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THE VALUATION OF GMWB VARIABLE ANNUITIES
UNDER ALTERNATIVE FUND DISTRIBUTIONS

AND POLICYHOLDER BEHAVIOURS

ANNA RITA BACINELLO �[1], PIETRO MILLOSSOVICH �[2],
AND ALVARO MONTEALEGRE ◦[3]

Abstract. In this paper we present a dynamic programming algo-
rithm for pricing variable annuities with Guaranteed Minimum With-
drawal Benefits (GMWB) under a general Lévy processes framework.
The GMWB gives the policyholder the right to make periodical with-
drawals from her policy account even when the value of this account is
exhausted. Typically, the total amount guaranteed for withdrawals co-
incides with her initial investment, providing then a protection against
downside market risk. At each withdrawal date, the policyholder has to
decide whether, and how much, to withdraw, or to surrender the con-
tract. We show how different policyholder’s withdrawal behaviours can
be modelled. We perform a sensitivity analysis comparing the numer-
ical results obtained for different contractual and market parameters,
policyholder behaviours, and different types of Lévy processes.

1. Introduction

Variable annuities are very flexible life insurance contracts that package
several types of options and guarantees, at the policyholder’s discretion.
Typically, a lump sum premium is paid at contract inception and is invested
in one or more mutual funds chosen by the policyholder among a range of
alternative opportunities. Then this initial investment sets up a reference
portfolio (‘policy account’) and each option or guarantee is financed by pe-
riodical deductions from the policy account value.

Key words and phrases. Variable annuities, GMWB, Dynamic approach, Lévy pro-
cesses, Policyholder’s behaviour.
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Guarantees are commonly referred to as GMxBs (Guaranteed Minimum
Benefit of type ‘x’), where ‘x’ stands for accumulation (A), death (D), income
(I) or withdrawal (W). In particular, GMABs and GMDBs provide guaran-
tees in the accumulation phase, prior to retirement, although sometimes the
GMDB is offered also after retirement. In a GMIB, that consists of a (pos-
sibly indexed, or participating) deferred life annuity, the guarantee usually
concerns the annuitized amount or the annuitization rate. However, GMABs
and GMDBs can be found also in other types of life insurance contracts such
as unit-linked or participating policies, and GMIBs become, after conversion,
traditional life annuities. The GMWB, instead, is undoubtedly the most in-
teresting feature of variable annuities. It is similar to an income drawdown,
because it entitles the policyholder to make periodical withdrawals from her
account, even when the account value is reduced to 0. This guarantee can
cover a fixed period of time or can be lifelong. In the first case the poli-
cyholder is typically guaranteed her entire initial investment, that can be
withdrawn within the given period of time. At the end of the withdrawal
period any remaining fund in the reference portfolio is paid back to the pol-
icyholder. In the case of a lifelong GMWB the policyholder is also protected
against the risk of underfunding due to high longevity. In order to distinguish
fixed term from lifelong GMWBs, from now on the latter will be referred to
as GLW.

When a variable annuity contains a GMWB (or GLW) rider, there is an
amount, fixed or time-dependent, that the policyholder is entitled to with-
draw at some specified dates (typically, annually or semiannually). With-
drawals below this fixed amount are allowed, while withdrawals above this
amount, if permitted, are subject to a penalty. Then, the prediction of the
policyholder behaviour is a key-element in the valuation of such guaran-
tees. In particular, under the so called ‘static’ (or ‘passive’) approach, it
is assumed that the policyholder withdraws exactly the amount contractu-
ally specified (see [32]). The ‘dynamic’ approach assumes instead that the
policyholder chooses the amounts to withdraw according to some optimal
policy. In-between these two approaches there is the ‘mixed’ one, coined
by [3], that assumes a static behaviour with respect to the choice of the
withdrawal amounts, but a dynamic one with respect to surrender decisions.

General information on variable annuity features can be found in [27], [2]
and [1]. The market for variable annuities has been steadily growing in the
past 20 years. However, sales fell during the recent financial crisis and many
companies offering these products had to eventually exit the business as a
result of poor, or lack of, hedging of the guarantees attached.

In this paper we present a dynamic programming algorithm aimed at pric-
ing a variable annuity with a GMWB under the dynamic approach. This
algorithm is general enough to allow for different withdrawal behaviours of
the policyholder, so that, in particular, the static and the mixed approach
can be accomodated as special cases. Variants and extensions of the basic
GMWB contract can be easily dealt with. We overcome some well-known
problems arising from assuming normality of the reference fund returns, as
very often done in the literature, by putting ourselves in a general Lévy
framework. This class of stochastic processes is flexible enough to allow for
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jumps and other desirable properties displayed by the empirical distribution
of asset returns (such as fat tails and skewness) and is straightforward to
implement. We present extensive numerical examples and compare the re-
sults obtained for different market and contractual parameters, policyholder
behaviours, as well as for different types of Lévy processes.

The paper is structured as follows. In Section 2 we review the existing
literature on GMWBs, focussing in particular on the dynamic approach. In
Section 3 we describe the variable annuity contract and the discrete time
framework adopted for the valuation. In Section 4 we briefly introduce and
recall the main properties of Lévy processes. In Section 5 we develop the
dynamic programming algorithm and in Section 6 we present the numerical
results. Finally, Section 7 concludes the paper.

2. Review on the Literature on GMWBs

The pricing and hedging variable annuity contracts has attracted the in-
terest of many academics and practitioners. This review focuses on GMWBs
and GLWs and in no way claims to be exhaustive. We classify in Table 1
the papers of which we are aware according to the following features: type
of benefit (GMWB, GLW), assumption on policyholder behaviour (static∗ -
to be explained below - mixed or dynamic), and statistical assumption on
the fund return distribution.

With the term static∗ we extend the static behaviour described in the
introduction by including any fixed withdrawal or surrender strategy. More
precisely, in this class we include deterministic strategies (such as the static
strategies discussed before), strategies based on the value of state variables
(e.g. withdrawal or surrender behaviours based on the moneyness of the
guarantees) that is, in the language of stochastic processes, adapted strate-
gies, and also randomization of such strategies. As opposed to the mixed or
dynamic behaviour, the static∗ approach is not the result of an optimization
process. We point out that the static∗ approach, frequently adopted by prac-
titioners in the analysis of products and e.g. in profit testing exercises, is
appealing, somewhat intuitive and straightforward to implement even under
sophisticated assumptions on the evolution of the state (market, mortal-
ity, . . . ) variables. However, it is undoubtedly hard to anticipate correctly
the policyholder behaviour, e.g. to specify her policy as a function of the
moneyness of the guarantees (see [26], [24] and [2] for the different factors
influencing lapse rates). On the other hand, the dynamic approach over-
comes this subjective side by taking a worst case scenario from the insurer’s
point of view, but is subject to the curse of dimensionality and hence very
often forces to adopt a very simple setup. According to whether withdrawals
are assumed to occur continuously or discretely, the dynamic approach is
usually solved using respectively stochastic control and dynamic program-
ming. Some papers (see [17], [14], [15] and [8]), although assuming discrete
withdrawals, compute the contract values at any time, even between two
withdrawal dates. For a review of the numerical methods used to compute
the value of a general life insurance contract, see [7]. Looking at Table 1,
one can see that few papers go beyond the assumption of normality for the
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fund returns. Notable exceptions are [15] and [20], where the jump diffu-
sion model of Merton is considered, and [9], where regime switching type
processes are used.

Paper Rider PH behaviour Fund process
[12] GMWB static∗ GBM
[32] GMWB static/dynamic GBM
[8] GMWB static∗/dynamic GBM

[14] GMWB dynamic GBM
[17] GMWB dynamic GBM
[15] GMWB dynamic GBM/Merton
[40] GLW static SIR+SV
[34] GMWB static SIR
[9] GMWB dynamic RS

[35] GLW static GBM
[3, 4] GMWB/GLW static/mixed SIR+SV+SM
[25] GLW static∗/mixed SV
[36] GLW static GBM+SM
[33] GMWB dynamic GBM
[41] GLW dynamic GBM
[18] GMWB/GLW static∗/mixed GBM
[20] GMWB dynamic Merton
[19] GMWB dynamic GBM

Table 1. GMWB=Guaranteed Minimum Withdrawal Benefit,
GLW=Guaranteed Lifelong Withdrawal; GBM=Geometric Brownian

Motion, Merton=Merton Jump Diffusion model, RS=Regime
Switching, SIR=Stochastic Interest Rates, SV=Stochastic Volatility,

SM=Stochastic Mortality.

In this paper, we show how an approach based on dynamic program-
ming can accomodate any fund return distribution within the class of Lévy
processes, allowing therefore a great variety of statistical features such as
kurtosis and skewness.

3. Model Setup, Valuation and Policyholder Behaviours

Although there are different ways in which a GMWB can be arranged
within a variable annuity contract, in what follows we focus on a specific
case. Additional contract features can be easily introduced. At inception
the policyholder pays a lump-sum premium that is invested in a well diver-
sified mutual fund, then a reference portfolio backing the variable annuity is
set up. The current value of this portfolio defines the first of two accounts
which the policyholder is entitled to, called ‘personal account’. After that,
the policyholder has the right to make periodical withdrawals, even if her
personal account value is reduced to zero. Usually the total withdrawals
guaranteed during the life of the contract amount to her whole initial invest-
ment. Then, in this case, the guarantee becomes effective if the reference
portfolio is completely exhausted before the initial premium has been to-
tally recouped. The second account, called ‘guarantee account’, gives the
total amount of money that the policyholder is still guaranteed for with-
drawals. The cost of the guarantee is financed by periodical deductions from
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the personal account value (‘insurance fees’). The amount that the policy-
holder is entitled to withdraw at each available date is usually subject to a
withdrawal level, fixed or time-dependent, over which some penalty is ap-
plied. At maturity, the policyholder (or her estate) receives the maximum
between the balance of the personal account and the guarantee account.

When the contract contains a surrender option, the policyholder is al-
lowed to terminate the contract before maturity. In this case she receives
a cash amount, called surrender value, usually equal to the balance of the
personal account with a proportional penalty if it is higher than the specified
withdrawal level.

We observe that the introduction of mortality risk can be easily handled
in the dynamic programming algorithm. We refer, more in detail, to the
case in which the contract expires before maturity (and before surrender) if
the insured dies, with the payment of a lump sum benefit specified in the
contract, typically equal to the balance of one of the two accounts or to the
maximum between them.

3.1. Model and Valuation. We now formalize what just described. Let
At and Wt denote the time t guarantee account and personal account re-
spectively, before any decision at t is made. Moreover, let St denote the
unit price at time t of the reference fund, U the lump sum premium, T the
maturity of the policy.

Assume that withdrawals are allowed only at times ti, i = 1, 2, . . . , N − 1,
with 0 = t0 < t1 < ...tN−1 < tN = T , where t0 denotes the inception of the
contract.1 The return on the fund over (ti, ti+1), i = 0, . . . , N − 1, is then

Rti =
Sti+1eq(ti+1−ti)

Sti
− 1,

where q is the dividend yield, assumed to be constant. Let θti denote the
decision made at time ti by the policyholder. In our case, θti is just the
amount withdrawn at ti, but examples involving other types of decisions
could be considered. For the moment we think of θti as some element of a
set of admissible decisions/amounts Θti , which can depend on the current
value of the state variables Ati and Wti .

The personal account evolves according to the following equation:

Wti+1 = max {Wti − θti , 0} (1 +Rti)(1− ϕ(ti+1 − ti)), (3.1)

where ϕ is the insurance fee, applied while the contract is still in force. Hence
Wti+1 is determined by the current personal account value, the fund return
and the withdrawn amount. Note that once Wt hits the value 0, it stays
at this value thereafter. Withdrawals continue while the guarantee account
is positive, even if the personal account is insufficient. The initial value is
W0 = U .2

1If t0 coincides, instead, with the end of an accumulation period and U is the (pos-
sibly guaranteed) accumulation benefit, then t0 could be included in the set of possible
withdrawal times.

2For i = 0, we set conventionally θ0 = θt0 = 0, so that Wt1 is determined only by the
single premium U and the first period return Rt0 .
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We denote by G the withdrawal level, which is typically equal to A0
N , and

assume that a proportional penalty at rate κ applies in case withdrawals ex-
ceed this level.3 Moreover, when almost all the guarantee has been exploited
resulting in a guarantee account less than G, the penalty applies also on
withdrawals between At and G. Hence the cash flow (i.e., the net amount)
paid to the policyholder at ti, i = 1, . . . , N − 1, denoted by Cti , depends on
the current withdrawal and state variables as follows:

Cti =

{
θti if 0 ≤ θti ≤ min {G,Ati}
min {G,Ati}+ (1− κ)(θti −min {G,Ati}) if θti > min {G,Ati}

= θti − κmax{θti −min {G,Ati} , 0}.
(3.2)

Summing up, any withdrawal in excess of the withdrawal level or the guar-
antee account is subject to the proportional penalty κ. For i = N only,
CtN = CT is specified separately, typically as a function of WT , AT . We
assume, in particular, that CT = max{WT , AT }.4

In addition to the penalty on exceeding withdrawals, there could be a
further penalization if some reset provision is in force. This means that the
guarantee account can be reduced of an amount greater than the current
withdrawal. Here we assume a reset provision corresponding to the so called
‘pro rata adjustment’ (see [33]), according to which the guarantee account
evolves as follows:

Ati+1 =

{
Ati − θti if 0 ≤ θti ≤ min {G,Ati}
max

{
min

{
Ati − θti , Ati

(
1− θti

Wti

)}
, 0
}

if θti > min {G,Ati}
(3.3)

with initial value A0 = U . Hence, in case of exceeding withdrawals, the
guarantee account is reduced by the greatest between the withdrawal amount
and a proportion θti/Wti of the guarantee account itself. Note that equation
(3.3) is well defined because, when Wti = 0, withdrawal amounts greater
than min {G,Ati} are not allowed, see Sections 3.1.1-3.1.3.5

Now, let π denote a possible sequence of (withdrawals) decisions, i.e.
π =

(
θt1 , θt2 , . . . , θtN−1

)
with θti ∈ Θti . The initial value of the cash flows

generated from holding the GMWB variable annuity and adopting the se-
quence of decisions π is given by:

V π
0 = E

[
N∑
i=1

e−r ti Cti

]
, (3.4)

where E denotes the expectation taken under a suitable risk-adjusted mea-
sure and r is the (assumed constant) risk-free rate. Finally, the no-arbitrage

3The extension to a time dependent withdrawal level, fee or penalty rate is straight-
forward.

4Different type of contracts, or more general frameworks, can be represented with a
similar scheme, by adding state variables and their state equations. See [7] for a general
description of life insurance contracts based on accounts and state variables.

5An alternative to (3.3) is to reset Ati+1 to max {min {Ati − θti ,Wti − θti} , 0} in case
of exceeding withdrawals, see [32].
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value of the variable annuity is given by:

V0 = sup
π
V π

0 , (3.5)

where the supremum is taken over all sequences π =
(
θt1 , θt2 , . . . , θtN−1

)
of withdrawal decisions satisfying the constraint θti ∈ Θti , and where the
personal account satisfies (3.1) and the guarantee account (3.3). This ap-
proach assumes that the policyholder behaves rationally and acts so as to
maximize the expected present value of all the cash flows generated by the
GMWB variable annuity. This problem can be solved using the classical
dynamic programming algorithm, as explained in Section 5. In the rest of
this section, we specify the set of admissible decisions under the alternative
approaches (dynamic, static and mixed) described in Section 1 and result-
ing from the assumptions concerning the policyholder behaviour. Moreover,
when possible, we simplify the guarantee account dynamics and cash-flow
(equations (3.3) and (3.2)).

3.1.1. Dynamic Withdrawals. At any date ti, i = 1, . . . , N − 1, the policy-
holder can always choose to withdraw any amount θti up to min {G,Ati},
whatever is the personal account valueWti . Moreover, ifWti > min {G,Ati},
the policyholder is allowed to withdraw even more, subject to the penalties
described before, until the personal account is completely exhausted. This
last case, i.e. θti = Wti ≥ min {G,Ati}, corresponds to the contract surren-
der. Hence the admissible decisions set is the interval

Θti = [0,max {Wti ,min {G,Ati}}] .

3.1.2. Static Withdrawals. The policyholder is constrained to withdraw the
amount G, provided this is lower than the guarantee account, or the guar-
antee account otherwise. This behaviour is obtained by setting the set of
decisions at ti as the singleton

Θti = {min{G,Ati}}.
The accounts and cash-flow are still defined by (3.1), (3.3) and (3.2). In
particular, the guarantee account dynamics and cash-flow simplify as follows:

Ati+1 = Ati −min{Ati , G} = max{Ati −G, 0}, Cti = min{Ati , G}.
More generally, the static∗ approach defined in Section 2 corresponds to
fixing a sequence π of withdrawal decisions, and the value of the contract is
then V π

0 .
As shown in [32], under the static approach the variable annuity contract

can be decomposed (in the case ti = i and G = W0/T ) into an immediate
annuity with instalment G and maturity T and a Quanto-Asian put option
corresponding to the guarantee of receiving at maturity the policyholder
account net of the last instalment, if positive. More specifically, the pay-off
of the put option is

W0
1

YT
max{1− Y T , 0},

where

Yt = S−1
t (1− ϕ)−t, Y T =

1

T

T∑
t=1

Yt.
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3.1.3. Mixed (Static+Surrender). As in the static approach, the policyholder
is behaving passively with respect to partial withdrawals, but can choose to
surrender in a dynamic fashion, see [3]. Recall that, in case of surrender,
the policyholder receives the personal account value, net of the penalty if
it exceeds the minimum between the guarantee account and the withdrawal
level. The decision set at ti would then be the two-points set

Θti = {min{Ati , G},Wti},

with the cash flow and the personal account equations (3.2) and (3.1) un-
changed. The first row of equation (3.3) would instead change as the guar-
antee account is set at zero immediately after surrender, regardless of the
value of Wti . However, the surrender decision is never optimal if Wti ≤
min{Ati , G} so that, taking this optimality condition into account, we re-
strict the decision set to

Θti =

{
{min{Ati , G}} if Wti ≤ min{Ati , G}
{min{Ati , G},Wti} if Wti > min{Ati , G}

,

and specialize the guarantee account dynamics as follows:

Ati+1 =

{
max{Ati −G, 0} if θti = min{Ati , G}
0 if θti > min{Ati , G}

.

3.2. Examples. To understand the difference between the three approaches
introduced in Sections 3.1.1, 3.1.2 and 3.1.3, we briefly consider some exam-
ples illustrating the policyholder possible withdrawal choices at any given
date and the corresponding cash-flows, penalties and change in the guaran-
tee account value. To simplify the notation, fix the attention on a given
withdrawal date ti with 0 < i < N and drop the dependence on the date ti
on the various symbols.

Table 2 contains the possible ranking among the guarantee account A,
the guaranteed withdrawal level G, the personal account W , and the corre-
sponding withdrawal decision set Θ in the three approaches.

Assume that the guaranteed annual withdrawal level is G = 10, which
may correspond to a single premium U = 100 and maturity T = 10 years.
Suppose that the current value of the guarantee account is A = 40 (before
a decision is made), which may be the result of constant withdrawals equal
to G in the previous 6 years. The guarantee account after the decision is
made is A+ = Ati+1 , and is given by (3.3). A 5% penalty applies in case of
withdrawals in excess of the guaranteed amount min{A,G}.

If W = 70 (the fund return has been positive and has accrued, net of fees
and withdrawals, the initial investment), then the policyholder can withdraw
any amount in the interval [0, 70] (dynamic), withdraw 10 or 70 (mixed), or
just 10 (static). Any withdrawal above 40 will kill the guarantee so the
policyholder will only be entitled to withdrawals from the personal account,
provided this is positive. Consider the following examples of decisions:

• θ = 70 (dynamic or mixed). The contract is terminated and the net
amount paid to the policyholder is 10 + 95%(70− 10) = 67.
• θ = 50 (dynamic). The guarantee account value becomes 0 and
no further guarantees of withdrawals are hold by the policyholder.
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The personal account depends on the return earned and the fees
subtracted from the remaining fund 70 − 50 = 20. The net amount
paid to the policyholder is 10 + 95%(50− 10) = 48.
• θ = 30 (dynamic). The guarantee account value is A+ = min{40 −

30, 40(1− 42.86%)} = 10, where 42.86% = θ
W , so that there is guar-

antee of future withdrawals of 10. The net amount paid to the poli-
cyholder is 10 + 95%(30− 10) = 29.
• θ = 10 (dynamic, mixed or static). The guarantee account value is
A+ = 40− 10 = 30, so that there is guarantee of future withdrawals
of 30. The net amount paid to the policyholder is 10, so no penalty
is applied.

As a second example suppose that W = 30 (the fund return has been
not sufficient to compensate the fees). The policyholder can choose any
amount in the interval [0, 30] (dynamic), withdraw 10 or 30 (mixed), or just
10 (static).

• θ = 30 (dynamic or mixed). The contract is terminated. The net
amount paid to the policyholder is 10 + 95%(30 − 10) = 29. Note
that the pro rata rule (3.3) implies that the new guarantee account
value is A+ = min{40− 30, 40(1− 100%)} = 0.
• θ = 10 (dynamic, mixed or static). The guarantee account value is
A+ = 40− 10 = 30. The net amount paid to the policyholder is 10.

As a final example, suppose that W = 0 (the fund has suffered huge
losses and, due to withdrawals and fees, its value has hit the level 0). The
policyholder can choose any amount in the interval [0, 10] (dynamic), or just
withdraw 10 (static and mixed). If θ = 10, the guarantee account value is
A+ = 40− 10 = 30 and the net amount paid to the policyholder is 10.

Θ

Dynamic Mixed Static

A ≥ G ≥W [0, G] {G}
{G}

W ≥ A ≥ G

[0,W ]
{W,G}

A ≥W ≥ G

W ≥ G ≥ A {W,A} {A}
G ≥W ≥ A

G ≥ A ≥W [0, A] {A}
Table 2. The set of possible withdrawal decisions for different

policyholder behaviours.

3.3. Fair Pricing and Comparison. Recall that the cost of the guarantee
is charged to the policyholder through the application of the proportional
insurance fee rate ϕ to the personal account. Hence the contract is fairly
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priced if and only if its initial value V0, computed under any of the approaches
introduced in 3.1.1-3.1.3, coincides with the initial premium U . Then, the
fair fee rate ϕ∗ can be defined as a solution of the following equation:

V0(ϕ) = U (3.6)

where, with a slight abuse of notation, we explicitly indicate that V0 is a
function of the proportional fee rate ϕ.

Denote now by V dynamic
0 , V static

0 and V mixed
0 the initial values of the con-

tract, for a given fee, under each of the assumptions in 3.1.1-3.1.3, and by
ϕdynamic, ϕstatic and ϕmixed the corresponding fair fees. It is clear that

V static
0 ≤ V mixed

0 ≤ V dynamic
0 , ϕstatic ≤ ϕmixed ≤ ϕdynamic.

The spread V mixed
0 − V static

0 can be interpreted as the extra cost, in terms
of single premium, required to add to the ‘static’ contract (the policyholder
can only withdraw the amount G and receive the remaining personal account
at maturity) the surrender option, while the spread V dynamic

0 − V mixed
0 can

be seen as the extra cost required to add the possibility to withdraw any
amount up to the maximum admitted level described in Section 3.1.1. Simi-
lar interpretations apply to the corresponding spreads computed in terms of
fair fees.

4. Lévy Processes Framework

In order to model the fund value, we start with a stochastic process
(Xt)t≥0, with X0 = 0, defined on the basic probability space equipped with
the risk neutral measure introduced in the previous section. We assume that
Xt is a Lévy process, that is Xt has right-continuous with left limits paths,
Xs−Xt is independent of (Xu)0≤u≤t and is distributed asXs−t, for 0 ≤ t < s.
For a comprehensive description of Lévy processes, their properties and ap-
plications we refer to [16] and [38]. Lévy processes are a combination of a
linear drift, a Brownian motion, and a jump process. A Lévy process (Xt)
is determined by its characteristic function

Φt(u) := E
[
eiuXt

]
= [Φ1(u)]t

and, in particular, all moments of Xt can be numerically recovered from
the knowledge of Φt, when they are not available in closed form. If Φt is
integrable, then Xt has density given by:

ft(x) =
1

2π

∫ ∞
−∞

e−izxΦt(z)dz.

We model the reference portfolio value St as an exponential Lévy process:

St = S0e(r−q+d)t+Xt ,

where q is the dividend yield and d = −1
t ln Φt(−i) = − ln Φ1(−i) represents

the adjustment so that (St e−(r−q)t) is a martingale under the risk-neutral
measure.

In the numerical experiments we consider the following examples of Lévy
processes, commonly used in finance applications, although we could in prin-
ciple use any exponential Lévy model to represent the fund dynamics.
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(1) Geometric Brownian Motion (GBM)

Φt(u) = exp

(
iuµt− 1

2
σ2u2t

)
,

with µ ∈ R, σ > 0.
(2) Merton Jump Diffusion (MJD)

Φt(u) = exp

(
iuµt− 1

2
σ2u2t+ λt

(
eium−

1
2
c2u2 − 1

))
,

with µ, m ∈ R, σ, c, λ > 0.
(3) Variance-Gamma (VG)

Φt(u) = exp

(
− t
ν

ln

(
1− iuµν +

1

2
σ2u2ν

))
,

with µ ∈ R, σ, ν > 0.
(4) Carr, Geman, Madan, Yor (CGMY)

Φt(u) = exp (c Γ(−y) t [(m− iu)y −my + (g + iu)y − gy]) ,
with g,m ≥ 0, c > 0, y < 2 and Γ is the gamma function.

Example (1) is a pure diffusion, without jump component. A jump compo-
nent in the equity returns is introduced by [31] through a compound Poisson
process, leading to Example (2), where λ denotes the jump intensity and m
and c are the mean and standard deviation of the log jump sizes, assumed to
be normally distributed. This jump component produces a finite number of
jumps within any finite time interval, i.e., the process exhibits finite activity,
allowing to capture rare and large events such as market crashes or corporate
defaults. However, market prices can also experience very frequent jumps
of different sizes within any finite time interval. This property is captured
by infinite activity processes, e.g. by Example (3), which is a pure jump
process with infinite activity and paths of finite variation. The Variance-
Gamma process was first introduced by [30] and [29], and then extended by
[28]. Here, in Example (3), we refer to this latter extension. In particular,
the VG process can be seen as a Brownian motion with constant drift µ and
volatility σ,6 with a stochastic time change defined through a gamma pro-
cess with unit mean rate and variance rate ν. Alternatively, the VG can also
be seen as the difference between two independent gamma processes with
suitable parameters. This process has a lot of desirable properties consistent
with empirical evidence; it allows, e.g., to control skewness and kurtosis of
the return distribution and to correct some biases in option pricing implied
by the [11] model. A further generalization of the VG process is the [13]
model (CGMY), given by Example (4), that allows for both a diffusion and
a jump component. Moreover, it can be suitably parametrized in order to
capture finite or infinite activity as well as finite or infinite variation.

Lévy processes have been employed extensively in the mathematical fi-
nance literature, see [16]. In the context of the pricing of life insurance guar-
antees, Lévy processes have been used e.g. by [6] and [23]. In the context of
variable annuities not including a GMWB, a risk management application
has been investigated in [37].

6The original model by [30] was instead without drift.
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5. Dynamic programming algorithm

The value of the GMWB is found by implementing the following standard
dynamic programming algorithm for discrete stochastic control problems (see
e.g. [10] and [39]). As we act in a Markovian framework, for each ti, i =
1, . . . , N , and each value of the guarantee account Ati and personal account
Wti , we denote the no-arbitrage value at date ti of the variable annuity as
V (ti, Ati ,Wti). The initial value of the GMWB, that is the solution of (3.5),
is found by solving the Bellman recursive equation, which proceeds backward
in time for i = N − 1, . . . , 1:

V (ti, Ati ,Wti) = sup
θ∈Θti

E
[
Cti + e−r(ti+1−ti)V (ti+1, Ati+1 ,Wti+1)

∣∣Ati ,Wti

]
,

V (tN , AtN ,WtN ) = max{AtN ,WtN }.

Note that the equations for the cash-flow and the accounts are given by
(3.1)-(3.3). The initial value of the contract is then found by computing

V0 = E
[
e−r(t1−t0)V (t1, At1 ,Wt1)

∣∣At0 = Wt0 = U
]
.

The execution of the algorithm requires a discretization over the state vari-
ablesW and A and interpolation of the value function over the resulting grid
in order to compute the expectation (see for instance [22]). As the density
of the 1 year log return can be straightforwardly computed through Fourier
inversion, the expectation can be calculated via numerical integration.

5.1. Algorithm. We outline the algorithm employed to value a GMWB
variable annuity under the dynamic approach. The valuation under the al-
ternative approaches described in 3.1.2 and 3.1.3 requires minor and obvious
modifications.

Step 0. For each i = 0, . . . , N , discretize the state space [0, A0] for Ati and
[0,∞) for Wti :

A = {a1, . . . , aH}, 0 = a1 < a2 < . . . < aH = A0,

W = {w1, . . . , wL}, 0 = w1 < w2 < . . . < wL.

Step 1. Start at tN = T by setting V (tN , ah, wl) = max{ah, wl} for each
(ah, wl) ∈ A×W.

Step 2. Proceed backwards: for i = N − 1, . . . , 1
I - interpolate theH·L triplets (ah, wl, V (ti+1, ah, wl)), h = 1, . . . ,H

and k = 1, . . . , L, to construct the function Ṽ (ti+1, a, w) for
0 ≤ a ≤ A0 and w ≥ 0;

II - for each (ah, wl) ∈ A×W compute

V (ti, ah, wl) = sup
θ∈Θti

{
Cti + e−r(ti+1−ti)

∫ ∞
−∞

Ṽ
(
ti+1, ã, b̃

)
f1(z)dz

}
,
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where

Cti = θ − κmax {θ −min{G, ah}, 0} ,

ã =

{
ah − θ if θ ≤ min{ah, G}
max{min{ah − θ, ah(1− θ

wl
)}, 0} if θ > min{ah, G}

,

b̃ = max{wl − θ, 0}e(r−q+d)(ti+1−ti)+z(1− ϕ(ti+1 − ti)).
Computing the sup in II requires discretization of the control set Θti

to select the supremum.
Step 3. The value of the contract at inception is

V0 = e−r t1
∫ ∞
−∞

Ṽ
(
t1, U, Ue(r−q+d)t1+z(1− ϕ t1)

)
f1(z)dz.

Note that f1 and d have been introduced in Section 4 and can be computed
before implementing the above algorithm. In particular, the density f1 is
obtained through inversion of the characteristic function Φ1 (see [5]) and
then the constant d can be calculated via numerical integration. Similarly,
numerical integration (e.g. simple trapezoidal rule or Gauss quadrature) can
be used to compute the integrals in Step 2.II and Step 3 of the algorithm.

6. Numerical results

We fit the four models introduced in Section 4 to option prices on the S&P
500 observed on 31 December 2012, using maturity specific interest rates and
dividend yields. We consider both call and put options for maturities up to
2 years, and discard options too far in or out of the money. When not
available in closed form, plain vanilla option prices in a Lévy framework
can be computed easily using Fourier inversion techniques, see for instance
[21]. The fitting results in the parameter estimates are contained in Table
3, together with other key statistics of the 1 year log return.7 The densities
of the 1 year log return for the different estimated models are displayed in
Figure 1.8

model GBM Merton VG CGMY
σ = 0.1361 σ = 0.1114 σ = 0.1301 c = 0.6817

λ = 0.5282 µ = −0.3150 g = 18.0293
m = −0.1825 ν = 0.1753 m = 57.6250
c = 0.1094 y = 0.8000

volatility (%) 13.61 21.58 18.53 15.59
skewness 0 2.1783 -0.7430 -0.3156
kurtosis 3 9.9050 3.9237 3.2743
Table 3. Parameters of the Lévy processes obtained by calibration to

S&P 500 option prices.

7Moments related to Lévy processes can be directly computed using cumulants, see
[16].

8In the CGMY model we fix y = 0.8, implying a finite variation, infinite activity
process.
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Figure 1. Density of 1 year log return.

From Figure 1 and Table 3 one can observe that the calibration leads to
notable differences among the four models here considered. Nevertheless, the
simplest and the most sophisticated model, namely GBM and CGMY, are
relatively close to each other, both in terms of moments and numerical results
(see also Tables 4-6 and Figures 2-3). On the other hand, the Merton and
VG models, although they differ in terms of skewness and kurtosis, produce
comparable results that are always much higher than those obtained with
the GBM and CGMY. This can be attributed to the heavier tail displayed by
the Merton and VG models, so that the guarantees implicit in the GMWB
are underpriced by models that are not able to capture extreme movements
in the fund process.

A comparative static analysis is performed for the contract value and fair
fees for the different models and contract parameters, market interest rate
and policyholder behaviour. If not otherwise mentioned, we use the following
parameter values as benchmark case: ti = i, T = 20, r = 5%, κ = 5%, q = 0,
U = 100, G = U/T . In Table 4 we report the fair fee rates ϕdynamic and,
in brackets, ϕstatic, in basis points, for different levels of the market interest
rate r. Similar results are reported in Table 5, for different maturities T .

The fair fee rates ϕdynamic and ϕstatic decrease with r, as expected. Note
that the fee required to compensate the option to act dynamically in the
withdrawal and surrender decisions, given by the spread ϕdynamic − ϕstatic,
decreases with r in each model. In particular, this spread ranges from 47-
403 b.p when r = 3% to 1-7 b.p. when r = 7%, thus confirming both the
importance of the fund distribution tail and the high impact of the interest
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r (%) 3 4 5 6 7
GBM 78 27 12 5 2

(31) (15) (7) (3) (1)
Merton 469 129 46 27 16

(66) (40) (25) (15) (9)
VG 454 116 42 24 14

(63) (38) (23) (14) (8)
CGMY 183 44 22 11 6

(43) (24) (13) (7) (3)
Table 4. ϕdynamic (ϕstatic) in b.p., for different risk-free interest rates.

T 10 15 20 25 30
GBM 50 24 12 7 4

(32) (14) (7) (4) (3)
Merton 201 95 46 28 18

(82) (43) (25) (16) (11)
VG 180 83 42 25 17

(77) (39) (23) (14) (10)
CGMY 82 42 22 13 8

(50) (24) (13) (7) (5)
Table 5. ϕdynamic (ϕstatic) in b.p., for different contract maturities.

rate on the cost of the flexibility added to a static contract by allowing a
dynamic behaviour.

Similar findings can be seen in Table 5, as contracts with a longer maturity
require a lower fee to be fair. As T increases, several effects on the contract
value can be highlighted, and the overall impact is negative. Firstly, the
insurance fee is applied over a longer period; secondly, the GMWB guarantee
has a lower value since the market rate is higher than the minimum interest
rate guaranteed on the personal account, which in our examples is 0% as
G = U/T ; finally, the guarantee is offered over a longer period, and this
instead has a positive impact on the contract value.

In the previous tables we have not reported the values of the fair fee
rate ϕmixed obtained under the mixed approach because, at least for the
considered parameters, they always coincide with those obtained under the
static approach, that is ϕmixed = ϕstatic. On one hand, this fact leads
us to argue that the penalty applied on the portion of the personal ac-
count exceeding the withdrawal level G, equal to 5%, is high enough to
discourage surrender. On the other hand, since the same penalty is applied
in the dynamic approach for withdrawal amounts exceeding G, the spread
ϕdynamic − ϕmixed = ϕdynamic − ϕstatic seems to be completely (or mainly)
attributable to the possibility of withdrawing amounts less than G. To ver-
ify if things change for levels of the penalty κ lower than 5%, in Table 6 we
report the results obtained for ϕdynamic, ϕmixed (in braces) and ϕstatic (in
round brackets) in all the three approaches.
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κ (%) 0 1 2 3 4 5
GBM 56 19 12 12 12 12

{30} {7} {7} {7} {7} {7}
(7) (7) (7) (7) (7) (7)

Merton 195 142 103 75 57 46
{94} {55} {34} {25} {25} {25}
(25) (25) (25) (25) (25) (25)

VG 182 130 92 65 48 42
{88} {50} {29} {23} {23} {23}
(23) (23) (23) (23) (23) (23)

CGMY 100 56 30 22 22 22
{51} {19} {13} {13} {13} {13}
(13) (13) (13) (13) (13) (13)

Table 6. ϕdynamic {ϕmixed} (ϕstatic) in b.p., for different penalties.

From the first two rows of Table 6 we notice that the penalties for exceed-
ing withdrawals or surrender have a depressing effect on the fair fee rates,
although this effect can be perceived only when the penalty rate is sufficiently
low, expecially under the mixed approach (second row). For instance, with
the GBM and the CGMY model the fee is constant for penalties greater or
equal to 1% and 2% respectively, whereas in the Merton and VG models this
happens starting from a penalty rate of 3%. The GBM and CGMY models
produce less sensitive results. Under these models the fees become constant
from penalty rates of 2-3% even under the dynamic approach (first line),
thus confirming our previous conjecture that in these cases the greater flex-
ibility allowed by a dynamic contract is worth only for withdrawal amounts
less than G. Of course, under the static approach (third line) the penalty is
never applied, so that the results are independent of κ. Finally, we notice
that when the values under the mixed approach become penalty independent,
i.e. for sufficiently high levels of κ, then they coincide with those obtained
under the static approach.

To grasp visually the influence of the fee rate on the initial contract value
under the different policyholder behaviours and Lévy processes here consid-
ered, in Figures 2 and 3 we plot V0 against ϕ when the penalty rate is κ = 0.
In particular, from Figure 2 one can capture the differences among the vari-
ous approaches (for each price process), while from Figure 3 one can capture
the differences induced by the various price processes (for each valuation ap-
proach). Recalling that U = 100, the intercept between the horizontal line
at level 100 and the contract value gives the fair fee rate for each model and
approach.

The (negative) impact of the fee rate on the initial contract value is partic-
ularly relevant in the static approach, under which the policyholder cannot
exit the contract before maturity or withdraw high amounts (greater than
G) in order to leave less money in the personal account and hence mitigate
the fee effect.9 When ϕ = 0 there is no difference between the static and the

9Recall that the fee is applied to the personal account value.
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Figure 2. The initial contract value V0 against the fee rate ϕ for each
price process under the different policyholder behaviours.

mixed approach in all models, that is, it is never optimal to exit the contract
before maturity, at least if one is not allowed to make partial withdrawals
different from G. On one hand, since in this case the GMWB rider is offered
at zero cost, we can argue that it is convenient to keep the guarantee alive
as long as possible. On the other hand, the difference between the static
(or mixed) and the dynamic approach is mainly attributable, as already re-
marked, to the possibility of withdrawing amounts less than G rather than
higher. The differences among the various approaches, at least for low levels
of the fee rate, are most remarkable under the Merton and VG processes,
that always produce very close results.

7. Conclusions

In this paper we present a dynamic programming algorithm for the valu-
ation of variable annuities with Guaranteed Minimum Withdrawal Benefits.
A very crucial aspect underlying the valuation of such products is to predict
how the policyholder behaves with respect to her withdrawal decisions. Our
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Figure 3. The initial contract value V0 against the fee rate ϕ for each
policyholder behaviour under the different price processes.

algorithm is general enough to encompass different policyholder behaviours,
so that it is particularly suitable to meet different purposes of an insurance
company (e.g., for pricing purposes it is reasonable to assume an approach
based on the worst case scenario, while for realistic risk-management valu-
ations an intermediate approach seems to be more appropriate). Moreover,
the algorithm can be easily extended in order to include other policyholder
decisions in addition to those concerning her withdrawal behaviour (e.g.,
switching between different reference portfolios, acquisition of new guaran-
tees or cancellation of existing ones) or other contract features such as death
benefits. Another important contribution of our paper with respect to the
existing literature concerns the model assumptions governing the evolution
of the reference portfolio. In this respect not only we go beyond the classi-
cal [11] model, but put ourselves in the general class of Lévy processes. In
the numerical section we perform a sensitivity analysis choosing as examples
four different types of Lévy processes. This analysis highlights the relevance
of the specific assumption adopted in the valuation, i.e., the model risk, and
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in particular the fact that GMWB guarantees can be grossly underpriced by
models that are not able to capture extreme movements in the fund process.
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