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Theuncertainty associatedwith the convective heat transfer coefficient obtained in transient thermalmeasurement

is often high, especially in high-speed flow. The present study demonstrates that the experimental accuracy could be

much improved by an actively controlled ramp heating instead of the conventional step-heating approach. A general

design guideline for the proposed ramp-heating method is derived theoretically and further demonstrated by

simulation cases. This paper also presents a detailed experimental study for transonic turbine blade-tip heat transfer.

A repeatable, high-resolution tip heat transfer coefficient contour is obtained through transient infrared

measurement with the proposed ramp-heating method. Detailed uncertainty analysis shows that the resulting heat

transfer coefficient uncertainty level is much lower than the experimental data currently available in the open

literature. The ramp-heating approach is especially recommended to the high-speed heat transfer experimental

research community to improve the accuracy of the transient thermal measurement technique.

Nomenclature

Cx = axial chord, m
c = specific heat, J∕kg · K
D = noise distribution
f = sampling frequency, Hz
G = grayscale value
h = heat transfer coefficient,W∕�m2 · K�
kavg = average slope
M = Mach number
N = number of simulation test
np = number of sampling points
P0 = mainstream total pressure, Pa
q 0 0 = heat flux, W∕m2

Re = Reynolds number
R2 = coefficient of determination
rc = recovery factor
Tad = adiabatic wall temperature, K
Ti = initial temperature, K
Tw = wall temperature, K
T0 = mainstream total temperature, K
t = time, s
U = uncertainty
x = horizontal axis of sampled signal
y = vertical axis of sampled signal
γ = ratio of specific heats
Δ = overall change during selected interval
δ = noise level
λ = thermal conductivity,W∕�m · K�
ρ = density, kg∕m3

τ = time constant, s

I. Introduction

G AS turbine heat transfer technology has reached, more or less, a

plateau in recent years. The improvements from new thermal

designs are usually small. A designer will not be able to rank their

design ideas from an experimental study if the uncertainty level is in

the range of 10%. Unfortunately, such an uncertainty level is not

uncommon among the heat transfer experimental data currently

available in the open literature. Very often, the computational fluid

dynamics developers find it difficult to rank their turbulence models

and other new numerical methods with the available experimental

data if taking the experimental uncertainty into account. Improving

the uncertainty in conventional experimental techniques is

particularly required by the heat transfer research community.
Transient thermal measurement techniques have been widely

employed invarious heat transfer experimental studies. One common

assumption made in these techniques is the semi-infinite one-

dimensional conduction, which means conduction within solid

occurs only in one direction toward infinity. This is a fair assumption

if the heat penetration depth is small when compared with the actual

thickness of the solid. Therefore, a low-conductivity material is often

used in experiments to satisfy this assumption. Another classical

assumption is that the mainstream temperature experiences an ideal

step change at time origin. This perfect step is, undeniably,

impossible to achieve in practice, but tremendous efforts have been

devoted to creating amainstream temperature step change as sharp as

possible so that this second assumption can be justified

approximately (Ireland [1], Martinez-Botas et al. [2], Gillespie et al.

[3], and Ireland et al. [4]). Under these two assumptions, the wall

temperature history Tw�t� is then readily obtained as (Bergman

et al. [5])

Tw�t� − Ti

T0 − Ti

� 1 − exp

�
h2t

ρcλ

�
erfc

�
h

��
t

p��������
ρcλ

p
�

(1)

where T0 is the mainstream total temperature, Ti is the initial

temperature, h is the heat transfer coefficient (HTC), and λ is the

thermal conductivity of fluid. In practice, when the mainstream

temperature is a ramp varying profile, the resulting wall temperature

history can be calculated from Duhamel’s superposition theorem

(Metzger and Larson [6]):
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Therefore, once thewall temperature history ismeasured, the HTC
can be calculated from Eq. (1) for the step heating and Eq. (2) for the
ramp heating, respectively.
Thewall transient thermal responses can be discretely recorded by

thermocouples, resistance temperature detectors, and thin-film
gauges. To capture the spatial variations at a higher resolution, optical
measurement techniques, such as thermochromic liquid crystal
(TLC) and infrared (IR) thermography, are broadly applied. TLC
coated on the test surface will reflect different colors if the surface
temperature alters. This distinctive property leads to the wide
application of the TLC technique in transient thermal measurement.
Metzger et al. [7] sprayed TLC coatings on a rotating surface and
observed their response during the transientmeasurement, whichwas
then processed to calculate the surface HTC. The experimental
uncertainty was estimated to be�10% in their study. Ekkad and Han
[8] developed image-processing techniques for TLCmeasurement in
a series of turbine blade internal cooling and film-cooling thermal
measurements. The uncertainty of theHTC in their study ranged from
�4.8 to�6.5%. A similar procedure with a single narrowband TLC
was employed by Chanteloup et al. [9]. They investigated the heat
transfer distribution in a two-pass internal coolant passage and
reported an uncertainty in the HTC of approximately �8%. Teng
et al. [10] obtained an uncertainty level of �8.3% for HTC
distributions on a large-scale gas turbine blade tip. A detailed
uncertainty analysis for TLC transient thermal measurement was
carried out by Yan and Owen [11]. Their analysis was in good
agreement with computed values obtained using a Monte Carlo
method. It was shown how the experimental uncertainty could be
minimized by a proper selection of the temperature range of the TLC.
IR thermography detects surface radiation energy and quantifies the
surface temperature. It has several advantages, such as its
nonintrusiveness, high sensitivity (down to 20 mK), fast response
time (down to 20 μs), and wide temperature range (−20 to 1500°C),
as summarized by Carlomagno and Cardone [12]. Schulz [13]
introduced an in situ calibration procedure to convert an IR camera’s
raw data into temperature readings with high accuracy. Ekkad et al.
[14,15] solved the HTC and film-cooling effectiveness simulta-
neously from one single transient thermal test by recording
temperature distributions at two different instants with an IR camera
of 60 Hz. The run-to-run error of performing two different tests to
obtain two unknowns (HTC and film-cooling effectiveness) was
avoided, and the uncertainty in the derived HTC and film-cooling
effectiveness was�4.5% and�7.0%.
During transient thermal measurement, it is worth noting that there

should be a huge time difference in thewall temperature response for
a low-conductivity testingmaterial under high and lowHTCvalues in
the mainstream. Such a different time response will either bring up
different requirements for instrumentations and sensing techniques
or introduce different levels of experimental errors. Figure 1
demonstrates the typical wall temperature responses to a step change
of the mainstream total temperature for HTC values of 100 and
2000 W∕�m2 · K�. They are calculated from Eq. (1) by assuming a
step increase of 20 K in the mainstream total temperature, with a��������
ρcλ

p
value of 600 J∕m2 · K · s0.5 (typical of Perspex material).

Here, a time constant τ is defined as the time required to reach 63.2%
of the total temperature change. Figure 1 indicates that a 20-times
increase in the HTC value results in 400-times reduction in the time
constant τ (56 s versus 0.14 s). In the real experimental practice
dealing with high HTCs, the wall temperature trace within the first
0.14 s has to be well captured in order to accurately reduce HTC data
from Eq. (1) or Eq. (2), which implies a much more demanding
requirement for the sampling frequency of the data acquisition
(DAQ) system to be employed.
It is not uncommon to have HTC values over 2000 W∕�m2 · K�,

especially in high-speed heat transfer experiments. Mee et al. [16]

reported a�15% uncertainty level in Stanton number distribution on
a flat-plate surface in a supersonic flow. This high uncertainty level
wasmainly caused by the large error in capturing the rapid TLC color
change in the short-duration tunnel. Zhang et al. [17,18] andO’Dowd
et al. [19] measured turbine blade-tip heat transfer under transonic
conditions (Mexit � 1.0). A step change in the mainstream
temperature was generated by a heater mesh, and the blade-tip
surface temperature responsewas recorded by an IR camera of 60Hz.
The HTC value for each tip point was derived by linear regression
between the heat flux and surface temperature history during a
selected period of heating. The blade-tip HTC contour ranged from
800 to 2000 W∕�m2 · K�, with an average uncertainty of �9.5%.
The uncertainty level associated with high HTCs must be much
higher than 10% due to the inadequacy of the IR camera’s sampling
frequency (to capture the fast transient process after the step heating).
On the other hand, the regions with high HTC values are of particular
interest to engine designers and researchers. It has been recognized
that reducing the experimental uncertainty in high HTC values
(especially high-speed flow) is still a big challenge.
The demands for capturing a fast temperature response within a

short period after step heating can be easily reduced by a controlled
ramp-heating method. As illustrated in Fig. 2, the mainstream
temperature is controlled to increase linearly instead of having a step
change. Hence, the transient thermal period is effectively extended
and more surface temperature data can be collected for the HTC
derivations. Potentially, this approach will reduce the experimental
uncertainty in transient thermal measurements, especially in high-
speed flow. There have been some existing studies using ramp
heating in transient thermal measurement: for instance, Mee et al.
[16], Roy et al. [20], and Anto et al. [21]. However, the intentions of
theseworks were not on uncertainty reduction. A systematic analysis
of reducing the experimental uncertainty by controlling the ramp-
heating method is lacking in the open literature.
The present study investigates a controlled ramp-heating concept

to reduce the experimental uncertainty in the HTC in high-speed IR
transient heat transfer experiments. The paper begins with a detailed
analysis regarding the relationships between the uncertainty level, the
ramp slope, the sampling frequency, and the HTC. A general design

Fig. 1 Wall temperature responses to a step change of the mainstream
total temperature for high and low HTC values.

Fig. 2 Wall temperature response to step and ramp changes in the
mainstream temperature, forHTC � 2;000 W∕�m2 · K�.
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guideline for the ramp-heating transient experiments is then derived
and demonstrated by numerical cases. The second half of the paper
implements the ramp-heating concept into an experimental study for
transonic turbine blade-tip heat transfer. The performance of ramp
heating in a high-speed wind-tunnel experiment is demonstrated
through spatially resolved HTC results with reduced measurement
uncertainty and compared with the conventional step-heating
approach.

II. Error Analysis for Controlled Ramp Heating

In experiments, the object quantity (such as the HTC) can be
calculated based on the sampled measurement data (for example,
temperature). For any sampled signal, in a prescribed timespan
between (x1, y1) and (x2, y2), the average slope kavg is

kavg �
R
x2
x1
�dy∕dx� dx
x2 − x1

(3)

Because of the known dependent relations [e.g., Eq. (1) or Eq. (2)]
from theory or analysis, the accuracy of this slope determines the
accuracy of the objective quantities.
Suppose themeasurement is repeatedN times, from each of which

kavg;i (i � 1; : : : ; N) can be obtained. The mean of these kavg;i is

kavg �
1

N

XN
i�1

kavg;i · RMSE�kavg�

The root-mean-square error (RMSE) of the average slope

0
B@

�������������������������������������������
1

N

XN
i�1

�kavg;i − kavg�2
vuut

1
CA

then defines the relative error (RE) of the measurement:

REkavg �
RMSE�kavg�

kavg
× 100% (4)

In principle, for any y�x�, REkavg depends on the following
parameters: the number of sampling points np, the noise distribution
D, and the relative noise level (δy∕y2 − y1), where δy is the noise
level of each sampling point. Typically, the noise distributionD and
δy are functionally determined by the instrument. For a specified
sampling frequency f, the number of sampling points np is related
with kavg as

np � �y2 − y1� · f
kavg

(5)

The influences from np and δy∕y2 − y1 on REkavg need to be
independent in principle. From the law of large numbers in statistics,
the convergence of the root-mean-square error is proportional to the
number of sampling points np. In addition,REkavg should be linearly
dependent on the relative noise level (δy∕y2 − y1). It then yields

REkavg � c1 ·
δy

y2 − y1
·

��������������������������
kavg

�y2 − y1� · f

s
(6)

The preceding discussion only deals with the relative error of kavg.
The relative error REh of the target parameter HTC is related to
REkavg by the following formula:

REh � REkavg · pfit�kavg → h� (7)

where pfit�kavg → h� is the dimensionless propagation factor from
REkavgto REh, which needs to be determined analytically from case
to case. Altogether, the error analysis here consists of two steps: first,

to calculate the relative error of the sampled signal; and second, to

obtain the relative error of the target parameter by multiplying with

the propagation factor.
In the following, a case study of a high-speed heat transfer

experiment is presented for detailed illustration.
Experimentally, what we can obtain frommeasurement is the wall

temperature history Tw�t�. For the proposed ramp-heating method,

the target parameter HTC can be calculated by data fitting through

Eq. (2) via all the sampled points between (t1, Tw�t1�) and (t2,
Tw�t2�). The noise level δTw is prescribed by temperature sensor

calibration, accuracy of the DAQ system, etc. The maximum

temperature rise is the overall temperature change during the selected

interval �ΔTw � Tw�t2� − Tw�t1��. Then, Eq. (6) is reduced to

REkavg � c2 ·

�����������������
kavg

ΔTw · f

s
(8)

For the propagation factor from kavg to h, the ramp-heating

solution Eq. (2) indicates

pfit�kavg → h� ≈ c3��������
kavg

p � c4 (9)

where c3 and c4 are constants (detailed derivation in the Appendix).
The relative error of the HTC can then be expressed as

REh � c5���
f

p � c6

��������
kavg
f

s
(10)

where the constants c5 and c6 are HTC dependent. For

HTC � 2000 W∕�m2 · K�, c5 � 0.216 s−0.5 and c6 � 0.0348 K−0.5

based on the simulation test results. Equation (10) suggests twoways to

reduce the relative error of theHTC.One is to increasef by employing

a DAQ systemwith a higher sampling frequency; the other is to reduce

kavg by heating up the mainstream with a slower rate.
The preceding analysis [e.g., Eq. (10)] is a new approach to

understand how the experimental inaccuracy will be influenced (via

sampling rate, ramp-heat rate, and HTC value) and how it can be

estimated or predicted in a quantitative manner, which can be

meaningful in experiment assessment and design as a general

guideline.
To quantify the relative error of the HTC, MATLAB simulation

tests were implemented by changing the inputs as follows.
Let the mainstream temperature vary in three different slopes for a

HTC value of 2000 W∕�m2 · K�, as shown in Fig. 3a. The resulting
wall temperature responses with three average slopes are then

calculated from Eq. (2), as shown in Fig. 3b. The time interval used

for data fitting is determined by constant ΔTw � 10 K. The wall

temperature responses of the three average slopes are all

approximately linear. The noise level δTw is set to be �1.0 K. All
of these inputs are summarized in Table 1. It should be noted that, for

the first case, the T0 slope is very large, which can be approximately

regarded as the conventional step heating under real scenarios.
The simulation is implemented via the following steps:
1) Choose one case and solve Tw�t� by Eq. (2).
2) Choose a numerical sampling frequency f and disturb Tw at

each sampled point by the random noise δTw. Then, substitute it back
into Eq. (2) to obtain the HTC value after data fitting hfit.
3) Repeat step 2N times to obtain hfit;i, i � 1; 2; : : : ; N for the

estimation of the relative error of the HTC.
Here, the number of simulation testN is 10,000 so that the obtained

results are statistically meaningful. For each simulation test, the

fitting error εi is

εi � hfit;i − htrue (11)

From N simulation tests,
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RMSE�h� �
������������������
1

N

XN
i�1

ε2i

vuut

Then, the relative error of HTC, i.e.,

REh � RMSE�h�
htrue

× 100%

can be calculated. For different cases, the dependences of the relative 
error of the HTC on the sampling frequency are summarized in Fig. 4. 
As expected, for each set of wall temperature signals, the relative 
error of the HTC decreases rapidly as the sampling frequency 
increases. If set an acceptable relative error level, e.g., 5% (shown by 
the dashed line), there is a much more stringent requirement for 
sampling frequency in the near-step-heating case than that for the 
ramp case. On the other hand, if we set a fixed sampling frequency, 
the HTC relative error is larger for the wall temperature signal with a 
bigger slope. Table 2 summarizes the simulation test results for three 
cases. It is shown that, to achieve the same level of accuracy,

REh � 5%;
c5���
f

p � c6

��������
kavg
f

s

is a constant, which nicely proves Eq. (10).
Figure 5 demonstrates the relative errors at different HTC values

for both the step and the ramp-heating method from the simulation
test results, at a fixed sampling frequency of 30 Hz (typical of an
ordinary IR camera) and a same wall temperature change ΔTw of

10 K. When the HTC value is lower than 500 W∕�m2 · K�, both the
step-heating method and the ramp-heating method can achieve good
accuracy (less than 2%). However, as the HTC value increases from
1000 to 3000 W∕�m2 · K� (typical in transonic and supersonic
flows), the uncertainty level of the ramp-heating method can be
reduced up to 50%.
However, it should be noted that the ramp-heating method also has

its limitations in practice. Within a fixed transient period Δt, the
increase in wall temperature from the ramp-heating method can be
much lower than the step-heating case, especially for low HTC
values. In these cases, the ratio of the noise level δTw to the increase in
wall temperature ΔTw from initial conditions can play an important
role in the overall uncertainty [see Eq. (6)]. The advantage of the
ramp-heating method is manifested only if the HTC value is high or
the transient period Δt is long enough. For further understanding of
the tradeoff situation, Fig. 6 demonstrates a contour of ratios of
uncertainty levels between two heating methods (at a sampling
frequency of 30 Hz). Clearly, the ramp-heating method can only
provide better performance than the step-heating method in the
region of highHTCvalues or a longer transient period. Therefore, it is
not recommended to apply the ramp-heating method in the short-
duration thermal experiments with low HTC values.

III. Transient IR Thermal Measurement for a
Transonic Turbine Blade Tip

In this part, the ramp-heating method proposed previously is
applied in transient IR thermal measurement for a transonic turbine
blade-tip heat transfer study. Detailed experimental approaches and
the results with uncertainty analysis are described.

A. Experimental Setup

A transonic blowdown wind tunnel was employed to conduct the
transient heat transfer experiment in the present study, as shown in
Fig. 7. Compressed air with a maximum pressure of 3 MPa was
contained in a 10 m3 air storage tank. A Fisher control valve (EWT
body with 667 actuator and Fieldvue DVC6000 controller) regulated
the total pressure at the inlet of the test section in the testing plenum.
An extended Karman-filter-based control algorithm was developed
to predicatively adjust the valve opening (Xi et al. [22]). Honeycomb
screens and flow straighteners were located downstream of the

Fig. 3 Temperature histories of three ramp-heating methods
[HTC � 2000 W∕�m2 · K�].

Table 1 Parameters of three simulation cases

Case number

1 2 3

T0 slope, K∕s 45 20 5
Time interval for data fitting, s 0–0.36 0–0.72 0–2.46
Tw average slope kavg, K∕s 28.73 14.45 4.18

Fig. 4 Relative error of the HTC as a function of sampling frequencies
[HTC � 2000 W∕�m2 · K�].

Table 2 Summary of simulation test
results

Case number

1 2 3

Frequency-5%a f5, Hz 70 50 30
δTw, K �1.0

c5∕
���
f

p � c6

������
kavg
f

q
0.050� 0.002

aFrequency-5%signifies sampling frequency required to

achieve 5% relative error of the HTC.

10
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control valve to ensure the flow quality. A heater mesh was installed
before the testing plenum to heat up the mainstream flow during the
heat transfer experiment. This heater mesh was connected to a
100 kWdcpower supply. The actual output of the power supply could
be remotely programmed and controlled by the DAQ system and a

customized LabVIEW program. As a result, the mainstream
temperature could bemanipulated to be a step or a ramp (or any other
profiles). The test section was located inside a testing plenum, which
could also hold various other test sections. The exhaust pipeline also
had a regulating valve so the pressure of the testing plenum could be
adjusted. More details for the flow characteristic and wind-tunnel
design were described in work by Evans et al. [23] and Chen [24].
Figure 8 shows the details of the test section and instrumentations.

The linear cascade consists of seven blades and six passages to
achieve the periodicity of the flowfield. There are also two boundary-
layer bleeds on two sidewalls. The blade has an axial chord Cx of
0.039 m and is scaled from a certain high-pressure turbine blade
design condition. For the three blades in themiddle of the cascade, the
upper parts are made from resin with low thermal conductivity by
stereolithography technology and the lower parts are made from steel
for fixing purposes. In the present study, the tip gap height is
approximately 1% of the blade span. A FLIR A325 researcher IR
camera with a spatial resolution of 320 × 240 is installed right above
the central blade of the linear cascade, and in between is a zinc–
selenide (ZnSe) IR window. The IR camera records the tip surface
temperature history at a frequency of 60 Hz during a blowdown run.
One thermocouple is placed on the tip surface to perform in situ
calibration of the camera (instead of relying on the camera’s build-in
calibration). Such a practice is to minimize the uncertainties
introduced by surface emissivity, IRwindow transmissivity, radiation
from surroundings, etc. Figure 9 shows an example of the linear
calibration relation between the image grayscale values and the
temperature readings from a surface thermocouple.
The inlet total temperature was measured by a thermocouple (K

type,Omega) probemounted upstreamof the test section, forwhich the
wire diameter was 0.076mm(0.003 in.) and the response timewas less
than 80 ms. It was sampled at 80 Hz by a National Instruments PXIe
DAQ system and interpolated to match the IR frequency.
Flow conditions for the transonic turbine blade-tip heat transfer

experiment are summarized in Table 3. Detailed time histories of the
inlet mainstream total pressure and total temperature are illustrated in
Fig. 10. The flow is stabilized 5 s after the opening of the control valve

Fig. 5 Relative error at different HTC values for step- and ramp-
heating methods (sampling frequency: 30 Hz, ΔTw � 10 K).

Fig. 6 Ratios of uncertainty levels between the ramp- (5 K∕s) and step-
heating methods at various transient periods11 .

Fig. 7 Transonic wind-tunnel facility in the present study.

Fig. 8 Test section employed in the present study.
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and the heater mesh is turned on right afterward. In the present study,

the Tw signal is sampled at 60 Hz by the IR camera. The maximum
mainstream temperature rise is limited to be 20 K due to the heating

power (100 kW). According to the error analysis in Sec. II (Fig. 4), a

slower surface temperature response (smaller kavg) will be preferred
to minimize the HTC uncertainty. By linearly controlling the heating

power, the mainstream total temperature increases at a rate of 5 K∕s,
as shown in Fig. 10. Three seconds of the transient thermal

measurement data during the ramp heating are selected to calculate

the surface HTC values. For comparison purpose, the step-heating

method is applied as well, and its resulting mainstream total
temperature history is also shown in Fig. 10.

B. Data Reduction Method

In the present study, the HTC is defined according to the Newton’s

law of cooling:

q 0 0 � h�Tad − Tw� (12)

where q 0 0 is the heat flux, Tw is the wall temperature, and Tad is the

adiabatic wall temperature that can be expressed as

Tad �
1� rc�γ − 1∕2�M2

1� �γ − 1∕2�M2
T0 � cad�M; rc; γ�ΔT0 (13)

In this equation, T0 is the mainstream total temperature, M is the

Mach number of the mainstream, γ is the ratio of specific heats of the
fluid, and rc is the recovery factor (which can be approximated to be a

function of Prandtl number). Once the flowfield reaches a steady
state, the coefficient cad will be a specific constant for a surface

location, i.e., Tad will be proportional to T0.
Take Eq. (13) into Eq. (12) and rearrange:

q 0 0

T0

� −h
Tw

T0

� hcad (14)

From the transient temperature history, q 0 0 can be reconstructed

using the impulse method by Oldfield [25]. This method has been

employed in a series of previous studies (Zhang et al. [17,18] and
O’Dowd et al. [26]) and proved to be accurate, computationally

efficient, and reliable. To account for the preheating before the

turning on of the mesh heater, the complete surface temperature data

from the start of the blowdown run were used to reconstruct the heat

flux history. Next, h and cad could be obtained from linear regression
of q 0 0∕T0 and Tw∕T0 for every blade-tip location. According to
Eq. (14), preheating did not change the slope of the regression line. It
only offset the coefficient cad.
Note that, potentially, the regression error could be very large if not

enough “effective” wall temperature data could be obtained in the
experiments. In the conventional step-heating approach, the errors
from the regression process directly resulted in poor repeatability and
large overall uncertainty level, especially for the high HTCs.
Figure 11 illustrates the performance of regression from the proposed

ramp-heatingmethod.The temperature tracewasobtained for a selected
point on the midchord of the blade-tip surface. All data points (Tw∕T0,
q 0 0∕T0) were evenly scattered around the regression line. The
coefficient of determinationR2 in statistics (Devore [27]) was 0.97. The
relative uncertainty in linear regression was 2.6%with 95% confidence
(Coleman and Steele [28]). Such linear regression performance was
very satisfactory and highly repeatable. For this selected point, the slope
of regression line indicated h � 1245 W∕�m2 · K�.

C. Tip HTC Contour and Uncertainty Improvement

Figure 12 shows a sample of the tipHTC contour obtainedwith the
ramp-heating approach. Around the sharp edge of the tip surface,

Fig. 9 IR camera calibration curve.

Table 3 Flow conditions for the present
experimental study14

Parameter Value

Inlet total pressure, Pa 180,000
Inlet Mach number 0.3
Inlet Reynolds number (based on Cx) 0.26 × 106

Exit static pressure, Pa 101,325
Exit Mach number 0.95
Exit Reynolds number (based on Cx) 0.88 × 106

Mass flow rate, kg∕s 3

Fig. 10 Time histories of the inlet mainstream total pressure and
mainstream total temperature.

Fig. 11 Regression line for one selected point on the tip surface.

Fig. 12 ContourofHTCfor the transonic turbineblade tip18 [W∕�m2 · K�)]
(lateral conduction error is negligible within the dashed curve).
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lateral conduction becomes a major source of experimental error.

According to Chen et al. [29], the one-dimensional semi-infinite

conduction assumption can introduce over a 20% error near the

corner region. Such an error can be effectively reduced by a

correction technique proposed by Chen et al. [29]. A corner

conduction error is not corrected in the present study, since the main

focus here is to address the improvement in experimental uncertainty

by ramp heating. A dashed line is determined based on the

penetration depth analysis, as shown in Fig. 12.Within 3 s of transient

heating, this line is roughly 1.3 mm away from the tip edge for the

ramp heating and will be 1.8 mm for the step heating. Only the HTC

data within the enclosed region are discussed next. The HTC results

from different heating approaches are compared with the same

transient heating period (3 s).

The overall pattern of the HTC contour shown in Fig. 12 agrees

quite well with tip heat transfer results recently published by Zhang

et al. [17,18]. In leading-edge portion of blade (regionY)HTC iswell

over 1200 W∕�m2 · K�. Peak values of the HTC occur near the

leading-edge stagnation point (region P), which have the range of

1500 to 1800 W∕�m2 · K�. The HTC is considerably lower [below

600 W∕�m2 · K�] in rear regionX than the frontal part of the blade. A

small spot of the high HTC in the leading edge (region TC) relates to

the interference from the thermocouple placed on the tip surface for

IR camera calibration.

Figure 13a shows the relative uncertainty (95% confidence) in

linear regression for each data point on the tip surface. The relative

uncertainty in the linear regression is below 5% within the dashed

curve of the blade tip. For the purpose of comparison, a transient IR

measurement using the conventional step-heating approach is also
carried out. The obtained distribution of the HTC is the same as that
derived by the ramp-heating method, as illustrated in Fig. 12. But, its
uncertainty level ismuch higher, as shown in Fig. 13b. Formost areas
within the dashed curve of the blade tip, the relative uncertainty in the
linear regression is above 5%. The high uncertainty areas on the blade
tip may also be attributed to flow unsteadiness associated with the
local vortical flow structure or shock-wave/boundary-layer
interactions (Zhang et al. [17,18]). These additional sources of local
measurement noises have not been considered in the previous
analytical approach.
Finally, four repeated experiments are conducted to examine the

consistency of the results. The obtained contours of the relative
uncertainty in theHTCwith 95%confidence are presented in Fig. 14a
for the ramp-heating method and in Fig. 14b for the step-heating
method. These uncertainties are generated not only from the linear
regression error during each test but also from the run-to-run error
between different tests. For the ramp-heating method, the relative
uncertainty in the HTC is below 8% for the entire blade-tip surface,
whereas for the step-heating method, the value is 15%. Thus,
experimental uncertainty can be reduced 50% by applying the
proposed ramp-heating method.
Overall measurement uncertainties for the present study are

summarized in Table 4. With results from multiple runs, the relative
uncertainty of area-averaged HTC is �6.1%. Compared with the
uncertainty level of around�9.5% in similar high-speed experiments
by Zhang et al. [17,18] and Anto et al. [21], there is a remarkable
improvement with the proposed ramp-heating method.

IV. Conclusions

The uncertainty associated with the conventional transient thermal
measurement technique and an improved approach by ramp heating
has been investigated in the present study.
The theoretical analysis indicates that actively controlling the

mainstream temperature ramp in transient measurement has
remarkable advantages over the conventional step heating. Although
the HTC values are high, the solid surface temperature has a fast
response (time constant less than 1 s for typical low-conductivity
material). It has been demonstrated that the demanding requirements
for acquiring the temperature response and minimizing the
measurement error can be eased by ramp heating. A new approach
was developed to understand how the experimental inaccuracy will be
influenced (via sampling rate, wall temperature response, and HTC
value) and how it can be predicted in a quantitative manner, which is
useful in experiment assessment and design as a general guideline.
The improvement in experimental accuracy with a controlled ramp-

heating approach in high-speed flows has been further demonstrated in
a transonic turbine blade-tip heat transfer study. A high-resolution tip
HTC contour was obtained through transient IR thermal measurement
in a transonic linear cascade facility (exit Mach numberMexit of 0.95
and exitReynolds numberReexit of 0.88 × 106).A detaileduncertainty
analysis showed that the linear regression uncertainty in deriving HTC
values from one single experiment with the ramp-heating method was
much lower than that obtained by the step-heating method.
In conclusion, the present study demonstrates that the controlled

ramp-heating approach could provide an additional useful degree of
freedom for optimizing the experimental accuracy in transient
thermal measurement, and it is especially recommended to the high-
speed experimental heat transfer community.

Appendix A: Derivation of the Propagation Factor

Denote the difference between the wall temperature and the initial
temperature as

Td�t� � Tw�t�− Ti � �T0 − Ti�
�
1− exp

�
h2t

ρcλ

�
erfc

�
h

��
t

p��������
ρcλ

p
��
(A1)

Fig. 13 Contour of relative uncertainty in linear regression (in
percentages).

Fig. 14 Contours of relative uncertainty in HTC (in percentages)
obtained from four repeated experiments.

Table 4 Measurement uncertainties

Measurement Relative uncertainty 95% confidence

Wall temperature Tw 0.4 (300� 1.2 K)
Mainstream total temperature T0 0.4 (300� 1.2 K)
Area-averaged HTC 6.1 [909.74� 55.49 W∕�m2 · K�]
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The random noise in Td will result in fluctuations of the HTC
derived by backsubstitution of Eq. (1). To quantify their relationship,
the following equation is derived:

REh

RETd

� δh∕h
δTd∕Td

≈
∂h
∂Td

Td

h
� 1

∂Td∕∂h
Td

h

�−
1−exp�h2t∕ρcλ�erfc�h ��

t
p

∕
��������
ρcλ

p �
exp�h2t∕ρcλ�erfc�h ��

t
p

∕
��������
ρcλ

p �2h2t∕ρcλ−2∕ ���
π

p �h ��
t

p
∕

��������
ρcλ

p �

�gp

�
h

��
t

p��������
ρcλ

p
�

(A2)

In the ramp-heating method, the mainstream temperature is
controlled to increase linearly with time, as shown in Fig. 3; then, the
resulting wall temperature history Tw�t� follows Eq. (2) and is close
to a linear profile during the transient thermal process selected, as
shown in Fig. 4. Thus,

δTd

Td

≈
δkavg
kavg

and

t ≈
ΔTw

kavg

For a particular high-speed heat transfer experiment, h and ΔTw

are fixed; the propagation factor is then calculated as

pfit�kavg → h� � REh

REkavg

� δh∕h
δkavg∕kavg

≈
δh∕h

δTd∕Td

≈ gp

0
@ h��������

ρcλ
p

����������
ΔTw

kavg

s 1
A � gp

 
ca1��������
kavg

p
!

(A3)

Here, ca1 is a constant. The form of the function gp is determined
from the simulation test results as Eq. (9).
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