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A Cross Layer Solution to Address TCP Intra-flow
Performance Degradation in Multihop Ad hoc

Networks
Ehsan Hamadani and Veselin Rakocevic

Abstract— Incorporating the concept of TCP end-to-end con-
gestion control for wireless networks is one of the primary
concerns in designing ad hoc networks since TCP was primarily
designed and optimized based on the assumptions for wired
networks. In this study, our interest lies on tackling the TCP
instability and in particular intra-flow instability probl em since
due to the nature of applications in multihop ad hoc networks,
connection instability or starvation even for a short period of time
can have a negative impact on the Quality of Service and may
not be acceptable for the end user. Through a detailed analysis, it
will be shown that the main causes of TCP intra-flow instability
lies in overloading the network by sending more packets than
the capacity of the channel. Based on this, the paper proposes
a novel cross layer solution called “TCP Contention Control”
that dynamically adjusts the amount of outstanding data in the
network based on the level of contention experienced by packets
as well as the throughput achieved by connections. The simulation
results show TCP Contention Control can drastically improve
TCP stability over 802.11 multihop ad hoc networks.

Index Terms– Contention, intra-flow instability, multiple ad hoc
networks, TCP.

I. I NTRODUCTION

Multihop ad hoc networks are collection of wireless nodes
dynamically forming a temporary network without the use of
any preexisting network infrastructure or centralized admin-
istration. Consequently, ad hoc networks are fundamentally
different from conventional stationary wireless and wired
computer networks. During recent years, ad hoc networks have
attracted considerable commercial and research interest.In
particular, the de facto adoption of the popular IEEE 802.11
standard [1] has further fuelled the deployment of wireless
transceivers in a variety of computing devices such as PDAs
by ensuring inter-operability among vendors thereby aiding
the technology’s market penetration. However, as initially the
deployment of these wireless technological advances came
in the form of an extension to the fixed LAN infrastructure
model, the 802.11 standard was mostly evolved and optimized
for infrastructure-based wireless LANs rather than ad hoc
networks.

To enable seamless integration of ad hoc networks with the
Internet, TCP seems to be the natural choice for users of ad
hoc networks that want to communicate reliably with each
other and with the Internet. Here also, despite the fact that
in theory TCP should not care whether the network layer
is running over wired or wireless connections, in practice,
this does matter because TCP has been carefully optimized
based on assumptions that are specific to wired networks.
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For instance, since bit error rates are very low in wired
networks, nearly all TCP versions assume that packet losses
are due to congestion and therefore invoke their congestion
control mechanism in response to such losses. On the other
hand, because of wireless medium characteristic and multihop
nature of ad hoc networks, such networks exhibit a richer set
of packet losses, including medium access contention drops,
random channel errors and route failure where in practice
each are required to be addressed differently. Ignoring these
properties of wireless ad hoc networks can obviously lead to
poor TCP performance as shown in previous research studies
(e.g. [2]–[10]).

Not surprisingly, multihop ad hoc networks exhibit serious
performance issues when TCP runs over IEEE 802.11 as
neither TCP nor IEEE 802.11 MAC have been designed based
on the properties of such networks. Therefore, during the
recent years, a number of research studies have highlighted
some of the problems TCP encounters in ad hoc networks
[4], [10]–[18]. However, one of the key areas that has not
attracted enough attention and needs to be addressed further
in the deployment of TCP in ad hoc networks is the problem
of TCP instability where the receiver (data sink) does not
receive any packets for a period of time and therefore the
connection throughput drops to zero or fluctuates rapidly. In
particular, due to the nature of scenarios in which ad hoc
networks are used (e.g. emergency operation and battlefield
communication), disconnectivity or starvation even for a short
period of time can have a devastating impact on the Quality
of Service and may not be acceptable for the end user. In
other words, ad-hoc network users are likely more willing
to receive a continuous and stable flow of data rather than
sending/receiving large bulk of data instantly.

In general, TCP instability can be broken down into two
broad categories named asTCP intra-flow and TCP inter-
flow instability, where the former is caused by the interaction
of nodes belonging to the same TCP connection, while the
latter happens when nodes belonging to different connections
interact. Due to complexity and different nature of TCP intra-
flow and inter-flow instability, this paper only investigates the
TCP intra-flow instability problem in fine details.

The rest of this paper is organized as follows: section II
analyzes the underlying cause of TCP intra-flow instability
by giving a number of simple but yet important examples that
will shed lights on the roots of the problem. Some of the most
important related work are reviewed in section III. SectionIV
presents the details of the proposed cross layer solution that
aims to alleviate the intra-flow instability issue in multihop ad
hoc networks. The simulation results and analysis are given
in section V. Finally, section VI summarizes the paper and
outlines the future direction in this area.
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Fig. 1: TCP packet self interference.

II. I NTRA-FLOW INSTABILITY

A. Description

TCP intra-flow instability refers to the situation where the
successive transmissions of packets in a single TCP flow,
interfere with each other (link layer intra-flow interference)
and result in large number of contention related packet drops
and hence TCP instability in the network. Therefore, we
begin our discussion of TCP intra-flow instability by reviewing
different types of intra-flow interference and their impacton
TCP instability.

B. Intra-flow Interference

As mentioned earlier, the intra-flow interference refers to
situations where transmission interference in a single TCPflow
causes packet drop in the network. In particular, when TCP
runs over 802.11, the intra-flow interference can be broken
down into the following categories:

1) Interference of TCP packets with each other
2) Interference between TCP packets and 802.11 control

packets
3) Interference of 802.11 control packets with each other

Here, TCP packets refer to either TCP DATA or TCP ACK
packets and 802.11 control packets include MACK (802.11
acknowledgements) and Request To Send/Clear To Send
(RTS/CTS) if used.
To investigate and explain each category, in all subsequent
analysis it is assumed one TCP flow is running on a 6 hop
chain from node A (as data source) to node G (as data sink)
and the transmission range of nodes is shown by a circle
around them.

1) TCP self interference
In principle, the TCP self interference is caused by
two effects. One is the interference caused between
TCP DATA (TCP ACK) packets transmission with each
other which prevents concurrent transmissions within
a neighborhood area. For instance, as shown in figure
1, a transmission from node A interferes with node C,
which cannot simultaneously communicate with node
D. Similarly, a transmission by node D may cause a
collision at node B.
This type of interference can harm TCP mainly in two
ways. Firstly, it greatly decreases the TCP throughput
in ad hoc networks since in most occasions, very few
simultaneous packet transmissions can occur in the
network. For instance, in the above example, links
A-B and E-F represent maximum possible concurrent
channel usage while if link D-E is active, only one

simultaneous transmission is possible. The other impact
of such interference is on increasing the end-to-end
delay. This is also because a successful transmission
can occur only if nodes within the spatial channel reuse
of that node are silent during the entire transmission.
This means packets have to wait for a relatively long
period of time in the node’s buffer before the node
can get a chance to access the channel. Therefore,
the packets in multihop connections experience longer
queuing delay and hence larger end-to-end delay.
The second part of the TCP self interference is caused
by interference between TCP DATA and TCP ACK
packets along the forward and return paths, respectively.
In essence, this interference can specially result in TCP
ACK drop as there are larger number of TCP DATA
frames on the forward route compared to the smaller
number of the TCP ACK packets in the return path.
So, the medium will be on average mostly accessed by
TCP DATA frames and as a result significant amount of
ACKs will be lost because of collisions while accessing
the channel.

2) TCP and 802.11 control packets interference
The other type of intra-flow interference in the link
layer happens between the TCP packets (TCP DATA or
TCP ACK) and one of the 802.11 control packets (RTS,
CTS, or MACK). However, it is important to note that
regarding 802.11 MAC timing specification, the DCF
protocol ensures that CTS frame transmission will be
successfully received at its destination (the one who sent
the RTS), if the CTS frame has been issued in response
to the RTS. This is because successful RTS frame trans-
mission silences all the nodes in the neighborhood of
the source either for a duration specified in the duration
field of the RTS or for EIFS time (if collision occurs)
which is large enough to transmit a CTS. Therefore, the
CTS frame cannot collide with any frame at the source.
Using a similar argument, it can be concluded that a
successful TCP frame transmission ensures a successful
MACK frame transmission. Thus, there cannot be CTS
and MACK frames drop at the intended destination (the
node who is waiting to receive the packet) because of
medium contention.
Figure 2 reviews one the most common scenarios of
TCP packet drop due to 802.11 control and TCP packets
collision.
Here, station D has TCP DATA to send to E and it
sends its data after a RTS/CTS handshake with node
E. Meanwhile B has a TCP DATA to send to C, thus
starts its own RTS handshake. However, due to ongoing
TCP DATA transmission between D and E, the B’s RTS
is dropped at C. Although B resends the RTS after
performing an exponential backoff, in most of the cases
all its RTS retransmissions (7 by default) are collided at
node C and therefore node B drops the TCP packet1.

3) 802.11 control packets self interference
The last type of intra-flow interference happens between
802.11 RTS, CTS control packets if the RTS/CTS hand-
shake is used prior to data transmission. We should note
that despite the small size of RTS and CTS packets

1This is due to the relatively large amount of time the channelis occupied
when sending TCP DATA.
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compared to data packets, the frequent losses of control
packets can waste channel resources and have undesir-
able impact on the performance of higher layers. On
the other hand, the self interference between the RTS
and CTS control packets can fail the channel reservation
scheme and lead to a loss of data packets as well.
Figure 3 depicts a typical scenario of control packets
self interference and loss of TCP packet as a result.
Here B starts an RTS-CTS handshake with C before
transmitting a TCP packet. The CTS reply from C is
received by B correctly, but it is not received by D,
which is hidden from B, due to a collision with an
RTS packet sent from E to F. This happens because
E, being far away from both B and C, does not hear
either the RTS or the CTS packet and is unaware of
the communication between B and C. Node B assumes
that the channel is successfully reserved and proceeds
with transmission of the data packet to C. Therefore, the
TCP transmission from B is vulnerable to interference
from D, which has not been able to set its Network
Allocation Vector (NAV) accordingly, and may initiate
a transmission to any of its neighbors before the data
transmission is over.

C. Intra-flow Interference and Intra-flow Instability

Having reviewed the three types of intra-flow interferences,
let us explain in more detail how such link layer interfer-
ences and packet drops can create TCP intra-flow instability.
However, before that and to show the impact of intra-flow
interference on TCP stability, let us review figure 4 that shows
the change of congestion window (cwnd) and the instances of
TCP retransmission in a static 6 hop chain topology (similar
to figure 1) using 802.11 MAC.

Here, to confine the packet losses to contention drop, it
is assumed the channel is error-free, no routing messages
are exchanged between the nodes and all nodes have infinite
buffers. Therefore, the packet losses and retransmissionsare
restricted to intra-flow interference related drops. It is clear
from the result in figure 4 that intra-flow interference can
trigger a large number of TCP retransmissions/TCP congestion
window fluctuation and therefore TCP instability.

To explain further how intra-flow interference can cause
TCP instability, we should note that according to 802.11 MAC
standard, if a node cannot reach its adjacent node within the
limited number of allowed retries (MAC-Retry-Limit), it will
drop the packet. These packet drops are wrongly perceived as
congestion by the TCP and result into false trigger of TCP
congestion control algorithm, frequent TCP retransmissions
and therefore TCP instability.

Having shown the impact of intra-flow interference on TCP
instability, the next question is how it is possible to minimize
the intra-flow interference in multihop ad hoc networks? The
answer to this question is not straightforward as each type of
intra-flow interferences discussed above are different in nature
and therefore needs to be addressed separately. For instance,
TCP packets or 802.11 control packets self interference can
be best eliminated by designing a smart decentralized link
layer schedule that coordinates the concurrent transmission
between different pairs to maximize the channel utilization
and minimize the number of collisions. On the other hand,
TCP with 802.11 control packets interference is best to be
addressed by reconsidering the link layer timing specifications,
packet transmission coordination and prioritization. However,
such schemes can be quite topology dependent and confined
to specific scenarios. This is obviously hard to achieve in
dynamic multihop ad hoc network environments where the
topology of the network is changing rapidly and it is not
feasible to propagate global topology information to individual
nodes. More importantly, due to scarce channel resources, it
is simply unrealistic to broadcast information regarding the
topology and the current activity of nodes across the network.

The next alternative solution is to alleviate all types of
intra-flow interferences discussed above by controlling the
amount of outstanding data in the network. It should be noted
that, though this approach does not fully solve the individual

Fig. 4: Illustration of TCP congestion window change in a 6 hop
chain topology.



HAMADANI AND RAKOCEVIC: A CROSS LAYER SOLUTION TO ADDRESS TCP INTRA-FLOW PERFORMANCE DEGRADATION IN AD HOC NETWORKS 149

 
 

Fig. 5: Network overload and intra-flow instability cycle.

intra-interference scenarios explained before, it addresses the
problem by minimizing the unnecessary intra-flow interference
and its adverse effects on TCP instability. To better understand
this, we should note that the performance of TCP directly
depends on its flight size (swnd) which its optimal value
should be proportional to bandwidth-delay product (BDP) of
the entire path of the data flow [6], [19]. The excess of this
threshold does not bring any additional performance enhance-
ment, but only leads to increased queue size in intermediate
nodes along the connection. On the other hand, as shown
in [4], [6], [14], [20], the BDP of a TCP connection over
multihop 802.11 networks tends to be very small. This is
mainly because in 802.11, the number of packets in flight
is limited by the per-hop acknowledgements at the MAC
layer. Such property is clearly quite different from wire-line
networks, where multiple packets can be pushed into a pipe
back-to-back without waiting for the first packet to reach the
other end of the link [21]. Therefore, as compared with that
of wired networks, ad hoc networks running on top of 802.11
MAC, have much smaller BDP. However, as shown in [4],
[14], TCP grows its congestion window far beyond its optimal
value and overestimates the available BDP.

Figure 5 explains the chain of events that occur following
a network overload and lead to TCP intra-flow instability.

The intra-flow instability cycle initially starts when increas-
ing the network overload (stage 1) causes more contention
among nodes as all of them try to access the channel (stage 2).
On the other hand, when the level of contention goes up, more
packets need to be retransmitted as the probability of collision
increases with the increasing level of contention (stage 3).
This in turn introduces extra network overload and therefore
closing the inner part of the cycle (stage 1→ stage 2→ sage
3 → stage 1). This cycle is continued until one or more nodes
cannot reach its adjacent node within a limited number of tries
(specified by the MAC Retry Limit in 802.11 MAC standard)
and drop the packet (packet contention loss). This packet loss
is then recovered by the TCP sender either through TCP fast
retransmit or through TCP timeout (stage 4). In both cases,
TCP drops its congestion window resulting in a sharp drop
in number of newly injected packets to the network (stage 5)

and therefore giving the network the opportunity to recover.
However, soon after TCP restarts, it creates network overload
again by overestimating the available BDP of the path, and
the cycle repeats.

III. R ELATED WORK

During recent years, many studies have shown that limiting
the amount of outstanding data in the network can greatly
improve TCP stability. In an early paper by Gerla et.al. [3],the
authors showed by simulations that TCP performance degrades
for congestion window greater than 1 packet when the MAC
layer offers no ACK protection; They further showed that, with
the link-layer ACK (MACK) protection, certain performance
gain can be realized by allowing a slightly larger congestion
window (2-3 packets).

To limit the amount of outstanding data in the network,
[22] proposed to adjust the maximum window size parameter
to 4 packets as this is the smallest value of window size for
facilitating the fast retransmission scheme for TCP connections
running over IEEE 802.11 based ad-hoc networks.

The authors in [8] showed that due to the spatial reuse and
transmission interference property of the IEEE 802.11 MAC
layer protocol in a chain topology, a sensible choice is to
set TCP congestion window to1

4
h, whereh is the length of

the chain. They further showed that TCP tends to overshoot
this optimal value and operates in larger window size as we
explained earlier. In the same paper, they proposed Link-layer
Random Early Dropping (LRED), which aims to control the
TCP window size by tuning the link-layer dropping probability
according to the perceived channel contentions. In essence,
similar to the RED algorithm [23] with a linearly increasing
drop curve as the queue size exceeds a minimum value,
LRED increases its packet dropping probability when the link-
layer contention level, measured by the retransmission counts,
exceeds a minimum threshold. To this aim, in LRED the link
layer maintains a moving average of the number of packet
retransmissions and the head-of-line packet is dropped/marked
with a probability based on this average retransmission count.
In particular, at each node, if the average retransmission count
is smaller than a minimum threshold, the head-of-line packets
are transmitted as usual. When the average retransmission
count becomes larger, the dropping/marking probability isset
as the minimum of the computed dropping probability and an
upper bound. It was shown there that LRED can provide an
early sign of network overload to the transport layer protocol
and therefore force the TCP sender to reduce its transmission
rate.

Finally, to decrease the amount of channel contention in
the network, the authors in [24] present a cross layer approach
named adaptive TCP that adaptively adjust the TCP maximum
window size according to the number of RTS retransmissions
at the MAC layer at the TCP sender to control the number
of data packets in the network and thus decrease the channel
contention.

IV. TCP CONTENTION CONTROL

A. Description

As discussed earlier, a high percentage of intra-flow inter-
ference and therefore contention drops can be eliminated by
decreasing the amount of traffic load in the network. However,
this can be a very challenging task. On one hand, if the amount
of data in the network is reduced beyond the bandwidth delay
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product (BDP) of that flow, the channel resources are under-
utilized. On the other hand, any increase above the BDP
does not bring additional performance enhancement, but only
leads to increased queue size in intermediate nodes along
the connection and other consequences as discussed earlier.
Therefore, the main question in limiting the traffic load is
how to set properly the amount of outstanding data in the
network to achieve maximum throughput while minimizing
the queueing delay experienced by individual packets.

In this section, the above issue is addressed by introducinga
cross layer solution called TCP ConTention Control (TCTC).
In simple words, TCTC adjusts the TCP transmission rate
to minimize the level of unnecessary contention in the in-
termediate nodes. To this aim, during fixed probe intervals,
TCP receiver monitors both the achieved throughput and the
level of contention experienced by packets during that interval.
Then, based on these observations, the receiver estimates the
optimum amount of traffic to get the maximum throughput and
the minimum contention delay for each connection. Finally,
the TCTC propagate the information back to the sender to
adjust its transmission rate.

Using this information, the TCP sender now sets its trans-
mission rate not merely based on the level of congestion in the
network and the available buffer size at the receiver but also on
the level of medium contention experienced by intermediate
nodes. More precisely, while TCP congestion control adjusts
the TCP transmission rate to avoid creating congestion in
the intermediate network buffers, TCP contention control
adjusts the TCP transmission rate to avoid creating queue
build up in the intermediate network buffers. Therefore, the
main advantage of TCTC over previous algorithms (e.g. [3],
[8], [22]) is its ability to adjust the TCP transmission rate
dynamically based on the current level of network load.

Since the key element in TCTC is optimum TCP flight
size, in the following we explains how TCTC estimates the
optimum TCP flight size.

B. Optimum Load Estimation

To estimate the optimum amount of traffic that should be
sent by the sender to get the maximum throughput while
keeping the contention delay minimum, TCTC defines a new
variable calledTCP Contention Window (ctwnd). The value
of the ctwnd is determined according to the TCTC stages as
defined below:

• Fast Probe
When a TCP connection is established, the TCTC enters
the Fast Probestate where thectwnd is increased expo-
nentially. This is very similar to the TCP slow start phase
in TCP congestion control where the TCP sender probes
the available bandwidth in a short time. The Fast Probe
is also entered after the network is recovered back from
Severe Contention stage explained shortly.

• Slow Probe
Slow probeis entered when the receiver realizes that both
the achieved throughput and the packet contention delay
have decreased compared to the last probe interval. In
this situation, the receiver concludes the network is being
under-utilized and tries to gradually increase the amount
of newly injected data into the network by adding one
MSS toctwnd in every probe interval (additive increase)

• Light Contention
If after changing the amount of injected data to the
network, both the throughput and the level of packet

contention delay are increased, the TCTC entersLight
Contentionstage. In Light Contention stage, the TCTC
slowly decreases thectwnd by one MSS per probe
interval to control the amount of outstanding data in the
network while avoiding unnecessary reduction in TCP
throughput by implementing additive decrease. In other
words, the Light contention stage is entered when the
network is in early stages of overload.

• Severe Contention
Severe Contentionstage is entered whenever the receiver
sees an increase in the level of contention delay while the
achieved throughput has been decreased. This situation is
a clear sign of network overload since it shows the push of
more data into the network has just increased the amount
of contention experienced by individual packets without
increasing the throughput seen by the receiver. This situ-
ation can also happen if suddenly the level of contention
in the network increases (e.g. a second connection starts
using the intermediate nodes). To combat this, the TCTC
sets itsctwnd to 2*MSS to force the sender to minimize
its transmission rate.

The pseudo code in Algorithm 1, summarizes the calculation
of ctwnd in different stages.

It is important to note that because of TCP Delayed ACK
algorithm [25], the minimumctwnd in TCTC is set to 2*MSS
to make sure at least 2 segments are in the network and can
trigger the transmission of TCP ACK at the receiver without
waiting for maximum ACK delay timer to expire.

As it can be seen in Algorithm 1, the condition on which
stages are entered is according to the value of two parameters
namedDeltaThroughput (∆Throughput) andDeltaContention,
(∆Contention).
DeltaThroughput, which is calculated as in formula 1, simply
compares the amount of data received by the receiver (in
Bytes) in the current probe interval (probe-new) and the last
probe interval (probe-old)

∆Throughput =
(data received)probe-new∗ (probe-old)
(data received)probe-old∗ (probe-new)

(1)

DeltaContention on the other hand compares the average
amount of contention delay experienced by all packets during
the current probe interval with the average contention delay
experienced by packets during the last probe interval. In the
next subsection, we explain howDeltaContention acquires the
required information on contention delay values.

C. Contention Delay Measurement

The main objective of measuring contention delay is to
reflect the current level of contention in the network. To this
aim, the contention delay is measured from the time a node
places the first fragment of that packet at the beginning of a
buffer until the packet leaves the buffer for actual transmission
on the physical layer. Also, the contention delay timer inside
each node only resets to zero when the node receives a MACK.
In this manner the contention delay includes the period for the
successful RTS/CTS exchange, if this exchange is used for the
packet. In addition, the contention delay for a retransmitted
packet will start from time the original packet was placed in
the head of the buffer for the first time until the corresponding
MACK is received. If after reaching maximum retry limit, the
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Algorithm 1 PSEUDO CODE OF CALCULATING CTWND IN DIFFERENT STAGES

if ∆Throughput ≥ 1 then
if ∆Contention > 1 then

TCP_Contention = TCP_Contention −
MSS∗MSS

TCP_Contention
// Light Contention

else
TCP_Contention = TCP_Contention + MSS // Fast Probe

end if
else

if ∆Contention > 1 then
TCP_Contention = TCP_Contention + 2 ∗ MSS // Severe Contention

else
TCP_Contention = TCP_Contention + MSS∗MSS

TCP_Contention
// Slow Probe

end if
end if
if TCP_Contention ≤ 2 ∗ MSS then

TCP_Contention = 2 ∗ MSS

end if

packet cannot be transmitted, the value of contention delayis
added to the contention delay of the next packet.

The value of measured contention delay is then inserted
inside the Contention Delay Field (CDF) using the optional
field in 802.11 MAC. More precisely, each packet records the
contention delay it experienced in each node and add the new
contention delay to the CDF. In this manner, the Cumulative
Contention Delay (CCD) experienced by each packet along
the path are delivered to the final receiver (TCP receiver). The
TCP receiver then calculates the value of Contention Delay
per Hop (CDH) by dividing the CCD by total number of hops
traversed by that specific packet. The main property of CDH is
its independency from number of hops traversed by the packet.
Finally the receiver derives the Mean Contention Delay per
Hop (MCDH) by calculating the mean value of CDH received
during each probe interval.

Having the value of MCDH, theDeltaContention as shown
in equation 2 is derived by comparing the MCDH received by
the receiver in current probe interval (probe-new) and the last
probe interval (probe-old)

∆Contention =
MCDHprobe−new

MCDHprobe−old

(2)

D. Contention Delay Field

To carry the value of CDF inside a packet, we use the
extended IEEE 802.11 MAC protocol packet format with
optional fields inside the MAC header as suggested in [26]. In
essence, a new field called "options" is proposed as a variable
length field which extends standard MAC header. To perform
separation of the data encapsulated into the frame from the
MAC header, the option contains a Header Length field which
specifies the entire length of the MAC header, including the
list of options. In addition, each option consists of optiontype,
length and data as shown in figure 6. The Header Length
field is required to handle the case when a node does not
support the corresponding option and therefore the knowledge
of the option’s length makes skipping the current option easier,
jumping to the next one for processing.

Since in the proposed model, the only option being used is
the CDF field, the 802.11 data packet supporting contention
delay field is similar to figure 7 with the Frame Control value
of 101000.

Note that here we have introduced a new type of data packet
using the available reserved types in the Frame Control field

of the MAC header of data frames. In particular, our frame
"type" is equal to "10" (Data packet) and the "subtype" is set
to "1000" as an indication of CDF-enabled data frame. This is
to provide backward support within the existing IEEE 802.11
standard specification, since a CDF-enabled data frame should
be of a different type with respect to a normal data frame.

E. Propagating the Contention Delay Information

Having calculated the optimum value of network overload
over the next period of the probe interval, the next question
is how to propagate this information (which is stored in
ctwnd) back to the sender so the TCP sender can adjusts
its transmission rate accordingly. To answer that, we should
note that the TCP sender cannot have a number of outstanding
segments larger than therwnd which is advertised by its own
receiver. By default, the TCP receiver advertises its available
receiving buffer size, in order to avoid saturation by a fast
connection (flow control). We propose to extend the use of
rwnd to accommodate the value ofctwnd in order to allow
the receiver to limit the transmission rate of the TCP sender
also when the path used by the connection exhibits a high

Fig. 6: Options-enabled IEEE 802.11 data frame.

Fig. 7: CDF-enabled IEEE 802.11 data frame.
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contention and frame collision probability as well as its default
flow control mechanism. In other words, when TCTC is used,
the new value ofrwnd becomes the minimum of the available
buffer size of the receiver (available receiver buffer) andthe
current value ofctwnd as shown below in equation 3.

rwnd = Min(available receiver buffer, ctwnd) (3)

F. Choice of Probe Interval

It is clear from the above discussions that the choice of
probe interval at the receiver can affect the performance of
TCTC. Too large probe interval means that TCTC responds too
slowly to contention changes in the network while too small
probe interval will make TCTC sensitive to contention delay
experienced by individual packets and therefore leads toctwnd
fluctuation. Heuristically, the probe interval of one RTT seems
to be the natural and reasonable choice as it gives the receiver
enough time to monitor the packets it received during one
RTT and then sets its recommendation of sender’s transmission
rate (usingctwnd) for the next RTT. However, to provide the
receiver with the correct and up to date information on the
impact of previousctwnd on the level of network contention,
thectwndshould be updated in every other RTT. Therefore, we
recommend thectwndgets updated every 2*RTT and remains
fixed between two updates. In this way, the receiver can make
sure the packets it has received are sent into the network after
the sender has applied the changes imposed by the receiver in
the last probe interval. Having the value of the TCTC probe
interval, the other major issue is that TCP receiver (which
is running the TCTC algorithm) is unaware of connection’s
RTT2. This problem can be solved by using the fact that
according to [27], in a small to medium size ad hoc networks
the congestion window size (i.e. number of packets sent per
RTT) does not grow beyond 5 packets. Therefore, considering
this estimation together with the discussion given earlier, the
probe interval in receiver can be defined as the period in which
2*5=10 packets are received. Note that although this is a rough
estimation, it clearly solves our design objectives of probe
interval which is merely the frequency of updating TCTC.

V. RESULTS

A. Simulation Model

All simulations are performed using OPNET simulator [28].
The transmission range is set to 100m according to the 802.11b
testbed measurements presented in [13]. In physical layer
Direct Sequence Spread Spectrum (DSSS) technology with
2Mbps data rate is adopted and the channel uses free-space
with no external noise. Each node has a 20 packet MAC layer
buffer pool and in all scenarios, the application operates in
asymptotic condition (i.e., it always has packets ready for
transmission). The scheduling of packet transmission is FIFO.
Nodes use DSR as the routing protocol. In transport layer, TCP
NewReno flavor is deployed and the TCP advertised window
is set its maximum value of 64KB so the receiver buffer
size does not affect the TCP congestion window size. TCP
MSS size is assumed to be fixed at 1460B. RTS/CTS message
exchange is used for packets larger than 256B (therefore no
RTS/CTS is done for TCP-ACK packets). The number of
retransmission at MAC layer is set to 4 for packets greater
than 256B (Long_Retry_Limit) and 7 for other packets (Short_

2Assuming the receiver is not sending any data packets towards TCP sender
or there is a route asymmetry between the forward and return path.

Retry_Limit) as has been specified in IEEE 802.11 MAC
standard. All scenarios unless otherwise stated, consist of
nodes with no mobility.

B. Simulation Results

To evaluate the efficiency of the proposed algorithm, let us
first review figure 8 which shows the underlying cause of TCP
packet drops in the link layer under varying number of hops in
a chain topology. The importance of the results in this figure
is to find out the roots of TCP retransmissions triggered from
the link layer.

As it can be seen, a majority of higher layer packets are
dropped because of excessive contention between competing
nodes in the default algorithm. This clearly confirm the role
of intra-flow interference on TCP performance. Meanwhile,
a considerable number of packets are dropped due to large
number of outstanding data in the network and congestion.
These two issues are clearly addressed using the proposed
algorithm where the TCTC almost drops the TCP packet drops
to zero by limiting TCP flight size and therefore controlling
both congestion and contention in the network.

To evaluate the TCP stability, let us consider the results of
the TCP segment delay shown in figure 9.

As it is obvious from the above results, TCP segments in
the proposed scheme experience a lower and less fluctuating
delay in contrary to the default algorithm. More specifically,
while using the proposed scheme, the TCP segments delay
fluctuation is on average 3% in each scenarios, the figure
rises up to 44% when the default algorithm is deployed. Fur-
thermore, while the TCP segment delay is bounded between
8 to 40 ms depending on number of hops traversed by the
packet in the proposed algorithm, the TCP packets segment
delay can be as high as 800ms in the default algorithm which
implies a high sensitivity of packet delay to hop counts. It
is also interesting to note that the TCP instability in the
default algorithm becomes more serious, as the number of
hops increases.

While the above results shows the improvement of the
TCP stability when the proposed schemes are deployed, it is
very important to make sure that such stability has not been
achieved in the cost of compromising TCP goodput. To this
aim, figure 10 presents the aggregated TCP goodput achieved
across different number of hops.
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Fig. 8: The nature of higher layer drops in a chain topology.
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Fig. 9: TCP segment delay in a chain topology.
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Fig. 10: TCP goodput in a chain topology.

The results are very promising as it shows there is on
average 34% goodput improvement in all scenarios when the
proposed schemes are applied in comparison to using default
protocols.

Finally, to evaluate the efficiency of the proposed algorithm
in controlling the level of congestion and unnecessary con-
tention in the network, let us consider the number of TCP
retransmissions for both schemes as shown in figure 11.

The results show that in comparison to the default algorithm,
the proposed scheme has dramatically reduced the number of
TCP retransmissions by controlling the amount of outstanding
data in the network. It is important to note that the reduction
in TCP retransmissions without any reduction in TCP goodput
clearly demonstrate the efficiency of the proposed algorithm
in utilizing channel resources and tuning TCP sender trans-
mission rate close to its optimum value.

In addition to transport layer metrics, a number of measure-
ments have been also performed in the link layer to evaluate
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Fig. 11: Average number of TCP retransmissions in a chain topology.

the performance of the proposed algorithms in particular from
the power efficiency point of view.

As the first link layer metric, figure 12 shows the average
time in milliseconds that packets are kept in queues before
transmitted into the network using the default and proposed
algorithm.

Fig. 12: Average queueing delay in a chain topology.

The results suggest the proposed algorithm keeps the queue-
ing delay and hence the number of packets in the buffer very
low and literally fixed during the simulation time and across
all number of hops. It is worth mentioning again that such
decrease in the queueing delay has been achieved without any
compromise in the TCP goodput. In other words, the new
algorithm has merely reduced the unnecessary buffering of
packets in the network.

In addition, figure 13 compares the average number of link
layer attempts before a packet is successfully transmittedto its
next hop. This metric can be used as a indication of relative
power consumption efficiency of different algorithms.

1 2 3 4 5 6
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Number of Hops

N
um

be
r 

of
 A

tte
m

pt
s

Proposed
Default

Fig. 13: Average link layer attempts in a chain topology.

From the results presented there, it can be claimed that on
average 32% less transmission is required in the proposed
scheme compared to the default algorithm to deliver the
same amount of link layer data traffic. In other words, the
proposed algorithm can reduce the number of unnecessary
packet transmission by a factor of one third and therefore can
save considerable amount of energy.

Fig. 14: 4 hop chain topology with interference.
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C. Impact of Probe Interval

As discussed in subsection IV-F, the probe interval is the
number of samples in which the receiver updates its contention
delay window (ctwnd). As mentioned there, the main im-
portance of the probe interval is to determine the sensitivity
of the receiver to the contention delay information received
from individual packets. Note that the choice of the probe
interval becomes important when for any reason (e.g. start
of new connection in the interference range of one or more
of the nodes along that connection), the level of contention
experienced by packets changes during the connection period.
To simulate such scenario, we used a topology shown in figure
14 where connection 1 (from node A o B) starts at time 0 and
runs until the end of simulation while connection 2 (from node
F to G) starts at time 250 seconds and lasts for 100 seconds.

To show the impact of different probe interval on system
performance, the average number of buffered packets across
all nodes has been used as shown in figure 15.

The results confirm first of all a short probe interval (e.g.
2 packets) can lead to fluctuation and therefore instability
in the network as the calculation ofctwnd becomes very
sensitive to the contention delay experienced by individual
packets. On the other hand, if a large probe interval such as
50 packets is chosen, the convergence time (i.e. the time it
takes for the algorithm to adjusts itself to new situation) can
be considerable (as large as 60 seconds). This is definitely
unacceptable since if during the probe interval time, the
contention level increases (e.g. time 250 seconds in figure
15 when connection 2 starts), connection 1 will experience
a severe delay and packet retransmissions as node B does
not update its ctwnd before the end of current probe interval.
On the other hand, if during the probe interval time, the
contention level decreases (e.g. time 350 seconds in figure
15 when connection 2 stops), the channel resources would be
underutilized as node B restricts node A from accessing the
newly available bandwidth. Although the exact value of the
optimum probe interval depends on individual situations, the
simulation results suggest values between 10 to 15 packets
satisfy the objectives of introducing the probe interval.

VI. CONCLUSION AND FUTURE WORK

Improving the performance of TCP over 802.11 multi-hop
ad hoc networks is truly a cross-layer problem. To fully
benefit from the flexibility and advantages of multihop ad hoc
networks, there is a clear need for improvement of the way
TCP operates in such networks. This paper studied thoroughly
the problem of TCP intra-flow instability in multihop ad hoc
networks. In particular, it was shown in this paper that a
large number of outstanding TCP packets in the network
is one of the primary cause of TCP intra-flow instability.
To tackle the problem, we proposed a cross layer algorithm
called TCP Contention Control that it adjust the amount
of outstanding data in the network based on the level of
contention experienced by packets as well as the throughput
achieved by connections. The main features of this algorithm
is its flexibility and adaptation to the network conditions.
Furthermore, TCP Contention Control is compatible with all
TCP versions and it does not require any changes in TCP
congestion control algorithm since it simply uses the existing
TCP to throttle the amount of outstanding data in the network.
This can be very useful in heterogeneous networks (wire +
wireless) where the same TCP can be used in both networks.
Therefore, comprehensive simulations should be conductedto

evaluate the capability of the proposed schemes when the
connection is expanding from wire to wireless networks or
vice versa.
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