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Abstract. Injuries in cervical spine X-ray images are often missed by
emergency physicians. Many of these missing injuries cause further com-
plications. Automated analysis of the images has the potential to reduce
the chance of missing injuries. Towards this goal, this paper proposes
an automatic localization of the spinal column in cervical spine X-ray
images. The framework employs a random classification forest algorithm
with a kernel density estimation-based voting accumulation method to lo-
calize the spinal column and to detect the orientation. The algorithm has
been evaluated with 90 emergency room X-ray images and has achieved
an average detection accuracy of 91% and an orientation error of 3.6◦.
The framework can be used to narrow the search area for other advanced
injury detection systems.

Keywords: Random forest, Classification, Cervical, Vertebra, Localiza-
tion, Orientation.

1 Introduction

The cervical spine is vulnerable to high-impact accidents like automobile colli-
sion, sports mishaps and falls. Due to the scanning time required, cost, and the
position of the spine in the human body, X-ray is the first mode of investiga-
tion for cervical spine injuries. Unfortunately, roughly 20% of cervical vertebrae
related injuries remain undetected by emergency physicians and about 67% of
these missing injuries result in tragic consequences like loss of motor control, dis-
ability to move the neck and other neurological deteriorations [1, 2]. Providing
emergency physicians with an automated analysis of the cervical X-ray images
has a great potential to reduce the chances of missing injuries. Towards that
goal, this paper takes the first step to localise the cervical spine in an arbitrary
X-ray image. Our method involves a machine learning process which employs a
patch based framework to localize the vertebrae column. It is also able to predict
the orientation of the spinal curve.

Some limited work has been presented in the literature for global localiza-
tion of the cervical spine on X-ray images. Most of the methods revolve around
the generalized Hough transform (GHT). Tezmol et al. [3] used a GHT based
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framework using mean vertebra templates and an innovative voting accumulator
structure. A more recent work [4], proposed another template matching based
approach relying on GHT which involves a training phase. In contrast, our work
is designed as a machine learning classification problem and votes are accumu-
lated, then refined in a novel fashion to generate a bounding box.

Random forest is a popular machine learning algorithm [5]. It has been used
in recent vertebra related literature [6–11]. Glocker et. al. presented a random
regression forest based localization and identification framework for vertebrae in
arbitrary CT scans [10]. They proposed another framework using random classi-
fication forest which have shown better performance in localizing and identifying
vertebrae with pathological cases [11]. Our work also uses random classification
forest. But instead of localizing and identifying each vertebrae, it finds the global
position and orientation of the vertebral column in cervical X-ray images.

The recent work by Bromiley et al. [6], demonstrated a segmentation method
based on constrained local model (CLM) and random forest regression voting
(RFRV). Like other statistical shape model (SSM)-based approaches [7,12], this
work also requires initialization of the mean shape near the actual vertebra. The
initialization is usually done with help of manual click points [6, 12] or other
automatic methods [7]. Random regression forest-based initialization method
described in [7] requires a bounding box from where the input features are col-
lected. In their work, the bounding box around the vertebrae curve is generated
using hard parameters which are empirically found based on the training images.
In our work, we propose an automatic way to locate the vertebrae column in
X-ray images.

In this work, 90 cervical X-ray images of emergency room patients were eval-
uated. The images contain a total of 450 cervical vertebrae (C3-C7). A random
forest is trained to distinguish between vertebra and non-vertebra image patches
from the images. The task is designed as a binary classification problem: vertebra
and non-vertebra. The framework employs a two-stage coarse-to-fine approach.
In the first coarse localization stage, a sliding window sparsely scans a test image
to vote for vertebrae patches. After this sparse voting, an accumulation phase
converts the votes into a bounding box which indicates the position of the spinal
column inside the image. The fine localization stage scans the resultant bound-
ing box of the first stage densely with different patch sizes and orientations. The
same voting accumulation phase is applied again and a refined bounding box is
generated. The angle of this bounding box determines the predicted orientation
of the vertebrae column. Even on a dataset of emergency room X-ray images,
91% of the vertebrae area has been detected under the first stage bounding box
and an average error of 3.6◦ has been achieved for orientation prediction with
the second stage bounding box.
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2 Data

Our dataset of 90 lateral view emergency room X-ray images was collected from
the Royal Devon and Exeter Hospital, and consists of patients exhibiting symp-
toms, ranging from pain to serious trauma. Different radiography systems were
used. The resolution of the images were in the range from 0.1 to 0.194 mm per
pixel and the exposure time varied from 16 to 345 milliseconds. The ages of the
patients were in the range from 18 to 91. All the scans were digital and taken
in 2014-15. These images were anonymized and collected through appropriate
procedures to be used for research.

Along with the data, our partners at University of Exeter have also provided
manual segmentations of the vertebrae. A set of 20 landmark (LM) points per
vertebra was annotated by experts in the field and these annotations were used in
training and to evaluate the performance of our algorithm quantitatively. Fig. 1a
shows example images from our dataset and Fig. 1b shows manual segmentation
points on a spine. For this work, vertebra C3 to C7 are considered. C1 and C2 are
not studied as their appearance is ambiguous in lateral cervical X-ray images.

Fig. 1: (a) X-ray images in the dataset. (b) Manual segmentation points.

3 Methodology

The localization framework is based on the detection of vertebrae patches in
the images. The detection is done by image patches where a machine learning
algorithm decides whether the patch belongs to a vertebra or not. To learn this,
a random classification forest [5] has been used. Image patches are generated
from the image datasets and labelled into vertebra class and non-vertebra class.
The patches are considered with different patch sizes and patch orientations.
To generate positive patches, the manual segmentation of the vertebra points is
used. The center of the vertebra is used as an anchor point on which different
sizes and orientations are considered for training. In order to generate patches for
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the non-vertebra class, 50% of the patches are considered from both sides of the
vertebral column and the rest are collected from other areas of the image. Fig. 2a
shows the areas from which the positive and negative patches are collected;
positive patches are collected from the green box, 50% of the negatives patches
are collected from the blue boxes and other negative patches are collected from
the remainder of the image randomly. More importance is provided in the areas
adjacent to the vertebral column for negative patch creation so that the forest
has a better opportunity to distinguish these areas. These image patches are
then converted to structured forest (SF) feature vectors [13, 14]. This feature
vector collects gradient magnitude and orientation information at different scales
and angles. This feature vector recently has shown outstanding performance on
the edge detection problem [14]. As vertebrae patches are mostly filled with
edge-like structures, this feature vector is chosen. Once the feature vectors and
corresponding binary output labels are ready, a random classification forest is
trained on the data.

Fig. 2: (a) Area of positive patches (green box) and area of 50% of the negative patches
(blue boxes). (b) Positive patch boundaries around a vertebra with different orienta-
tions and sizes.

3.1 Stage 1: Coarse Localization

At test time, a new image is fed into the framework for localization. A set of
test points is generated on the image at fixed step size (S1). A single orientation
0◦ (O1) and a fixed patch size, P1, is considered to generate image patches, one
at each of the test points. The generated image patches overlap neighbouring
image patches. The amount of overlapping is controlled by the parameters S1

and P1. These patches are fed into the forest. The forest determines which test
points belong to vertebrae. These positive predicted points, xis, are then passed
to the vote accumulation phase to generate a bounding box.
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Vote accumulator: The vote accumulator adds a Gaussian kernel at each of
the positive votes. The bandwidth, t, of these kernels are automatically estimated
using a diffusion-based technique proposed by Botev et al. [15]. This method
allows the bandwidth (t) to change dynamically based on the vote distribution
from image to image. The resultant distributions are then added together to
form a single distribution, F , over the image space.

F (x) =
1

N

N∑
i=1

1√
2πt

e−
(x−xi)

2

2t (1)

where N is the number of total positive votes coming to the accumulator.

This distribution over the image space is converted to a binary image, B,
by dynamic thresholding (Eqn. 2). The resulting binary image may be divided
into a number of parts, Bjs (Fig. 3c). The area of these parts are measured (Aj)
and weighted (wj) based on the distance from the image center (Cimage) to the
centroid of the concerned image part (CBj

). As the images are taken to diagnose
cervical vertebrae related injuries, the assumption is that the spine should be
located near the image center, not at any extreme corner of the image. Then
some of these areas are eliminated if they are small enough or located far from
any adjacent areas (Eqn. 6). This process reduces the chance of misdetection,
for example, the area in the skull region of Fig. 3c. Finally, a minimal bounding
parallelogram is generated to enclose the rest of areas [16]. This parallelogram is
the output of the coarse localization stage. The process is summarized in Fig. 3.

B(x) =

{
1 if F (x) > Ft,

0 otherwise.
(2)

where Ft = K ×max(F ) and K is an empirically chosen constant. As max(F )
is different for different images, Ft dynamically changes accordingly.

Aj = area(Bj) (3)

wj =
1

distance(Cimage, CBj )
(4)

wAj = Aj × wj (5)

where j = 1, 2, ...,M ; M is the number of disconnected areas in B and Ca denotes
the centroid of the area a. In Fig. 3c M = 3.

B̂j = Bj =

{
valid (kept) if wAj > At & dBj

< dt

invalid (eliminated) otherwise.
(6)

dBj = minimum
({
distance(CBk

, CBj ) : kε{1, 2, ...,M} and k 6= j
})

(7)

where At and dj are the empirical area and distance threshold respectively.

BoundingBoxcoarse = mBP
({
B̂j : jε{1, 2, ..., O}

})
(8)
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where mBP computes the minimum bound parallelogram enclosing the valid
Bjs [16] and O is the number of valid disconnected areas. In Fig. 3d O = 2.

Fig. 3: (a) Positive votes on the image. (b) Resultant distribution F . (c) F after bina-
rization. (d) F after elimination of invalid areas with the minimum bound parallelo-
gram.

3.2 Stage 2: Fine Localization

The previous stage is a single resolution single orientation phase, thus less prob-
able to find vertebra with uncommon orientation or size. As the bounding box
of the previous stage is only meant to find the approximate area covered by
the vertebra, coarse localization is enough. But in order to find the orientation
of the vertebrae curve, a finer localization with multiple patch resolutions and
orientations is necessary. In this stage, a new set of test points is created within
the coarse localization bounding box, with varying step sizes, S2. At each test
point, multiple patches are generated with different patch sizes (P2) and angles
(O2). Then the same random forest patch classification and vote accumulation
phase are conducted. This creates a refined bounding box within the first stage
bounding box. The orientation angle of this smaller bounding box is computed
as the orientation of the vertebrae column.

4 Experiment & Results

To train the random classification forest, different sizes and orientations of the
image patches have been considered. The orientation of the patch is defined as
the rotation of the angle from the mean vertebral axis. To train the forest, 7
different patch sizes with a step of 0.5 mm (starting from the vertebra size)
and 19 orientations of -45◦ to +45◦ with a step of 5◦ have been used. From the
450 cervical vertebrae of our dataset, a total of 450× 7× 19 = 59, 850 vertebra
(positive) images patches were generated. To balance the data, equal numbers
of non-vertebra patches were generated from the rest part of each image. Each
these image patches was converted to a SF feature vector of length 6116.
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The random forest has a number free parameters: maximum allowable tree
depth (nD), minimum number of sample at a node (nMin), number of trees
(nTree) and number of variables to test at node split (nV ar) and number of
thresholds to choose from (nThresh). To find optimum parameters, a sequential
parameter search has been applied to a fixed set of training and test images from
the dataset. Final parameters are reported in Table 1. To measure the perfor-
mance of the trained forest, a ten-fold cross-validation scheme is followed. For
each fold, 10% of the images are considered as test images and others are used
for forest training. Table 2 reports the patch classification accuracies of each
forest.

Table 1: Optimized parameters and values.

Parameters Values

P1 24 mm

S1 10 mm

O1 0

K 0.5

At 10 pixel

dt 15 mm

P2 20, 30, 40 mm

S2 P2/2

O2 -45, 0, 45

nD 10

nMin 50

nTree 10

nV ar 85

nThresh 5

Table 2: Patch classification accuracy of
the forests.

Forest Accuracy

Fold 1 97.90%

Fold 2 98.48%

Fold 3 95.34%

Fold 4 97.91%

Fold 5 98.21%

Fold 6 95.92%

Fold 7 97.63%

Fold 8 98.25%

Fold 9 97.62%

Fold 10 98.36%

The localization framework also has a set of free parameters mentioned in
Sec 3.1 and 3.2 which are empirically chosen and reported in Table 1. The lo-
calization algorithm has been applied on all the images and for each image, the
forest was chosen from the ten forests such that the test image is not used in
training. We have reported two metrics for the coarse localization bounding box:
1) Average percentage of vertebrae area covered inside the bounding box and 2)
Average percentage of landmark points falling outside the bounding box. The
orientation of the second stage bounding box is calculated based on the angle
of the longer axis of the parallelogram with the horizontal axis. The ground
truth orientation is measured by a smallest possible parallelogram that covers
the manual annotations (Fig. 4 (1a)). The error is calculated by the absolute
different between the ground truth orientation and predicted orientation in de-
grees (◦). The results are reported in Table 4 and 3. Overall 91% of the vertebra
area fell inside the predicted bounding box. Only 12% of the landmark points
were outside the box. The best performance is achieved by the vertebra C4 at
99%, followed by C3 and C5 both at 97%. The performance is worse as we go
down the spine, C6 reports 92% and C7 69%. In terms of percentage of land-
mark points falling outside the bounding box, from C3 to C7, the numbers are
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Table 3: Performance of the coarse localization bounding box.

Percentage of area
inside the bounding
box

Percentage of
landmark points
outside the
bounding box

Vertebra Median Mean Std Median Mean Std

C3 100% 97% 14% 0% 7% 16%

C4 100% 99% 4% 0% 2% 7%

C5 100% 97% 12% 0% 4% 14%

C6 100% 92% 22% 0% 11% 24%

C7 87% 69% 37% 33% 37% 36%

Overall 100% 91% 24% 0% 12% 25%

Table 4: Orientation error in degree(◦): GTO: Ground truth orientation, ALMP: All
landmark points, FLMP: Landmark points inside the first stage bounding box.

Coarse Localization Fine Localization

GTO type ALMP FLMP ALMP FLMP

Median 5.73 3.89 3.07 2.37

Mean 8.16 6.26 4.59 3.60

Std 8.21 7.18 5.27 4.55

7%, 2%, 4%, 11%, and 37%. Fig. 5 demonstrates the metrics graphically. Almost
80% of the vertebrae have no parts of it outside the bounding box. In terms of
landmark points, 70% the vertebrae have no LM points outside the bounding
box and about 80% have less than three points out of 20 LM points (15%).

The orientation error metric can be computed in two ways. One with all the
vertebrae (ALMP), C3-C7, the other with only the landmark points that fall
inside the bounding box of the first stage (FLMP). As the second stage can only
use the information what’s inside the first stage bounding box, the later seems
more fair to judge its ability. When considering all the vertebra the average error
is 4.59◦ while the other results in an average of 3.6◦. For the coarse localization
bounding box the average errors are larger: 8.16◦ and 6.26◦ respectively.

Table 5 reports the average Dice coefficient, sensitivity (true positive rate)
and specificity (true negative rate) of the coarse and fine localization bounding
boxes. These metrics are computed by comparing the ground truth bounding
box (Fig. 4 (1a)) with predicted bounding boxes. The Dice coefficient for coarse
localization bounding box averages at 0.62 where it stands at 0.69 for the fine lo-
calization bounding box. However in terms of sensitivity, the first stage bounding
box scores 0.88 while the second stage bounding box scores only 0.62. Specificity
is high for both bounding boxes: 0.97 for coarse localization and 0.99 for fine
localization.
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Fig. 4: (a) Manual annotation points and ground truth bounding box (green). (b)-(p)
Coarse (blue) and fine (cyan) localization bounding boxes. (p) An example of the
ongoing vertebral curve detection method (magenta).
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Fig. 5: Percentage of area and landmark points outside the coarse localization bounding
box.

Table 5: Localization performance.

Coarse Localization Fine Localization
Dice coeff. Sensitivity Specificity Dice coeff. Sensitivity Specificity

Median 0.65 0.93 0.97 0.71 0.61 1.00

Mean 0.62 0.88 0.97 0.69 0.62 0.99

Std 0.14 0.14 0.03 0.11 0.15 0.01

5 Discussion and Conclusion

In this work, a coarse to fine cervical spine localization algorithm has been eval-
uated on a set of 90 emergency room X-ray images. The algorithm is based on
a random forest patch classifier which distinguishes between the vertebra and
the non-vertebra image patches. Based on the centers of vertebra patches on a
test image, a novel vote accumulator converts the votes into a bounding box.
A second multi-resolution multi-orientation patch classification is applied inside
the initial bounding box to determine the orientation of the vertebral column.
The resultant coarse localization bounding box covers 91% of the all vertebral
area on an average with a maximum of 99% for vertebra C4. C4’s location on
the spine is key to the increased accuracy. On average only 12% of the landmark
points fell outside the bounding box, most of which are from the lowest vertebra,
C7, where the image quality is often reduced.

While coarse localization creates a larger bounding box, the fine localization
creates a smaller and refined bounding box. This bounding box predicts the ori-
entation of the spinal column better. The average orientation error of the fine
localization bounding box is 3.6◦ only while for the coarse bounding box, the
error is 6.26◦. The fine localization scans the coarse localization box with more
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variation and thus it can find the spinal orientation with better accuracy.

To measure the compactness of the both bounding boxes, Dice coefficients
and sensitivity metrics are computed. The Dice coefficient of the fine localization
bounding box is 9% higher than the Dice coefficient of the coarse localization
box. However, in terms of sensitivity, coarse localization outperforms fine local-
ization bounding box by 30%. Based on the application in which the bounding
boxes will be used, the user may choose between the two options.

Our algorithms outperformed the performances of [3,4]. [3] reported an av-
erage orientation error of 4.16 degree and [4] reports a vertebra detection 89%.
However, [3] report only 10% landmark points to be outside the bounding box
which is lower than our 12%. But their landmark points did not consider the
posterior points. It is also important to mention that both of these works, has
been performed on a small (40 and 50) images from NHANES-II dataset of
scanned X-ray images, where the images are collected from healthy patients for
the purpose of developing automatic algorithms thus contains less variation, in-
juries and exposure differences. In our case, the dataset represents X-ray images
collected from real life emergency room images where resolution, patient age,
injury, orientation, X-ray exposure all vary widely. Fig. 4 shows examples of im-
ages with low contrast (h, i), bone implants (f, l, n), displacements (j, m) and
osteoporosis (d, k). Our algorithm works well in all these conditions.

The algorithm is written in MATLAB2014b on a Intel Core-i5 3GHz machine
with 8GB RAM and have not been optimized for execution time. The unopti-
mized code takes on average around 2.5 seconds to run the whole localization
procedure (both coarse and fine). The execution time varies based on the image
size, resolution and number of positive votes at each stage.

The performance of our algorithm can be attributed to the training of the
forests and to the novel voting accumulation process. The patch classification
accuracy of forests is in the range of 95 to 98% (Table 2) which eliminates the
majority of the false detections. The novel voting accumulation method which
utilises dynamic diffusion based kernel density estimation and weighted area fil-
tering eliminates the rest of the false detection and thus the final results are good.
We are currently working on a vertebral curve detection method (Fig. 4(p)),
which can detect the anterior and posterior vertebral curves. A single orienta-
tion angle is not capable of describing the spinal column accurately. In many
cases, the spinal column is a curve than a straight line (Fig. 4(d, m)). Thus,
these curves will tell us more about the global orientation of the spine. Our next
target is to detect the vertebrae centers or other landmarks automatically like
[6–9]. The output of this work will be helpful in order to limit our search over
the image. It can also help algorithms [7–9] where the search area was manually
reduced with hard coded parameters.
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