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Fauxvea: Crowdsourcing Gaze Estimates for
Visualization Analysis Tasks

Abstract—We present the design and evaluation of a method for estimating gazes during the analysis of static visualizations
using crowdsourcing. Understanding gaze patterns is helpful for evaluating visualizations and user behaviors, but traditional
eye-tracking studies require specialized hardware and local users. To avoid these constraints, we created a method called
Fauxvea, which crowdsources visualization tasks on the Web and estimates gaze fixations through cursor interactions without
eye-tracking hardware. We ran experiments to evaluate how gaze estimates from our method compare with eye-tracking data.
First, we evaluated crowdsourced estimates for three common types of information visualizations and basic visualization tasks
using Amazon Mechanical Turk (MTurk). In another, we reproduced findings from a previous eye-tracking study on tree layouts
using our method on MTurk. Results from these experiments show that fixation estimates using Fauxvea are qualitatively and
quantitatively similar to eye tracking on the same stimulus-task pairs. These findings suggest that crowdsourcing visual analysis
tasks with static information visualizations could be a viable alternative to traditional eye-tracking studies for visualization research
and design.

Index Terms—Eye tracking, crowdsourcing, focus window, information visualization, visual analysis, user studies

F

1 INTRODUCTION

T HE goal of this work is to make it easier to understand
where people look in visualizations during analysis

tasks. This gaze information is helpful for improving vi-
sualization designs. For example, gaze data can reveal
whether users attend to guide marks in a visualization. A
potential application is verifying that increasing the size of
marks or repositioning them draws attention to them, thus
helping people interpret the visualization. Finding where
people look can also help researchers understand analysis
strategies and might improve their ability to identify low-
level analysis activities, like finding extrema in a chart [1].
Ultimately, this information could be used to improve the
usability of visualization interfaces or choose more effective
visual mappings for data visualizations.

We present an evaluation of a crowd-based method for
estimating gaze fixations for visualizations. The method
builds on an earlier technique called the Restricted Focus
Viewer (RFV) [2], an image viewer that simulates move-
ment of the fovea by blurring the image and requiring
viewers to deblur regions using the cursor. Essentially, the
RFV requires a person to make manual interactions that
are easily recorded and correspond the areas of the image
she wants to visually decode. We constructed a Web-based
version of the RFV called Fauxvea, which has incremental
improvements in the design of the focus window and data
capture, but most importantly can be accessed by remote
study participants like crowd workers. As a result, the
method enables large-scale gaze estimation experiments,
and can be used to crowdsource the production of heatmaps
showing gaze for visualization stimulus-task pairs.

We demonstrate the method using workers on Amazon
Mechanical Turk (MTurk). First, we compared Fauxvea fix-
ation estimates to eye tracking from 18 participants for three

common types of information visualization (infovis) charts
– scatter plots, bar charts, and node-link diagrams – plus
photographs. Second, we compared the Fauxvea estimates
with ones predicted by participants with expertise in vision
and eye tracking; we show that an individual, even one with
experience with vision, cannot predict fixations as well as
data from a study using Fauxvea. Third, we reproduced
findings from an existing study on tree layouts from Burch
et al. [3] that involves a more complex visual analysis
task than in the first experiment. In these experiments, we
find that gaze locations on the visualizations by online
participants are qualitatively and quantitatively similar to
gazes from the eye-tracking study.

The contributions of this work are fourfold:
• a novel method for crowdsourcing gaze fixation esti-

mates for visualization analysis tasks (Sec. 3);
• qualitative and quantitative evaluations of the method

that show fixation estimates are comparable to eye-
tracking data on basic infovis analysis tasks (Sec. 4);

• an evaluation of how well experts can self-assess
where others will gaze during visualization analysis
tasks; we compare self-assessment to data collected
using Fauxvea (Sec. 5);

• reproduced findings about visual exploration on tree
layouts using the method instead of eye tracking for a
more complex graph analysis task (Sec. 6).

Finally, we discuss limitations of the method and present
opportunities for developing models of gaze that factor in
both visualization stimuli and analysis tasks.

2 RELATED WORK

In this section, we describe how our proposed method
relates to earlier process-tracking techniques, as well as
other approaches for estimating gaze without an eye tracker.
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2.1 Focus-Window Methods

The idea of restricting visual information to the location of
a pointer and tracking its location has existed for decades.
An early example is the MOUSELAB system, which was
aimed at tracking a study participant’s cognitive process
during decision tasks involving information on a computer
display [4]. In this system, boxes containing information
appeared blank until the participant moved the mouse into
one, which would reveal the information in that box.

Our method is more closely related to the Restricted
Focus Viewer (RFV) [2], an image viewer that requires
the user to move the cursor in order to focus regions of the
image. Unlike MOUSELAB, the RFV works with images
that do not have predefined boundaries of information,
so the mouse can be moved to focus any part of the
image, and the image outside of the focus window is
blurred. Cursor movements can be recorded and replayed
as a proxy for actual gaze fixations. Fauxvea adapts this
technique for the Web browser, with design changes that
make it easier to use. Most significantly, the experiments we
performed demonstrate that gaze estimates collected from
online crowd workers – even in uncontrolled computing en-
vironments – are close to eye tracking for the visualization
tasks we studied.

Previous evaluations of the RFV in controlled laboratory
experiments have validated the technique and identified
some of its limitations, but to the best of our knowledge
we are the first to explore its use in estimating gaze
during analysis tasks with data visualizations. Blackwell
et al. found that when people evaluated causal motions
in diagrams of pulley systems, gaze patterns estimated
by the RFV were similar to patterns collected from an
eye-tracking study on the same stimuli [2]. Bednarik and
Tukiaine [5] studied how participants in a controlled eye-
tracking study used a Java software debugging environment
with the RFV. They found that blurring affected how some
users switched gaze between areas on the screen differently
compared to eye tracking, but this behavior did not affect
task performance; participants were able to extract the same
information using the RFV as with a normal image viewer.
Stimuli like coding environments or pulley diagrams differ
from typical infovis charts in how directly they encode
information, so we are motivated to study the focus-window
method in this context. We find supporting evidence that
the approach works even in realistic visualization scenarios
involving moderately complex visual representations and
tasks. For instance, as described in Sec. 6.3, we found
similarities between eye tracking and our crowd-powered
RFV (Fauxvea) in how people switched between areas of
interest in tree diagrams during a graph analysis task.

Crowdsourcing might also help users of the RFV to select
appropriate parameters for their experiments. Jones and
Mewhort [6] found that badly chosen blur levels outside
the focus window can affect scan patterns. Earlier works
have proposed guidelines for setting blur levels [2], [7],
but it remains a challenge to apply these. Because picking
blur parameters depends on the stimulus-task and not on

individual differences, blur levels for stimuli and tasks
could be tested rapidly, inexpensively, and at scale in pilot
studies on MTurk. In our experiment, we chose a reasonable
blur level after rapid testing on MTurk.

2.2 Estimating Gaze on the Web

User interfaces have been developed to collect gaze es-
timates using a Web browser, but these have focused on
domains outside of visualization. Much of this work is
based on findings about the relationship between gaze and
cursor movements (e.g., [8]), which are easy to track in Web
applications. Other studies using Web search tasks in lab
settings have identified specific types of eye-mouse coor-
dination patterns [9], [10] and demonstrated the predictive
power of cursor actions for estimating gaze [11]. Huang et
al. performed an eye-tracking study relating cursor activity
to gaze in search engine results pages (SERPs), then
followed up with a large-scale study of cursor tracking that
linked cursor movements and results examination behaviors
in SERPs [12]. Our method also uses cursor actions to
predict gaze, but we make use of deliberate cursor presses
and releases rather than hover locations in order to measure
start and end times for gaze fixations.

A Web-based system related to a moving focus window
is ViewSer, which helped researchers study how remote
users examine SERPs without eye-tracking [13]. The in-
terface blurs DOM elements in the page corresponding to
search results, and deblurs results when users hover over
them with the cursor. One limitation of this method for
evaluating visualization analysis is that it can only deblur
entire DOM elements. Even if visualization components do
correspond with DOM elements, e.g., using D3 [14], the
size of the the deblurred component might be large enough
that the hovered location does not reflect where the user
is gazing at a useful level of precision. With Fauxvea, the
deblurring area is based on a simple model of the human
fovea. Because the focus region becomes more blurred
away from its center, the user must press the cursor near
the pixels she wants to see clearly. Therefore, the precision
of Fauxvea for estimating gaze is linked to a parameter in
the model and is not dependent on the way DOM elements
are rendered.

Gaze locations in video frames were crowdsourced using
a novel video interface. Rudoy et al. asked workers on
Amazon Mechanical Turk (“Turkers”) to watch videos then
report text codes that randomly appeared on the display in
different parts of the image [15]. This allowed researchers
to look up an approximate region each Turker was gazing
at on a given frame based on the specific code he reported.
One limitation of this technique is achieving high spatial
resolution of gaze estimates. Codes cannot be so close to
one another that a person cannot identify them quickly.
Fauxvea has a similar limitation: users might gaze at
locations that are within the focus region without bothering
to refocus precisely where they are attending. In practice,
we find that users like to refocus directly on interesting
parts of the focus region.
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(a) Browser interface for Fauxvea

r 
d 

p 

(b) Focus window during fixation

Fig. 1: Left: Fauxvea interface showing analysis task instructions, the blurred image viewer, and an input field for the task
answer. This example shows a bar chart task from Experiment 1. Right: The focus window during a Fauxvea fixation.
All pixels outside radius r are fully blurred, and pixels inside are blended between the blurred image and the focused
one. The blend ratio for each pixel p is proportional to its distance d from the cursor location.

2.3 Crowdsourcing Visual Analysis Tasks
Recently, crowdsourcing platforms have been used to eval-
uate visualizations with scalable, non-expert populations.
Some notable examples include Heer and Bostock’s repro-
duction of classic graphical perception results [16], Kong et
al.’s study on TreeMap design [17], evaluations by Kosara
and Ziemkiewicz of visual metaphors and percentage value
reading [18], and Ziemkiewicz et al.’s study of the effects
of individual differences on visualization performance [19].
This line of work has provided valuable examples and
guidelines for crowdsourcing visualization analysis tasks,
but they largely focus on evaluating the speed and accu-
racy of Turkers’ task performance as outputs. Instead, we
estimate gaze locations with Fauxvea using additional data
from the task execution, e.g., cursor presses that facilitate
performing a task.

3 DESIGN AND METHODS

We adapted the RFV into a Web-based application called
Fauxvea that estimates gaze fixations during visualization
analysis tasks without using eye-tracking hardware. By
design, tasks on the interface can be performed in parallel
by remote users, or crowdsourced as human intelligence
tasks (HITs) on MTurk.

We had two main objectives when designing and building
the Fauxvea prototype:

• Collect data that is comparable to eye tracking during
analysis of a static visualization.

• Enable scalable experiments with remote users, like
crowdsourced participants or remote domain experts
who are unavailable for local eye-tracking studies.

3.1 Interface Design
Comparable to eye tracking–The goal of this work is to
make gaze data and metrics more accessible to visualization
designers and evaluators. We are mainly interested in the
location and duration of fixations – where the eye is focused
in the field of view and has the highest visual acuity. If we
assume for simplicity the “eye-mind” hypothesis, this data

identifies areas of a visualization that a person cognitively
processes during an analysis task.

No part of the Fauxvea viewer is focused until the user
presses the cursor in the viewport. The time and location
of each cursor press are recorded as the start time, end
time, and location point of a fixation estimate. This is more
precise than determining a fixation based on the speed of a
hovering cursor, as in the original RFV. While the cursor is
pressed, image details directly under the cursor are revealed
within a focus radius, as shown in Figure 1. The blur
approximates how details in one’s peripheral vision appear
when the fovea is fixated elsewhere in the field of view;
we use a radius instead of the original RFV’s rectangular
window with steps of blur. The idea of a focus spotlight
is similar to other approaches in foveated imaging and
Focus+Context techniques in information visualization, like
semantic depth of field [20]. We note that the information
loss that occurs in peripheral vision and how it affects
visual search are not fully understood. Others have argued
that blur is too simple of a model and that other summary
statistics may be computed over a pooling region in one’s
vision [21]. Incorporating different models of lossy visual
information into an RFV-like interface is an open challenge
beyond the scope of this work.

For the experiments described later, the focus radius is
equal to the 1/6 the width of each stimulus, or 133 pixels.
For many desktop and laptop computing environments, we
expect this radius is a reasonable approximation to the
extent of the fovea, which is between 1–2 degrees of the
field of view [22]. The Fauxvea focus region does not move
if the user drags, forcing the user to release before pressing
in a new location. This lets Fauxvea record fixation start
and end times. The interface does not support zoom or pan
operations, though scrolling in the browser window will not
impact the interface. Within the focus radius, each pixel
has a color that is a blend of corresponding colors in the
original image and blurred image. The blend ratio for each
pixel is proportional to its distance from the cursor press
location; pixels outside the focus radius are fully blurred.

For the purpose of tracking fixations during visual anal-
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ysis tasks, the visualization should be blurred enough that
the task is impossible to answer correctly without fixating
using the cursor. We expect users to fixate in the image
using either: 1) previous knowledge of the image type (e.g.,
where guide marks might exist in a chart), 2) interesting
low-resolution details in the blurred image or in the blended
focus radius of a previous fixation location. In the Fauxvea
prototype, images are blurred as a preprocessing step. For
the experiments described later in this paper, all stimuli are
blurred with a Gaussian filter that we selected following a
pilot study.

Scalable–Fauxvea is designed to support scalable, online
experiments related to visualization analysis. In addition to
the image browser, the webpage includes task instructions,
controls to navigate between tasks, and an input field
for task answers. Cursor interactions and answers to task
questions are stored on the client during the task, then sent
as a transaction to our database when the task is completed.
Full histories of task executions are collected for each user.

3.2 Evaluation Methods
We ran three experiments to evaluate the validity of our
method as a viable alternative to eye tracking for visual-
ization. First, we collected fixation data using eye tracker
with participants performing analysis tasks on basic infovis
charts; we compared these fixations to estimates collected
online with our method on the same stimuli and tasks
using workers on MTurk. Second, we evaluated how well
self-assessment works as an alternative to eye tracking or
Fauxvea for predicting gaze. Third, we used our method to
reproduce findings about visual exploration on tree layouts
from an eye-tracking study by Burch et al. [3] to evaluate
the method in a realistic scenario with a more complex
analysis task.

4 EXPERIMENT 1
In Experiment 1, we performed in parallel an eye-tracking
study and an online study using Fauxvea with workers
recruited on MTurk. Both studies asked participants to
perform a set of visual analysis tasks for image stimuli.
Participants were asked one question per image that re-
quired them to inspect the image. In the eye-tracking study,
participants viewed the stimuli with a normal image viewer
while the eye tracker collected data. In the MTurk study,
Turkers used the Fauxvea interface and pressed the cursor
on the interface while inspecting each image to focus the
viewer.

We hypothesize that fixation data collected from both
studies will be comparable both qualitatively (H1a, H1b)
and quantitatively (H2).

H1a For each stimulus, the two distributions of fixation
locations from eye tracking and Fauxvea studies are
qualitatively similar.

H1b For each stimulus, the two distributions show patterns
that are related to the corresponding analysis task.

H2 Quantitatively, the similarity between the two distribu-
tions for each stimulus is significantly higher than the

similarity between the eye-tracking distribution and
random fixations drawn from a null distribution.

We evaluate H1a and H1b in Sec. 4.6 by generating and
interpreting heatmaps of fixation locations using data from
each study. We evaluate H2 in Sec. 6.3 by applying a
distance function (described later in Sec 4.4) that compares
two fixation distributions.

4.1 Stimuli and Tasks
Three of the most common types of information visualiza-
tions were chosen for this experiment: bar charts, scatter
plots, and node-link diagrams. A fourth stimulus type,
photographs, were also selected from a dataset by Judd
et al. [23] and serve in contrast to structured charts in
our experiment. We used five images of each type in this
experiment, resulting in 20 unique stimuli. All images were
scaled to a width of 800 pixels, and the heights ranged from
600-623 pixels.

Each of the visualizations was created programmatically
using D3 and Vega. Each bar chart and scatter plot shows
20 samples of a quadratic polynomial with noise added to
each value. No axis titles are rendered in the charts. Each
node-link diagram showed a graph of 20 nodes with average
degree of 3. Networks of this size have been studied in
previous eye-tracking experiments [24]. Blurred versions of
all stimuli were created using ImageMagick. Additionally,
we chose a visual analysis task for each type.

• Bar charts: “Estimate the value (height) at year 2008.”
The domain in each chart represents years from 1993
to 2013, and the year in the task description changed
between images.

• Scatter plots: “Estimate the (x, y) position of the
biggest outlier in this data trend. For example, ‘(3.5,
14.8)’.”

• Node-link diagrams: “What is the fewest number of
edges to travel between the red marks A and B?” Each
image shows a different graph layout and has two
randomly selected nodes colored red and labelled A
and B.

• Photos: “Estimate the average age (years) of all people
in the photo.” Each photo contains one or more people.

Tasks at this level of complexity have been used in eye-
tracking studies involving visualization analysis (e.g., [24]).

4.2 Eye-tracking Study (ET)
We recruited 18 participants (14 male, 4 female) for the
eye-tracking portion of the experiment. Participants were
undergraduate and graduate students, except two who were
not students. The eye-tracker used in our study was a
contact-free RED 125Hz from Sensory Motor Instruments.
The stimuli were displayed on a 1600 x 900 pixel monitor
and participants were seated approximately 30 inches from
the monitor. In order to faithfully replicate the Fauxvea
browser setup, the eye-tracking screen displayed during the
study was designed to look like the Fauxvea webpage (see
Figure 1) but with unblurred stimuli. The unblurred stimuli
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Stimulus Eye tracking (ET) Fauxvea (MT) Saliency

1993
1994

1995
1996

1997
1998

1999
2000

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013

-10

-5

0

5

10

15

20

25

30

35

40

1993
1994

1995
1996

1997
1998

1999
2000

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013

-10

-5

0

5

10

15

20

25

30

35

40

1993
1994

1995
1996

1997
1998

1999
2000

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013

-10

-5

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

-6

-4

-2

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

-6

-4

-2

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

-6

-4

-2

0

2

4

6

8

10

A

B

A

B

A

B

Fig. 2: Comparison of eye-tracking gazes, Fauxvea gaze estimates from Turkers, and visual saliency maps. Red overlays
show maps of fixation locations by 18 eye-tracking participants (middle-left) and between 96–100 Turkers per stimulus
type (middle-right). Saliency maps (right) were computed from a visual saliency model [23], but models like these do
not account for predefined analysis tasks.

were shown at the same pixel resolution as used in the
browser setup.

After a minimal introduction and eye-tracking calibra-
tion, participants were shown all 20 stimuli in succession
and were asked to provide verbal responses to the task
questions.

4.3 MTurk Study (MT)
We created four different HITs on MTurk and recruited 100
Turkers to complete each. Each HIT corresponded to one
of four stimulus-task types: bar charts, scatter plots, node-
link diagrams, and photographs. In each HIT, participants
looked at five images and performed the corresponding
visual analysis tasks described earlier. All participants were
located within the United States.

Participants were then asked to inspect five visualizations
of the same type one at a time before answering the asso-
ciated question and moving on. The instructions for each
HIT briefly described the image type and task. Participants

were instructed to press and hold the cursor over the blurred
image to reveal details. Based on results from a pilot study
with 41 Turkers, we determined that training materials
beyond the instructions were not necessary for these tasks.
We were cautious not to suggest analysis strategies for
completing these tasks. Participants could advance to the
next image in the sequence after any amount of time by
providing an answer to the question and clicking a button
on the webpage. They were not allowed to revisit past
images after moving on. Participants were paid $0.15 for
completing the HIT. The instructions also told participants
they could earn a $0.10 bonus if all answers were good
according to an expert reviewer. The goal of the bonus is
to incentivize participants to be thorough with the cursor
interface in answering the questions. It also provides a
quality control mechanism for analyzing Turkers’ cursor
data.

After the visual analysis tasks, we collected demographic
information about participants’ age, sex, and cursor device
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Fig. 3: Fauxvea estimates are significantly more similar to
eye tracking (Experiment 1) than each other baseline is
(p< .001 for each). Smaller scores indicate more similarity.
Error bars show ±1 standard error.

(mouse, trackpad, or other), as well as how often they look
at images like these (“never”, “sometimes”, “often”).

4.4 Comparing Eye Tracking to Fauxvea Esti-
mates
Distance scores were computed between the eye-tracking
and crowdsourced gaze data. Low distance scores indicate
high similarity between the gaze locations in both data
sets. For each image, we considered two sets of points: the
union of all cursor press location by Turkers using Fauxvea,
and the union of all fixation locations by the eye-tracked
participants. For each image, the analysis followed these
steps:

1) For both sets, estimate probability density functions
for the pixel locations using kernel density estimation
(KDE) with a Gaussian kernel. This gives spatially
smooth representations of the fixation data.

2) Discretize each smooth representation of the gazes on
the original pixel grid. This creates two histograms,
HET and HMT .

3) Compute the distance between HET and HMT .
This approach is similar to a previous study comparing gaze
maps [15].

In this experiment, we tested several distance functions
to compare HET and HMT . In the remainder of this paper,
we report results from the χ2 goodness-of-fit test and a
symmetric version of Kullback-Leibler (KL) divergence.
Both are off-the-shelf techniques that have been previously
used to quantify differences between gaze sets [15] and
between saliency maps and human fixation maps [25], [26].
Other metrics including Earth Mover’s Distance (EMD) and
Area Under the Curve (AUC) variations have also been
used and combined to evaluate saliency models [27] and
are applicable to our study; we limited the metrics to χ2

and KL for simplicity.

4.5 Comparing Eye Tracking to Random Gazes
For the hypothesis H1, we test against the null hypothesis
that Fauxvea gaze estimates are spatially uncorrelated with

Quantifying differences between a crowd-
powered RFV and eye tracking
Cells are similarity scores between crowdsourced gaze estimates
(Fauxvea) and eye tracking for 20 Stimuli
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Fig. 4: Pair-wise χ2 distances between eye tracking (ET)
and Fauxvea gaze estimates on Mechanical Turk (MT)
for all 20 stimuli. As a sanity check, we compared each
ET dataset to each MT dataset from Experiment 1 and
visualized the distance scores in a matrix. We expect
that when using a reasonable distance metric, the smallest
distances (darkest cells) will appear on the diagonal, where
ET and MT are compared for the same stimulus.

actual eye-tracking fixations. In this section, we describe
“null” distributions, or baselines, for gazes that we expect
to be less similar to ET than MT is. In Sec. 7.2.2, we
discuss how building models of gaze during visualization
tasks could help us test more realistic null hypotheses.

We expect the distance between a real gaze map and a
random gaze map to be significantly larger than the distance
between corresponding ET and MT gazes for an visualiza-
tion. We considered several baseline gaze distributions that
we believe are unlikely to be correlated spatially with eye-
tracking fixations during visualization tasks:

• Grid, where fixations are evenly distributed in the
stimulus.

• Uniform, where fixations are equally likely in any
part of the image. Rudoy et al. compared χ2 dis-
tances between eye tracking and crowdsourced fix-
ations with their method to distances between ET
and uniform random fixations [15]. This is a baseline
model for saliency (“Chance”) in the MIT Saliency
Benchmark [27].

• Centered Gaussian, where fixations are normally dis-
tributed in the center of the image. Judd et al. showed
that the center of a photograph is a good a priori
estimate of gaze location [23]. This is a baseline
model for saliency (“Center”) in the MIT Saliency
Benchmark [27].

• Uniform + Centered Gaussian, which is a combination
of the uniform and centered Gaussian distributions.

In addition to the above baselines, we compute outputs from
a visual saliency model (Saliency) that is task-agnostic and
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Task Participants Fixations Familiarity with the Image Type

Total Age Mouse / Trackpad / Other Total Per task Never / Sometimes / Often

Bars 98 µ = 29.1,σ = 7.7 77.6% / 18.3% / 4.1% 4,216 µ = 9.9,σ = 7.3 52.0% / 40.8% / 7.2%
Scatter 98 µ = 27.5,σ = 6.9 68.4% / 28.6% / 3.0% 7,484 µ = 24.9,σ = 20.5 57.1% / 34.7% / 8.2%
Node-link 96 µ = 28.2,σ = 7.3 74.0% / 24.0% / 2.0% 4,520 µ = 10.2,σ = 10.0 63.5% / 27.1% / 9.4%
Photos 100 µ = 29.3,σ = 9.7 73.0% / 24.0% / 3.0% 6,314 µ = 14.3,σ = 11.7 6.0% / 43.0% / 51.0%

TABLE 1: Summary of Turkers from Experiment 1. “Fixations” refers to the number of cursor presses that are used to
focus on the stimulus. “Total” is the number of fixations for all participants on all five stimuli in each category. “Per
task” shows the mean and standard deviation for the number of fixations per user, per stimulus.

compare these heatmaps to our ET gazes. The motivation
for this step is to see how an off-the-shelf saliency detector
compares to Fauxvea for predicting gaze during predefined
analysis tasks. There are many saliency detectors available
that take images as inputs and output smoothed saliency
heatmaps; in this experiment, we demonstrate using Judd
et al.’s model [23] that is trained using a benchmark set
of eye-tracking data, and is therefore transparent for others
to use. We report distances from ET to each of these gaze
distributions in Sec. 4.6.

We computed distances from ET to each baseline.
• For Grid: a set of points were generated forming a

n×n grid on the stimulus, where n is the square root
of the number of fixations in the gaze data.

• For Uniform, Centered, or Uniform+Centered: a set
of points was sampled from the distribution, using as
many fixations as in the gaze data.

The distance between these baseline point data and the
gaze data was computed using the algorithm described in
Sec. 4.4 For the baselines involving a sampling procedure
(all but Grid), distances were computed for 100 sampling
iterations for each stimulus, then averaged.

For the Saliency baseline, we computed the average
distance between ET and the model-generated saliency map
for all stimuli. To compute each single distance score for
a stimulus, we used the algorithm in Sec. 4.4 to get a
normalized histogram of the ET gazes, then we normalized
the model-generated saliency map as a histogram before
applying the distance function.

4.6 Results
In this section, we report findings from our comparison of
eye tracking and Fauxvea estimates for basic infovis charts
and tasks (Sec. 4.6).

Summary statistics for our data collection experiments
are shown in Table 1. Turkers performed 392 HITs from
four different stimuli-task types. Eight Turkers submitted
HITs without performing any Fauxvea cursor presses;
therefore, their data are not included in our analysis.

In general, we found that fixations are distributed at sim-
ilar locations between the eye-tracking (ET) and Fauxvea
(MT) studies for all infovis stimuli. Heatmaps of fixation
locations collected in Experiment 1 are shown in Figure 2,
along with saliency map generated from the Judd model.
Each row shows a sample visualization from our experi-
ment, along with overlays of gaze data collected in ET and

MT studies. Red overlays show normalized maps of fixation
locations both by eye-tracking participants and Turkers.
All stimuli and heatmaps from Experiment 1 are available
online at: [URL blinded - see Supplemental Materials PDF].

The similarities in these heatmaps between conditions
support H1a. In most cases, white spaces in a visualization
are not fixated on in either eye tracking or Fauxvea, and
the most relevant marks for the analysis task are fixated
on most heavily. Evidence supporting H1b is clearest in
the heatmaps of bar chart and scatter plot, where specific
axis labels corresponding to correct task responses (i.e.,
column heights or (x, y) coordinate values) are fixated on
heavily while the others are largely ignored. Heatmaps can
also illustrate what visual-analysis strategies are used to
complete tasks with less structure that do not use guide
marks. For example, it is clear that people primarily fixate
on faces in both eye-tracking and Fauxvea results to answer
the photograph task “Estimate the average age of all people
in the photo” and not other context clues (see Figure 2 for
an example).

We found quantitative evidence that fixation estimates
made with Fauxvea are more similar to eye tracking than
the baseline estimates we tested. While it is not surprising
that Fauxvea performs better than random and task-agnostic
gaze estimates, the results confirm a basic requirement for
the method and also demonstrate how to quantitatively
compare two sets of fixation locations. As we discuss in
Sec. 7, opportunities exist to use this evaluation approach
to compare new models of gaze against each another.

The distance between ET and MT (0.39 using the sym-
metric KL function, 0.23 using the chi-squared function)
is significantly less than the distance between ET and each
of the baselines (p < .001 for all paired, two-tail t-tests),
which supports H2. Figure 3 shows the average distance for
both symmetric KL divergence and χ2 distance between all
ET and MT data, and the difference between ET data and
each of the baselines we considered.

Table 2 shows the average distance scores for both
metrics between the ET data for the four image-task types
and each of four baseline null gaze distributions. These
values suggest which null distribution is fairest to sample
for random comparisons against Fauxvea gaze estimates,
for each of the four stimuli-task types we evaluated. In
general, eye-tracking fixations from bar charts and scatter
plots are most similar to gazes sampled from a grid-based or
uniform distribution rather than one with higher likelihood
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Image type Symmetric KL Divergence χ2 Distance

Uniform+Gaussian Gaussian Uniform Grid Uniform+Gaussian Gaussian Uniform Grid
Eye tracking

Scatter 1.09 8.10 0.75 0.73 0.83 1.35 0.65 0.64
Bars 1.60 9.84 1.08 1.07 1.11 1.63 0.84 0.84
Node-link 1.20 2.25 1.52 1.51 0.90 0.96 1.13 1.13
Photos 0.98 3.90 0.96 1.07 0.75 0.98 0.87 0.86

TABLE 2: Distance from eye-tracking data on different visualization types to random gazes from four baseline
distributions. For each distance function, bold values show the distribution that most closely fits the image type (smallest
distance score). These values suggest which null distribution is the fairest to sample for baseline comparisons against
Fauxvea gaze estimates, for each of the four stimuli-task types we evaluated.

near the image center.
Finally, we performed a preliminary analysis of se-

quences of fixations, or scan paths, to compare the temporal
aspect of gazes between ET and MT data. Fixation locations
from each participant were ordered by time, then dynamic
time warping (DTW) was used to compute a table of
similarity scores between all scan paths. The result is a set
of high-dimensional points that represent each scan path.
We used multidimensional scaling (MDS) to plot these scan
paths as points in 2D and looked for areas where MT
and ET points representing the same visualization tasks
clustered together.

While a full analysis comparing sets of scan paths is
beyond the scope of this paper, we found some evidence
that MT scan paths for the same task cluster together when
transformed by DTW. However, this clustering approach
was not conclusive for comparing ET and MT scan paths.
In the MDS plots, the ET scan paths appear more scattered
than MT, and the small number of ET data points for
each visualization task (from 18 eye-tracking participants)
compared to the MT data makes it difficult to spot patterns
in these plots between sets of scan paths. More work is
needed to effectively compare different-sized sets of scan
paths, like datasets from a controlled eye-tracking study and
a larger crowdsourced study using Fauxvea.

5 EXPERIMENT 2
We performed a small-scale follow-up experiment to test
whether people with experience and interest in eye tracking
are able to reliably predict fixation locations for the tasks
and stimuli in Experiment 1. We wanted to know whether it
is viable for a person to self-assess where gazes happen dur-
ing a visualization task instead of running a crowdsourced
study with Fauxvea or performing an eye-tracking study.

5.1 Methods
We recruited six participants (four male, two female) who
were researchers in human-computer interaction or com-
puter vision at a major research university in the U.S.
Each was right-handed, had normal or corrected-to-normal
vision, and identified himself as having experience or in-
terest in learning where people look in images. The ages of
participants ranged from 25–35 years (M=28.7, SD=4.13).
All participants passed an Ishihara test for normal color
vision.

Fig. 5: Human predictions of fixation locations for the task
“Estimate the value (height) at year 2007”. Six participants
with experience in eye tracking and/or vision (P1–P6,
identified in the figure with unique colors) marked five or
more predicted locations for where other people will fixate.

In the first task, each participant was seated about 18
inches from a 24” 1920 x 1200 pixel monitor and viewed
each of the 20 task-stimulus pairs from Experiment 1. For
each task, participants were asked to select at least five
locations in the stimulus they believe people performing the
task will fixate on. Participants indicated their fixation loca-
tions by clicking a cursor at locations inside the image. The
tasks were presented in the same order that participants in
the eye-tracking condition (ET) in Experiment 1 performed
them. We recorded each predicted fixation location.

In the second task, participants were seated at the same
display and shown eye tracking (ET) and Fauxvea (MT)
gaze heatmaps for each task-stimulus pair, side by side. The
ET and MT heatmaps were generated from data collected in
Experiment 1. For each of the 20 pairs, each participant was
asked to click on the heatmap she believed was generated
from real eye-tracking data; the position of the ET heatmap
– left or right – was randomly assigned between stimuli.
Participants could also select a “Too close to call” button
if they could not identify the ET heatmap. We scored how
accurate each person was in selecting the ET heatmaps in
the set of stimuli.
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5.2 Results
The results from this study are primarily qualitative for two
reasons: 1) recruiting a large sample size of people with
experience in vision or eye tracking is difficult; 2) when
asked to select fixation locations, most participants selected
only the minimum number of locations we requested.
Therefore, the data are sparse.

We examined the results from the first task by visualizing
all fixations predicted by the expert participants and looking
for patterns in how participants chose points across stim-
uli. We created a filterable visualization of these fixation
predictions that is available online at [URL BLINDED –
screenshots in Supplemental Materials PDFs]. In general,
we found that most participants identified similar key areas
in each stimulus, but predictions varied in how people
attend to areas of the stimuli that are visual salient but
irrelevant to the particular tasks. Figure 5 shows an example
where 5 of 6 participants predicted that others would fixate
on the top of the column, x-axis guide marks, and y-axis
guide marks corresponding to the task; however, there was
little consensus on which other bars or guide marks people
would attend. One participant (P2), a graduate student who
studies eye tracking, did not predict any fixations on the
task-specific areas of the bar chart; in a follow-up interview,
she indicated that she focused on marking only visually
salient regions.

Our main insight is that even with expertise in thinking
about where others will gaze in an image, as an individual
it is difficult to predict how a population of people will
gaze during a visual analysis task. Several participants
commented that they made predictions by first solving the
task on their own, then reporting where they gazed during
that trial; however, this strategy limits the evaluator to only
one perspective and is not viable for estimating gazes from
a population that might analyze a visualization in different
ways.

In the second task, the experts correctly identified the
real eye-tracking heatmap with 68.3% accuracy on average.
They incorrectly identified the Fauxvea heatmaps as eye
tracking 23.3% of the time, and 8.3% of the time they
selected “Too close to call”. In a follow-up interview, most
participants indicated that when heatmaps were noisier it
was an indicator of real eye tracking. P5, who had run eye-
tracking studies prior to our experiment, commented that
adding random noise to the Fauxvea heatmaps could make
them look closer to the eye-tracking heatmaps.

6 EXPERIMENT 3
We ran a third experiment to see if the Fauxvea method
is able to reproduce findings about visual exploration
behaviors from an existing eye-tracking study using tree
visualizations. This follow-up was aimed at evaluating the
external validity of Fauxvea beyond the basic visualization
interpretation tasks in Experiment 1. We reproduced the
task and three stimuli from an eye-tracking study of tra-
ditional, orthogonal, and radial tree layouts [3]. Burch et
al. note that these layouts are “frequently used in many

application domains, they are easy to implement, and they
follow aesthetic criteria for tree drawing”.

In general, we hypothesize that fixation locations and
transition frequencies reported in the original study will be
reproduced by running a similar experiment with Fauxvea
(H3). In addition, we hypothesize that the three findings
in the section titled “Analysis of Exploration Behavior”
in [3] will be corroborated with data collected from a
reproduction of the experiment using Fauxvea instead of
an eye tracker (H4a, H4b, H4c).
H3 Transition frequencies between predefined areas of

interest (AOIs) in the original study will be similar
to transition frequencies reproduced using Fauxvea.

H4a Participants will jump more frequently between leaf
nodes that are near each other in the traditional layout
compared to the orthogonal and radial layouts.

H4b The pixel distance between the marked leaf nodes will
affect the transition frequency.

H4c Participants viewing the radial layout will transition
back from the root node to AOI 2 more frequently
compared to the traditional and orthogonal layouts.

We evaluate H3 in Sec. 6.3 by analyzing the most frequent
destination AOI from each source AOI. We evaluate H4a,
H4b, and H4c in Sec. 6.3 by analyzing specific patterns in
the corresponding transition tables.

Testing these hypotheses will help us evaluate whether
Fauxvea can reproduce findings about visual exploration
visualization without using an eye tracker. We note that we
do not compute distance scores, as we did in Experiment 1,
because the fixation data from the eye-tracking study are not
available. Furthermore, rather than measuring how closely
the Fauxvea estimates match the eye-tracking heatmaps, the
main goal of this experiment is to corroborate or reject the
findings from [3] using a similar analysis.

6.1 Stimuli and Tasks
Participants were shown tree diagrams with marks that
indicated the root node and three target nodes. Stimuli were
composed of three tree layouts: traditional, orthogonal,
and radial. The layouts differ in how nodes and edges
are aligned. These layouts are shown in Figure 6. The
participants were asked to find the least common ancestor
(LCA) of the target nodes in each tree. The instructions
included a definition of the LCA written in plain English.

We asked participants to report the coordinates of the
LCA for each tree they analyzed, so we added an in-
teraction to the Fauxvea interface that lets users find the
coordinates over the cursor location. While interacting with
the interface, the user can type the ‘Return/Enter’ key to
place a mark under the cursor and its (x, y) coordinates
are displayed on the screen. In this way, participants can
quickly find the coordinates of locations in the image
without interfering with cursor presses.

6.2 MTurk Study
We created three different HITs on MTurk corresponding to
the three tree layouts and recruited 85 Turkers to complete
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Fig. 6: Three stimuli for Experiment 3: (a) traditional, (b) orthogonal, and (c) radial tree layouts. The root node is
indicated by a larger circle mark, and the target nodes for the common-ancestor task are indicated by red arrows.

each. We restricted each participant to one HIT only
because the same underlying graph data is visualized in
each HIT. All participants were located within the United
States.

In each HIT, participants performed three training tasks
using Fauxvea and were shown example trees with the
LCA labelled to help them understand the task. For the
fourth task, participants completed the task for the test
stimulus that was replicated from the Burch et al. study. The
test stimulus did not have the LCA labelled. During each
HIT, participants could advance to the next image in the
sequence after any amount of time by providing and answer
to the question and clicking a button on the webpage. They
were not allowed to revisit past images after moving on. We
expected that each HIT would take 4-5 minutes to complete
and paid each Turker who completed a HIT $0.45. A $0.15
bonus was offered to each Turker who identified the LCA
correctly according to an expert reviewer.

After the visual analysis tasks, we collected demographic
information about participants’ age, sex, and cursor device
(mouse, trackpad, or other), as well as how often they look
at images like these (“never”, “sometimes”, “often”) and
general feedback about the strategy each Turker completed
the LCA task.

6.3 Results
For each HIT, 85 Turkers performed the LCA task using
the Fauxvea interface. Each of the test tasks was deemed
accurate if the reported coordinates for the LCA were
within 10 pixels of the known answer. Turkers who were
accurate were given a $0.15 bonus. The average task
accuracy for the HITs differed: Turkers were most accurate
with the orthogonal layout (50.6% = 43/85), slightly less
accurate with the traditional layout (41.2% = 35/85), and
least accurate with the radial layout (20% = 17/85).

Overall, we found that the distributions of fixations
from Experiment 3 on the three stimuli were similar to
those published in Burch et al. [3]. In Figure 7, we
show heatmaps of fixations from Experiment 3 alongside
those from the original study. The top row shows fixation
heatmaps and the AOIs specified in the original study. The
second row shows heatmaps we generated from the data
collected in Experiment 3. We implemented a heatmap

renderer using a rainbow color map to approximate the
visualization technique in the earlier work; therefore, some
visual differences between these charts may be due to
implementation differences.

We observed several similarities between the heatmaps
from the original study and Experiment 3. In all heatmaps,
AOI 5 – which contains the root node of the tree – is fixated
on heavily. This makes sense because locating the root node
is critical for the task of finding the LCA of the target nodes.
We also found subtrees and leaf nodes that were essentially
ignored in both the original study and in Experiment 3.
These include areas that are dense with nodes and edges
but are not parts of the visualization that one must attend
to find the LCA (e.g., between AOI 1 and AOI 3 in the
traditional and orthogonal layouts). This suggests Turkers
are able to focus on the task at hand and do not spend effort
fixating on areas of the visualization that are irrelevant to
the task, even if those areas are comparably visually salient
in the blurred viewer. The fact that the heatmaps are similar
between studies, and that they show evidence participants
fixate on task-specific areas, supports both H1a and H1b.
We did not evaluate H2 for Experiment 3 because the raw
eye-tracking data needed to compute quantitative distance
scores were not available.

We also observed some differences between the fixation
maps from these experiments. In general, the original eye-
tracking fixations appear more focused and less spread
out than the Fauxvea fixations. This contrasts our earlier
findings in Experiment 1. An exception to this is the set of
Fauxvea fixations that occur along edges in the traditional
and orthogonal layouts (e.g., between AOI 2 and AOI 6, and
between AOI 1 and AOI 7). Another noticeable area where
heatmaps differ in the traditional layout is AOI 2, which is
fixated on relatively more than AOI 3 in our experiment and
less than AOI 3 in the original experiment. In this layout,
Turkers were much more likely to transition from AOI 7 to
AOI 2 than to any other AOI; in the original eye-tracking
study, AOI 2 was also the most frequent transition from
AOI 7, but AOI 1 and AOI 3 are other common destinations
(each with > 10% frequency).

All observed transition frequencies, which can be thought
of as probabilities, between specific AOIs are shown in
Figure 8. The top row shows probabilities from the original
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Fig. 10. Top row: Hierarchy dataset with three marked leaf nodes (stimuli data). Second row: Gaze plots for the same hierarchy dataset as
illustrated in the top row. Third row: Heat maps for area of interest (AOI) determination based on the gaze plot data represented in the second row.
Bottom row: Probabilities for direct transition between AOIs. Matrix entries highlighted in the same color belong to the same AOI pair.

showed that differences between radial and other layouts were signifi-
cant (p < 0.005, Bonferroni-corrected for multiple comparisons).

Hypothesis 2 can be confirmed. Non-radial layouts are significantly
faster than the radial layout when performing the task of finding the
least common ancestor of a set of marked leaf nodes. To understand
the reasons for the longer duration when solving the task we have to
take into account the eye movement data. There is no significant dif-
ference between traditional and orthogonal layouts.

5.3 Effect of Number of Leaf Nodes Marked

Finally, we analyzed the effect of the number of leaf nodes marked
in a diagram. First, an ANOVA analogous to the one in Section 5.1
showed that there was a significant effect of the number of marked
leaf nodes on completion time (F(2,70) = 5.72; p < 0.005;h2 = 0.69)
with mean times 12.73s (SD = 6.96s) for three marks, 14.85s (SD =
8.24s) for six marks, and 16.01s (SD = 9.82s) for nine marks (see
Figure 8). The ANOVA analogous to Section 5.2 supports these re-
sults. Here, the number of marked leaf nodes also had a significant ef-
fect (F(2,70) = 5.72; p < 0.005;h2 = 0.62) with mean times 13.83s
(SD = 8.92s) for three marks, 15.75s (SD = 10.29s) for six marks,
and 17.86s (SD = 11.89s) for nine marks (see Figure 9). Post-hoc
pairwise testing revealed significant differences only between three
and nine marks (p < 0.005, Bonferroni-corrected for multiple com-
parisons). Since both analyses agree on this and an increasing number
of marked leaf nodes results in increasing completion times, we con-
firm Hypothesis 3.

5.4 Analysis of Exploration Behavior
We base our analysis of the participants’ exploration behavior on areas
of interests (AOIs) that we derived from the density of the heat map
representations. The top row of Figure 10 shows the same hierarchy
dataset in the traditional, orthogonal, and radial layouts. The second
row of Figure 10 represents gaze plots of the participants by the inte-
grated visualization of the eye tracking system for the stimuli based
on the datasets from Figure 10 (top row). Each participant is mapped
to a different color as given by the integrated eye tracking software
and all gaze trajectories are drawn on top of each other. An immense
amount of visual clutter is produced and only the hot spots can be de-
rived from this visualization. Therefore, we preprocess the data by
first generating heat map representations as shown in Figure 10 (third
row) to classify a set of regions that were of special interest for the
subjects.

For the analysis, we calculated a transition matrix of the AOIs that
contains the relative amount of direct transitions between each AOI to
any other AOI, see Figure 10 (bottom). The transition matrix shows
the probability to switch from one AOI to another without detours.

The goal of this analysis is to identify major differences in the ex-
ploration behavior between the three layout strategies. This analysis
method ignores the substantial amount of transitions that begin and
end up outside of AOIs (denoted in the first row/column of the tran-
sition matrix in Figure 10 (bottom)). To identify detailed characteris-
tics of exploration strategies and to obtain statistically significant and
quantitative findings, a more complete analysis approach should be
followed, which is left for future work. However, for the comparative
and qualitative investigation of the main differences in exploration be-
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Fig. 10. Top row: Hierarchy dataset with three marked leaf nodes (stimuli data). Second row: Gaze plots for the same hierarchy dataset as
illustrated in the top row. Third row: Heat maps for area of interest (AOI) determination based on the gaze plot data represented in the second row.
Bottom row: Probabilities for direct transition between AOIs. Matrix entries highlighted in the same color belong to the same AOI pair.
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grated visualization of the eye tracking system for the stimuli based
on the datasets from Figure 10 (top row). Each participant is mapped
to a different color as given by the integrated eye tracking software
and all gaze trajectories are drawn on top of each other. An immense
amount of visual clutter is produced and only the hot spots can be de-
rived from this visualization. Therefore, we preprocess the data by
first generating heat map representations as shown in Figure 10 (third
row) to classify a set of regions that were of special interest for the
subjects.

For the analysis, we calculated a transition matrix of the AOIs that
contains the relative amount of direct transitions between each AOI to
any other AOI, see Figure 10 (bottom). The transition matrix shows
the probability to switch from one AOI to another without detours.

The goal of this analysis is to identify major differences in the ex-
ploration behavior between the three layout strategies. This analysis
method ignores the substantial amount of transitions that begin and
end up outside of AOIs (denoted in the first row/column of the tran-
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tics of exploration strategies and to obtain statistically significant and
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followed, which is left for future work. However, for the comparative
and qualitative investigation of the main differences in exploration be-

(a) (b) (c)
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illustrated in the top row. Third row: Heat maps for area of interest (AOI) determination based on the gaze plot data represented in the second row.
Bottom row: Probabilities for direct transition between AOIs. Matrix entries highlighted in the same color belong to the same AOI pair.
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faster than the radial layout when performing the task of finding the
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the reasons for the longer duration when solving the task we have to
take into account the eye movement data. There is no significant dif-
ference between traditional and orthogonal layouts.

5.3 Effect of Number of Leaf Nodes Marked

Finally, we analyzed the effect of the number of leaf nodes marked
in a diagram. First, an ANOVA analogous to the one in Section 5.1
showed that there was a significant effect of the number of marked
leaf nodes on completion time (F(2,70) = 5.72; p < 0.005;h2 = 0.69)
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pairwise testing revealed significant differences only between three
and nine marks (p < 0.005, Bonferroni-corrected for multiple com-
parisons). Since both analyses agree on this and an increasing number
of marked leaf nodes results in increasing completion times, we con-
firm Hypothesis 3.

5.4 Analysis of Exploration Behavior
We base our analysis of the participants’ exploration behavior on areas
of interests (AOIs) that we derived from the density of the heat map
representations. The top row of Figure 10 shows the same hierarchy
dataset in the traditional, orthogonal, and radial layouts. The second
row of Figure 10 represents gaze plots of the participants by the inte-
grated visualization of the eye tracking system for the stimuli based
on the datasets from Figure 10 (top row). Each participant is mapped
to a different color as given by the integrated eye tracking software
and all gaze trajectories are drawn on top of each other. An immense
amount of visual clutter is produced and only the hot spots can be de-
rived from this visualization. Therefore, we preprocess the data by
first generating heat map representations as shown in Figure 10 (third
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ploration behavior between the three layout strategies. This analysis
method ignores the substantial amount of transitions that begin and
end up outside of AOIs (denoted in the first row/column of the tran-
sition matrix in Figure 10 (bottom)). To identify detailed characteris-
tics of exploration strategies and to obtain statistically significant and
quantitative findings, a more complete analysis approach should be
followed, which is left for future work. However, for the comparative
and qualitative investigation of the main differences in exploration be-
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Fig. 7: Comparison of results from Experiment 3 with the results reported by Burch et al. Data in columns (a), (b), and
(c) correspond to traditional, orthogonal, and radial layout conditions. Rows 1 and 2 show the eye-tracking heatmaps
from Burch et al. and the gaze estimate heatmaps we collected in Experiment 3, respectively.
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Fig. 8: Comparison of results from Experiment 3 with the results reported by Burch et al. Data in columns (a), (b),
and (c) correspond to traditional, orthogonal, and radial layout conditions. Rows 1 and 2 show transition probabilities
between AOIs from Burch et al. and the probabilities we found in Experiment 3, respectively. Transition probabilities to
or from areas outside any AOI are grayed out. Green cells indicate where the most likely destination AOI from a source
is the same in both the eye-tracking results and the Experiment 3 results. Yellow cells indicate where the most likely
destination AOI from a source was not the same in both eye-tracking and Experiment 3 results.

eye-tracking study, and the second row shows probabilities
from the data in our experiment. The similarity in transi-
tion tables between experiments suggest that participants
explored the AOIs using similar patterns. For 14 out of
the 21 source AOIs in the three layouts (67%), the most
frequent destination AOI (highlighted in green) was the
same in both the original results and our results. This is
much better than the 3 or 4 matches (16.7% = 1/6) we
expect if the most frequent destination from each AOI were
randomly chosen from the remaining six. Therefore, we
find support for H3. The cells highlighted in yellow show

where the most likely destination AOI is different between
the experiments. In all but one of these cases, the most
likely transition in our experiment was the second most
likely in the original experiment.

Examining the transition probabilities, we did not find
support for H4a. Burch et al. found that the probability
from AOI 1 to AOI 6 (and vice versa) was 19% (17%) for
the traditional layout, in contrast to 7% (6%) in our study,
which is comparable to the orthogonal layout results from
both studies. Transition probabilities for these AOIs in the
radial layout are comparable between studies.
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We found partial support for H4b. We re-examined the
transitions that supported this hypothesis in the original
study. The Fauxvea transition probability from AOI 1 to
AOI 3 (and vice versa) is less than the probability from
AOI 1 to AOI 6 (and vice versa) in the traditional (3% (2%)
compared to 7% (6%)) and orthogonal (4% (3%) compared
to 7% (3%)) layouts. The distance between AOIs 1 and 3 is
greater than the distance between AOIs 1 and 6. However,
for the radial layout, we found that the probability from AOI
1 to AOI 3 (and vice versa) was not necessarily less than
the probability from AOI 1 to AOI 6 (and vice versa), as
in the eye-tracking study: 4% (2%) compared to 2% (3%).
In fact, the distances from AOI 1 to AOI 3 and AOI 6 are
not as different in the radial layout and in the traditional
and orthogonal ones (see Figure 6). We discuss possible
explanations for these differences in Sec. 7.1.

Finally, we found strong support for H4c. In our experi-
ment, the probability from AOI 5 to AOI 2 is 29% in the ra-
dial layout but only 11% in both traditional and orthogonal
layouts. This is comparable to Burch et al.’s probabilities
for this transition: 22% (radial), 4% (traditional), and 5%
(orthogonal).

7 DISCUSSION

In this section, we discuss how Fauxvea might affect visual
exploration behaviors, then we outline opportunities for
improving Fauxvea and quantitative comparison methods
for gaze estimates.

7.1 Visual Exploration Behaviors

We noticed a few differences in how eye-tracking and
Fauxvea fixations are distributed spatially for visualization
tasks. In Experiment 1, we found that eye-tracking gazes
generally occur over wider regions of the image and appear
more spread out than Fauxvea gaze estimates (see Figure 2).
There are several possible explanations for this behavior:

• People do not look at a singular point of interest for
long; instead, their gaze hovers around that point.

• Holding a cursor at a single pixel location over time
requires less effort than gazing at one location for the
same amount of time.

• The time and effort needed to move and press the
cursor is greater than a saccade of the eye.

• For Turkers, there is an opportunity cost to being slow
or getting distracted by irrelevant image details. We
expected that Turkers would finish the HITs for this
experiment as quickly as possible in order to accept
new HITs and to maximize their payments on MTurk.

• Eye trackers can have errors due to both calibration
and moments when the eye tracker cannot find the eye.
Therefore, recorded coordinates might be inexact.

Our findings in Experiment 3, which involves a more
complex task, show a different pattern: in some cases,
Fauxvea gaze estimates are more spread out than eye-
tracking gazes (see the radial layout in Figure 7). It is
possible that Turkers using the Fauxvea interface had less

experience with this task compared to the participants
in the eye-tracking study and therefore spend more time
exploring the diagram. Turkers also used the interface to
fixate on edges in the tree diagrams more than eye-tracking
participants, which supports the idea that they focus on
tracing paths to complete the task. Eye-tracking participants
with the normal viewer, on the other hand, can make
saccades between nodes and may rely on peripheral vision
to view edges. In both populations, similar hot spots related
to the task appear in the heatmaps.

7.2 Quantitative Comparisons
In Experiment 1, we compared Fauxvea fixations against
eye-tracking fixations using a quantitative approach similar
to an earlier evaluation by Rudoy et al. [15]. We evaluated
an additional distance function and tested additional base-
line distributions of random fixations, plus a grid baseline
and a saliency model. We discuss our findings below.

7.2.1 Distance Metrics
We explored two measures of similarity between smoothed
representations of gaze locations: a symmetric version of
KL divergence and χ2 distance. Figure 4 shows one of these
metrics (χ2) computed between the ET and MT data we
collected, for each pair of stimuli-tasks. As a sanity check,
we were interested in seeing how values on the diagonal
– which are distances between corresponding visualization
tasks in the two conditions – compare to distances between
unrelated visualization tasks. We note that this type of
matrix should not necessarily be symmetric across the diag-
onal, because the columns (Fauxvea) represent a different
modality for which fixations were collected compared to the
rows (eye tracking). The matrix shows that the diagonal
is in fact darker than any single row. This is also visual
evidence of hypothesis H1b: the fixations from both ET
and MT are linked to underlying visualization tasks.

7.2.2 Generating Baseline Gazes
We evaluated Fauxvea quantitatively by computing how
much closer to eye tracking Fauxvea’s fixation locations are
compared to fixations drawn from simple null distributions;
creating more realistic computational models of gaze during
visualization analysis is an open problem that is beyond the
scope of this paper.

We used an off-the-shelf, state-of-the-art model of visual
saliency [23] and found that the maps it generates from
the visualization stimuli in Experiment 1 are not much
closer to eye tracking than the other null distributions, like
Grid and Centered Gaussian. This is not surprising because
people do not necessarily attend to salient regions that are
irrelevant to the analysis task they are given. It is possible
that people with experience in vision and eye tracking could
identify where people will look during tasks, but as we
found in Experiment 2, self-assessment of these areas is
not consistent even among experts.

It is also valuable to understand how the spatial layouts of
basic infovis types are related to different null distributions
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so that evaluators can pose null hypotheses that are harder
to reject. Between the different null distributions we tested,
we found quantitative differences in the distance scores
from eye tracking to each of the four stimuli types. These
differences are illustrated in Table 2, and let us see which
distribution is the fairest baseline for each type. Our com-
parison demonstrates that not all approaches to synthesizing
null data produce equal baselines for all infovis types.

7.3 Limitations

7.3.1 Imposing on the User

Many challenges remain in the area of estimating gaze
patterns without eye trackers. Interactive visualizations are
difficult to study with a RFV-based method because the
viewer requires cursor interactions that might conflict with
underlying interactions. The process of mixing focus inter-
actions and interactions with the underlying visualization
might obstruct the user’s natural analysis workflow. For
these reasons, we have focused on evaluating gaze locations
in static visualizations only.

Another limitation of using a RFV-based interface for
visualization is that it could discourage users from par-
ticipating in the evaluation. Bednarik and Tukiaine [5]
reported that some users disliked the interface, which might
negatively impact future participation in RFV studies. With
Fauxvea, one mitigating factor is the large number of
potential participants on MTurk: even if some Turkers
decide to avoid Fauxvea HITs after participating once, there
are many other workers to recruit. In fact, we received
positive feedback from Turkers who enjoyed completing
the HITs.

Finally, using any form of eye tracking or gaze estimation
to understand a person’s cognitive activities with a visual-
ization depends on the “eye-mind” hypothesis – that what a
person gazes indicates his foremost cognitive process [28],
[29]. Visualization analysis often requires keeping several
pieces of information in mind while solving a task, so it is
possible that the hypothesis does not hold for some tasks,
as Kim et al. found [30]. In this case, it is still valuable
to understand which visual information is inspected and
needed to answer a task, even if it is difficult to infer deeper
cognitive processes of the person. Follow-up interviews or
questionnaires could help verify cognitive processes that
are apparent in gaze traces.

7.3.2 Eye-Tracking Metrics

A goal of researching gaze estimation methods is to provide
researchers and practitioners with a cost-effective alterna-
tive for performing analyses that depend on gaze metrics.
Poole and Ball summarized three types of eye-movement
metrics [28]: fixation-derived, saccade-derived, and scan-
path-derived. Of these, our results suggest that Fauxvea
fixations could be used to provide some fixation-derived
metrics similar to eye-tracking ones. More work is needed
to validate that Fauxvea scan paths are similar to eye-
tracking scan paths.

Saccade-derived metrics are not possible with Fauxvea.
Cursor movements between Fauxvea fixations do not neces-
sarily reflect eye movements, because a person might scan
the blurred visualization without moving the cursor before
deciding where to fixate next. Saccade data is less relevant
than fixations in understanding where people do processing
in a visualization, because visual encoding does not occur
during saccades [28].

One must be careful when interpreting metrics involving
individual Fauxvea fixations, since the interface might
affect exploration behaviors in subtle ways. For example,
we found that the duration of a Fauxvea fixation is on
average longer than an eye-tracking fixation. One expla-
nation for this is that when a person examines an area of
a visualization in a normal image viewer, she might make
several fixations near the same area; in Fauxvea, this might
be replaced by a single, longer fixation due to the added
cost of refocusing, as described in Sec. 7.1. Therefore,
Fauxvea fixations might be more coarse-scale than eye-
tracking fixations.

7.4 Opportunities
We found several opportunities to build on the Fauxvea
method and related approaches. First, we did not analyze
fixation sequences in this work, and an opportunity exists
to develop user interfaces that help recover or estimate scan
paths without an eye tracker.

Second, we believe the data collected from Fauxvea
experiments could be used to improve the baselines men-
tioned in Sec. 7.2.2 and create computational models of
gaze for visualization. In turn, these models could bootstrap
the evaluation of gaze-estimation user interfaces that have
humans in the loop, like Fauxvea.

In addition, we have not yet evaluated Fauxvea using
remote, visualization domain experts – only remote non-
experts. Using Fauxvea, it might be possible to collect gaze
estimate data from expert populations that were previously
inaccessible for traditional eye-tracking lab studies. This
could enable visualization studies with larger sample sizes
of domain experts than is currently possible.

8 CONCLUSION

We developed and evaluated a crowd-powered method
called Fauxvea that estimates gaze data for tasks on static
information visualizations without using an eye tracker.
This work was adapted from an earlier method that had not
been previously evaluated with online crowd participants or
in the context of information visualization. We implemented
the method in a Web application called Fauxvea and eval-
uated it in three experiments, including a reproduction of
earlier eye-tracking findings about tree visualizations using
workers on Amazon Mechanical Turk.

Our method is a practical alternative to using an eye
tracker to find task-specific areas of interest in static infovis
charts. It reduces the cost of obtaining eye tracking hard-
ware, which can be prohibitively expensive, and removes
the limitation of running participants one at a time. It lets
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researchers run studies using very large sample sizes, which
can increase the statistical power of analyses using fixation
data. In Experiment 1, we found evidence that data from
many Turkers results in less noisy, task-specific heatmaps
compared to data collected in a parallel eye-tracking study
with a typical number of participants. In Experiment 2, we
found that self-assessment of gaze estimates by individuals
is inconsistent; therefore, using Fauxvea with crowdsourced
workers is likely to be a more reliable approximation of eye
tracking. We demonstrated in Experiment 3 that the way
people transition between AOIs using Fauxvea is similar
to eye tracking, but comparing full scan paths remains a
challenge.

Other contributions of this work include a quantita-
tive evaluation method that we extended from earlier ap-
proaches, and that lets us compare eye-tracking data to
Fauxvea fixations. In this evaluation, we performed null
hypothesis testing using more fair baseline comparisons
than in earlier work. Creating a robust computational model
of gaze for visualization tasks is an open problem, and
data from Fauxvea might be helpful in constructing such a
model.
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