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solution solution

φµ,ν;α,β = 4arctan

�
β + α

β − α
tan


φµ;α − φν;β

4

��
. (2.57)

This solution exhibits the same kind of symmetry properties as the one-soliton solutions

as we observe in figure 6. When µ 	= iπ/2, ν 	= iπ/2 the real part consists of a kink-kink

scattering and the imaginary part of a two soliton scattering.

Figure 6: Complex sine-Gordon solution with kink-kink scattering in the real part and soliton-

soliton scattering in the imaginary part at different values of time for α = 6/5, β = 4/5, µ = iπ/3

and ν = iπ/4.

As computed in (2.54), when µ = iπ/2 the kink solution in the real part vanishes and

the soliton solution in the imaginary part degenerates into a cusp. Choosing µ = ν = iπ/2

we observe a two cusps scattering in the imaginary part. These features are depicted in

figure 7.

Figure 7: Complex sine-Gordon travelling one-cusp solution with β = 4/5, µ = iπ/2 and two-cusp

scattering solution for α = 6/5, β = 4/5 and µ = i = ν = iπ/3 at different values of time.

2.3.1 Real energies from PT -symmetric and broken PT -symmetric solutions

The Hamiltonian density for the sine-Gordon equation is well-known, see e.g. [31]. When

converted to light-cone variables it reads

H(φ, φx, φt) =
1

4

�
φ2x + φ2t

�
+ 1− cos(φ). (2.58)
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From this expression we compute real energies for all times t and any values µ to

ESGµ;β =

∞�

−∞

H
	
φµ;β, (φµ;β)x, (φµ;β)t



dx =

(1 + β2)2

β2

∞�

−∞

sech2(βx+t/β+µ)dx =
2(1 + β2)2

β3
.

(2.59)

Once again the imaginary parts of H do not contribute as the are already or, by suitable

shifts, can be made PT -symmetric. Numerically we also confirm that the energy of the

two-soliton solution is the sum of the individual one-soliton solutions

ESGµ,ν;α,β =

∞�

−∞

H
	
φµ,ν;α,β, (φµ,ν;α,β)x, (φµ,ν;α,β)t



dx = ESGµ;α +ESGµ;β , (2.60)

at all times t and any values of µ and ν.

3. Conclusions

Using various techniques, such as Hirota’s direct method, Bäcklund and Miura transfor-

mations, we have constructed complex one and two-soliton solutions to the complex KdV,

mKdV and sine-Gordon equations. Some of the solutions turned out to be PT -symmetric,
whereas others have broken PT -symmetry, as for instance the two-soliton solution obtained
from Hirota’s method. Nonetheless, despite the fact that the corresponding Hamiltonian

densities are non-Hermitian, all solutions were found to lead to real energies. While this

was to be expected [2] for the PT -symmetric solution, it is less obvious why this should
be the case for the broken scenario. However, as we have shown any of our one-soliton

solution may be converted into a PT -symmetric one-soliton solution by suitable shifts in
time or space and any of our two-soliton solution may be converted into a PT -symmetric
two-soliton solution by suitable simultaneous shifts in time and space. Since the value of

the energy is insensitive to any of these shifts it must therefore be real. Moreover, when

considering the asymptotic behaviour of N-soliton solutions we conjecture that one might

be able to use of the fact that they separate into N different one-soliton solutions with

possible shifts in time, with each of them contributing a real value to the overall energy.

As we have seen in section 2.1.2 this is certainly correct for the KdV two-soliton solution

when µ = ν = iπ/2, but in order to establish this in more generality we need to investigate

in more detail the effect of the time-delay the for different values of µ and ν and especially

the cases N > 2 [19].

The above mechanism explains well why certain complex soliton solutions posses real

energies. Here we have not allowed complex dispersion relations, i.e. keeping our parame-

ters α, β real, or permitted complex parameters occurring directly in the nonlinear wave

equations. In fact, also for those scenarios it was found [8] that broken PT -symmetric
solutions with non-Hermitian Hamiltonian densities may lead to real energies, although in

a much more constrained setting. The mechanism responsible for the reality of the energy

in those cases is still unclear, but we believe that the studies presented here will also shed

light onto those situations.
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