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Reuleaux plasticity: Analytical backward Euler stress integration and
consistent tangent

William M. Coombs, Roger S. Crouch ⁎, Charles E. Augarde
School of Engineering and Computing Sciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
a b s t r a c t
Analytical backward Euler stress integration is presented for a deviatoric yielding criterion based on a 
modified Reuleaux triangle. The criterion is applied to a cone model which allows control over the shape of 
the deviatoric section, independent of the internal friction angle on the compression meridian. The return 
strategy and consistent tangent are fully defined for all three regions of principal stress space in which elastic 
trial states may lie. Errors associated with the integration scheme are reported. These are shown to be less 
than 3% for the case examined. Run time analysis reveals a 2.5–5.0 times speed-up (at a material point) over 
the iterative Newton–Raphson backward Euler stress return scheme. Two finite-element analyses are 
presented demonstrating the speed benefits of adopting this new formulation in larger boundary value 
problems. The simple modified Reuleaux surface provides an advance over Mohr–Coulomb and Drucker–
Prager yield envelopes in that it incorporates dependencies on both the Lode angle and intermediate 

principal stress, without incurring the run time penalties of more sophisticated models. 
1. Introduction

While a vast body of constitutive models has been generated over
the last decades, very few of the advanced formulations have gained
widespread use. This has been largely a consequence of their
computational burden. Developing algorithmically efficient and fully
robust constitutive models for engineering materials has therefore
become just as important asproviding realism, in order to allowdetailed
three dimensional non-linear deformation analyses to be undertaken.

In this paper we offer a simple cone-type (frictional) elasto-plastic
formulation, which allows an analytical backward Euler (BE) stress
integration on the curved surface and exact integration in the regions
where singularities appear. The BE scheme gives a fully implicit
approximation. The popularity of this approach over explicit schemes
(for example [15]) is due to its high level of accuracy for a given
numerical effort, particularly when large strain increments are applied
[13]. The associated perfect plasticity model presented here may be
thought of as a simple hybrid sitting between theDrucker–Prager (D–P)
andMohr–Coulomb (M–C) formulations. TheD–P yield surface exhibits
no Lode angle dependency, θ. The M–C surface has no sensitivity to the
intermediate principal stress, σ2. Yet multiaxial experiments show that
both factors influence yielding and peak stress. Their inclusion in
constitutive models appears necessary in order to capture the
deformation of geotechnical structures [2]. The attraction of the
proposed model is the improved fit to deviatoric yielding (the
formulation has a sensitivity to θ and σ2) and a one-step integration
scheme. The consequences of neglecting Lode angle and σ2 dependen-
cies are discussed further in Section 2.

The layout of thepaper is as follows. In Section2 theparticular formof
the deviatoric section is introduced. Section 3 describes the stress return
strategies for the three regions where the elastic trial stress may lie. The
approach, when returning to the compression meridian or tensile apex,
follows Clausen et al.'s method [4]. When returning elsewhere, finding
the closest point to the surface in energy-mapped space [5] requires the
solution of a quartic. Section 3 also gives the consistent tangent ex-
pressions for each region and quantifies the errors associated with the
analytical stress return. Section 4 presents a run time comparison be-
tween the standard iterative BE stress return and the proposed analytical
single-step return. Two finite-element simulations are presented in
Section 5. The analysis of a single 3D finite-element toy problem
illustrates the asymptotic quadratic convergence of the global Newton–
Raphson (N–R) solution scheme. A larger, rigid footing plane-strain
finite-element, analysis compares solutions obtained from the proposed
model with those obtained from D–P, M–C andWillam–Warnke (W–W
[16]) cones. A number of other forms of Lode angle dependencies on the
yield surface have been proposed in the literature [1,3,10,17]. These can
improve on the relatively poor fit of the D–P and M–C idealisations, yet
noneoffer the advantageof a closed formBE integration solutionwhich is
available for the formulation proposed here.

In all that follows {⋅} and [⋅] denote vectors and matrices
respectively, (⋅)̂ and (⋅)̅ identify terms associated with principal and
shear components of generalised stiffness matrices and {⋅}T denotes a
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Fig. 1. Modified Reuleaux triangle definition.
vector transpose. We adopt a tension positive convention and assume
the following ordering of the principal stresses σ1 ≤ σ2 ≤ σ3.

2. Modified Reuleaux

For the plasticity models under consideration, the yield surfaces
may be defined using Haigh–Westergaard cylindrical coordinates ξ, ρ
and θ. The normalised deviatoric radius, ρ ̅=ρ/ρc, is employed; where
ρc is the radius on the compression meridian (θ=π/6) and ρ is a
function of the Lode angle θ∈ [−π/6,π/6]

θ =
1
3
arcsin

−3
ffiffiffi
3

p

2
J3

J3 = 2
2

!
: ð1Þ
Fig. 2. Modified Reuleaux deviatoric function compared with other functions and experime
principal stress dependency.
Here J2=(tr[s]2)/2, J3=(tr[s]3)/3, ½s� = ½σ�−ξ½1�=
ffiffiffi
3

p
, ξ = tr½σ�=

ffiffiffi
3

p

and [1] denotes the third-order identity matrix.
From geometric considerations (see Fig. 1) the modified Reuleaux

(MR) Lode angle dependency may be obtained as

ρðθÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + r2−2a r cosðϕÞ

q
; ð2Þ

where

r̄ =
ρ̄2e− ρ̄e + 1
2ρ̄e−1

; a = r− ρ̄e and ρ̄e =
ρe
ρc

: ð3Þ

ρe̅∈ [0.5,1] gives the relative size of the radius under triaxial extension
(σ1=σ2bσ3) with respect to that under triaxial compression
(σ1bσ2=σ3). The arc angle, ϕ, is defined as

ϕ =
π
6

+ θ− arcsin
ā sinð5π=6−θÞ

r̄

� �
:

ð4Þ

If the arc centres coincide with the singularities on the
compression meridians (that is, if r ̅=1+ ρ̄e so that a ̅=1) then
the shape of the deviatoric section is a Reuleaux triangle. Although
this shape was used in cam-actuated steam engine regulators in the
1830s, the first written discussion of the geometry appears to have
been provided by Franz Reuleaux in 1876, when considering a
family of curved shapes of constant breadth (that is, rolling poly-
gons which maintain a constant height) [9,11]. Allowing the loca-
tion of the arc centres to vary along projections of the compression
meridians gives rise to the modified Reuleaux triangle. As ρe̅→0.5
both r ̅ and a ̅ tend to ∞ and the deviatoric section becomes an
equilateral triangle. If ρe̅=1 then ρ ̅=1 and we recover a circular
deviatoric section centred on the hydrostatic axis (as found in the
D–P model).

Fig. 2 compares the proposed deviatoric section with those
attributed to M–C, W–W and Bhowmik–Long (B–L, [3], with a
normalised deviatoric radius of ρ ̅s=0.73 on the shear meridian,
θ=0) for ρe̅=0.656. The multiaxial experimental data on Monterey
sand [8] shown in the figure indicate that this material has both a Lode
angle dependency (Fig. 2(A)) and a sensitivity to the intermediate
principal stress (Fig. 2(B)). Unlike the other models mentioned above,
a D–P surface provides no variation in ρ ̅ with respect to θ ( ρ ̅ would
ntal data from Lade and Duncan [8]: (A) Lode angle dependency and (B) intermediate



equal 1 in Fig. 2(A)). The effective friction angle in Fig. 2(B) is
calculated from the expression given by Griffiths

ψ = arcsin

ffiffiffi
3

p
η cosðθÞffiffiffi

2
p

+ η sinðθÞ

 !
; ð5Þ

where η=ρ/ξ [7]. In that Figure, the M–C envelope exhibits no
sensitivity to σ2. It is evident that the proposed MR deviatoric section
offers an improved fit over the D–P and M–C surfaces while
maintaining a relatively simple mathematical form. Although the
W–W and B–L envelopes provide more satisfactory fits to the
experimental data when the intermediate stress ratio 0.5bbb0.95
(where b=(σ2−σ3)/(σ1−σ3)), neither the W–W nor the B–L
model are able to offer analytical BE stress integration solutions for
arbitrary strain increments. Thus they can incur significant compu-
tational overheads (compared with D–P and M–C models) when
introduced into a large-scale elasto-plastic stress analysis. It is worth
adding that a number of geotechnical problems satisfy plane-strain
conditions, where b typically lies close to 0.3 [12]. The MR solution
provides a good fit to the multiaxial data in this region.

The MR cone can be defined as

f ðη; θÞ = α ρ̄−η = 0 ð6Þ
where α is the opening angle of the cone, α=−tan(ψMC). ψMC is the
M–C internal friction angle of thematerial under triaxial compression.
Thus Eq. (6) defines a cone with a MR deviatoric section and linear
meridians, pinned at the stress origin with the space diagonal
(σ1=σ2=σ3) as the cone's axis, see Fig. 3. The MR cone can be
seen as a hybrid surface, lying between the D–P and M–C envelopes,
allowing some control over the shape of the deviatoric section,
independent of the cone opening angle.

3. Stress return and consistent tangent

Consider the trial elastic stress {σt} (given by a trial elastic strain
{εte}) lying outside the yield surface (f N 0). For this state there are
three distinct stress return regions associated with the MR cone, as
shown in Fig. 3, namely:

A. Return to the stress origin (point),
B. return to the compression meridian (line),
C. return to the non-planar surface.

The Closest Point Projection (CPP) and consistent tangent are
considered for each region in Sections 2–4. Table 1 gives the pseudo-
code for the stress return algorithm.
Fig. 3. Modified Reuleaux cone stress return regions.
3.1. Energy-mapped stress space

Simo and Hughes [13] showed that the BE integration corresponds
to the minimisation of

fσrg−fσtgf gT ½C e� fσrg−fσtgf g; ð7Þ
with respect to the return stress {σr} (where [C e] is the elastic
compliance matrix), which represents a CPP. The minimisation is
subject to the following constraints

f ≤ 0; γ̇ ≥ 0; f γ̇ = 0: ð8Þ
(⋅)t and (⋅)r denote quantities associated with the trial state and the
return state respectively, where f is the yield function and γ̇ is the
plastic multiplier. The return stress is not generally the closest point
geometrically in standard stress space, but rather the stress that
minimises the energy square norm Eq. (7). In this paper we make use
of energy-mapped {ς} space [5], where

1
E
fςgT ςf g = fσgT ½Ce� σf g; ð9Þ

and E is the Young's modulus of the elastically isotropic material. This
allows us to find the geometric closest point (in {ς} space) through
use of the following transformation

fςg = ½T �fσg: ð10Þ

For isotropic linear elasticity, [T] is solely a function of Poisson's
ratio υ. Given the elastic compliance matrix

Ce� �
=

1
E

1 −v −υ 0 0 0
−υ 1 −υ 0 0 0
−υ −υ 1 0 0 0
0 0 0 2ð1 + υÞ 0 0
0 0 0 0 2ð1 + υÞ 0
0 0 0 0 0 2ð1 + υÞ

2
6666664

3
7777775
;

ð11Þ

[T ] becomes

T½ � =

t1 t2 t2 0 0 0
t2 t1 t2 0 0 0
t2 t2 t1 0 0 0
0 0 0 t3 0 0
0 0 0 0 t3 0
0 0 0 0 0 t3

2
6666664

3
7777775
;

ð12Þ

where

t1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2υ

p
+ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + υ

p

3
; t2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2υ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + υ

p

3
; t3 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 + υÞ:

p
ð13Þ

Thismapping leads to a squashing anda stretchingof theyield surface
in the hydrostatic and deviatoric directions respectively (see Fig. 4).

ςξ = ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2υ

p
;

ςρ = ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + υ

p
;

ςθ = θ; ð14Þ

where ς(⋅) denotes a quantity associated with energy-mapped space.
The energy-mapped opening angle of the cone, ςα, is

ςα =
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + υ

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2υ

p
:

: ð15Þ

Once the closest point solution in energy-mapped stress space has
been found, the solution can be transformed back to conventional
stress space. Note that we need only operate with principal stresses
(conventional and energy-mapped) in the solution process for an
isotropic model.



Fig. 4. Modified Reuleaux cone energy-mapped {ς} space transformation.
3.2. Stress origin return

If fab0 then the trial stress point {ςt} will be returned onto the apex
of the MR cone, with

fςcpg = fσcpg = f0g; ð16Þ

where (⋅)cp denotes quantities associated with the closest point. The
apex yield function is given by

fa =
ρ
ςα

þ ςη = 0: ð17Þ

3.2.1. Stress origin consistent tangent
As Clausen et al. [4] have shown, the elasto-plastic consistent

tangent for a hydrostatic apex return is simply given by

½Dalg � = ½0�: ð18Þ

3.3. Compression meridian return

The trial arc angle ϕt should be checked against ϕcr to determine if
the trial point returns onto the compression meridian, where

ϕcr = arcsin

ffiffiffi
3

p

2r

 !
:

: ð19Þ

If ϕt≥ϕcr then

θcp = π= 6; ςρcp=
ςαςξcp:

One obtains the solution for this case by considering a plane
normal to the compression meridian of the energy-mapped yield
surface. The closest point and trial point will lie in the same normal
plane. We make use of

fςngTffςcpg−fςtgg = 0 ð20Þ

where {ςn} is the normal to the plane; which in this case is the vector
defining the corner line of the energy-mapped yield surface. {ςn} is
given by

fςng = 1−
ffiffiffi
2

p
ςα 1þς α=

ffiffiffi
2

p
1þς α=

ffiffiffi
2

pn oT

;
ð21Þ
and any {ς} on this line is given by

ςf g =
ςξffiffiffi
3

p 1−
ffiffiffi
2

p
ςα 1þς α =

ffiffiffi
2

p
1þς α =

ffiffiffi
2

pn oT

:
: ð22Þ

Substituting Eqs. (21) and (22) into Eq. (20) we obtain an equation
which can be solved for ςξcp

ςξcp =
ςt2

+ ςt3

� �
1þς α=

ffiffiffi
2

p� �
+ ςt1

1−
ffiffiffi
2

p ςα
� �

ffiffiffi
3

p
1þςα2
	 


:

ð23Þ

Subsequently ςξcp and ςρcp can be transformed back into conven-
tional stress space to calculate the final return stress {σcp} using the
Haigh–Westergaard solution

σf g =
ξffiffiffi
3

p 1f g +

ffiffiffi
2
3

r
ρ sinðθ−2π= 3Þ sinðθÞ sinðθ + 2π= 3Þf gT; ð24Þ

where {1}={1 1 1}T. These stresses are then transformed back from
principal to generalised stress space through use of the eigenvectors
associated with the generalised trial stress state.

3.3.1. Compression meridian consistent tangent
The consistent tangent for a corner return is obtained following the

approach given by Clausen et al. [4]. By considering the vector
orientation of the edge

fng = 1−
ffiffiffi
2

p
α 1 + α =

ffiffiffi
2

p
1 + α=

ffiffiffi
2

pn oT

;
ð25Þ

we obtain the third-order elasto-plastic tangent matrix (in principal
form) as

D̂
ep

h i
=

fngfngT
fngT ½Ĉe�fng;

ð26Þ

where [Ĉ e] is the third-order (principal) elastic compliance matrix.
The generalised (sixth-order) elasto-plastic tangent matrix is then
given by

Dep� �
= ½D̂ep� ½0�

½0� E=2ð1 + υÞð Þ½1�

� �
:

ð27Þ



The consistent tangent follows as

½Dalg � = ½Q �½Dep�; ð28Þ

where [Q] is calculated from

½Q � = ½I� + Δγ½Ce�−1 ∂2f
∂σ2

cp

" # !−1

;

ð29Þ

where [I] is the sixth-order identity matrix [4]. In principal stress
space [Q] can be calculated as

½Q � = ½1� ½0�
½0� ½―Q �
� �

;

ð30Þ

where

½―Q � =

1 +
Δσ p

1 −Δσ p
2

σ1−σ2
0 0

0 1 +
Δσp

2−Δσp
3

σ2−σ3
0

0 0 1 +
Δσp

1−Δσp
3

σ1−σ3

2
6666666664

3
7777777775

−1

:

ð31Þ

{Δσ p}=Δγ[C e]−1{f,σ}={σt}−{σcp} is the plastic stress corrector
increment associated with the return path. Using the fact that σ2=σ3

for a return onto the corner, [Q ̅] can be simplified to

½―Q � =

σ1−σ2

σt1
−σt2

0 0

0 0 0

0 0
σ1−σ3

σt1
−σt3

2
666664

3
777775
;

ð32Þ
Fig. 5. Geometric solution in energy-mapped
where σti are the principal trial stresses. From Eqs. (28) and (32) the
consistent tangent, for the line return, can be written as

½Dalg � = ½D̂ep� ½0�
½0� E = 2ð1 + υÞð Þ½―Q �

� �
: ð33Þ

Once the consistent tangent has been formed in principal stress
space (Eq. (33)) it must be transformed back to generalised stress
space, see Clausen et al. for more details [4].

3.4. Non-planar surface return

If we consider an elastic trial stress {ςt}, outside the yield surface,
returning onto the non-singular portion of the surface, we can
define a length l as the distance between that trial point and a point
on the surface at the same φt in any deviatoric plane at a given ςξ
(see Fig. 5)

l2 = ðrt−rÞ2 + ðςξ−ςξtÞ2; ð34Þ

where r= r ̅ςαςξ. The deviatoric distance of the trial point from the
arc axis is given by

r2t = a2 þςρ2t −2aςρt cos
5π
6

−θt

� �
; ð35Þ

where a= a ̅ςαςξ. Substituting Eqs. (35) and (3) into Eq. (34), we
obtain

l =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bς
1ξ

2−2ςξ ςξt + B2 + �r ςαrtð Þ þ ςξ2t þ ςρ2t
q

; ð36Þ

where

B1 = a2
ς
α2 + �r 2ςα2 + 1; B2 = aςαςρt cos

5π
6

−θt

� �
: ð37Þ
{ς} space for the surface stress return.



Equating the partial derivative of Eq. (36) with respect to ςξ to zero,
we obtain the closest point on theMR cone to the trial point in {ς} space

ςξ4cp A1 þς ξ3cp A2 þς ξ2cp A3 þς ξcp A4 + A5 = 0; ð38Þ

where

A1 = �a2ςα2B2
1−4�a4�r 2ς

α6
;

A2 = 12�a2�r 2ςα4B2−2�a2ς
α2B1ðςξt + B2Þ−2B2

1B2;

A3 = �a2ςα2ðςξt + B2Þ2 + B2
1ρ

2
t + 4B1B2ðςξt + B2Þ−9�r 2ς

α2B2
2−4�a2�r 2ς

α4ςρ2
t ;

A4 = 6�r 2ςα2ςρ2t B2−2B1ðςξt + B2Þςρ2t −2B2ðςξt + B2Þ2;
A5=

ςρ2
t ðςξt + B2Þ2−ςρ4

t
�r 2ςα2

:

ð39Þ

This quartic can be solved for ςξcp, see Simo and Hughes page 138
[13], amongst others, for more details. Once ςξcp is known, then the
other quantities identifying the position of the closest point on theMR
surface can be calculated (Fig. 6). ϕcp is given by the sine rule

ϕcp = arcsin
ςρt sinð5π=6−θtÞ

rt

!
;

ð40Þ

where rt is calculated at the solution ςξcp using Eq. (35). ςρcp is given
by Eq. (2) and θcp is determined from the cosine rule

θcp =
5π
6

− arccos
a2cp þς ρ2cp−r2cp

2aςcpρcp

!
;

ð41Þ

where rcp and acp are values associated with ςξcp.

3.4.1. Non-planar consistent tangent
The consistent tangent for the surface return is calculated by

minimising

fεeg−fεet g + Δγff ;σ g
f

( )
= f0g

0

 �
;

ð42Þ
Fig. 6. Modified Reuleaux closest point in a deviatoric plane.
with respect to {εte}, thereby obtaining

½Ce� + Δγ½f ;σσ � ff ;σ g
ff ;σ gT 0

� � fdσg
dΔγ

 �
=

fdεet g
0

( )
:

ð43Þ

Rearranging we have

fdσg
dΔγ

 �
= ½Dalg� fD12g

fD21g D22

� � fdεet g
0

( )
;

ð44Þ

where (⋅),σ and (⋅),σσ, in Eqs. (42) and (43), denote the first and
second partial derivatives of (⋅) with respect to {σ}. Recalling Eq. (6),
the first derivative of f with respect to {σ} is given by

ff ;σ g = αf�ρ;σ g−fη;σ g; ð45Þ

where

η;σf g =
fρ;σ gξ−ρfξ;σ g

ξ2
: ð46Þ

Operating only with the derivatives with respect to the principal
stresses, we obtain

fρ;σ g = fsg= ρ; fξ;σ g = f1g =
ffiffiffi
3

p
: ð47Þ

The derivative of ρ ̅ with respect to {σ} is given by

�ρ;σf g = �ρ;�ρ�ρ �ρ 2
;ϕ ϕ;θ fθ;σ g; ð48Þ

where

�ρ;�ρ�ρ =
1
2�ρ;

�ρ 2
;ϕ = 2�a�r sinϕ; ϕ;θ = 1 +

�a cosð5π=6−θÞ
r̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− �a sinð5π=6−θÞ= r̄ð Þ2

q
;

ð49Þ

θ;σf g =
−

ffiffiffi
3

p

2 cos3θ
J−3=2
2 J3;σf g−3

2
J3 J

−5=2
2 sf g

� �
|{z}

fβg;

ð50Þ

and

J3;σf g = s2s3 s1s3 s1s2f gT +
J2
3
f1g: ð51Þ

When the return is to the extension meridian (θ=−π/6), (50) is
indeterminate. Here l'Hôpital's rule is used to construct the derivative

�ρ;σf g =
ρ

2
ffiffiffi
6

p ½β;σ � 1 −1 0f gT; ð52Þ

where the derivative of {β} (see Eq. (50)) with respect to {σ} is given
by Eq. (61). The second derivative of f with respect to {σ} is given by

½f ;σσ � = α½�ρ;σσ �−½η;σσ �; ð53Þ

where

½η;σσ � = ½ρ;σσ �
ξ

− fρ;σ gfξ;σ gT
ξ2

− fξ;σ gfρ;σ gT
ξ2

+
ρfξ;σ gfξ2;σ gT

ξ4
ð54Þ



and

ξ2;σ
n o

=
2ξffiffiffi
3

p 1f g; ρ;σσ½ � = ρ½J2;σσ �−fρ;σ gfsgT
ρ2 ;

½J2;σσ � = 1
3
ð3½I�− 1f gf1gT Þ:ð55Þ

The second derivative of ρ ̅ with respect to {σ} is given by

½�ρ;σσ � = f�ρ;σ�ρgf�ρ;σ gT + f�ρ;σϕ gfϕ;σ gT + �ρ;σϕ;σ ½ϕ;σσ �; ð56Þ

where

�ρ;σ�ρ
n o

= −ar sinϕ
�ρ2 ϕ;σf g; �ρ;σϕ

n o
=

ar cosϕ
�ρ ϕ;σf g;

�ρ;σϕ;σ =
ar sinϕ

ρ̄ :

ð57Þ

The second derivative of ϕ with respect to {σ} is given by

½ϕ;σσ � = fϕ;σθ gfθ;σ gT + ϕ;θ ½θ;σσ �; ð58Þ

where

ϕ;σθf g =
ā
r̄

S r2 1−ðS a=rÞ2
� �2−a2SC2

r2ð1−ðS a=rÞ2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðS a=rp Þ2

0
B@

1
CA θ;σf g; ð59Þ

C=cos(5π/6−θ) and S=sin(5π/6−θ). The second derivative of the
Lode angle, θ, with respect to {σ} is given by

½θ;σσ � = 3tanð3θÞ θ;σf gfθ;σ gT−
ffiffiffi
3

p

2cosð3θÞ ½β;σ �; ð60Þ

where the derivative of {β} with respect to {σ} is given by

½β;σ � = −3
2
J−5 = 2
2 fsgfJ3;σ gT + fJ3;σ gfsgT + J3½J2;σσ �

� �
+ J−3 = 2

2 ½J3;σσ � + 15
4

J3J
−7 = 2
2 sf gfsgT;

ð61Þ

and

½J3;σσ � = 2
3

s1 s3 s2
s3 s2 s1
s2 s1 s3

2
4

3
5
:

ð62Þ
Fig. 7. (A) Errors associated with the single-step analytical backward Eu
We now have the all derivatives required for Eq. (44). These have
been determined in principal stress form. The full sixth-order
consistent tangent is given by

½Dalg � = D̂
alg

� �
½0�

½0� ðE=2ð1 + υÞÞ½Q �

2
4

3
5
;

ð63Þ

where [D̂alg] is the consistent tangent in principal form, from Eq. (44),
and [Q̅] is given by [4]

½Q � =

σ1−σ2

σt1
−σt2

0 0

0
σ2−σ3

σt2
−σt3

0

0 0
σ1−σ3

σt1
−σt3

2
666666664

3
777777775
:

ð64Þ

3.5. Stress return error analysis

The accuracy of the stress return algorithmwas assessed for 1≤ρt/
(αρ(̅θt)ξt)≤6 and−π/6≤θt≤π/6. A Young's modulus of 100 MPa and
a Poisson's ratio of 0.2 were used for the material's elastic properties.
α=−0.25 and ρe̅=0.80 define the MR cone. A hydrostatic pressure
of ξt=−1 MPa was used for all of the elastic trial stresses. In this
analysis, the starting stress state was positioned on the yield surface at
the shearmeridian (θ=0). The constitutivemodel was then subjected
to an elastic strain increment corresponding to the elastic trial stress
state, see Fig. 7(B). The return stress from this single strain increment
was compared with the solution obtained by splitting the strain
increment into 10,000 sub-increments.

The following error measure was used to assess the accuracy of the
stress return algorithm

e =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ffσcpg−fσeggTffσcpg−fσegg

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fσegTfσeg

q
;

ð65Þ

where {σe} is the “exact” stress return corresponding to the sub-
incremented solution and {σcp} is the one-step analytical return. A
ler stress return. (B) Geometric interpretation of the error analysis.



Fig. 8. (A) Run time comparison between conventional iterative backward Euler and the single-step analytical backward Euler stress return. (B) Geometric interpretation of the run
time analysis.
stress iso-error map is given in Fig. 7(A). This analysis revealed a
maximum error of 2.56%, corresponding to a trial stress on the
extension meridian (θ=−π/6) at ρt/(αρξ̅t)=4.1. Zero error appears
along the locus θt=0, ρt/(αρξ̅t)=1 to θt→−0.2160, ρt/(αρξ̅t)→∞.
Much of the trial area has an error of less than 0.5%. Larger errors are
associated with trial stresses near the extension meridian and in the
vicinity of the compression meridian return region. These are due to
the increased tangential component of the trial stress increment. The
non-smooth (stepped) region close to θt=π/12 is a consequence of
the finite grid size either side of the return region B–C boundary.

4. Run time analysis

The run time of the single-step analytical BE return is compared
with a conventional iterative BE stress return in Fig. 8. The analysis
considered trial stresses between 1≤ρt/(αρξ̅t)≤6 and −π/6≤θt≤π/
6. A Young's modulus of 100 MPa and a Poisson's ratio of 0.2 were
again used for the material's elastic properties. Similarly, α=−0.25
and ρ̅e=0.8 define the MR cone and a hydrostatic pressure of ξt=
−1 MPa was used for all of the elastic trial stresses. The constitutive
model was then subjected to a strain increment corresponding to the
Fig. 9. (A) Force–displacement. (B) Convergence res
elastic trial stress state, see Fig. 8(B). When returning to the corner or
the apex, both the approaches (analytical and numerical BE) use the
same single-step return discussed in the preceding sections. However,
when returning onto the non-planar surface, the conventional
(numerical) BE method requires multiple local iterations to obtain
convergence. The number of iterations and the ratio of the numerical
to analytical BE run times are presented in Fig. 8(A). The analytical
return demonstrates a 2.5–5.0 times speed-up over the iterative
numerical method. The increase in time required for the iterative
approach is due, in part, to repeatedly calculating the first and second
derivatives of the yield function with respect to stress.

5. Finite-element performance

5.1. Single element test

A simple small-strain finite-element analysis was first undertaken
to assess the constitutive model's performance within a general
purpose 3D code. A single unit-cube 8-noded hexahedral element
constrained on its lower horizontal, and two vertical, faces (see Fig. 9
(A)) was loaded under hydrostatic compression to−1 MPa in a single
ults for the single 3D finite-element simulation.



Table 1
Pseudo code for the modified Reuleaux stress return algorithm. The tolerance (tol) in
steps (d) and (e) is typically set to 1×10−12.

1. Input: {εte}, υ, E, α and ρē
(a) Transform the trial elastic strain {εte} into principal strain form (that is, find the

eigenvalues and associated eigenvectors).
(b) Calculate the principal trial elastic stress {σt}=[Ĉ e]−1{εte}.
(c) Determine the value of the yield function f at the trial state (Eq. (6))
(d) If fb tol and ςξtb tol

• Elastic response, {σcp}={σt}
• [Dalg]=[Ce]−1

(e) Else
• Transform into energy-mapped space, ςξt, ςρt using Eq. (14) and form {ςt} using
the Haigh–Westergaard solution Eq. (24).

• Determine the value of the apex yield function fa Eq. (17).
• If fab tol and ςξtN tol

— Apex return, {σcp}={0} Eq. (16).
— [Dalg]=[0] Eq. (18).

• Else if ϕt≥ϕcr Eq. (19)
— Line return, θcp=π/6.
— Solve for ςξcp Eq. (23), ςρcp=ςαςξcp where ςα is given by Eq. (15).
— Transform the Haigh–Westergaard coordinates back to conventional stress

space.
— Calculate {σcp} from the Haigh–Westergaard solution Eq. (24) and [Dalg]

from Eq. (33).
• Else

— Surface return
— Solve the quartic Eq. (38) for ςξcp.
— Calculate θcp from Eq. (41) and ςρcp from Eq. (2).
— Transform the Haigh–Westergaard coordinates back to conventional stress

space.
— Calculate {σcp} from the Haigh–Westergaard solution Eq. (24) and [Dalg]

from Eq. (63).
(f) Transform the principal measures back to generalised space using the

eigenvectors from the trial elastic strain.
2. Output: {σcp},{εcpe } and [Dalg].

Table 3
Single 3D finite-element run time comparison.

M–C MRAn MRNum W–W

Σ(NRit) 36 33 33 32
max(NRit) 6 6 6 6
t/tM–C 1 1.046 1.387 1.305
(elastic) loadstep. Subsequently, a vertical point load of −0.12 MN
was applied to the element's unconstrained top corner, via 10 equal
loadsteps. A Young's modulus of 100 MPa and a Poisson's ratio of 0.2
were again used for the material's elastic properties. α=−0.25
and ρ e̅=0.85 were adopted to define the MR, M–C and W–W cones.
The load–displacement curves for the unconstrained corner in the
vertical direction are shown in Fig. 9(A). Fig. 9(B) illustrates the MR
global convergence properties of the N–R iterations for each of the 11
loadsteps. Loadsteps 1–6 resulted in an elastic material response,
whereas for loadsteps 7–11 the material behaviour was elasto-plastic.
The latter demonstrate the asymptotic quadratic convergence of the
N–R procedure. The following measure of (residual) out of balance
force

jffrgj =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fffextg−ffintggTfffextg−ffintgg

q
ð66Þ

was used to assess convergence, where {fext} and {fint} are the external
and internal forces, respectively. |{fr}| for loadsteps 7–11 are given in
Table 2. The tolerance in steps (d) and (e) of the algorithm in Table 1
was set to 1×10−12, which corresponds to a N–R absolute tolerance
of 1.2×10−7 N.
Table 2
Residual out of balance force |{fr}| values for the finite-element simulation. Normalised
residual out of balance force.

Iteration Loadstep

7 8 9 10 11

1 4.5576e+03 9.818e+03 9.7542e+03 1.0232e+04 1.0170e+04
2 1.2707e+03 1.3712e+03 1.4912e+03 3.7705e+03 4.9317e+03
3 2.6853e+01 1.3767e+01 3.0343e+01 1.0539e+02 5.4714e+02
4 6.4122e−03 2.7541e−03 1.3201e−02 1.7086e−01 4.2900e−01
5 7.7098e−10 5.0493e−10 2.8944e−09 4.6539e−07 9.8050e−07
6 – – – 21973e−10 3.0211e−10
The results obtained from the three constitutive models are
qualitatively similar, with the W–W and MR cones producing
marginally stiffer responses when compared against the M–C
simulation. A run time comparison for the single element test is
presented in Table 3, where∑(NRit) is the total number of global N–
R iterations, max (NRit) is the maximum number of iterations in any
loadstep and t/tM–C is the run time normalised with respect to the M–

C run time. The analytical BE MR approach (MRAn) was just 4.6%
slower than the (over-simplified) M–C scheme. The analytical BE MR
algorithm gave a 34.1% speed gain over the iterative BE MR approach
(MRNum). More significantly, the Willam–Warnke (W–W) formula-
tion, which produced similar results to the MR cone, required a 25.9%
increase in the run time.
5.2. Rigid strip footing analysis

A plane-strain incremental finite-element analysis of a 1 m wide
rigid strip footing bearing onto a weightless soil was performed to
assess the MR model's performance within a larger finite-element
problem. Due to symmetry, only one half of the problem was
considered. The same finite-element discretisation as presented in
[6] was used, to allow comparisons to be made. The mesh had a depth
and width of 5 m (Fig. 10). 135 eight-noded quadrilaterals, with
reduced four-point quadrature, modelled the problem. The footing
was assumed to be rigid and smooth with an imposed vertical
displacement, u. Identical material properties as used in [6] were
adopted here. These were: a Young's modulus of 10 GPa, Poisson's
ratio of 0.48, cohesion, c, of 490 kPa, friction angle of 20° and ρ ̅e=0.8
Fig. 10. Rigid strip footing plane-strain finite-element discretisation.



Table 4
Rigid strip footing plane-strain finite-element run time comparison.

M–C MRAn W–W

Σ(NRit) 6741 6075 6378
max(NRit) 12 10 11
nGp 473 470 470
t/tM–C 1 0.921 1.239

tNRM−C
it

tM−CNRit
1 1.022 1.309
(to coincide with ρ e̅ for M–C). The material constants were common
for the M–C, W–W and MR analyses.

Fig. 11 presents the normalised pressure–displacement results for
the three constitutive models. The M–C simulation gave a close
agreement with the results presented by de Souza Neto et al. [6]. The
normalised peak pressure approached the theoretical Prandtl solution
(p/c=14.8) to within 1.1%. Results for the MR cone using ρ e̅=0.51
and ρ e̅=0.99 demonstrate the model's ability to provide solutions
spanning between those provided by the M–C and D–P cones. With
ρ̅e=0.8 the MR cone produced a stiffer response when compared
against the M–C solution. The limit load tended to p/c=19.36. Results
obtained from the W–W cone were quite similar; approaching a limit
of p/c=20.69.

Table 4 gives run time comparisons for the three constitutive
models at a vertical displacement of 2 mm. nGp is the number of Gauss
points which underwent plastic deformation by the end of the
analysis. t/NRit gives the run time per global N–R iteration, whereas
the ratio (tNRit)/(tM–CNRit

M–C) gives this time normalised with respect
to the M–C iteration time. The W–W model required a 28.7% longer
run time than the MR solution. The computational savings would be
higher if a more efficient linear solver were used. Here the finite-
element algorithm was coded in MATLAB m-script; using the
backslash operator to solve the linear system. While the benefits of
the MR formulation are already evident, a tuned pre-conditioned
element-by-element Krylov solver [14], for example, would probably
have reduced the CPU time associated with the linear solve, relative to
the time spend on elasto-plastic stress integration. If this were the
case, then the overall run time advantage of the MR model would be
even greater.

6. Conclusion

The Drucker–Prager and Mohr–Coulomb models are amongst the
most widely used simple pressure-sensitive perfect plasticity for-
mulations in geomechanics. However, they fail to incorporate both the
Lode angle and intermediate principal stress dependency typically
seen in geomaterials. This omission has been shown by others to lead
to errors in finite-element simulations [2]. Many constitutive models
Fig. 11. Normalised pressure–displacement for the rigid
now include such dependencies, but the algebraic expressions
describing those formulations are relatively complex. This necessi-
tates iterative numerical schemes to integrate the stresses. This can
present a significant computational burden when undertaking
detailed 2D and 3D analyses.

This paper presents the complete formulation for an associated
perfect plasticity cone model which includes sensitivities to the Lode
angle and the intermediate principal stress. It is based on a conical
surface with modified Reuleaux deviatoric sections. The model allows
the stresses to be integrated exactly when the previous and elastic
trial stresses fall within the fan zones of the tensile apex or
compression meridian (zones A and B respectively in Fig. 3). Small
integration errors associated with the backward Euler schememay be
introduced when returning to the curved surface (Fig. 7). For all
regions, a single-step procedure is all that is required for the backward
Euler approach.

The paper has demonstrated that the model offers an attractive
alternative to the Drucker–Prager and Mohr–Coulomb models.
Through material point and 2D plus 3D finite-element simulations,
it has been shown that the computational advantages over a W–W
conemodel are significant (Tables 3 and 4). The paper provides all the
expressions for the consistent tangent appropriate for the three stress
return regions on the yield surface. The model is simple to code (see
Table 1) and will be of interest to those simulating the behaviour of
geomaterials and powders, where the response is governed by
frictional slip.
strip footing plane-strain finite-element analysis.
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