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Abstract. By applying spatio-temporal aggregation to traffic data consisting of 

vehicle trajectories, we generate a spatially abstracted transportation network, 

which is a directed graph where nodes stand for territory compartments (areas 

in geographic space) and links (edges) are abstractions of the possible paths be-

tween neighboring areas. From time series of traffic characteristics obtained for 

the links, we reconstruct mathematical models of the interdependencies be-

tween the traffic intensity (a.k.a. traffic flow or flux) and mean velocity. Graph-

ical representations of these interdependencies have the same shape as the fun-

damental diagram of traffic flow through a physical street segment, which is 

known in transportation science. This key finding substantiates our approach to 

traffic analysis, forecasting, and simulation leveraging spatial abstraction. We 

present the process of data-driven generation of traffic forecasting and simula-

tion models, in which each step is supported by visual analytics techniques. 

1 Introduction 

The topic of this presentation, based on [4], is derivation of traffic forecasting and 

simulation models from traffic data. Traffic data in the form of trajectories of vehicles 

are currently collected in great amounts, but their potential remains largely underex-

ploited. By means of visual analytics methods, we discovered fundamental patterns of 

traffic flow dynamics that are common for different areas and spatial scales. On this 

basis, we created interactive visual interfaces for representing these patterns by math-

ematical models and devised a lightweight traffic forecasting and simulation algo-

rithm that exploits these models. We developed interactive visual embedding for de-

fining initial conditions, running simulations, and analyzing the outcomes. Since sim-

ulations could be prepared and performed very fast, thus allowing interactive opera-

tion, our tools allow the users to imitate various interventions altering network proper-

ties and/or traffic routes and investigate their impacts on the traffic situation devel-

opment, including comparative analysis of various “what if” scenarios. 
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2 Approach summary 

Given a set of trajectories, we apply a method [2] that derives an abstracted network 

consisting of territory compartments (further called cells) and links between them. In 

brief, the method organizes points sampled from the trajectories into groups fitting in 

circles of a user-specified maximal radius. The medoids of the groups are taken as 

generating seeds for Voronoi tessellation. Smaller or larger cells (Voronoi polygons) 

can be generated by varying the maximal circle radius, thus allowing traffic analysis 

at a chosen spatial scale. Moreover, it is possible to vary the spatial scale across the 

territory depending on the data density [1]. Next, the trajectories are transformed into 

flows (aggregate movements) between the cells by time intervals. For each pair of 

neighboring cells (Ci, Cj) and each time interval Tk, the flow is an aggregate of all 

moves from Ci to Cj that ended within the interval Tk and started within either Tk or 

Tk-1. The flow is characterized by the number of moves and the mean speed (velocity) 

of the movement. The number of moves (traffic volume) per time interval is called 

traffic intensity (a.k.a. traffic flow or flux). Since available trajectories typically cover 

only a sample of vehicles that move within a network and not the entire population, 

the computed traffic intensities need to be appropriately scaled, to approximate real 

intensities. Appropriate scaling parameters or functions can be derived by comparing 

the computed vehicle counts with measured counts obtained from traffic sensors [7]. 

To study and quantify the relationships between the traffic intensities and mean 

speeds, the data are further transformed in the following way. Let A and B be two 

time-dependent attributes associated with the same link and defined for the same time 

steps. The value range of attribute A, which is taken as an independent variable, is 

divided into intervals. For each value interval, all time steps in which values from this 

interval occur are found, and all values of attribute B occurring in the same time steps 

are collected. From these values of B, summary statistics are computed: quartiles, 9th 

decile, and maximum. For each statistical measure, a sequence of values of B corre-

sponding to the value intervals of A is constructed. These sequences are called de-

pendency series. We first take the traffic intensity as the independent variable and 

derive dependency series of the mean speed. Then we take the mean speed as the 

independent variable and derive dependency series of the traffic intensity. Dependen-

cy series may be derived using either the absolute or relative traffic intensities, the 

latter being the ratios or percentages of the absolute intensities to the maximal intensi-

ties attained on the same links.  

In Fig. 1, two maps on the left represent abstracted transportation networks of Mi-

lan with different levels of spatial abstraction. Curved lines in the upper map and half-

arrow symbols in the lower map represent the network links. On the right of each 

map, the upper graph shows the dependencies of the mean speed on the relative traffic 

intensity. The horizontal axis corresponds to the traffic intensity and the vertical axis 

to the 9th decile of the mean speed (this statistical measure is less sensitive to outliers 

as the maximum). The lower graph shows the dependencies of the relative traffic 

intensity on the mean speed. The horizontal axis corresponds to the mean speed and 

the vertical axis to the maximal traffic intensity. The network links have been clus-

tered by similarity of the speed-intensity dependencies. The coloring of the link sym-



bols on the map and lines in the graphs represents the cluster membership. The shapes 

of the dependency lines are very similar to the curves in the fundamental diagram of 

traffic flow describing the relationship between the flow velocity and traffic flux [5, 

6] in a physical transportation network consisting of street segments. We see that the 

same relationships exist also in a spatially abstracted network. Moreover, we have 

found that the relationships conforming to the fundamental traffic diagram exist on 

different levels of spatial abstraction, as illustrated in Fig.1.  

We have developed interactive visual tools supporting derivation of formal models 

from the time series of flow characteristics and from the dependency series [3]. Mod-

els are built for clusters of links rather than individual links, to avoid over-fitting and 

reduce the impacts of noise and local outliers. Predictions made for link clusters are 

individually adjusted for each link based on the statistics of its original values [3]. We 

have also developed a novel traffic simulation algorithm that can directly work with 

the derived models. The main idea is following: for each link, the algorithm finds how 

many vehicles need to move through it in the current minute, determines the mean 

speed that is possible for this link load (using the dependency model from the traffic 

intensity to the mean speed), then determines how many vehicles will actually be able 

to move through the link in this minute (using the dependency model from the mean 

     

Fig. 1. The maps show spatially abstracted transportation networks of Milan with cell radii 

about 2km (top) and 4 km (bottom). The graphs to the right of each map represent the depend-

encies between the relative traffic intensities and the mean speeds on the network links. 

 



speed to the traffic intensity), and then promotes this number of vehicles to the end 

place of the link and suspends the remaining vehicles in the start place of the link. 

To perform a simulation, the analyst defines a scenario. A wizard guides the ana-

lyst through the required steps and providing visual feedback at each step. We de-

scribe the simulation of a scenario of mass evacuation from the coastal area in Tusca-

ny (Italy). The appendix to the paper (http://geoanalytics.net/and/is2015/) includes a 

video demonstration of the process of model building, scenario definition, simulation, 

and exploration of results supported by interactive visual interfaces. 
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Fig. 2. For a scenario of mass evacuation from the coastal areas in Tuscany (Italy), simulated 

car trajectories are represented in a space-time cube, where two dimensions represent geograph-

ical time and one dimension time. The arrows point at the places of major traffic suspensions. 
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