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Simulation of bubble expansion and collapse in the vicinity of a free ��

surface ��

 ��
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1City University London, Northampton Square, London EC1V 0HB, United Kingdom ��
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 ��
Abstract. The present paper focuses on the numerical simulation of the interaction of laser-generated 	�
bubbles with a free surface, including comparison of the results with instances from high-speed videos 
�
of the experiment. The Volume Of Fluid (VOF) method was employed for tracking liquid and gas ���
phases, while compressibility effects were introduced with appropriate equations of state for each ���
phase. Initial conditions of the bubble pressure were estimated through the traditional Rayleigh ���
Plesset equation. The simulated bubble expands in a non-spherically symmetric way, due to the ���
interference of the free surface, obtaining an oval shape at the maximum size. During collapse a jet ���
with mushroom cap is formed at the axis of symmetry, with the same direction as the gravity vector, ���
which splits the initial bubble to an agglomeration of toroidal structures. Overall, the simulation ���
results are in agreement with the experimental images, both quantitatively and qualitatively, while ���
pressure waves are predicted both during the expansion and the collapse of the bubble. Minor �	�
discrepancies in the jet velocity and collapse rate are found and are attributed to the thermodynamic �
�
closure of the gas inside the bubble.  ���
 ���
Keywords: Numerical simulation, compressible bubble dynamics, bubble interaction with free ���
surface, interface capturing, cavitation  ���
 ���

�� �������	����
���
 ���
The process of bubble growth and collapse is the core phenomenon in cavitating flows as it is ���

linked to cavitation erosion. Indeed, it is well documented that the formation of jets in cavitating �	�
flows can contribute to cavitation erosion, due to the focused way of transferring energy from the �
�
bubble to the nearby walls 1-3. Bubble growth and collapse in infinite liquid can be predicted using the ���
Rayleigh Plesset equation 4; this equation is a simplified form of the Navier Stokes equations under ���
the assumptions of spherical symmetry, incompressible liquid and negligible gas inertia inside the ���
bubble1. Over time, extensions of the original Rayleigh-Plesset version have been formulated, ���
including e.g. compressibility effects, see the Plesset and Zwick variant 4 or model the presence of ���
nearby bubbles, see the Kubota et al. modification 5. Unfortunately, the spherical symmetry ���
assumption of the Rayleigh Plesset equation means that it cannot predict any jetting phenomena or ���
other types of asymmetries in the bubble development arising from the local flow field/boundary ���
configuration/forcing terms. �	�

In order to capture the asymmetric bubble interface due to the presence of the aforementioned �
�
conditions, it is necessary to solve the potential flow equations, commonly done using the Boundary ���
Element Method (BEM), or the 2D axis-symmetric/3D Euler/Navier-Stokes equations. BEM methods ���
are commonly used when high accuracy bubble dynamics is required or when simulating bubble ���
clusters see e.g. 6, 7, however large deformations and topological changes of the bubble interface are ���
somewhat problematic 8. On the other hand, the Euler or Navier-Stokes equations have to be solved ���
with an interface tracking or interface capturing technique to describe the bubble interface. Such ���

���������������������������������������� �������������������
(a) Corresponding author, email: foivos.koukouvinis.1@city.ac.uk 



works employ various techniques, from the Marker-and-Cell method of the pioneering work by ���
Plesset and Chapman 9, front tracking techniques by Hawker et al. 10, to Level-Set methodologies by ���
Lauer et al. 11  �	�

In this work, the complicated interaction of a laser-generated bubble with the free surface of �
�
initially stagnant water under earth gravity conditions is examined with CFD techniques. While ���
similar configurations have been simulated in the past with BEM (see for example, the work of ���
Robinson et al. 12), the flow has not been investigated beyond the topological transformation of the ���
initial bubble to a torus. In the present work, the bubble interface is captured with the Volume Of ���
Fluid (VOF) method, capable of describing topological changes of the interface. Compressibility ���
effects in both gas and liquid phases are included, since they are essential to explain the formation of ���
secondary bubbly structures.  The aim of this work is to try to replicate the experiments that have been ���
conducted so far at EPFL 13 with CFD, show the level of agreement and potential room of ���
improvement in the models. To be more precise the main features that this work aims to replicate are �	�
the following:  �
�

- Macroscopic flow evolution (qualitative): the initially spherical bubble deforms due to the ���
presence of the free surface, obtaining an oval shape, then collapses. During the collapse a jet is ���
formed at the top of the bubble, with a direction towards the bottom of the container, piercing the ���
bubble and breaking into two toruses. The whole process is shown in Figure 1; it is, in general, axis-���
symmetric, with the axis of symmetry being the vertical axis passing through the centre of the bubble. ���
Only at the very last stages of the bubble rebound significant asymmetry develops, due to turbulence ���
and accumulation of various disturbances (shown later, at Figure 10).  ���

 ���
Figure 1. Evolution of the bubble shape near the free surface. The free surface position is visible through the reflection. �	�

Gravity acts towards the bottom of the figures. The white bar at the bottom left corner corresponds to 1mm length.  �
�
 ���
-  The time evolution of the bubble size (quantitative). Since the bubble very quickly deforms in a ���

shape that is not a perfect sphere, two characteristic dimensions of the bubbly structures will be used ���
for the comparisons to follow: (a) the maximum distance from the axis of symmetry of the bubble in ���
the horizontal direction, which will be referred to as radius (b) the bubble extent at the vertical ���
direction, which will be referred to as height. Also, once the bubble breaks into two toruses the one at ���
the upper part, near the free surface, will be referred to as torus 1 and the other, which is closer to the ���
bottom of the container, will be referred to as torus 2 - see also Figure 2. ���



 �	�

 �
�
Figure 2. Bubble size naming convention that will be used hereafter and torus identification. 	��

 	��
- Other geometric features of the bubble evolution (quantitative), that can be directly compared to 	��

the simulation, such as the jet diameter, maximum bubble radius etc.  	��
The high-speed movies extracted from the experiment 13 have a resolution of 400x250pixels, with a 	��
scale of 17pixels corresponding to 1mm, so bubble dimensions can be derived. 	��
 	��

��� ��
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�����

	��
 		�

A bubble collapsing near a free surface has experimentally been studied by Supponen et al. 13, 14 	
�
through high-speed imaging. In the experiment (details of the setup in 14), a spherical cavitation 
��
bubble is created in water contained in a cubic (18×18×18 cm³) test chamber using a green, high-
��
power laser pulse (wavelength 532 nm, duration 8 ns). The bubble is generated at distance of s=2.95 
��
mm below the free surface. The bubble dynamics are visualised with a high-speed camera with speeds 
��
up to 50 000 frames per second. The experiment is conducted at room temperature and at low pressure 
��
(10.1 kPa=0.1 atm). 
��
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 ����
The computational domain simulated is based on the dimensions of the test chamber that has been ����

used for parabolic flights in the past (see previous section, or 15). We have chosen to proceed with 2D ����
axis-symmetric simulations for two reasons: (a) as will be shown later, the main process of the bubble ����
growth and collapse are characterised by axial symmetry and only at the last stages of the experiment, ����
after the rebound of bubbly structures, significant asymmetry develops (b) pursuing a full 3D ����
simulation would be very computationally expensive. A 2D rectangular domain of 89.1 x 190.2mm ����
was used, which corresponds to a cylinder of 178.2mm diameter. The influence of the boundaries is ����
expected to be weak, since the maximum bubble radius examined is ~5.2mm.  ��	�

The computational domain is positioned in such a way that the point (0, 0) corresponds to the axis ��
�
of symmetry at the initial free surface level (see Figure 3). No-slip wall boundary conditions are ����
placed at the side and the bottom of the container and fixed pressure at the open top of the container. ����
In the experiments the container is connected to a vacuum pump that achieves the desired pressure ����
level. ����



 ����
Figure 3. Configuration used for the simulation. Left: the 2D computational domain used. Right: the mapped computational ����

mesh with refinement in the area of interest.  ����
 ����

The 2D rectangular domain was meshed with a mapped-type structured mesh 16, with local ��	�
refinement in the area of interest, which spans in the x-direction from 0 to 12mm and in y-direction ��
�
from -12 to 12mm. The aim of this refinement region is to capture with adequate resolution the bubble ����
growth and collapse, without needing an excessive amount of computational elements in the whole ����
container. The computational domain consists of 180000cells and in the area of interest the cell size is ����
50� m.  ����

The container is initially filled with 84.5mm of water, as in the experiment. The ambient pressure ����
the experiment was conducted is pamb~10320Pa. This pressure is imposed at the fixed pressure ����
boundary and is initially set at the air region of the computational domain. The hydrostatic component ����
of the air column is omitted since it is insignificant (at an estimated air density of 0.12kg/m3, the ����
hydrostatic pressure of the air column is ~0.12Pa). On the other hand, the water part is initialized with ��	�
the hydrostatic pressure, since its contribution is not insignificant. Indeed, the hydrostatic pressure ��
�
difference from free surface to the bottom of the container is ~800Pa, or ~7% of the ambient pressure ����
level. Earth gravity (g=9.81m/s2) is applied as an external forcing term at the -y direction.  ����

 ����

 ����
Figure 4. Initial phases and pressure distribution inside the container.  ����



 ����
The laser-generated bubble is introduced as a high pressure gas bubble, as in the relevant work of ����

Ando et al.17, located at the same location as in the experiments, i.e. at a distance s=2.95mm below the ����
free surface. This is done by patching an amount of gas in a circular shape with centre coordinates (0, ��	�
-2.95mm), initial radius R0 and initial pressure p0, see Figure 5. Initial radius R0 should be as close as ��
�
possible to the initial bubble radius of the experiment. However this poses several challenges, since ����
the initial bubble is ~100 times smaller than the maximum bubble size 15, thus a very high grid ����
resolution would be required to capture it. Additionally, the state of fluid inside this bubble probably ����
departs from traditional fluid states, such as gas or liquid, due to the extreme initial conditions of the ����
bubble. On the other hand, if one desires to patch a larger bubble, then it would be necessary to ����
introduce the relevant velocity field generated by the bubble expansion. While this could be done in a ����
perfectly spherical bubble in a spherically symmetric environment, it is not possible such a shortcut to ����
be applied here, since there is a strong deviation from spherical symmetry due to the pressure gradient ����
and the free surface. It becomes apparent that a compromise has to be made. A smaller bubble would ��	�
be closer to reality, but it would require extreme resolution to capture, not to mention the questionable ��
�
nature of the fluid inside it. On the other hand, a larger bubble would be easier to simulate but it will ����
be difficult/impossible to initialize properly the consistent velocity field around it. For the given ����
configuration it was found that an initial bubble size of 0.1mm was enough to describe properly the ����
bubble growth, giving results in accordance to the experiment.   ����

 ����

 ����
Figure 5. Initial conditions for the bubble interaction with the free surface. The frame at the bottom right is a zoomed in view ����

at the initial bubble location. ����

 ��	�
The choice of the initial pressure and radius is also not trivial, since there is no simple ��
�

methodology correlating the temporal evolution of the actual bubble size, given the initial pressure, ����
due to the asymmetric expansion of the bubble. Still, a quick estimation can be made through the ����
Rayleigh-Plesset equation in the sense that initial pressures that predict a spherical bubble radius less ����
than the maximum found from the experiments can be safely discarded. The standard Rayleigh-����
Plesset equation 1 was used, in the form:  ����
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where: ����
- �  is the water liquid density, 998.2kg/m3 ����



- R is the bubble radius, 
dt

dRR =�  and 2

2

dt
RdR =��  ��	�

- pv is the vapour pressure. ��
�

- ¥p is the pressure at the bubble level, including the hydrostatic pressure, i.e. gspp amb r+=¥
, thus����

¥p =10350Pa.  ����

- pg0 is the initial bubble pressure, tuned to predict a similar maximum bubble radius as the ����
experiment. ����
- �  is surface tension, equal to 0.072N/m. It has to be highlighted that surface tension, even if ����
included, has a nearly unnoticeable effect. Collapse time is affected less than 0.3% and maximum ����
radius less than 0.15% with the inclusion of surface tension.  ����
- �  is the dynamic viscosity of water, i.e. 1.01.10-3Pa.s ����
- n is a polytropic exponent, depending on the thermodynamic process inside the bubble, e.g. for ��	�
adiabatic it is equal to the heat capacity ratio and for isothermal it is unity. In this study a value close ��
�
to unity has been used, since it matches better the experimental data.    �	��

In the present investigation, the vapour pressure is ignored. Whereas the vapour pressure is �	��
definitely not insignificant, the fast expansion and collapse of the bubble poses some questions on �	��
whether the mass transfer through the bubble interface is fast enough so that the vapour pressure �	��
inside the bubble is always equal to saturation pressure.  �	��

Assuming an initial pressure pg0 of 1000bar for an initial bubble R0=0.1mm, one obtains the �	��
following evolution of bubble size: �	��

 �	��
Figure 6. Time evolution of the experimental bubble size and comparison with the Rayleigh-Plesset solution for R0=0.1mm �		�

and pg0=1000bar. �	
�

The deviation between the bubble development in the experiment and the solution of the Rayleigh-�
��
Plesset equation should be expected, given the assumptions of spherical symmetry and infinite space �
��
of the latter. In any case, considering the results in Figure 6, it becomes apparent that one needs at �
��
least an initial pressure level of 1000bar in a bubble for an initial radius of 0.1mm, in order to be able �
��
to reach a maximum radius of ~5mm. This greatly limits the number of trial-and-error runs that have �
��
to be conducted to find the appropriate pressure level that gives the same maximum radius as in the �
��
experiment.  �
��
 �
��
$� ����� ��!
����!

�
	�

 �

�
The numerical model that was used for the CFD simulations is based on the Volume Of Fluid ����

(VOF) method, since it is of interest to maintain a sharp interface between the two involved phases, ����



with topological changes of the interface. As mentioned, only water and gas are considered, whereas ����
vapour presence and mass transfer is ignored. The justification of this assumption is the fast process ����
of bubble growth and collapse that means there is little time available for effective mass transfer.  ����

Continuity and momentum equations are solved, while thermal effects are ignored. The equations ����
solved, based on the viscous form of the Navier-Stokes equations, (for more information, the ����
interested reader is addressed to standard CFD textbooks, such as 18-21), are as follows: ����

- Continuity equation: ��	�

 ( ) 0=×Ñ+
¶
¶

ur
r
t

 (2) ��
�

where u denotes the velocity vector of the flow field. ����
 - Momentum equation: ����
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 (3) ����

where �  is the density of the fluid, p is the pressure, g is the gravity vector, f are body forces and �  is ����
the stress tensor, defined as follows:  ����

 ( )[ ] ( )Iuuu� ×Ñ+Ñ+Ñ= lm T
 (4) ����

In eq. 4, I  is the identity matrix and �  is the dynamic viscosity of the fluid; for the pure phases it is ����
set to 1mPa.s and 17.1� Pa.s for water and air accordingly. Term �  denotes the bulk viscosity of the ����
fluid which acts only on passing waves; here it was set to -2/3� , which is an assumption commonly ��	�
used, see 18, 19, 22. Even if this value is mainly suggested for monoatomic gases 23, the simulation ��
�
results did not change significantly when using a value of 2.5mPa.s for water, as suggested by the ����
work of Holmes et al. 24; to be precise, there was an indiscernible difference in the values of the ����
pressure field at the vicinity of the passing waves of ~0.14%. Since the effect of bulk viscosity is only ����
related to passing waves, it is unlikely to affect the general dynamics of the flow. Also, due to the ����
minor influence it was found to play, and due to the uncertainties in its values (for example Holmes et ����
al.24 measured the aforementioned value for sound waves of minimum frequency of 15MHz for water ����
at 25oC, but it is known that there is a frequency dependence of �  23), it was decided to resort to the ����
more standard and commonly used value of -2/3� , for which results will be presented hereafter. The ����
Reynolds number of the flow ranges around 10000 or less, for the majority of the simulation time, so ��	�
turbulence modelling has not been used.  ��
�

Surface tension effects are included, employing the Continuum Surface Force Model which ����
represents surface tension as a volume force in cells where there is an interface, i.e. volume fraction ����
varies from zero to unity, see Brackbill25. The value for surface tension coefficient used is ����
� =0.072N/m, as in the Rayleigh-Plesset equation in the previous section. In any case, surface tension ����
effects are considered minor, given an indicative Weber number of ~1400 for the jet inside the bubble. ����

- Volume fraction equation 26: ����

 ( ) 0=×Ñ+
¶

¶
uG

G a
t

a
r

r
 (5) ����

where a represents the volume fraction and � G the density of the gas phase. In the interface, where a ����
varies from zero to unity, volume fraction averaging is performed for determining the value of ��	�
viscosity and density.  ��
�

Whereas in the actual experiment there is significant influence of heating effects, due to laser ����
interaction with the liquid, the resulting fluid state is not possible to describe with traditional equation ����
of states, such as ideal gas or other, since plasma generation and reactions take place. For this reason ����
some simplifications had to be made and the energy equation has been omitted, since it is redundant ����
in the thermodynamic closure chosen. Even with the omission of thermal effects, both phases are ����
assumed compressible, obeying the following equations of state: ����



- for the liquid, the Tait equation of state:  ����

 0
0

2
00 1 p

n
c

p
ln

l

+
�
�

�

�

�
�

�

�
-��

�

�
��
�

�
=

r
rr

 (6) ����

where, � 0 is liquid density, equal to 998.2kg/m3, c0 the speed of sound, equal to 1450m/s, at the ��	�
reference state p0=3490Pa. The exponent nl  is set to 7.15, according to relevant literature on weakly ��
�
compressible liquids, such as water 27. Choice of the Tait equation of state is justified considering that ����
it matches closely the IAPWS liquid water data 28, comparing to simple linearized equations (as e.g. in ����
29), especially at extreme pressures, where the deviation in predicted densities may exceed 10%.   ����
- for the gas, a polytropic equation of state is used: ����

 nkp r=  (7) ����

Constant k is case dependent; here it is set assuming a gas density of ~0.12kg/m3 (calculated from ����
ideal gas for a temperature of 25oC) at the ambient pressure of 10320Pa. The exponent n is set close to ����
unity, as in the Rayleigh-Plesset equation. The reason for resorting to this equation of state is twofold; ����
first of all it is practically the same equation of state in the Rayleigh-Plesset equation. Secondly, it is a ��	�
simple equation that can describe the compression and expansion of the bubble with the omission of ��
�
thermal effects. For both equations of state, speed of sound c is defined as follows 30:  ����

 �
�
��

�
�= rd
dpc  (8) ����

Equations (2) and (3) are solved with a pressure-based algorithm, i.e. a pressure correction ����
equation is solved. Then the pressure correction is linked to a velocity correction and to a density ����
correction through the speed of sound (eq. 8, see also 18, 31), to satisfy mass balance of fluxes in each ����
cell. In order minimise the effect of numerical diffusion, which could affect the development of the ����
bubble during the whole process of growth and collapse, second order upwind schemes have been ����
used for the discretization of density and momentum, while the VOF phase field has been discretized ����
using a compressive differencing scheme 32 to maintain a sharp interface. Briefly stated here, the ��	�
particular scheme is based on high resolution differencing scheme and the Normalised Variable ��
�
Diagram to achieve boundedness; the interested reader is addressed to O. Ubbink PhD thesis 33, Ch. 4, ����
for more information. Time stepping is done with an adaptive method, to achieve a Courant-����
Friedrichs-Lewy (CFL) condition 26 for the free surface propagation of 0.2. This is necessary, to limit ����
as much as possible the interface diffusion and maintain solution accuracy at near the free surface 34. ����
The solver used is implicit pressure based and this removes any restrictions on the acoustic courant ����
number, which is ~10 (on average) considering the minimum cell size and the maximum wave ����
velocity.   ����

 ����

�%� �������
��	�
 ��
�
The first step in the solution process is to determine the initial pressure pg0 inside the bubble for the �	��

chosen radius R0=0.1mm. As mentioned before, the solution of the Rayleigh-Plesset equation helps in �	��
narrowing the possible pressure range, since a pressure level of at least 1000bar is required inside the �	��
bubble. Starting from an initial pressure of e.g. 1500bar, a maximum bubble radius is predicted by the �	��
Rayleigh Plesset equation. For the same conditions, the maximum bubble radius predicted by the �	��
simulations was smaller; this is expected due to the asymmetric bubble expansion. The ratio between �	��
the Navier Stokes and Rayleigh Plesset calculated radius was used to determine a correction factor. �	��
Applying this correction factor to the Rayleigh Plesset equation enabled the calculation of a more �	��
accurate prediction of the initial pressure that gives a maximum bubble radius of ~5.2mm. Potentially �		�
the aforementioned process should be repeated several times, until the desired maximum radius is �	
�



achieved. However, in practice, only one iteration was needed to determine the initial pressure that �
��
gives a maximum bubble radius of ~5.2mm, which is 2180bar.  �
��

In the following figures, selected instances of the developed flow field are shown. Each image is �
��
separated by the axis of symmetry (dashed-dotted line) in two parts. The left part shows the pressure �
��
field and the right part the velocity field. The thick black line indicates the liquid/gas interface. White �
��
regions in the pressure field indicate tension and can be correlated to secondary bubble formation �
��
found in the experiments. Note that the pressure/velocity scales are not the same, since there is a �
��
strong variation over time. Whenever possible, images from high speed movies of the experiment are �
��
provided; it must be highlighted that camera angle and lighting were chosen as to depict in the best �
	�
possible way the bubble shape evolution and not the shape of the free surface, which cannot be �

�
derived from the present images. Indicative instances of the free surface shape can be found in a ����
recent work of Supponen et al.14. Alternatively, a video showing both the bubble and part of the free ����
surface can be found in the Gallery of Fluid Motion by the same authors 35.        ����

 A very important observation is the fact that during the expansion of the bubble, a shock wave is ����
emitted. When this shock wave interacts with the free surface, part of it is transmitted in air as a weak ����
shock wave, whereas a significant part is reflected back in the liquid as a Prandtl-Meyer rarefaction ����
wave causing tension and resulting to the excitation of bubbles to expand. This effect is well known in ����
the literature, in interactions of shock waves and free surfaces, see e.g. 17, 36-38. The whole process of ����
shock wave interaction with the free surface is visible in Figure 7:���	�

- At 2.8� s (Figure 7a) the shock wave expands in all directions, but reflects at the free surface, ��
�
forming a rarefaction wave and causing locally tension in the liquid between the bubble and the free ����
surface.  ����

- At 5.3� s (Figure 7b) the tension wave moves and is located at the sides of the bubble, whereas ����
the shock wave further propagates.  ����
- At 8.4� s (Figure 7c) the shock wave continues to expand closely followed by the tension wave. At a ����
similar time instant in the experiment (Figure 7d), secondary bubbles emerge at the sides and under ����
the bubble. During these early stages of bubble expansion the bubble shape remains close to spherical.  ����

In all the aforementioned figures negative absolute pressures are shown in areas of tension. Such ����
pressures are naturally predicted by the Tait equation of state, since it represents the behaviour of a ��	�
weakly compressible elastic medium, such as liquid water. In reality, however, such magnitudes of ��
�
negative pressures may not appear, since secondary bubble generation, as shown in Figure 7d, will ����
relieve tension.  ����

At later bubble growth stages, the bubble shape deviates from spherical and assumes an oval ����
shape, see Figure 8a or Figure 8c. This is a direct consequense of the lower inertia of the fluid towards ����
the free surface, causing a biased expansion towards the upwards direction. However, as the gas ����
inside the bubble expands pressure inside the bubble drops, eventually decelerating the expansion and ����
causing the collapse of the bubble. The maximum bubble radius predicted with CFD is ~5.3mm, close ����
to the one found from the experiment, which is 5.25mm, ensuring that the initial pressure estimation is ����
accurate enough, at least for the present study. During the collapse, a downwards moving jet is formed ��	�
(Figure 8e). The jet is predicted to have a radius of ~0.5mm, which is in agreement with the ��
�
experiment. However, contrary to the experiment the predicted jet velocity is somewhat higher: the ����
CFD results indicate a velocity of ~14m/s, whereas the jet velocity in the experiment is ~9m/s. This ����
discrepancy, which is also found in the slightly faster collapse of the CFD simulation in respect to the ����
experiment, was found to be unrelated to the mesh resolution (finer mesh yielded differences less than ����
1% in e.g. jet velocity). Additionally the bubble mass is conserved with a maximum error of 0.15%,  ����
thus the mismatch is mainly attributed to the thermodynamic model of the gas inside the bubble, ����
rather than numerical inaccuracies. Still for the level of complexity involved the results can be ����



considered acceptable. Another potential source of the discrepancy is experimental error due to ����
optical distortion of the jet from the bubble wall.      ��	�

 ��
�

 ����
Figure 7. Initial stages of bubble expansion. Note that the dashed line delimits the liquid under tension; this effect can be ����

correlated to the formation of smaller bubbles near the main bubble. ����
 ����

 Another interesting effect that is found at the jet is the mushroom cap (see Figure 8e, f); this effect ����
is the manifestation of well known interfacial instabilities, like the Rayleigh-Taylor or the Richtmyer–����
Meshkov instabilities 39. The radius of the jet cap is predicted to be ~1mm, in accordance with ����
measurements from the experiment, see 14.  ����

After the jet impacts the bottom of the bubble, it deforms it in such a way that a gaseous pocket is ��	�
formed, see Figure 9a, b. Later on the gaseous pocket detaches from the initial bubble. The initial ��
�
bubble has a toroidal structure from now on (referenced as torus-1), since it has been pierced by the ����
jet. The detached pocket has also a toroidal structure (Figure 9c, denoted as torus-2), as shown from ����
the simulation. Evidence of the toroidal structure of the gas pocket is found from the photos of the ����
experiment as well (Figure 9d), since the light reflections inside the gas bubble indicate an internal ����
structure in the form of a vertical liquid core. Both toruses further collapse and expand again; torus - 1 ����
remains relatively intact, whereas torus - 2 splits further (Figure 9e, f). At later stages, torus-2 ����
collapses and then further splits, see Figure 10a, b. All toroidal bubbly structures start to expand and ����
form an agglomeration, see Figure 10c, d.  ����

The suspected mechanism of the splitting of torus-2 is shear layer instability, which potentially ��	�
could be related to the Kelvin Helmholtz instability, since there is shear across a fluid interface. As ��
�
shown in Figure 11 there is significant vorticity in the toroidal structures located at the lateral surface ����
of the downwards moving liquid jet.   ����
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Figure 8. Later stages of bubble deformation. Note the deviation from spherical shape to an oval-like shape, while later a ����

downwards moving jet is formed. ��	�
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Figure 9. Development of the toruses after the jet impact. Further splitting of torus-2 is visible at 2.6-2.7ms. Similar ����

structures are identified with similar numbering between the CFD and experiment. ��	�
 ��
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Figure 10. Late development of the toruses after the jet impact; further splitting of torus 2 is visible, as well as the expansion �		�
of the toruses. Similar structures are identified with similar numbering between the CFD and experiment. The formation of a �	
�

corona at the free surface is visible, see also 13, 14 �
��
 �
��
In Figure 12, the laplacian of the density field is shown, for selected instances of the simulation, to �
��

depict a numerical shadowgraph image 40 from the simulation: �
��
- At the instance of 35.4� s a strong shock wave is visible expanding in an arc-like shape in the �
��

water volume. Also a much weaker shock wave can be observed in the air volume, just above the �
��
epicentre of the bubble expansion. Both of these shock waves are formed due to the initial bubble �
��
expansion. �
��

-  At 137� s there is an interference pattern inside the liquid volume, due to reflection of pressure �
	�
waves at the walls. The much weaker shock wave travelling in air, above the liquid, is still expanding �

�
and visible.   ����

- Later on, at 1.865ms a shock wave is formed due to the impact of the jet on the bubble wall. ����
- At 2.53ms several shock waves are emitted, due to the collapse of torus-1. ����
In Figure 13(multimedia view) an animation of the bubble development is shown, as predicted by ����

the simulation, for the better understanding of the bubble shape evolution and the relevant ����
deformation of the free surface.   ����

 ����



�����
Figure 11. Vorticity contours in the vicinity of the gas toruses during break-up. Velocity vectors are included to show the ��	�

liquid jet. Red colour indicates counter-clockwise vortices, whereas blue colour clockwise vortices. The liquid/gas interface ��
�
is shown as a black line. Vectors are plotted on cell nodes and only one every 25 vectors is shown for clarity.   ����

 ����

    ����
Figure 12. Numerical shadowgraph images (laplacian of the density field), showing the propagation of pressure waves, due ����

to the expansion and collapse of the bubbly structures. The gas/liquid interface is shown as a continuous red line. ����
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Figure 13.
Animation of the simulation results of the bubble/free surface interaction. The video is split in the middle with a ����

vertical continuous line. The left part shows the pressure field, while the grey isosurface is a 3D reconstruction of the  ��	�
liquid/gas interface. The right part shows the velocity magnitude, while the continuous black line shows the interface. ��
�

Units are in SI (i.e. pressure in Pascal and velocity in m/s). (Multimedia view) ����
 ����
 ����
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In Figure 14 the time evolution of the bubble radius and bubble height is presented, as found from ����

the experiment 14 and the CFD simulation. It is visible that the predicted collapse from CFD is ����
somewhat faster. Collapse of torus - 1 is found at 2.53ms, whereas in the experiment it occurs at ����
~2.7ms, i.e. there is an error of ~6%. Still, the overall agreement of the bubble size evolution between ��	�
CFD and experiment is good, given the complexity of the problem and the simplicity of the ��
�
thermodynamic model of the gas involved, which is believed to be the main source of inaccuracy. ����
Unfortunately, due to the very complicated nature of the process inside the gas bubble, especially ����
during its generation, it was not possible at the current stage to employ a better model.  ����

 In any case, given the results of the study the following conclusions may be reached: ����
- In general, the whole process of bubble expansion and collapse is captured. Fine details such as ����

the formation of the tension waves, bubble shape and bubble breaking, jet size with mushroom-shaped ����
tip and finally the corona formation are captured. ����

- Even if surface tension has been included, its effect is nearly unnoticeable. This is justified by the ����
fact that the growth/collapse process at these bubble sizes is mainly inertial dominated: for example, ��	�
as mentioned above, bubble collapse time is affected less than 0.3% as found from the Rayleigh-��
�
Plesset equation. The only exception of this is the formation of the corona, where local Weber number ����
is ~50.  ����

- The thermodynamic model of the gas employed is simplistic, but can provide a simple ����
methodology for including the bubble gas effects without needing to resort to exotic equations of state ����
or other advanced techniques, with good accuracy in respect to reality.      ����
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 ����
Figure 14. Time evolution of the bubble size for the initial bubble and the two toruses formed after the jet impact. ����

Comparison of the CFD and experimental results 14.  ��	�

 ��
�
In case a more accurate representation of the bubble gas is required, there are two main directions ����

to be pursued:  ����
1. One is to include the mass transfer from liquid water to vapour. In the Rayleigh-Plesset equation ����

the mass transfer rate is assumed to be infinite, since vapour pressure inside the bubble is always ����
equal to saturation pressure. In reality the mass transfer is finite, however the formulations used in the ����
literature are based on the Hertz-Knudsen evaporation/condensation formula 41, which depends on ����
molecular characteristics, such as the accommodation coefficient 4, see e.g. Lauer et al. 11 or Fuster et ����
al. 42. ����

2. Another improvement is to include the thermal effects during bubble expansion and collapse. ��	�
This will require to simulate the early stages of expansion at rather extreme conditions, since initial ��
�
conditions for the temperature/internal energy will be needed. For example, in the present study the ����
maximum bubble volume is ~600mm3 and this corresponds to an energy of ~6.7mJ. Given though ����
that some energy is dissipated to the rest of the liquid due to heating losses, it is reasonable to assume ����
that the initial bubble seed is heated by ~12mJ of laser energy. Under the assumption that the initial ����
bubble of R0=0.1mm is almost instantaneously heated by this energy, thus the density change is ����
almost insignificant, then the enthalpy rise is equal to ~3000kJ/kg. Unfortunately existing ����
water/vapour libraries are rather inaccurate or not applicable at such conditions: ����
- The IAPWS-IF97 formulation which is probably the most accurate for water/steam 28, is not ����
applicable for pressures beyond 1000bar and for highly superheat steam beyond 500bar.   ��	�
- NIST databases 43, while could be used at such conditions, are of questionable accuracy; for the ��
�
conditions mentioned above, i.e. density ~998.2kg/m3 and enthalpy ~3000kj/kg the predicted fluid ����
pressure is 11000bar and temperature 850K; in the authors' opinion the temperature look rather low ����
(there are research studies predicting temperatures of the order of 10000K, see 44), whereas pressure ����
seems very high. Besides, the NIST database is a fitting of a Helmholtz energy or Benedict-Webb-����
Rubin equation of state to experimental data, thus accuracy at adverse conditions is not guaranteed. ����
Needless to say that for 11000bar and 850K the ideal gas equation predicts a density of 2801.7kg/m3. ����

While all the above are a rather crude estimate of the conditions at the beginning of the bubble ����
expansion, it becomes apparent that there is an important problem of a consistent thermodynamic ����



closure at the conditions involved. More research is required on the subject, that probably departs ��	�
from traditional fluid dynamics, computational or experimental, since the conditions may involve ��
�
other effects as dissociation, reactions and plasma.  �	��
 �	��
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�	��
 �	��
In this work, a description of the interaction of a laser-generated bubble with free surface is �	��

provided, comparing the results of experiments and CFD simulations based on the VOF methodology. �	��
Simulations were successful in the prediction of bubble expansion and collapse, both qualitatively and �	��
quantitatively, whereas pressure wave propagation effects were identified. Fine details of the �	��
liquid/gas interface were observed, such as the mushroom cap at the tip of the jet, or the splitting of �		�
the torus-2 in an agglomeration of toroidal structures. While some deviations from the experimental �	
�
results exist, the overall qualitative and quantitative agreement is rather good, proving that CFD can �
��
be an invaluable tool for shedding light to complicated bubble dynamics phenomena, in a non-�
��
intrusive way. Potential improvements of the current study involve mainly the thermodynamics of the �
��
gas inside the bubble.   �
��
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s Bubble generation depth (m) 
pamb Ambient pressure (Pa) 
�  Density (kg/m3) 
R Bubble radius (m) 
R0 Initial bubble radius (m) 

R�  Bubble interface velocity (m/s) 

R��  Bubble interface acceleration (m/s2) 
pv Vapour pressure (Pa) 

¥p  Far-field pressure (Pa) 

pg0 Initial gas pressure (Pa) 
�  Surface tension (N/m) 
�  Dynamic viscosity (Pa.s) 
u Velocity vector field (m/s) 
�  Stress tensor (Pa) 
g Acceleration of gravity (m/s2) 
f Body/volume forces vector (N/m3) 
�  Bulk viscosity coefficient (Pa.s) 
a Gas volume fraction 
n Polytropic exponent (for gas)  (-) 
nl Tait equation exponent (for liquid)  (-) 
� 0 Reference density (kg/m3) 



c0 Reference speed of sound (m/s) 
p0 Reference pressure (Pa) 

k Constant of polytropic gas process  
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