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Non-associated Reuleaux plasticity: Analytical stress integration and consistent
tangent for finite deformation mechanics

William M. Coombs, Roger S. Crouch ⇑
Durham University, School of Engineering and Computing Sciences, South Road, Durham DH1 3LE, United Kingdom

a b s t r a c t
Analytical backward Euler stress integration is presented for a volumetrically non-associated pressure-
sensitive yield criterion based on a modified Reuleaux triangle. This advances previous work on associ-
ated Reuleaux plasticity using energy-mapped stress space. The analytical solution is 2–4 times faster
than a standard numerical backward Euler algorithm. The merit in transforming to (and operating in) this
space is that the stress return is truly the closest point on the surface to the elastic trial state. The paper
includes a tension cut-off (formed by a second cone) and describes the steps necessary to allow the
model’s incorporation within a finite deformation framework. Finite-element results show a 59% runtime
saving for a modified Reuleaux model over a Willam–Warnke cone giving comparable accuracy in a thick-
walled cylinder expansion problem. The consistent tangent provides asymptotically quadratic conver-
gence in the Newton–Raphson scheme under both (i) small strain, infinitesimal deformation and (ii) large
strain, finite deformation finite-element simulations. It is shown that the introduction of non-associated
flow changes the plastic deformation field and reduces the heave predicted in a plane strain rigid strip-
footing problem. The proposed model offers a significant improvement over the Drucker–Prager and
Mohr–Coulomb formulations by better reproducing the material dependence on the Lode angle and
intermediate principal stress, at little extra computational effort.
1. Introduction

This paper offers a compact analytical solution to the backward
Euler stress integration for non-associated Reuleaux plasticity. The
constitutive formulation is embedded within an updated Lagrang-
ian, Kirchhoff stress–logarithmic strain, finite-element framework.
The paper extends earlier work on (infinitesimal deformation)
associated isotropic Reuleaux plasticity [7] by providing, for the
first time, closed-form expressions for the closest point projection
(CPP) using energy-mapped stress space (EMSS) [8] for a volumet-
rically non-associated model incorporating a tension cut-off.

Section 2 gives the geometric-algebraic steps required to extend
the energy mapped approach to include non-associated plastic
Flow (NAF). All equations are derived (in Section 3) which lead to
the backward Euler stresses and consistent tangent for the NAF
Reuleaux model. The use of a second cone, to provide a tension
cut-off, is explained in Section 4. Details of the updated Lagrangian
finite deformation finite-element framework are given in Section 5.
Error and runtime analyses for material point simulations are pro-
vided in Section 6, together with finite-element results for (i) the
expansion of a thick-walled cylinder, (ii) the expansion of a cylin-
drical cavity and (iii) the load-deformation behaviour of a rigid
strip footing, where associated and non-associated plastic strain
contour plots and displacement vectors are compared for infinites-
imal and finite deformation simulations. Final conclusions are
drawn in Section 7.

In all that follows {�} and [�] denote vectors and matrices,
respectively, ½̂�� and ½��� identify terms associated with principal
and shear components of generalised stiffness matrices and {�}T de-
notes a vector transpose. We adopt a tension positive convention
and order the principal stresses such that r1 is the most compres-
sive, while r3 is the most tensile.

2. Energy-mapped stress space

Simo and Hughes [23] reported that the backward Euler (BE)
integration method corresponds to the ‘‘closest projection of the
[trial elastic stress] onto the yield surface in the energy norm’’. In
the paper by Crouch et al. [8], the concept of working in an EMSS
was clarified. This space facilitates visualisation of the CPP stress re-
turn and reveals where analytical stress returns based purely on
geometric methods are possible for certain yield surfaces. These
concepts were used by Coombs et al. [7] to provide the analytical
stress return for a new associated flow perfect plasticity pressure-
dependent deviatoric yielding criterion based on a modified
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Fig. 1. Closest point projection for NAF: (i) conventional stress space; (ii) energy-mapped stress space.
Reuleaux triangle [19,21]. Previous work using EMSS was restricted
to associated flow perfect plasticity with linear elasticity. For isotro-
pic linear elastic media, the transformation between true stress
space and EMSS is only dependent on the value of Poisson’s ratio.

In the case of non-linear elasticity, the energy-mapped surface
takes on additional curvature. For example, if a linear variation in
bulk modulus with pressure and a constant shear modulus were
adopted, then a Drucker–Prager cone would transform into a con-
vex quadratic cone for which an analytical BE solution would be
possible. For more complex forms (that is, nonlinear meridians
and non-circular deviatoric cross-section) the solution would re-
quire a polynomial of 5th order (or higher) to be solved numerically.

Although this paper examines perfectly plastic models, the EMSS
still provides a valuable framework with which to view hardening/
softening plasticity since the return point will remain closest to
the trial point (for the case of associated flow) with respect to the
evolving yield surface. The full range of hardening/softening models
which retain analytic BE solutions has not yet been identified.

Within energy-mapped stress space, the NAF CPP solution cor-
responds to that stress state on the yield surface where the normal
to the plastic potential passes through the trial stress state (see
Fig. 1). Once the closest point in energy-mapped stress space has
been found, that solution can be transformed back to conventional
stress space. Note that for an isotropic model we need only operate
with principal stresses (conventional and energy-mapped) during
the integration process.

For details on the transformation of stress states into EMSS see
Crouch et al. [8] (or Coombs et al. [7] for the particular case of the
Fig. 2. (i) Modified Reuleaux deviatoric section; (ii) modified Reule
modified Reuleaux cone). The equations have been omitted from
this paper for sake of brevity. In all that follows 1(�) denotes quan-
tities associated with the EMSS.

3. Non-associated modified Reuleaux plasticity

This section describes the NAF modified Reuleaux cone; pre-
senting the analytical stress returns and the consistent tangents
for the three return regions within EMSS.

3.1. Defining equations

Haigh–Westergaard cylindrical coordinates n, q and h are

adopted, where n ¼ tr½r�=
ffiffiffi
3
p

, q ¼
ffiffiffiffiffiffiffi
2J2

p
, J2 ¼ ðtr½s�2Þ=2; J3 ¼

ðtr½s�3Þ=3, ½s� ¼ ½r� � n½1�=
ffiffiffi
3
p

. tr[�] is the trace and [1] denotes the
3 � 3 identity matrix. The Lode angle is given by

h ¼ 1
3

arcsin
�3

ffiffiffi
3
p

2
J3

J3=2
2

!
2 �p=6;p=6½ �: ð1Þ

From geometric considerations (see Fig. 2(i) and [7]) the modi-
fied Reuleaux (MR) Lode angle dependency may be obtained as

�qðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2 þ �r2 � 2�a�r cosð/Þ

q
; ð2Þ

where

�r ¼
�q2

e � �qe þ 1
2�qe � 1

; �a ¼ �r � �qe; �qe ¼
qe

qc
and �q ¼ q

qc
: ð3Þ
aux yield surface cone showing the three stress return regions.



qc denotes the deviatoric radius on the compression meridian
(h = p/6). �qe 2 ½0:5;1� gives the relative size of the radius under tri-
axial extension (r1 = r2 < r3) with respect to that under triaxial
compression (r1 < r2 = r3) at a given n. The arc angle, /, is defined
as

/ ¼ p
6
þ h� arcsin

�a sinð5p=6� hÞ
�r

� �
: ð4Þ

If the arc centres are located on the yield surface compression
meridians (that is, if �r ¼ 1þ �qe so that ā = 1) then the shape of the
deviatoric section is a Reuleaux triangle. Allowing the location of
the arc centres to vary along projections of the compression merid-
ians gives rise to the modified Reuleaux triangle. As �qe ! 0:5 both �r
and ā tend to 1 and the deviatoric section becomes an equilateral
triangle. If �qe ¼ 1 then �q ¼ 1 and we recover a circular deviatoric
section centred on the hydrostatic axis (as found in the Drucker–
Prager, D–P, model).

The MR cone can be defined as

f ¼ q� a�q n� ncð Þ ¼ 0; ð5Þ

where nc is the intersection of the yield surface with the hydrostatic
axis and a is the opening angle of the cone, a = �tan(wMC). wMC is
the Mohr–Coulomb (M–C) internal friction angle of the material un-
der triaxial compression. Thus (5) defines a cone with a MR devia-
toric section and linear meridians, pinned on the hydrostatic axis
at nc with that space diagonal (r1 = r2 = r3) providing the cone’s
axis, see Fig. 2(ii). The MR cone can be seen as a hybrid surface, lying
between the D–P and M–C envelopes, allowing some control over
the shape of the deviatoric section, independent of the cone opening
angle. This formulation provides a dependency on both the Lode an-
gle (h) and the intermediate principal stress (r2). The D–P surface
includes a dependance on r2 but not on the Lode angle, whereas,
the M–C surface includes a dependency on the Lode angle but not
r2. Real materials exhibit dependencies on both [3,22]. In rocks,
the influence of h is most clearly seen in the biaxial plane where
yield surfaces which neglect this measure provide poor fits to
experimental data. Intermediate principal stress values close to
the most compressive principal stress confine microfractures to de-
velop mainly in the plane formed by the direction of those two
stresses [11]. The formulation of compaction bands [13] and fault
slip patterns in complex fracture fields [20] have also recently been
shown to be controlled by r2. Thus its inclusion in a geomechanics
model is now considered essential. Further advantages of the MR
model are demonstrated in [7].

It is widely accepted that associated frictional plasticity models
overestimate the dilation seen in particulate media. To overcome
this shortfall, the following plastic potential is adopted

g ¼ q� b�q n� ng

� �
¼ 0; ð6Þ

where ng is the intersection of the plastic potential with the hydro-
static axis and b = �tan(wg) is the opening angle of the plastic
potential surface. wg gives the dilation angle under triaxial com-
pression, wg 2 [0,wM–C]. Combining (5) and (6) gives rise to a perfect
plasticity model with non-associated volumetric plastic flow but
associated deviatoric plasticity. The plastic potential is defined such
that it intersects any stress state on the yield surface f. To achieve
this

ng ¼ n� a
b
ðn� ncÞ; ð7Þ

where n is the hydrostatic stress of the point on the yield surface.
Consider the trial elastic stress {rt} (given by a trial elastic

strain fee
t g) lying outside the yield surface (f > 0). For this state,

there are three distinct stress return regions associated with the
MR cone, as shown in Fig. 2(ii), namely:
A. Return to the stress origin (point): apex return.
B. Return to the compression meridian (line): edge return.
C. Return to the surface: non-planar surface return.

The CPP solution and consistent tangent are considered for each of
the above regions in Sections 3.2–3.4. Fig. 3 describes the numerical
implementation. The energy-mapped opening angles of the yield
surface and plastic potential (see Section 2 above), 1a and 1b, are gi-
ven by

1a ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ v
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2v
p and 1b ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ v
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2v
p ; ð8Þ

respectively. Throughout the following, and without loss of general-
ity, the yield surface is assumed to be pinned at the stress origin,
nc = 0. For cases where nc – 0 the trial stress state can be hydrostat-
ically translated by nc in order to accommodate a tensile apex.

3.2. Apex return

If 1fa < 0 then the trial stress point {1t} will be returned onto the
apex of the MR cone, with

f1cpg ¼ ðfrcpg ¼ nc=
ffiffiffi
3
p
Þf1g; ð9Þ

where (�)cp denotes quantities associated with the closest point and
{1} = {1 1 1}T. The apex boundary function is given by

1fa ¼ 1qþ 1
1b�q

1n� 1ncð Þ ¼ 0: ð10Þ
3.2.1. Apex consistent tangent
As Clausen et al. have shown [5], the elasto-plastic consistent

tangent for a hydrostatic apex return is simply

Dalg
h i

¼ ½0�: ð11Þ
3.3. Edge return

For trial stresses outside the yield surface returning onto the
compression meridian

hcp ¼ p=6 and 1qcp ¼ 1a1ncp: ð12Þ

One obtains the solution for this case by recognising that the return
vector from the trial point will be orthogonal to the direction of the
plastic potential compression meridian line in EMSS. Therefore we
may write

f1ngT f1cpg � f1tg
n o

¼ 0; ð13Þ

where {1n} is this normal, given by

f1ng ¼ 1�
ffiffiffi
2
p

1b 1þ 1b=
ffiffiffi
2
p

1þ 1b=
ffiffiffi
2
pn oT

: ð14Þ

An edge point of the energy-mapped yield surface is given by

f1g ¼
1nffiffiffi

3
p 1�

ffiffiffi
2
p

1a 1þ 1a=
ffiffiffi
2
p

1þ 1a=
ffiffiffi
2
pn oT

: ð15Þ

Substituting (14) and (15), for {1cp}, into (13), we obtain an equation
which can be solved for 1ncp

1ncp ¼
ð1t2
þ 1t3

Þ 1þ 1b=
ffiffiffi
2
p� �

þ 1t1
1�

ffiffiffi
2
p

1b
� �

ffiffiffi
3
p
ð1þ 1a1bÞ

: ð16Þ

Subsequently 1ncp and 1qcp can be transformed back into conven-
tional principal stress space to calculate the final return stress
{rcp} using the Haigh–Westergaard expression



Fig. 3. NAF modified Reuleaux numerical procedure.
frg ¼ nffiffiffi
3
p f1g þ

ffiffiffi
2
3

r
q sinðh� 2p=3Þ sinðhÞ sinðhþ 2p=3Þf gT

:

ð17Þ

These stresses are then transformed back to generalised stress
space through use of the eigenvectors associated with the general-
ised trial stress state.

3.3.1. Edge consistent tangent
The consistent tangent for an edge return is obtained following

the approach given by Clausen et al. [6]. By considering the vector
orientation of the yield surface edge

fnf g ¼ 1�
ffiffiffi
2
p

a 1þ a=
ffiffiffi
2
p

1þ a=
ffiffiffi
2
pn oT

; ð18Þ

and that of the plastic potential

fngg ¼ 1�
ffiffiffi
2
p

b 1þ b=
ffiffiffi
2
p

1þ b=
ffiffiffi
2
pn oT

; ð19Þ

we obtain the 3 � 3 (that is, in principal form) infinitesimal elasto-
plastic tangent matrix as
bDep
h i

¼ fnf gfnggT

fnf gT bCe
h i

fngg
; ð20Þ

where bC e
h i

is the 3 � 3 (principal) elastic compliance matrix. The

6 � 6 elasto-plastic tangent matrix is then given by

Dep½ � ¼
bDep
h i

½0�
½0� E=2ð1þ vÞð Þ½1�

" #
: ð21Þ

The consistent tangent follows as

½Dalg � ¼ ½Q �½Dep�; ð22Þ

where [Q] is given by

½Q � ¼
½1� ½0�
½0� ½Q �

	 

: ð23Þ

Using the fact that r2 = r3 for a return onto the edge, ½Q �was shown
in [7] to be equal to



Fig. 4. Geometric illustration of the solution in energy-mapped stress space {1}.



½Q � ¼

r1�r2
rt1�rt2

0 0

0 0 0
0 0 r1�r3

rt1�rt3

2664
3775; ð24Þ

where rti
are the principal trial stresses. From (22) and (24) the

consistent tangent, for the edge return, can be written as

Dalg
h i

¼
bDep
h i

½0�

½0� E=2ð1þ vÞð Þ½Q �

24 35: ð25Þ

Once the consistent tangent has been formed in principal stress
space (25) it must be transformed back to generalised stress space,
see Clausen et al. for further details [5].

3.4. Non-planar surface return

Assuming that a trial elastic stress {1t} outside the yield will re-
turn onto the non-singular portion of the yield surface, we can de-
fine the square of the distance between that trial point and a point
on the surface at the same /t in any deviatoric plane at a given 1nt

(see Fig. 4) as

l2 ¼ ðrt � rÞ2 þ ð1n� 1ntÞ2: ð26Þ

Substituting r ¼ �r1bð1n� 1ngÞ and

r2
t ¼ a2 þ 1q2

t � 2a1qtC where C ¼ cosð5p=6� htÞ andð
a ¼ �a1bð1n� 1ngÞ

�
ð27Þ

into (26), taking the partial derivative of l2 with respect to 1n and
setting that derivative equal to zero, we obtain

@l2

@1n
¼ �a21b21nrt � �a21b21ngrt � �a1b1qtCrt � r2

t �r1b

� �r1bð1n� 1ngÞð�a21b21n� �a21b21ng � �a1b1qtCÞ
þ ð1n�r21b2 � 1ng�r21b2 þ 1n� 1ntÞrt ¼ 0: ð28Þ

Note that throughout the partial differentiation we ignore the
dependance of 1ng on 1n. Through manipulation and substituting
1ng from (7) (with nc = 0) into (28), we obtain the following quartic
in 1ncp

1n4
cpA1 þ 1n3

cpA2 þ 1n2
cpA3 þ 1ncpA4 þ A5 ¼ 0; ð29Þ

where

A1 ¼ �a21a2B2
1 � 4�a4�r21a41b2;

A2 ¼ 12�a3�r21a31b2qtC � 2�a21a2B1B2 � 2�a1a1qtCB2
1;

A3 ¼ �a21a2B2
2 þ 1q2

t B2
1 þ 4�a1a1qtCB1B2 � 9�a2�r21a21b21q2

t C2

� 4�a2�r21a21b21q2
t ;

A4 ¼ 6�a�r21a1b21q3
t C � 21q2

t B1B2 � 2�a1a1qtCB2
2;

A5 ¼ 1q2
t B2

2 � 1q4
t
�r21b2;

B1 ¼ �a21a1bþ �r21a1bþ 1;
B2 ¼ �a1b1qtC þ nt:

This quartic can be solved for 1ncp (see Simo and Hughes [24, p. 138],
amongst others, for more details). Once 1ncp is known, then the
other quantities identifying the position of the closest point on
the MR surface can be calculated. /cp is given by the sine rule

/cp ¼ arcsin
1qt sinð5p=6� htÞ

rt

� �
; ð30Þ

where rt is calculated at the solution 1ncp using (27). 1qcp ¼ 1a�q
ðhÞ1ncp with �qðhÞ given by (2) and hcp determined from the cosine
rule
hcp ¼
5p
6
� arccos

a2
cp þ 1q2

cp � r2
cp

2acp
1qcp

!
; ð31Þ

rcp and acp are values associated with 1ncp. The stress return for the
non-associated MR cone is equivalent to the closest point to the
plastic potential in energy-mapped space. The yield and plastic po-
tential surfaces coincide at the return stress state.

3.4.1. Non-planar consistent tangent
The consistent tangent for the non-associated surface return is

calculated by minimising

feeg � fee
t g þ Dcfg;rg

f

� �
¼
f0g

0

� �
ð32Þ

with respect to fee
t g, thereby obtaining

bC e
h i

þ Dc½g;rr� fg;rg

ff;rgT 0

24 35 fdrg
dDc

� �
¼
fdee

t g
0

� �
: ð33Þ

Rearranging, we have

fdrg
dDc

� �
¼ Dalg

h i
fD12g

fD21g D22

" #
fdee

t g
0

� �
; ð34Þ

where (�),r and (�),rr in (32) and (33) denote the first and second
partial derivatives of (�) with respect to {r}. We assume that the
yield surface apex lies at the stress origin (nc = 0) when taking deriv-
atives with respect to {r}. For cases where nc – 0 the trial stress
state is hydrostatically shifted such that nc = 0 and then the return
stresses are hydrostatically translated back by the original nc

amount. The first derivative of the yield function f, from (5), is given
by

ff;rg ¼ fq;rg � anf�q;rg � a�qfn;rg: ð35Þ

Operating only with the derivatives with respect to the principal
stresses; fq;rg ¼ fsg=q and fn;rg ¼ f1g=

ffiffiffi
3
p

. The derivative of �q
with respect to {r} is given by

f�q;rg ¼ �q;�q�q �q2
;//;hfh;rg; ð36Þ

where

�q;�q�q ¼
1

2�q
; �q2

;/ ¼ 2�a�r sin / and

/;h ¼ 1þ
�a cosð5p=6� hÞ

�r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�a sinð5p=6� hÞ=�rÞ2

q : ð37Þ

The derivative of the Lode angle with respect to stress {h,r} is given
in [7]. The derivative of the yield function with respect to stress (35)
can be split into volumetric and deviatoric components

ff;rg ¼ fq;rg � anf�q;rg|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ff dev
;r g

�a�qfn;rg|fflfflfflffl{zfflfflfflffl}
ff vol
;r g

; ð38Þ

allowing the derivative of the plastic potential (6) with respect to
{r} to be defined as

fg;rg ¼ fgdev
;r g � fgvol

;r g; ð39Þ

where

fgdev
;r g ¼ ff dev

;r g and fgvol
;r g ¼ b�qfn;rg: ð40Þ

The second derivative of (6) with respect to stress is given by

½g;rr� ¼ ½q;rr� � ðaþ bÞfn;rgf�q;rgT � an½�q;rr�; ð41Þ



ncp hcp

Aco Return to the cut-off apex (point) nco �
Aj Return to the yield surface intersection

on the compression meridian (point)
nj p/6

Bmp Return to the main yield surface
compression meridian (line)

<nj p/6

Bco Return to the cut-off yield surface
compression meridian (line)

>nj p/6

Bj Return to the yield surface intersection
(arc)

nj <p/6

Cco Return to the cut-off non-planar surface >nj <p/6
Cmp Return to the main yield non-planar surface <nj <p/6
where

q;rr

h i
¼

q J2;rr
� �

� fq;rgfsg
T

q2 ; ð42Þ

and [J2,rr] can be found in [7]. Second derivatives of �q and / follow
as shown

�q;rr½ � ¼ f�q;r�qgf�q;rgT þ f�q;r/gf/;rg
T þ �q;r/;r /;rr

� �
; ð43Þ

f�q;r�qg ¼ �
�a�r sin /

�q2 f/;rg; f�q;r/g ¼
�a�r cos /

�q
f/;rg;

�q;r/;r ¼
�a�r sin /

�q
and ð44Þ

/;rr
� �

¼ f/;rhgfh;rg
T þ /;h h;rr½ �; ð45Þ

where

f/;rhg ¼
�a
�r

S�r2 1� ðS�a=�rÞ2
� �2

� �a2SC2

�r2ð1� ðS�a=�rÞ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðS�a=�rÞ2

q
0B@

1CAfh;rg: ð46Þ

Here C = cos (5p/6 � h) and S = sin (5p/6 � h). The second derivative
of h with respect to {r} is given by Coombs et al. [7]. We now have
the all derivatives required for (34). These have been determined in
principal stress form. The full 6 � 6 consistent tangent is given by

Dalg
h i

¼
bDalg
h i

½0�

½0� E=2ð1þ vÞð Þ½Q �

24 35; ð47Þ

where bDalg
h i

is the consistent tangent in principal form, from (34),

and ½Q � given by [5], was shown in [7] to be

½Q � ¼

r1�r2
rt1�rt2

0 0

0 r2�r3
rt2�rt3

0

0 0 r1�r3
rt1�rt3

26664
37775: ð48Þ
4. Modified Reuleaux tension cut-off

By introducing the additional yield criterion and plastic
potential
Fig. 5. Seven stress return regions for the modified Reuleaux cut-off model.
fc ¼ q� ac �qðn� ncoÞ and gc ¼ q� bc �qðn� ncgÞ; ð49Þ

we modify the NAF MR cone to include a tension cut-off, where (i)
ac 2 [�1,a] and bc 2 [ac,0] are the opening angles of the yield and
plastic potential surfaces, and (ii) nco and ncg are the intersections
of the yield and plastic potential surfaces with the hydrostatic axis.
With this MR cut-off, the intersection between the two surfaces lies
in a single deviatoric plane, given by

nj ¼
acnco � anc

ac � a
: ð50Þ

Consider the trial elastic stress {rt} (given by a trial elastic strain
fee

t g) lying outside the yield surface (f > 0 or fc > 0). For this state
there are seven distinct stress return regions associated with the
tension cut-off MR cone, as shown in Fig. 5:
Return regions Bmp and Cmp have been dealt with in Sections 3.4
and 3.3, respectively. Aco, Bco and Cco are covered by Sections 3.4,
3.3 and 3.2 with a = ac, b = bc and hydrostatically shifting the trial
stress state such that the cut-off yield surface intersects with the
stress origin. Returns Aj and Bj are considered in Section 4.1.

To determine the return location of a trial point outside the
yield surface, a three-stage process may be required. We initially
make use of an apex boundary surface

1fap ¼ 1qþ 1
1bc �q

ð1n� 1ncoÞ: ð51Þ

Trial states with 1fap 6 0 will return to the apex of the cut-off with
frg ¼ ðnco=

ffiffiffi
3
p
Þf1g. For this case the consistent tangent is given by

(11). For points outside the apex boundary surface (1fap > 0) the re-
turn hydrostatic stress, 1ncp, is calculated from (29), assuming that
the point returns to the main yield surface. If 1ncp < 1nj then one con-
tinues with the procedure outlined in Fig. 3 (from the third point of
step 1.(e).iv. onwards), otherwise return the trial point onto the cut-
off yield surface. Once the return hydrostatic stress on the cut-off
surface has been calculated, it is necessary to check if 1ncp > 1nj. If
it is, then one continues with the stress return (again from the third
point of step 1.(e).iv. Fig. 3, onwards). Otherwise the trial stress will
return to the intersection between the two yield surfaces (described
below).

4.1. Interface return

The junction locus, between the main yield surface and the cut-
off cone, lies in a single deviatoric plane where n = nj, given by (50).
The return stress for a trial point in this return region can be calcu-
lated using the following procedure:

1. Set 1ncp = 1nj.
2. Calculate /cp from (30).
3. Find 1qcp ¼ 1a�qðhÞ1ncp, using �qðhÞ from (2).
4. hcp may then be determined from (31),

(a) if hcp < p/6, then return to the intersection arc, Bj.



(b) if hcp P p/6, then return to the intersection point on the
compression meridian, Aj

hcp ¼ p=6; 1qcp ¼ 1að1ncp � 1ncÞ ¼ 1acð1ncp � 1ncoÞ:

5. Subsequently 1ncp and 1qcp can transformed back into conven-
tional stress space to calculate the final return stress {rcp} using
the Haigh–Westergaard expression (17).

The complete numerical procedure for the combined non-asso-
ciated flow, tension cut-off modified Reuleaux cone is given in
Fig. 6.

4.1.1. Interface consistent tangent
In order to define the consistent tangent for the interface return,

we require an equation for the tangent of the intersection arc be-
tween the main MR yield surface and the MR cut-off. On this arc
(Bj) the deviatoric normal to the yield and plastic potential surfaces
coincide for both manifolds. The direction of the interface arc {rj},
orthogonal to both the deviatoric normal to the yield surface and
the hydrostatic axis (see Fig. 5) is given by

frjg ¼ ff dev
;r g � f1g; ð52Þ

where � denotes the vector cross product and ff dev
;r g is given by

(38). Thus {rj} is given by

frjg ¼ ff dev
;r2
� f dev

;r3
f dev
;r3
� f dev

;r1
f dev
;r1
� f dev

;r2
gT
: ð53Þ
Fig. 6. NAF modified Reuleaux with
The 3 � 3 elasto-plastic tangent matrix (in principal form) is subse-
quently given by

½bDep� ¼ frjgfrjgT

frjgT bCe
h i

frjg
; ð54Þ

where bCe
h i

is the 3 � 3 (principal) elastic compliance matrix. Calcu-

lation of the consistent elasto-plastic tangent requires determina-
tion of the plastic multipliers associated with the active yield
surfaces; namely the main yield surface and the cut-off yield
surface. Using Koiter’s rule [15], the plastic strain associated with
a return onto the interface arc is given by

fDepg ¼ Dcfg;rg þ Dccfgc;rg; ð55Þ

where Dc and Dcc are the incremental plastic multipliers and {g,r}
and {gc,r} are the derivatives of the plastic potentials for the main
and cut-off yield surfaces, respectively. The increment in the plastic
strain is given by

fDepg ¼ fee
t g � fee

cpg; ð56Þ

where fee
t g and fee

cpg are the elastic trial and return strains, respec-
tively. The plastic multipliers can be calculated by substituting (56)
into (55) and rearranging to obtain
cut-off numerical procedure.



1 Traditionally the derivative of a tensor function with respect to its argument has
been solved by considering the spectral decomposition of the tensor function and
using the product rule to obtain the derivative. However, calculation of the derivative
in the case of repeated eigenvalues requires the use of eigen-projections to overcome
the non-uniqueness of the eigenvalues, a result originally obtained by Carlson and
Hoger [4]. Miehe [18] subsequently presented two methods for the calculation of the
derivative of a symmetric second order tensor with respect to is argument.
Dcc ¼
ðDep

1Þðg;r3
Þ � ðDep

3Þðg;r1
Þ

ðg;r3
Þðgc;r1

Þ � ðgc;r3
Þðg;r1

Þ and Dc ¼
Dep

1 � ðDccÞðgc;r1
Þ

g;r1

:

ð57Þ

These plastic multipliers are subsequently used to calculate the
principal consistent tangent matrix

dDalg
	 


¼ frjgfrjgT

frjgT bCe
h i

Q j

� �
frjg

; ð58Þ

where

½Q j� ¼ ½1� þ Dc½bC e��1½g;rr� þ Dcc½bCe��1½gc;rr�: ð59Þ

The 6 � 6 consistent tangent matrix is then given by

Dalg
h i

¼
bDalg
h i

½0�

½0� E=2ð1þ vÞð Þ½Q �

24 35; ð60Þ

where ½Q � is calculated from (48).

4.1.2. Interface corner consistent tangent
As Clausen et al. have shown [5], the elasto-plastic consistent

tangent for the intersection of three yield planes is simply

½Dalg � ¼
½0� ½0�
½0� ðE=2ð1þ vÞÞ½Q �

	 

; ð61Þ

where ½Q �, in this case, is given by (24). Recall that in all cases, the
consistent tangent matrices (11), (25), (47), (60) and (61) need to be
transformed back to their generalised form using the eigenvectors
of the trial elastic strain (see [5]).

5. Finite deformation framework

This paper uses an updated Lagrangian framework to account
for geometric non-linearities inherent in large strain analysis. Note
that a number of the earlier updated formulations were approxi-
mate in that they were restricted to small elastic strains [2]. This
restriction does not hold here. In this paper the term updated
Lagrangian refers to the strategy used by Holzapfel [12] and Bathe
[1], where the linearisation of the internal virtual work is per-
formed in the current configuration using the spatial derivatives.
For more details see [1,10], amongst others. In this framework all
static and kinematic variables are referred to the previously con-
verged state. The deformation gradient provides the fundamental
link between the current and the reference configurations

½F� ¼ @fxg
@fXg

	 

¼ ½1� þ @fug

@fXg

	 

; ð62Þ

where {x} and {X} are the coordinates of the same point in the
current and reference configurations, respectively. {u} is the
displacement between the configurations. The multiplicative Lee
decomposition of [F], initially proposed by Lee and Lu [16] and
Lee [17], into elastic [Fe] and plastic [Fp] deformation gradients is gi-
ven by

½F� ¼ ½Fe�½Fp�: ð63Þ

This decomposition is a fundamental assumption of the adopted
framework.

Within a finite deformation framework there exist choices for
the stress and strain measures. Certain combinations provide
advantages when moving between infinitesimal and large strain
theories. Here we use a logarithmic strain–Kirchhoff stress rela-
tionship in conjunction with an implicit exponential map for the
plastic flow equation to allow the implementation of standard
small strain constitutive algorithms within a finite deformation
framework without modification. See [10], amongst others, for
more details on the recovery of the infinitesimal format of the
stress return algorithms. It is one of the most successful and
straight-forward ways of implementing large strain elasto-plastic-
ity [14]. The logarithmic strain is defined as

½e� ¼ ln½v � ¼ 1
2

ln½b�; ð64Þ

where [v] and [b] are the left stretch and left Cauchy–Green strain
matrices, respectively. The logarithm of [v] or [b] is obtained using
spectral decomposition into principal values (see [25] for details)
and using the inverse decomposition to recover the full six compo-
nent symmetric matrix. [v] is obtained from the polar decomposi-
tion of the deformation gradient, defined as the symmetric

component of [F], given by ½v� ¼
ffiffiffiffiffiffi
½b�

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
½F�½F�T

q
. The Kirchhoff

stress, {s} is defined as

fsg ¼ Jfrg; ð65Þ

where J, the volume ratio, is the determinant of the deformation
gradient and {r} is the true (or Cauchy) stress. An isotropic small
strain constitutive model can be incorporated within this frame-
work without modification. An elastic logarithmic trial strain,
fee

t g, is calculated from the trial elastic deformation gradient and
used as the input into the constitutive model (along with any inter-
nal variables). The model will return the updated elastic logarithmic
strain {ee}, internal variables and the Kirchhoff stress {s}, from
which the Cauchy stress can subsequently be calculated from
(65). The constitutive model simply supplies the small strain algo-
rithmic tangent stiffness matrix ½Dalg � ¼ @s=@ee

t

� �
. This tangent is

no longer consistent with the global finite-element procedure. In-
stead we use the consistent spatial tangent modulus, written here
in subscript notation

aijkl ¼
1
2J

Dalg
ijmnLmnpqBa

pqkl � Sijkl; ð66Þ

where

Lmnpq ¼
@ lnðbe

t Þmn

@ðbe
t Þpq

; Ba
pqkl ¼ dpkðbe

t Þql þ dqkðbe
t Þpl; Sijkl ¼ rildjk:

ð67Þ
Dalg

ijmn is the consistent tangent from the unmodified small strain con-
stitutive model and ðbe

t Þmn is the elastic trial left Cauchy–Green
strain tensor. Lmnpq is determined as a particular case of the deriva-
tive of a general symmetric second order tensor function with re-
spect to its argument.1 This framework was first described by de
Souza Neto and Perić [9] who demonstrated the importance of using
the exact derivatives of the tensor quantities by making comparisons
with the approximate derivatives through convergence analysis. The
element stiffness matrix is obtained from

½ke� ¼
Xngp

i¼1

½Gi�T ½ai�½Gi� ½Ji�j jwi ð68Þ

where [ai], from (66), is now written in matrix form and ngp gives
the number of Gauss points. [Gi] is the (9-component) strain–dis-
placement matrix, [Ji] is the Jacobian matrix obtained from the
derivatives of the shape functions and the updated nodal coordi-
nates and wi is the weight function. The element internal forces
are calculated in a manner analogous to infinitesimal theory.



The following points summarise the modifications required for
an infinitesimal linear elastic finite-element code in order to
implement the updated Lagrangian large strain formulation:

1. The primary internal variable is the deformation gradient, [F].
2. The derivatives of the shape functions are calculated with

respect to the updated nodal coordinates.
3. The non-symmetric material spatial tangent modulus, [a], and

the full (9-component) strain–displacement matrix, [G], are
used to form the element stiffness matrix.

4. An inelastic constitutive model is included.
5. The global equilibrium equation is solved using the Newton–

Raphson (N–R) scheme.

6. Numerical analysis

6.1. Stress return error analysis

The accuracy of the stress return algorithm was assessed for
1 6 qt=ða�qðhtÞntÞ 6 6 and �p/6 6 ht 6 p/6. A Young’s modulus of
100 MPa and a Poisson’s ratio of 0.2 were used for the material’s
elastic properties. wMC = p/9, wg = p/18 and �qe ¼ 0:8 define the
MR cone. A hydrostatic pressure of nt = �1 MPa was used for all
of the elastic trial stresses. In this material point analysis, the start-
ing stress state was located on the yield surface at the shear merid-
ian (h = 0). The constitutive model was then subjected to an elastic
strain increment corresponding to the elastic trial stress state, see
Fig. 7(ii). The return stress from this single strain increment was
compared with the solution obtained by splitting the strain incre-
ment into 10,000 sub-increments.

The following error measure was used to assess the accuracy of
the stress return algorithm

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcpg � freg
� �T frcpg � freg

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fregTfreg

q ; ð69Þ

where the sub-incremented solution, {re}, is treated as the exact
stress return and {rcp} is the one-step analytical return. A stress
iso-error map is given in Fig. 7(i). This analysis revealed a maximum
error of 3.62%, corresponding to a trial stress on the extension
meridian (h = �p/6) at qt=ða�qntÞ ¼ 4:1. Zero error appears along
the locus ht ¼ 0;qt=ða�qntÞ ¼ 1 to ht ! �0:2160; qt=ða�qntÞ ! 1.
Much of the trial area has an error of less than 0.5%. Larger errors
Fig. 7. (i) Errors following from the single-step analytical backward Euler stres
are associated with trial stresses near the extension meridian and
in the vicinity of the compression meridian return region. These
are due to the increased tangential component of the trial stress
increment. The errors follow the same general pattern as reported
for the associated Reuleaux plasticity model by Coombs et al. [7].
The maximum error has increased from 2.56% due to the non-asso-
ciated flow rule increasing the length of the integrated stress return.

Fig. 8 demonstrates the stress return algorithm when the ap-
plied strain increment changes the ordering of the principal stress
between the original (or previously converged) and trial stress
state. This analysis was conducted with the same material param-
eters as above except that wg = 0 and the cohesion c = 100 kPa,
allowing the stress return to be visualised in the p-plane. The ini-
tial stress state {rn} was located at the intersection of the shear
meridian with the yield surface. An unordered principal strain
increment of {De} = {�1.6131 1.8065 �0.1934}T � 10�3 was ap-
plied in a single step and also in two specifically selected steps,
where the strain increment was split such that (i) the first incre-
ment locates the trial stress frt1g on the boundary of the region
that will result in a corner return and (ii) the second increment
supplies the remainder of the total strain increment. Fig. 8(i) dem-
onstrates the stress return in principal stress space where the com-
ponents (rx,ry,rz) are not associated with any particular ordering.
That is, rx (and ry or rz) may be the major, intermediate or minor
principal stress. In this way, stress points can exist in all six sex-
tants of the plane. Hereafter we refer to this as true stress space.
Fig. 8(ii) illustrates the processes in principal stress space where
the ordering r1 6 r2 6 r holds. When an applied strain increment
changes the ordering of the principal stresses such that the stress
path moves through a corner return region there will be an addi-
tional error associated with the stress return. In true stress space,
applying the strain increment in a single step results in a trial
stress state {rt} in the sextant where rx 6 rz 6 ry. This trial state
will return onto the yield surface at {rcp}. In the ordered principal
stress space the trial point is again located at {rt}. This principal
trial will return to {rcp} which (for this case) coincides with the
same return stress in true stress space. When the strain increment
is split into two components, the first trial frt1g returns onto the
corner of the yield surface {rcp} while the remainder of the incre-
ment results in the trial frt2g which returns to frcp2

g. Viewing this
two-step process in principal stress space, the initial increment is
identical to that in true stress space. The second increment is mir-
rored about the rz = ry axis so that it remains in the r1 6 r2 6 r
sextant. Once the return is formed in principal stress space, it is
s return; (ii) geometric interpretation of a trial point in the error analysis.



Fig. 8. Modified Reuleaux stress return crossing a corner. The figures illustrate a comparison between a single step and two specifically selected increments in (i) true stress
space; (ii) ordered principal stress space.
then transformed back into true stress space. For the case demon-
strated, the relative error (using (69) with {re} taken as frcp2

g) be-
tween the single step and the two step return is 10.27%. The
absolute error when the strain increment is split into 10,000 subin-
crements is 12.56%. This type of error is not unique to the modified
Reuleaux constitutive model; it will be present for any yield sur-
face with corners, such as the widely used Tresca and Mohr–Cou-
lomb models.

6.2. Run time analysis

The run time of the single-step analytical BE return is compared
with a conventional iterative BE stress return in Fig. 9. The analysis
considered trial stresses between 1 6 qt=ða�qntÞ 6 6 and �p/6 6
ht 6 p/6. A Young’s modulus of 100 MPa and a Poisson’s ratio of
0.2 were again used for the material’s elastic properties. Similarly,
wMC = p/9, wg = p/18 and �qe ¼ 0:8 define the MR cone and a hydro-
static pressure of nt = �1 MPa was used for all of the elastic trial
stresses. The constitutive model was then subjected to a strain
increment corresponding to the elastic trial stress state, see
Fig. 9(ii). When returning to the corner or the apex, both the ap-
proaches (analytical and numerical BE) use the same single-step
return discussed in the preceding sections. However, when return-
ing onto the non-planar surface, the conventional (numerical) BE
Fig. 9. (i) Run time comparisons between conventional iterative backward Euler and the
a trial point in the run time analysis.
method requires multiple local iterations to obtain convergence.
The number of iterations and the ratio of the numerical to analyt-
ical BE run times are presented in Fig. 9(i). The analytical return
demonstrates a 2–4 times speed-up over the iterative numerical
method (for the considered trial stress states). The increase in
time required for the iterative approach is due, in part, to repeat-
edly calculating the first and second derivatives of the yield
function with respect to stress. The non-smooth (stepped) region
close to ht = p/12 is a consequence of the finite grid size either side
of the return region B–C boundary.

Note that although the same general trends are observed as for
the associated case reported by Coombs et al. [7], a different form
of the yield function, f, is used in this paper. Both yield functions
describe the same yield surface, but they have different f fields
outside the yield surface which can significantly affect the rate of
convergence of an iterative backward Euler stress return. As a
result, the maximum number of iterations for the NAF iterative
return to converge (to the same tolerance) was reduced from 7,
for the case of associated flow in [7], to 5.

6.3. Cylindrical expansion

In this section we present the analysis of the expansion of
a thick-walled soil cylinder under internal pressure. This is a
single-step analytical backward Euler stress returns; (ii) geometric interpretation of



Table 1
Run time comparisons for the internal expansion of a thick-walled soil cylinder.

M–C D–P MR W–WP
ðNRitÞ 1166 1200 1200 1203

max (NRit) 3 3 3 6
t/tM�C 1 1.012 1.077 1.666
one-dimensional axi-symmetric problem but here we use a 2D ver-
sion of our 3D FE code and make comparisons with the analytical
solution provided by Yu [28]. Three degrees of a cylinder with an
initial internal radius (a0) of 1 m and an external radius (b0) of
500 m was discretised using one hundred four-noded plain strain
quadrilateral elements with the length of the elements progres-
sively increasing by a factor 1.2 from the inner to the outer surface.
The following material parameters were used: Young’s modulus of
100 MPa, Poisson’s ratio of 0.3, cohesion c of 70 kPa, friction angle
of 20� and �qe ¼ 0:8 (to coincide with �qe for M–C). The internal ra-
dius was expanded to 5 m via 400 equal displacement-controlled
increments. Fig. 10 presents the pressure-internal expansion plots
for the four associated flow perfect plasticity constitutive models:
D–P, M–C, Willam–Warnke (W–W) [26] cone and MR. a/a0 is the
ratio of the current to the original internal radius. The M–C numer-
ical solution displays excellent agreement with the analytical solu-
tion. Results for the MR cone using �qe ¼ 0:5001 and �qe ¼ 0:9999
demonstrate the model’s ability to provide solutions spanning be-
tween those provided by the M–C and D–P cones. With �qe ¼ 0:8
the W–W and MR cones produced a stiffer response when com-
pared against the M–C solution.

Table 1 gives run time comparisons between the different con-
stitutive models.

P
ðNRitÞ is the total number of global N–R itera-

tions, max (NRit) is the maximum number of N–R iterations for
any loadstep, t/tM�C is the run time normalised with respect to
the M–C run time. The W–W formulation, which produced similar
results to the MR cone, required a 58.9% increase in the run-time.
Whereas the MR solution gave a run time which was only 7.7%
greater than M–C.

6.4. Cavity expansion

In this section we present the analysis of the expansion of a
cylindrical soil cavity under internal pressure. This also is a
one-dimensional axi-symmetric problem but again we use
our 2D FE code to make comparisons with an analytical solution.
Only 3� of the cavity (with internal radius of 1 m and fixed outer
boundary of radius 2 km) is discretised using one hundred and
Fig. 10. Internal expansion of a thick walled soil cylinder: compa
fifty-four-noded plain strain quadrilateral elements (the size of
the elements were progressively increased by a factor 1.1 from
the inner to the outer surface). Identical material parameters as
used in Section 6.3 were adopted. The internal radius was ex-
panded to 5 m via 80 equal displacement-controlled increments.

Fig. 11 presents the pressure-internal radius plots for M–C and
MR cones for a range of dilation angles. As with the cylinder expan-
sion problem described above, the MR cone produces a stiffer re-
sponse compared to M–C, for all examined dilation angles. The
M–C numerical solution displays excellent agreement with the
analytical solution [27] for both associated and non-associated
flow.

Reducing the dilation angle causes a progressive the pressure–
displacement response for the internal expansion problem. Reduc-
ing wg from p/9 to 0 leads to a reduction of 45.3% and 40.5% of the
maximum pressure for the MR and M–C models, respectively. This
reduction in pressure is a consequence of the direction of plastic
return onto the yield surfaces. As the dilation angle reduces, so
does the volumetric component of the plastic stress corrector. This
gives rise to the return stress state having a reduced hydrostatic
(and deviatoric) stress when compared with the case of associated
flow.

Fig. 12(i) and Table 2 present the convergence results for the
cavity expansion problem for the MR cone with a dilation angle
of wg = p/18 for loadsteps 76–80. The following measure of norma-
lised (residual) out-of-balance force

jffrgj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ffextg � ffintgf gT ffextg � ffintgf g

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fextf gT fextf g
q ð70Þ
rison between M–C, D–P, W–W and MR constitutive models.



Fig. 11. Internal expansion of a cylindrical cavity: comparison between associated and non-associated flow for Mohr–Coulomb (M–C) and modified Reuleaux (MR)
constitutive models.

Fig. 12. Internal expansion of a cylindrical cavity: convergence results showing (i) the norm of the out-of-balance forces associated with each iteration for the final five
loadsteps and (ii) norm of the out-of-balance force against the previous out-of-balance force for the final loadstep for the NAF modified Reuleaux model (wg = p/18).

Table 2
Internal expansion of a cylindrical cavity: residual out-of-balance force convergence for the NAF modified Reuleaux model.

Iteration Loadstep

76 77 78 79 80

1 6.6987E�01 6.7303E�01 6.7599E�01 6.7964E�01 6.8322E�01
2 1.0559E�01 1.0690E�01 1.0822E�01 1.0971E�01 1.1108E�01
3 4.4568E�03 4.5667E�03 4.6846E�03 4.8009E�03 4.9183E�03
4 1.1621E�05 1.2187E�05 1.2799E�05 1.3417E�05 1.4057E�05
5 8.4626E�ll 9.7972E�ll 1.1991E�10 1.1860E�10 1.2274E�10



was used to assess convergence, where {fext} and {fint} are the exter-
nal and internal forces, respectively. Fig. 12 and Table 2 demon-
strate the asymptotic quadratic convergence of the global N–R
procedure for the NAF MR cone model. The convergence rate is con-
firmed by Fig. 12(ii) which gives the norm of the out-of-balance
force against the previous out-of-balance force for the final loadstep
showing that the convergence is asymptotically approaching a qua-
dratic rate.
Fig. 13. Rigid strip footing plane-strain finite-element discretisation.

Fig. 14. Rigid strip footing normalised pressure–displacement response. MR AF, MR NAF,
Reuleaux non-associated, non-associated modified Reuleaux with a cut-off and associat
6.5. Rigid footing

The ability of MR to interpolate between D–P and M–C for the
small-strain analysis was demonstrated in [7] for a plane strain
incremental finite-element analysis of a 1 m wide rigid strip foot-
ing bearing onto a weightless soil. In that paper it was shown that
the run time advantages of the MR cone over W–W cone are con-
siderable. Here we present the effect of including finite deforma-
tions, NAF and a tension cut-off for the analysis of a rigid strip
footing bearing onto a weightless soil.

Due to symmetry only one half of the problem was considered.
The mesh had a depth and width of 8 m. Four hundred eight-noded
quadrilaterals, with reduced four-point quadrature, modelled the
problem (see Fig. 13). The following material parameters were
used: a Young’s modulus of 100 MPa, Poisson’s ratio of 0.3, cohe-
sion, c, of 100 kPa, friction angle of p/9 and �qe ¼ 0:8. The problem
was analysed for a surface displacement of 100 mm applied using
100 equal displacement increments. An associated flow (wg = p/9)
and non-associated flow (wg = p/18) MR cone (with and without a
tension cut-off) were used in the analysis. The opening angle of the
associated flow cut-off was set to ac = bc = �tan (2p/9) with a
hydrostatic interface (or junction) stress of nj = �200 kPa.

The normalised pressure–displacement relationship for the six
cases, and for a Mohr–Coulomb constitutive model, are shown in
Fig. 14. Similar to the cavity expansion analysis, the non-associated
flow model produces a softer response compared to the associated
flow case. As expected, at small displacements the results for small
strain and finite deformation are similar. The results deviate in the
higher displacement range (>60 mm); with the finite deformation
results producing stiffer responses. This progressive increase in
stiffness is a consequence of the change in the nodal positions as
the deformation proceeds. In this example, the pressure–displace-
ment response of the cut-off non-associated MR cone was similar
to that of the non-associated model without the cut-off.

Fig. 15 presents the displaced surface profiles for three of the
MR constitutive models (small strain AF, finite deformation NAF
MR CO and M–C AF denote results from the associated modified Reuleaux, modified
ed Mohr–Coulomb models, respectively.



Fig. 15. Rigid strip footing surface displacement. MR AF, MR NAF and MR CO denote results from the associated modified Reuleaux, non-associated modified Reuleaux, and
non-associated modified Reuleaux with cut-off, respectively.
and NAF with cut-off). Local heave is significantly reduced using a
non-associated flow rule for both the small strain and finite defor-
mation analysis. The effect of finite deformation is to reduce the
heave in the region immediately adjacent to the footing but in-
crease the heave further away from the footing. The cut-off model
increased the local heave, compared to the non-associated model
without the cut-off, due to the additional dilative plastic strains
generated when the stresses return onto the cut-off surface.

The convergence of the finite deformation footing problem is
demonstrated in Fig. 16 for loadsteps 16, 32, 50, 83 and 98 for
the modified Reuleaux model with a cut-off. The number of inte-
gration points which are deforming elasto-plastically on different
regions of the yield surface are given above each plot. While the
Fig. 16. Rigid strip footing convergence for the modified Reuleaux cut-off finite deform
balance force against the previous out-of-balance force. The values above the plots deno
yield surface.
number of integration points with stress states located on the
cut-off increases with the displacement, the majority of the stress
states fall on the non-planar surface of the main MR cone. The five
plots demonstrate the convergence properties using the spatial
consistent tangent. Although for some of the loadsteps the initial
convergence rate is sub-optimal, the algorithm rapidly converges
once the correct descent path has been found. Note that the tan-
gent used for the first Newton–Raphson iteration is provided by
the initial elastic stiffness.

Fig. 17 presents the incremental plastic strain contours for the
final loadstep for all six MR cases. The effect of accounting for
the change in geometry as the deformation proceeds is to increase
the depth of the plastic zone and increase the size of the elastic
ation analysis for loadsteps 16, 32, 50, 83 and 98 showing the norm of the out-of-
te the number of elasto-plastic integration points located at different regions of the



Fig. 17. Rigid strip footing: contours of plastic strain increment, j{Dep}j, for the modified Reuleaux constitutive model during the final loadstep (Du = �1 mm). (i) Small strain
AF, (ii) small strain NAF, (iii) small strain NAF with cut-off, (iv) finite deformation AF, (v) finite deformation NAF and (vi) finite deformation NAF with cut-off.

Fig. 18. Rigid strip footing: vectors of nodal displacement for the modified Reuleaux constitutive during the final loadstep Du = 1 mm (scale factor of 100). (i) Small strain AF;
(ii) finite deformation NAF with cut-off.
wedge immediately below the footing. All cases exhibit the charac-
teristic band of concentrated plastic straining between the displac-
ing wedge and the surrounding soil. Rigid body motion of the
region between the wedge and curved zone of intense plastic
straining is more apparent in the finite deformation NAF solution
than the small strain AF results. This is shown in Fig. 18 where
the incremental nodal displacement vectors for the final loadstep
are presented.
7. Conclusions

It is widely accepted that associated frictional plasticity models
overestimate the dilation seen in particulate media. This paper
extends the concept of energy-mapped stress space to non-associ-
ated flow elasto-plasticity. Operating in this stress space allows the
construction of an analytical backward Euler stress return to a
volumetrically non-associated frictional plasticity model that
incorporates dependence on both the Lode angle and the interme-
diate principal stress via a modified Reuleaux deviatoric section.
The model provides exact stress integration when moving along
the compression meridian, or remaining on the tensile apex.
Relatively small errors may be incurred when crossing the bound-
aries, or returning onto the non-planar yield surface (see Fig. 7).
The analytical return requires only a single step procedure, result-
ing in a robust algorithm for all stress return regions. This formu-
lation provides considerable speed gains over the conventional
iterative backward Euler method (see Fig. 9).



The non-associated flow frictional perfect plasticity model was
further extended by introducing an additional modified Reuleaux
cone providing a cut-off to the main yield surface. Stress returns
and consistent tangents for the seven possible regions (see Fig. 5)
have been fully defined. These constitutive models were incorpo-
rated within an logarithmic strain–Kirchhoff stress updated
Lagrangian finite deformation framework that preserves the stress
return format of infinitesimal constitutive models.

Numerical examples have demonstrated the ability of the mod-
ified Reuleaux constitutive model to span between the results for
Drucker–Prager and Mohr–Coulomb models (see Fig. 10). The lat-
ter are two of the most widely used perfect plasticity models
adopted in geomechanics. Unlike these M–C and D–P models, the
MR formulation allows control of the shape of the deviatoric sec-
tion independent of the friction (opening) angle of the yield sur-
face. This feature offers a better fit to known experimental data
than that provided by the M–C or D–P formulations.

The asymptotic quadratic convergence of the global Newton–
Raphson procedure, in finite-element cylindrical cavity expansion
simulations and a plane strain strip footing analysis demonstrated
the value in constructing the consistent tangent for the new model.
Run-time comparisons illustrated the computational advantage of
the model over the more costly Willam–Warnke cone. The effi-
ciency and increased realism of this NAF MR formulation demon-
strates that it provides a valuable extension to the family of
classical perfect plasticity models.
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