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Multi-Granular Trend Detection for Time-Series Analysis

Arthur van Goethem, Frank Staals, Maarten Löffler, Jason Dykes, and Bettina Speckmann
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Fig. 1. Left: automated trend detection in combination with manual interaction finds two opposing key trends in the data (CO2 intensity
of economic output: kg CO2 per 2005 PPP $ of GDP [13]). Middle: selecting only the subset that is part of the peak at T 1, directly
shows that this subset is not part of the peak at T 2 (homogenized daily amount of precipitation for 240 weather stations [21]). Right:
different visual styles help (de-)emphasize different properties of the detected trends.

Abstract— Time series (such as stock prices) and ensembles (such as model runs for weather forecasts) are two important types
of one-dimensional time-varying data. Such data is readily available in large quantities but visual analysis of the raw data quickly
becomes infeasible, even for moderately sized data sets. Trend detection is an effective way to simplify time-varying data and to
summarize salient information for visual display and interactive analysis. We propose a geometric model for trend-detection in one-
dimensional time-varying data, inspired by topological grouping structures for moving objects in two- or higher-dimensional space. Our
model gives provable guarantees on the trends detected and uses three natural parameters: granularity, support-size, and duration.
These parameters can be changed on-demand. Our system also supports a variety of selection brushes and a time-sweep to facilitate
refined searches and interactive visualization of (sub-)trends. We explore different visual styles and interactions through which trends,
their persistence, and evolution can be explored.

Index Terms—Interactive Exploration, Trend Detection, Time Series.

1 INTRODUCTION

Due to our increased ability to monitor processes and record detailed
information, a large body of data is readily available that describes
the behavior of complex processes over time. Sensors in our mobile
phones and cars, or more conventional sources such as weather sta-
tions, supply continuous information on the state of different variables
over time. In this paper we focus on one-dimensional time-varying
data, that is, time-series data. An important type of time-series data
are so-called ensembles: the set of simulation results of intricate mod-
els for varying starting conditions and parameter settings. Ensembles
give an indication of the possible spread of a model over time and con-
tain exact traces of the different inputs, making them highly valuable
for domain experts [26]. They are commonly used in weather predic-
tion [8, 16], climate change [20, 38] and hurricane prediction [12, 35].

The visual analysis of time-series data quickly becomes infeasible
if the raw data is used directly. The high complexity of the data sets,
combined with their inherent uncertainty, makes them difficult to ana-
lyze. Hence there is a growing body of visualization literature [3, 26]
that attempts to visualize uncertainty in data.
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One common approach to visualize uncertainty, while also decreas-
ing complexity, is to reduce the data to its main statistics. Heat-maps
and fan-charts, for example, give a statistical overview of the distribu-
tion of the data. The abstraction of these maps is their main strength,
but also their main weakness. The strong reduction of the data cre-
ates structure but at the same time runs the risk of overemphasizing
the extremes and “hot spots”. Without knowledge of the individual
entities that comprise the data such representations may be mislead-
ing. Other options to display uncertainty include the display of regular
distribution plots [31], and uncertainty isolines [30].

An alternative approach to displaying uncertain data is to enforce
more structure on the data. Agglomeration via trend detection reduces
complexity while maintaining a significant part of the information con-
tained in the original input data. Trend-detection groups entities that
behave similarly over an extended period of time into trends. The
extent to which time series “behave similarly” and the notion of an
“extended period of time” are not predetermined. However, results
and interpretation are dependent upon these analytical parameters. We
think of a trend as a set of entities such that all entities in the trend are
a small distance away from their neighbors. See Fig. 2 for an illustra-
tion. This criteria of closeness results in trends that reasonably match
with expectations. There may be more aspects that affect human per-
ception of trends, though, such as the distribution of elements.

A more abstracted view of the data reduces the cognitive load for
the user and may help detect structure that is hidden when all infor-
mation is shown. In this sense trend-detection serves a similar goal as
edge-bundling [18, 19, 28]. Trend detection, and the subsequent vi-
sualization of the detected trends, also performs well for multi-modal
time series or ensembles.

Trend detection is not without challenges. The visualization of
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Fig. 2. (a) Entities that form chains of close neighbors define a trend.
(b) A simple set of time series. (c) The trends found by our algorithm.
A trend is a set of entities that are in close proximity of each other for
an “extended period of time”. Note that there are relations between the
trends, that is, the initial trend splits into two subtrends, both of which
again have subtrends.

trends has an inherent effect on the perceived support, variability, and
distribution of different trends. It is unclear how this affects user per-
ception. Furthermore, agglomeration requires a predefined granularity
to detect trends. Since the trends, and hence the necessary granularity,
are not known a piori, trend detection should be performed at different
granularities. However, many current methods for trend detection do
not use models that easily support a change of granularity.
Contribution. We propose a geometric model for trend-detection in
one-dimensional time-varying data, inspired by topological grouping
structures for moving objects in two- or higher-dimensional space.
Specifically, our model builds on the work by Buchin et al. [5] and
Van Kreveld et al. [40]. Trends are detected using three natural pa-
rameters: granularity, support-size, and duration. The model is firmly
rooted in geometrical methods for trend detection and trends have a
clean mathematical definition. This mathematical soundness allows
for provable guarantees on the detection of trends.

We define a series of tasks and visualization criteria for trend de-
tection systems. Based on these tasks we then explore different visual
styles and show how they may affect the task-appropriateness of the
system. Distinct styles affect the displayed information differently and
we discuss their trade-offs and complications.

Finally, we discuss several tools that help to interactively explore
the data via a computer-assisted model. Different selection brushes,
fixed starting conditions, and a time-sweep allow the user to decom-
pose and construct trends on-demand.
Related Work. The visualization of uncertainty is an important cur-
rent area of visualization research [26]. In uncertainty visualiza-
tion [3, 32] a general stochastic uncertainty in the data is assumed.
This uncertainty may be based in inexactness of the measurements
or of the model. To represent this uncertainty the probability density
function (PDF) is visualized. Overview statistics (such as the mean
and standard deviation) are used to display the variability in the PDF
over time or position. Different glyphs have been proposed to visualize
this variability, for example, box plots, violin plots [17], and summary
plots [31]. Higher-dimensional data may be visualized using (proba-
bilistic) isolines to display uncertainty [2, 29, 30, 41]. Local surface
distortion [15] and animation [4] have also been applied to display
uncertainty in higher-dimensional data.

Ensemble visualization differs from uncertainty visualization, as
the different data series are not stochastic samples, but correspond
to exact instances of the input. The ability to analyze and corre-
late data series, and thus different inputs, make ensembles very valu-
able for domain experts [26]. Previous work on ensemble visualiza-
tion has mainly focussed on representing two-dimensional and three-
dimensional ensemble data. Sanyal et al. [37] proposed a spaghetti-
like representation of the ensemble, highlighting different features
in the data set. Mirzargar, Whitaker, and Kirby [24] recently pro-
posed a curved box plot to display ensemble information. They use
the model of data depth to determine a multi-dimensional distribution
function. However, similar to PDF-based visualizations they are able
to handle only uni-modal density functions. Ferstl, Burger, and West-
ermann [11] use trend detection to agglomerate the different ensem-

ble members. They use principle component analysis (PCA) to detect
trends in the ensemble. PCA, however, is not intuitive and changing
the dimension for PCA may not give clear changes in trend detection.
Dykes and Brunsdon [10] use ensembles to investigate the distribution
of a single data variable across space and scale. Potter et al. [33] argue
that presenting all information in a single display is not required. They
propose a multiple linked displays framework to study ensembles. Fi-
nally, multi-dimensional ensembles may also be projected down to
one-dimensional functions. Demir, Dick, and Westermann [9] com-
bine histograms with local one-dimensional ensembles and brushing
techniques to interactively explore a three-dimensional ensemble.

Time-series data, similar to ensembles, consist of a set of time-
varying series. In contrast to ensembles though, the series need not
stem from a single model, but may be uncorrelated. Time series are
often used as a part of larger visualization frameworks, for example,
in small multiples. The comparison of different time series and trend
detection within groups of them has received some attention. Stacked
graphs [6] can be useful to visualize several functions at the same time,
but comparisons between different series may be difficult. Recently
Horizon Graphs [27, 34] have have been introduced as a tool to dis-
play multiple time series while allowing easy and quick comparisons.

Our work on trend detection is based on the trajectory grouping
structure, introduced by Buchin et al. [5]. Intuitively, a group is a suf-
ficiently large set of entities (for example, animals, people, or cars)
that move together during a sufficiently long time interval. Buchin
et al. present an efficient algorithm that, given the trajectory data, can
compute all maximal groups, and the relations between these groups
(that is, groups G1 and G2 merge into group G at time s, and G splits
into groups H1 and H2 at time t). Recently, van Goethem et al. [39]
extended their work to efficiently change the group parameters, that
is, the required minimum group size, the minimum group duration,
and the maximum distance between the group members. Their work
allows a user to interact with the data set to explore the effect of the dif-
ferent parameters. Kostitsyna et al. [22] and Löffler et al. [23] extend
the work of Buchin et al. to environments with obstacles. Van Kreveld
et al. [40] recently observed that in dense environments the original
definition by Buchin et al. may not capture the nature of a group well.
They propose a slight variation on the definition for this setting. This
adapted definition, however, does lead to a higher computational cost.

Organization. We formally define the problem we study in Section 2.
There we discuss the concepts involved in trend detection and identify
primitive tasks. Section 3 presents the algorithmic foundations of our
work. We first describe the work by Buchin et al. and then explain a
simpler and faster algorithm for trend detection. Section 4 discusses
a variety of visual encodings that may be used to represent trends and
explains how these visual encodings relate to the primitive tasks. In
Section 5 we explain our tools for interactive exploration. Using the
results of all previous sections, in Section 6 we show how to detect
correlations in two real-world examples with our system. Section 7
discusses the limitations of our approach and Section 8 concludes with
a general discussion and possible directions for future work.

2 PROBLEM DEFINITION

In this section we first define the concepts of time series, ensembles,
and trends. We then analyse the problem of trend detection and define
the tasks that should be supported by any trend-detection system. We
also define several aesthetic criteria that should be taken into account
to efficiently visual the detected trends.

2.1 Preliminaries

Time series. A time series is a time-ordered sequence of data points
that describes how a variable changes over time. Each data point d can
be described by a pair d = (t,v), where t is the time-stamp at which
the data has value v. We consider only time series that have exactly
one data-variable, hence v is assumed to be a single real number. The
length of a time series is the number of data points. We assume that
the data changes linearly in between consecutive data points. Thus, we
can interpret a time series as a piece-wise linear function describing the



change in a variable over time. We do not require that the data points
are uniformly spaced in time.

A collection of time series is called time-series data and consists of
n different time series. Each of these time series has at most τ data-
points. For ease of description we assume that all time series have
exactly the same time span [ts, te].
Ensemble. An ensemble is a specific form of time-series data where
all time series originate from (a perturbed version of) the same model.
All time series describe the change of the same variable over time but
have slightly perturbed starting conditions or models. Consequently,
these time series are strongly correlated at the initial time-stamp and
as time increases become more diverse. Very well known examples
include weather predictions and runs of climate change models.
Trends. In trend-detection we are interested in detecting the hidden
structure in an input data set. That is, we want to detect whether there
are several time series that behave similarly over an extended period
of time. We say that such a set of similar time series form a trend, and
that the time series comprising it form the trend-members. When time
series “behave similarly” and what an “extended period of time” is,
depends on the model used. We use the grouping structure as the base
for trend detection. Intuitively this means that all entities comprising a
trend should be at most a small distance ε away from their neighbors
in the trend. A more formal definition is given below. See Fig. 2(b).

Important properties of a trend are its support, duration, range, and
its distribution. The support of a trend is the number of time series
that are part of the trend, the duration is the length of the time interval
during which the time series behave similarly. The range of a trend is
the interval between the highest valued and lowest valued time series
in the trend, and the distribution of a trend indicates where exactly the
time series making up the trend lie within the range of the trend. For a
given trend T , a subset of the time series in T may form a trend T ′ that
has a longer duration (but a lower support) than T . We refer to such a
trend as a sub-trend of T . See Fig. 2(c) for an illustration.

We focus on finding and displaying only those trends that are
present initially, that is, at time ts. There are several advantages to fo-
cussing only on initial trends. First, the detection of trends starting at a
fixed point in time naturally captures the uncertainty in the ensembles
that we consider (for example, weather predictions). As a result, the
trends are naturally diverging. Note that by changing the starting posi-
tion users can still browse all parts of all different trends. Second, the
grouping algorithm runs significantly faster than in the general case,
allowing for better user interaction.

By considering only trends that start at ts, the trends form a for-
est [7]. We may have several trends with large support and a short
duration that form the roots of the trees in our forest. Each of these
trends may have several children that represent sub-trends of slightly
lower support and larger duration. In turn, these trends may have sub-
trends of their own, thus resulting in a tree structure.

2.2 Problem Analysis
An input instance consists of a set of n time series. Each time series is
a piece-wise linear function defined over the time-interval [ts, te]. The
objective is to detect patterns, at arbitrary granularities, to find corre-
lations between different input time series. We assume a computer-
assisted model in which the user interacts with automated trend de-
tection to analyze the data. Within the model, we specify a series of
primitive tasks that should be supported by the system to enable ex-
ploration and correlation of the data. We also specify different visual
encodings that affect the usability of the system.

Aigner et al. [1] describe a set of tasks that are involved in the analy-
sis of time-oriented data. These tasks include classification, clustering,
search and retrieval, pattern discovery, and prediction. Our approach
is focussed on the clustering task and as such all primitive tasks de-
scribed below are focussed around the effectiveness of the clustering.
In a clustering task the data is grouped based on similarity, in our case
inter-entity distance. Clustering abstracts the data and therefore it is
important that it does not falsely represent the underlying data. Man-
ual pattern discovery (automatic detection of interesting patterns), and
prediction (infer the evolution of data in the future) may be supported

through the use of our clustering approach, however we do not support
the automated computational support of these tasks.
Primitive Tasks. To detect coherence in the data several primitive
tasks need to be performed. These tasks are centered on two core con-
cepts: estimating trend statistics and determining connectivity within
the detected trends. The tasks support a more abstract level of data
processing where similarly behaving items are clustered in trends.

T1a Estimate support of a trend.

T1b Estimate range of a trend.

T1c Estimate distribution inside a trend.

T2a Determine behavior of (a subset of) time series over time.

T2b Determine how granularity affects the trend formation.

T2c Determine connectivity of the trend structure.

T2d Correlate different trends.

The combination of different primitive tasks allows more complex
questions to be answered. What is the strongest supported trend in
the data and how large is the range? (T1a, T1b). How does the range
of a group of time series change over time? (T1b, T2c) . Are there
time series that are included in two or more specific trends? (T2a,
T2b, T2d). Do the time series included in a given trend behave consis-
tently, or do they form finer trends at other granularities? (T2a, T2b).
How do the initial conditions affect future behavior? (T2c, T2d).

An effective visualization should support the majority (if not all)
of the primitive tasks. Not all tasks are enabled equally by different
visualizations though. We focus more on the effects of visual encoding
on the primitive tasks in Section 4.
Visual Encoding. Besides the support of primitive tasks, an ef-
fective visualization should also aim to reduce the effort involved.
Clear visual cues help reduce the cognitive load by pre-structuring the
presented information. Reducing the cognitive load improves task-
efficiency and maintains clarity for complex data sets. We distinguish
several aspects that may positively affect the task-effectiveness.

V1 Firm grounding in input data.

V2 Clear trend separation.

V3 Low visual complexity of trends.

V4 Continuity of shapes in trend-structure.

V5 Visual distinction between uni-modality and multi-modality.

To properly judge relationships within the data, the visualization
should display only information that is firmly grounded in the input
data (V1). This (nearly) trivial observation can be difficult to ensure in
practice and has often been overlooked. The display of range (T1b),
affects the perceived distribution (T1c) of a trend, unless explicitly
visualized. Support (T1a) and range (T1b) together define the local
density at each point in time, but either may overshadow the other, af-
fecting the perceived density. Furthermore, a visualization should not
introduce salient features that are not present in the input data. This
is problematic for automated trend detection since the (arguably artifi-
cial) begin- and end-point of a trend are highly visible.

As trends may overlap, clear trend separation (V2) ensures that dif-
ferent trends can easily be kept apart. This allows different trends
to be related and emphasizes the structure between trends (T2a, T2c,
T2d). Reducing the visual complexity of the represented trends (V3)
helps reinforce this structure even further and shifts focus from exact
representations to a higher-level structure. We note that this is in stark
contrast with the first criterion (V1) as simplifying the data reduces the
strength of the relation to the original input data. The low visual com-
plexity of trends is improved further by the (smooth) continuation of
trends (V4). We ensure that trends split into sub-trends continuously
and so further emphasize the structure in the trends (T2c, T2d).

When the distribution inside a trend is not explicitly encoded, vi-
sualizations may incorrectly imply distributions with are not in fact



present in the data. For example, by solely encoding the range of a
trend, a uniform or uni-modal distribution may be implied. In many
cases this is, however, not a fair implication. By making a visual dis-
tinction between uni-modal or multi-modal distributions (V5) we can
help parse the underlying structure of trends (T2a, T2b).

3 COMPUTING TRENDS

In this section we describe how the work on trajectory grouping by
Buchin et al. [5] and Van Kreveld et al. [40] can be used to detect
trends. We first revisit their definitions, and see how they relate to
trends in time-series data in Section 3.1. The algorithms for computing
trajectory grouping structures may be used to detect maximal groups
(and as a result, trends) that begin and end at any arbitrary position
in time. However, in our setting, we are interested only in maximal
groups that start at the initial time ts. In Section 3.2 we present a
simple algorithm, based on the one by van Kreveld et al., to compute
all maximal groups that start at ts.

3.1 Trajectory Grouping Structure
Buchin et al. [5] consider the problem of detecting maximal groups in
trajectory data. They define a (m,ε,δ )-group to be a set of at least
m entities (e.g. animals, people, or objects) that travel together, with
respect to distance parameter ε , during a time interval of length at
least δ . A set of entities G is together if and only if it is ε-connected:
that is, if for every pair of entities a,b ∈ G, there is a chain of entities
a = c1, ..,ck = b such that for any pair of consecutive entities ci and
ci+1 the distance is at most ε . See Fig. 3 and Fig. 5(a).

Consider each time series as the trajectory of an entity that moves
in R1. We then observe that an (m,ε,δ )-group G corresponds to a
set of (at least m) time series that behave similarly, that is, they are
ε-connected at any time, during a time interval of length δ . Indeed,
the notion of a group naturally corresponds to a trend.

Let G be an (m,ε,δ )-group on time interval I of size |G| > m. All(|G|
m
)

subsets of size m also form (m,ε,δ )-groups on interval I. We are
interested only in maximal groups G: groups that are maximal in size
and duration (that is, we cannot add any entities to G, nor can we grow
the interval on which G is ε-connected). In the remainder of this paper,
we refer to mean maximal groups simply as groups. Buchin et al. [5]
show that, in a collection of n trajectories of length τ , there are at most
O(τn3) maximal groups, and they can be computed in O(τn3) time.

In the definition of groups as given above, the entities in a (maxi-
mal) group G may be ε-connected through entities that are not in G.
If the set of entities is very dense this may yield somewhat unintuitive
results, see Fig. 4. Therefore, van Kreveld et al. [40] give a refined def-
inition of group in which the entities in group G have to be ε-connected
using only entities that are also in G. The number of maximal groups
according to this definition is still O(τn3). Computing all of them
takes O(τ2n4) time. Since our ensembles are likely to be dense, we
consider this refined version of groups.

ts t1 t2 t4 t5t6 t7t3 te

δ =
m = 3
ε =

Fig. 3. A set of trajectories and maximal groups as defined by
Buchin et al. [5]. The two sets of blue entities also form a group on
[ts, t1], however this group is not maximal, as all blue entities together
with the green entities also form a group on [ts, t1]. The orange and blue
entities do not form a group on [t2, t3] as their time interval is too short.

ε

t1 t2 tets

ε

Fig. 4. An (artificial) example showing the difference between the group
definitions of Buchin et al. [5] and van Kreveld et al. [40]. The blue
entities by themselves are too far apart during [t1, t2], but they remain
ε-connected through the red entities. Hence, by the former definition
they are a maximal group on [ts, te], whereas by the latter definition they
are a group only on [ts, t1] and on [t2, te].

3.2 Algorithm for Trend Detection

The algorithm by van Kreveld et al. [40] can find all groups in a set of
trajectories (or in an ensemble) in O(τ2n4) time. We are interested in
a more restricted setting where all groups start at the initial time ts. As
a result, groups can split, but will never merge. The algorithm by van
Kreveld et al. can be adapted to our setting to run in O(τn3 logn) time.
However, in this restricted setting a much simpler solution is possi-
ble. Next, we describe a simple sweep line algorithm that achieves
the same running time, and uses only elementary data structures. In
particular, there is no need for a data structure storing the arrangement
(ensemble) in which we can delete lines (time series). Consequently,
the new algorithm is significantly simpler to implement than the tech-
nically rather involved algorithm by van Kreveld et al. An overview of
the algorithm is given in Algorithm 1.

We start by sorting all time series by increasing order of their val-
ues at time ts. To detect the maximal groups that are present at ts, we
perform a linear scan over the time series. We maintain the maximal
groups such that for each consecutive pair in a group they are at most ε

apart at ts. As the groups are maximal at the start we can do this greed-
ily (see Fig. 5(a)). Hence, in O(n logn) time we find all ε-connected
maximal groups at ts. As groups cannot merge, we process each of the
initial ε-connected groups separately.

To detect when a maximal group G stops being ε-connected, we
use a vertical sweepline and sweep from ts to te. There are three types
of events we may encounter: (i) vertex events, at which we encounter
a new data-point of a time series (Fig. 5(b)), (ii) intersection events,
at which two time series intersect (Fig. 5(c)), and (iii) split events, at
which the distance between two vertically consecutive, and diverging
time series becomes exactly ε (Fig. 5(d)). We process all events based
on increasing time using a priority queue.

At a vertex event belonging to a time series T , the computed split
and intersection events of T with neighboring time series become in-
valid as T follows a new linear segment. We update the intersection
and split events with both neighbors in the priority queue.

At an intersection event the order of two consecutive time series is

Algorithm 1 ComputeMaximalGroups(T )
Input: a non-empty set T of n time series in the interval [ts, te].
Output: the set G of maximal groups starting at ts.

{Find initial maximal ε-connected sets:}
1: Sort T by increasing their value at ts.
2: Scan through T to find all maximal ε-connected sets at time ts.
3: for all initial maximal ε-connected sets G do
4: Let E be the ensemble induced by all the time series in G.
5: Sweep E to find the first ε-split at time t ′, at which G splits into

G1 and G2. Let t ′ = te if no such split exists.
{G is a maximal group on time-interval [ts, t ′].}

6: Add G, with time interval [ts, t ′], to G.
7: if t ′ 6= te then
8: G1 = ComputeMaximalGroups(G1)
9: G2 = ComputeMaximalGroups(G2)

10: Add sub-groups from G1 and G2 lasting longer than t ′ to G
11: return G
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Fig. 5. (a) Finding maximal ε-connected groups at ts (in green) can
be done greedily. Groups are drawn wider for illustrational purposes
only. (b) Vertex events change the relation with neighboring entities.
Future intersection events and split events must be recomputed. (c)
Intersect events change neighbor relations. (d) Split events occur only
when neighboring entities are not ε-connected anymore.

inverted, changing which pairs of time series are consecutive. This
again affects the future intersect- and split-events of the time series in-
volved. We remove the old intersect- and split-events from the priority
queue, and add the new events to the queue.

At a split event the current maximal group G stops forming an ε-
connected group. We report G, and split the group in two ε-connected
groups G1 and G2. As subgroups may stop earlier than the group they
split from, we restart the computation at ts for both subgroups.

Analysis. Each of the n time series has at most τ data points. It follows
that there are at most O(τn) vertex events, and O(τn2) intersection
events. At each split-event at least one new maximal group is found.
There are at most n maximal groups that end at te, each containing
a single element. As the groups can only split into sub-groups, the
number of split events is at most n− 1. Handling a vertex event or
an intersection event takes O(logn) time. Thus, in between two split-
events we spend at most O(τn2 logn) time. Since there are at most
O(n) split events the total running time is O(τn3 logn).

If we consider yet another variation on the definition of group, in
which we require a (sub)group G to be ε-connected only from the time
t it comes into existence (that is, because a larger group split into G
and G′ at time t), then we do not need to restart from ts for each split.
In this case the algorithm runs in O(τn2 logn) time.

4 VISUAL STYLES

Automated trend detection allows a flexible high-level overview of
time series and ensembles. The way in which trends are encoded
should involve visual design that reveals and emphasizes the structure
in the data. Distinct visualizations present the information differently.
In this section we explore the different visual styles possible and dis-
cuss trade-offs. We focus on several types of information we want to
maintain in our visualization. The behavior of trends over time is cap-
tured in the structure and connectivity of trends and their splits (T2c,
T2d). The main statistics of the trends give an overview of the local
coherence. We focus on support, range, and distribution (T1a, T1b,
T1c). We purposefully do not visualize quartiles since this would im-
ply that the underlying data is uni-modal (T1c, V5). To ensure trends
are clearly separated we add a white casing to all trends (V2). See, for
example, Fig. 2(c), in which the white casing around the top child of
the root allows us to more easily distinguish it from the bottom child.

4.1 Main Statistics

Support. To encode the support (T1a) of the different trends and sub-
trends in our data, we add a centerline to the trends. The centerline is
positioned along the function describing the mean value of all trend-
members to prevent outliers from affecting it overly much. The width
of the centerline is used as a natural cue to encode the support of the
trend. Besides encoding support, the centerline serves two more pur-
poses. First, it is a concrete and localized item that the user can relate
with the general trend that is occurring (T2a). Second, it re-enforces
the top-level structure of trends (T2c, T2d).

(b)(a)

Fig. 6. (a) Linear relationship between opacity and the support of a
trend. (b) Smoothed extreme values for each trend.

The encoding of trend structure and support using a centerline is
a plausible approach. We do, however, note several issues that might
occur under boundary conditions. Strongly supported trends that are
highly correlated and have a small range may be overshadowed by the
centerline (¬V1). This can partially be resolved by globally scaling the
width of the centerlines. In the exact opposite case, where the center-
line is minimal compared to the range of the group, the centerline need
not be the most visually salient feature. This might lead to an overes-
timation of the support of a group as the range is visually dominant.
Finally, using the mean position for the centerline implicitly encodes a
uni-model distribution (¬V5). This is not always justified, specifically
when trends split. We discuss possible solutions in Section 4.2.

Besides encoding support on the centerline, we may also encode it
through the use of transparency (see Fig. 6(a)). Here the transparency
of a trend is directly correlated with the support of a trend. To ensure a
consistent smooth change we linearly interpolate the gradient in each
trend to match at trend splits. The main disadvantage of transparency
is that future trends may become less discernable, especially when
many trends overlap (¬T2a, ¬T2c). Furthermore, the strength of a
trend is not solely defined by the support, but also by the range. A
trend with similar support, but smaller range is more firmly present in
the data. However, a trend with a smaller range (and similar support)
will be less visible in the visualization (¬V1).

Distribution. The distribution within a trend supports analysis of
trends at other granularities than the current (T1c, T2a, T2b). The
extremes, quartiles, and mean are an indication of trends at different
granularities. Re-introducing the statistical information for each trend
increases information density, however, that is at odds with our goal
to simplify the trend structure (V3, V4). We mainly focus on dis-
playing the range of possibilities using the extremes of the trend. A
similar approach might be applied using the quartiles as boundaries.
We purposefully do not include both as this visually reinforces a uni-
modal distribution, whereas a significant part of our data is likely not
uni-modal. We investigate several options to visualize the range and
compare their weaknesses and strengths.

The most basic visual style simply displays the complete range (see
Fig. 6(b)). That is, we display the area in between the maximum and
minimum extreme. We simplify the outliers to remove any (meaning-
less) noise (V3). Displaying the extremes does not give any informa-
tion on the distribution of time series within the group. All elements
are at least ε-connected, but the distribution is not guaranteed to be
uniform or uni-modal. There may be large sections that are enclosed
in between the extremes, but that are not supported by any time series
in the trends. This is particularly the case when trends split into several
sub-trends. This “illusion of presence” is also a problem for fan charts
when the distribution of the data is multi-modal (¬V5).

We present two possible approaches to counteract this illusion.
First, we may increase the information encoded in a trend. For exam-
ple, we might encode the (complete) distribution by using a heatmap
(see Fig. 7(a)). Introducing more information reduces the illusion of
presence by increasing the accuracy of the representation (V3, V5). Of
course there is a trade-off between simplification and information.
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Fig. 7. (a) A heatmap approach displays more information dispelling the
illusion of presence. (b) A uniform range per trend emphasizes inaccu-
racy, but connectivity with sub-trends is lost.

An alternative visual style is to reduce the presented information.
By visually reinforcing the inaccuracy in the data, we reduce the illu-
sion of presence. One way to achieve this is to display a representative
range per trend. As representative range we pick the average range
integrated over time. This range is presented for the complete trend
independent of the actual variability in the trend. It is possible to com-
pare the average range between trends, but within a trend all informa-
tion is abstracted. The result is a harmonious display of the data as the
group and centerline are in complete agreement (see Fig. 7(b)) (V3).

There are some visual artifacts associated with this style. First, a
consistent range may be achieved by offsetting the centerline along the
vertical axis. Curvature, however, will result in an appearance of non-
uniform width. Hence the range might be interpreted as accurate by
the user after all. A perpendicular offset of the centerline prevents this,
but causes the range to be non-uniform along the trend. Consequently,
it is hard to compare the range of different groups (¬V1). Second,
trends and sub-trends become non-continuous. A discontinuity occurs
at the common boundary as the mean range of trends and sub-trends do
not match up (¬T2c, ¬V4). This visual discontinuity may be harmful
in situations with many overlapping groups. Furthermore, it is a strong
visual cue that has no firm grounding in the input data (¬V1).

To prevent discontinuities at the boundaries we simplify the bound-
ary instead. We sample the range along the trend at regularly fixed
intervals. These sample include at least the start and end of each trend.
Using a low resolution sampling (up to three per group) we simplify
the input but remove any visual discontinuity (see Fig. 8(a)).

4.2 High-level Structure
Our geometrical model clearly defines when a group (or trend) comes
into existence and when it ceases to exist. However, the resulting trend
boundaries are artificial in a sense, since they are the results of our
need to group different items and as such only a second-order product
of the input. Hence, we should take care to not overly emphasize the
discontinuities at trend splits (V1, V4).

(b)(a)

Fig. 8. (a) Simplifying the input smoothes out discontinuity while main-
taining low visual complexity. (b) By de-emphasizing the area just before
a split, we can reduce the visual saliency of the split itself.

Splits. Trend splits have high visual impact: just before a trend splits
there must be an area of height ε that does not contain any time series
and after the split this area does not exist anymore. If we display trends
uniformly in their full range, there will hence be a strong visual break
at a split (¬V1). The data, clearly, is neither uniform nor uni-modal
around a split (after all, there is an ε-split between at least two of
the items). We reduce the saliency of ε-splits by visualizing the area
devoid of time-series occuring before an ε-split.

Let T be the trend that splits into two sub-trends. Let S be the time
series that are part of the newly formed upper trend and S′ the time
series that are part of the lower trend. We compute the lower envelope
of S and the upper envelope of S′ (see Fig. 9(a)). Let i be the last inter-
section of these two envelopes that falls inside T . The two envelopes
from i onwards define an area A inside T that is devoid of any support-
ing time series (see Fig. 9(b)). We draw A with reduced opacity, thus
reducing the saliency of the trend split itself (see Fig. 8(b)).

(b)(a)

S
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Fig. 9. (a) The upper-envelope is the pointwise maximum of a set of
poly-lines (red). (b) The lower envelope of S and the upper envelope of
S′ define the area A devoid of items.

Centerline. While the centerlines reinforce the structure of the trends,
the vertical connections between centerlines emphasize the visual dis-
continuities in the detected trends at splits (¬V1). We explore different
visual styles to reduce the disruptive influence of these connectors.

The connectors between centerlines of trends are not part of the
original input data. Hence, we aim to reduce their saliency. One op-
tion is to color the connectors differently to emphasize that they are not
part of the data (see Fig. 10(a)) (V1). The different color connectors,
however, make the visualization more complex and do not form a log-
ical connection with the centerlines. Alternatively, dotting or dashing
may help to de-emphasize the connectors (see Fig. 10(b)).

We may decide to not draw connectors at all. As discussed before,
placing the centerlines along the mean implicitly encodes a uni-modal
distribution. This is not always justified, specifically at splits. Hence,
we can decide to reposition the centerline to prevent a visually salient
split. Let T be the main trend and S the sub-trend that has the largest
support among all sub-trends. We compute the mean centerline of T
as well as the mean centerline of the subset of time series in T that
are also part of S. The resulting centerline for T is the linear in-
terpolation of both centerlines. Let xs, xe be the x-coordinate of the
start, respectively end, of T . The final centerline C(x) is positioned at
(xe−x)/(xe−xs) ·T (x)+(x−xs)/(xe−xs) ·S(x). For other sub-trends
a similar connecting centerline is computed, that is cut off as soon as it
intersects C. Connections to sub-trends may be displayed either dotted
or regular (see Fig. 10(c)). Repositioning the centerline reinforces the
trend structure, but reduces the grounding in the input data (¬V1, V4).

5 EXPLORING TRENDS

Our method supports three parameters to steer the automated trend
detection: granularity, duration, and support (see Fig. 11). Varying the
granularity, controlled by the ε-parameter, allows detection of coarser
or finer trends. Filtering on duration prevents the detection of too short
trends, and filtering on the support prevents trends with low support.
Trend Granularity. The detection of trends is based on a singular pa-
rameter that determines a threshold on the maximum allowed distance
between consecutive elements. By changing the ε-parameter, the dif-
ferent granularities of trends may be investigated (T2a, T2b, T2c). A
smaller value of ε results in strongly coherent trends and allows only
minor deviations from the trend. While this may capture the most
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Fig. 10. (a) Encoding the connectors as artificial by using a different color. (b) Using dashing to encode the connectors. (c) Removing the need for
connectors by interpolating the different centerlines.
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Fig. 11. The automated detection of trends can be steered via three
natural parameters. Duration filters groups from the root of the tree,
whereas support filters groups from the leaves.

strongly formed trends, small deviations may cause other trends to not
be detected. Larger ε values allow more variation in the trends, ensur-
ing that higher-level processes are captured in the trend detection.
Support Size and Duration. Besides the ε-parameter we allow the
user to also filter on the size and duration of trends (T1a). The sup-
port parameter filters out trends that are not supported by a sufficient
number of time series. As the trends form a forest, filtering on support
removes small trends, starting at the leaves of the trees. By contrast,
the duration parameter filters trends based on a minimum duration,
starting from the roots of the trees in the forest. The combination of
both is a powerful tool that allows the user to focus on specific trends.

5.1 Trend Interaction
Automated trend detection finds trends of arbitrary granularity in the
data. However, users may be interested in the behavior of only a part
of the data based on the information gathered (T2a). Manual interac-
tion ensures data can be explored in an iterative manner while being
supported by automated detection. Our approach supports three types
of trend interaction (selection brushes, fixed initial configuration, and
a time-sweep) as well as highlighting and selection.
Selection Brush. We support three types of brushes that allow selec-
tion of a subset of the original input time series (see Fig. 12(a)). The
all brush selects only the data that passes through all brushed areas.
This can be used to select data that follows a specific pattern (T2a,
T2b). The any brush selects time series that pass through at least one
of the brushed areas. It may be used to refine selection while allow-
ing the user to select several diverging patterns. Finally, the deselect
brush deselects all time series that pass through at least one of the
brushed areas. It complements the any brush, allowing the same se-
lective capabilities.
Initial Configuration. Users may want to study the behavior of dif-
ferent initial parameters settings (T2a, T2d). But if the subsets each
diverge over time, this requires a coarse level of trend detection that
may group all subsets together at the start. By selecting the initial con-
figuration, users can define which subsets should remain separated (see
Fig. 12(b)). Similar to the brushes, users can draw intervals at the ini-
tial time-stamp. Time series can only form groups within the same in-

(a) (b)

Fig. 12. (a) Selection brushes (all brush in dark blue and any brush
in light blue) can be used to select the time series. Trend detection
then operates only on the subset (3h forecast humidity at 2m in percent
(BHM) [25]) (b) Selecting an initial configuration allows for trend detec-
tion in models with similar starting conditions. (3h forecast dew point
temperature at 2m in degrees Fahrenheit (BHM) [25]))

terval, so different starting conditions can be kept separate even when
analyzing the data at a very coarse level. The initial configuration tool
is more powerful in this sense than the basic selectionbrushes.

Time Sweep. Our approach detects only trends that start at ts. By
changing the initial starting position we can also detect trends starting
at different points in time. We visually encode the starting position
by a vertical line at the start of the time series. The user can select
and drag this line to initiate the algorithm from a later point in time
(see Fig. 14). The time-sweep in combination with selection brushes
allows exploration of correlations at later positions in time (T2a, T2c).
The time-sweep allows us to find all the groups included in the com-
plete grouping structure defined in Section 3.1. Nevertheless, for any
particular setting only a subset of the groups are detected.

(b)(a)

Fig. 13. Forward- and backward-highlighting of trends allows tempo-
ral exploration of structures. (a) Forward highlighting emphasizes trend
development. (b) Backward highlighting emphasizes the trend origin.
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Fig. 14. (a-c) The time sweep enables trend detection starting from any point in time.

(b)(a)

Fig. 15. (a) Basic trends detected in the input. (b) Selection helps focus
on a subset of the trends using transparency and ordering.

Highlighting and Selection. Highlighting shows the structure of the
currently selected trend (T2a, T2c, V4). Forward highlighting (see
Fig. 13(a)) highlights all future possibilities branching out from the
currently selected trend. Backward highlighting (see Fig. 13(b)) high-
lights the path of origin of the currently selected trend. It may be used
to analyse coherence in the past tracks. Highlighting uses a colored
casing for the selection - a distinctive light blue in Fig. 13. Alterna-
tively, the highlighted selection may be displayed in a different color.

Selection allows trends to be layered in different orders. Complete
subtrees can be moved to the front or the back of the view. The user can
also select subtrees and place them partially transparent in the back-
ground to reduce visual clutter (see Fig. 15).

6 EXAMPLE APPLICATIONS

We now show how our system can be used to analyze real-world data
sets. We first discuss a general time-series data set that concerns the
value added by industry to the GDP (GapMinder; data provided by
the World Bank [13]). Secondly, we explore an ensemble from the
NOAA SPC Plume Viewer [25]. The ensemble is built around two

core models with six positive and six negative perturbations per model.
We illustrate how the different exploratory tools allow the detection of
trends in the data and help correlate different time series.

Time-series data. The GapMinder data contains approximately 200
time series representing the value (in percentage) added by industry
to the GDP of different countries across the world. Given the number
of time series in the data set, direct visual analysis is infeasible. An-
imation can help reduce the amount of information displayed at any
point in time, but might not be effective [36]. We display all informa-
tion and combine automated trend detection with manual interaction to
find key trends. As the data set is very dense we start our exploration
with a very small setting of ε . The resulting trend structure appears
to imply that there might be two major trends that start at the top and
bottom of the data set (see Fig. 16(a)). We split the data set by fixing
the initial intervals within which we detect trends. We can now safely
increase ε and note that there appear to be two main trends that cross
(see Fig. 16(b)). There is no clear outcome, though, as both trends
now cover the complete area, so there might be a large bias in our ob-
servation. After changing the trend detection and checking different
subsets, we notice that this trend is most strongly supported in the ex-
tremes of the initial distribution. We further restrict our input and note
that, indeed, there is a strongly supported trend where the value added
by industry significantly reduces (see Fig. 16(c)). Comparatively there
is only a small trend where the value added by industry is on the rise.

Ensembles. The diverging nature of ensembles makes them a natural
match with the trend structure we compute. The ensemble data we
consider here are a forecast for the dew point – the temperature at
which atmospheric water vapor condenses. There are two core models
(the WRF-ARW and NMM-B NAM Model), and for each model 12
different perturbations. An initial exploration of the data indicates that
there is a strong trend that splits off a minor sub-trend near the end (see
Fig. 17(a)). We select different trends and subsets using the selection
brushes. By refining the detected trends, we find that there are two
very fine trends with reasonable support that significantly depend on
the initial parameterization (see Fig. 17(b-c)). When we correlate the

(b)(a) (c)

Fig. 16. (a-b) An initial exploration of the data indicates two strong trends starting in the upper- and lower-part of the data set and ending in the
inverse corner. (c) Refining the search by restricting the initial values indicates a very strongly supported trend where for several countries the
value added by industry strongly decreases, and a respectively minor trend where it strongly increases (Industry (% of GDP) [13]).
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Fig. 17. (a) Initial exploration of the data implies a main trend (b-c) After further refining the search to the upper-/lower-part, two completely separate
trends appear that strongly depend on the initial parameterization. (d) Visualizing both trends at the same time gives a complete overview, grouping
both trends at the start in a single large trend (3h forecast dew point temperature at 2m in degrees Fahrenheit (EVW) [25]]).

time series back to the input data we note that the bottom trend consists
solely of time series resulting from the WRF-ARW model (and mainly
the negative perturbations). The top trend, by contrast, consists solely
of time series resulting from the NMM-B NAM Model.

7 LIMITATIONS

While the computer-assisted analysis of trends using our visualization
appears effective, there are some limitations. When many subtrends
overlap, the visualization is problematic due to the occlusion of many
subtrends (see Fig. 18(a)). While trends can manually be sorted on the
z-axis, this does not help in getting an overview. It would be desirable
to clearly visualize all subtrends even when they overlap. A solution
could be to merge the different subtrends into larger groups, but inter-
connectivity between different subtrends should be maintained. This is
problematic as subtrends might be interleaved. Animation, interaction
and other modes of visual comparison [14] may be useful.

The detection of trends at different granularities helps to get an
overview of the data and its structure. However, it may be desirable to
detect trends at different granularities at the same time (see Fig. 18(b-
c)). When a small group of entities is clearly separated from the rest of
the ensemble, it is plausible to group them as a trend even when they
are relatively far apart from each other. Currently the granularity of
the detected trends is fixed across the complete ensemble. Therefore
we cannot distinguish fine-trends and detect a coarser-level trend at the
same time. This behavior is consistent with our model.

8 DISCUSSION AND FUTURE WORK

We proposed a geometric model that guarantees detection of trends
(according to a precise mathematical definition) when they are present.
Our model is based on three parameters: granularity, support-size, and
duration. We explored different visual styles and showed how they re-
late to the primitive tasks that a trend-detection system should support.
Finally, we introduced several tools for interactive exploration.

Combining automated trend-detection with interaction helps to
quickly get an overview of the data and zoom in on trends in sub-

sets of the data. Because trends are guaranteed to be detected, visual
analysis is supplemented with automated detection and trends are less
likely to be missed. While our approach looks promising, it is not val-
idated by external users. Hence, in future work, it would be important
to perform user studies to validate our approach.

We detect only those trends that start at time ts. Naturally it would
be interesting to also explore the complete trend structure, where
trends may split into subtrends and then merge again into larger trends.
The visualization of this braided graph of trends is a challenging prob-
lem, and might require the display of subtrends inside other trends as
well as their connectivity.

Our visualization is not as simple as it could be. Trends sometimes
have a jagged appearance and additional simplification and smoothing
could be applied. However, such simplification necessarily removes
the visualization further from the input data. After all, some sharp
features might in fact be critical features of the data.

Furthermore, if a few time series split off from a main trend, they
might significantly affect the outline. While such outlying time series
could be completely eliminated from the trend-boundary, they are part
of the detected (sub)trends. Removing them may significantly under-
represent the range and support of the trend.
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Fig. 18. (a) Overlap of subtrends causes occlusion of subtrends. (b-c) Concurrent different levels of granularity are required to capture all trends.
Increasing the granularity causes a collapse of initial trends.
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F. Staals. Grouping Time-varying Data for Interactive Exploration. In
Proceedings of the 32th Annual Symposium on Computational Geome-
try. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.
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