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Abstract

Detailed analysis of the flow around a NACA0020 aerofoil at moderate low chord
Reynolds number (Rec = 2×104) in completely stalled conditions has been carried
out by means of Direct Numerical Simulations. The stalled condition is either a
steady configuration at a fixed angle of attack (α = 20o) or it is reached via a
ramp-up manoeuvre, increasing the angle of attack from 0o to 20o. Concerning
this last case, new insights on the vorticity dynamics leading to the lift overshoot,
lift crisis and the damped oscillatory cycle that gradually matches the steady
condition, are discussed using a number of post-processing techniques. These
include a detailed analysis of the flow ensemble average statistics and coherent
structures identification that has been carried out using the Q-criterion and the
Finite-Time Lyapunov Exponent technique.

Based on the fundamental knowledge achieved in studying the static and the
dynamic stall, we introduced a biomimetic passive control technique to mitigate
the aerodynamic performance degradation typical of such flow conditions. In
particular, the envisaged control technique has been inspired by the dorsal feath-
ers that are used by almost all birds to adapt their wing characteristics to delay
stall or to moderate its adverse effects (e.g., during landing or sudden increase
in angle of attack due to gusts). Some of the feathers are believed to pop up as
a consequence of flow separation and to interact with the flow producing benefi-
cial modifications of the unsteady vorticity field. The adoption of self adaptive
flaplets in aircrafts, inspired by birds feathers, requires the understanding of the
physical mechanisms leading to their aerodynamic benefits and the determination
of the characteristics of optimal flaps including their size, positioning and ideal
fabrication material.

In this framework, we have used numerical simulation to study the effects of
this passive control technique in both steady and dynamic stall. In particular,
for the static case, we have defined an optimal condition as the one that delivers
the highest lift coefficient CL, preserving or improving the aerodynamic efficiency
E = CL/CD. To achieve a condition close to optimality we started by considering
a simplified scenario, to determine the main characteristics of the flap (i.e., vari-
ations of its length, position and natural frequency). Later on, a detailed direct
numerical simulation analysis is used to understand the origin of the aerodynamic
benefits introduced by the pop-up of the optimal flaplet. It is found that an op-
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timal flap can deliver a mean lift increase of about 20% on a NACA0020 aerofoil
at an incidence of 20o degrees. The analysis of direct numerical simulation data
of the flow field around the aerofoil equipped with the optimal flap allowed to
elucidate the main mechanism that promotes the aerodynamic improvements. In
particular, it is found that the flaplet movement, induced by the transit of a large
recirculation bubble on the aerofoil suction side, displaces the trailing edge vor-
tices further downstream, away from the wing. The downstream displacement of
the trailing edge generated vortices, limits the downforce generated by those vor-
tices also regularising the shedding cycle that appears to be much more organised
when the flaplet is activated.

A similar study has also been carried out for the dynamic case. We have
analysed the effects produced by the presence of an elastically mounted flap on
the transient behaviour of the flow fields. For a specific ramp-up manoeuvre char-
acterised by a reduced frequency slower the shedding one, it is found that it is
possible to design flaps that limit the severity of the dynamic stall breakdown. In
particular, it is possible to increase the value of the lift overshoot and to smooth
its abrupt decay in time. A detailed analysis on the modification of the unsteady
vorticity field due to the flap-flow interaction during the ramp-up motion is also
provided to explain the physical mechanism that lead to more benign aerody-
namic response.

Key Words

Direct Numerical Simulation - Aerodynamic - Static Stall - Dynamic Stall -
Passive Control - Biomimetic - Hairy Flap
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Chapter 1

Introduction

Stall is a phenomenon that arises on aerofoils at high angle of attack and is re-
sponsible of a dramatic decrease in their aerodynamic performance (i.e., decrease
of the lift and increase of the drag). This degradation is mainly due to the flow
separation on the wing surface characterised by the appearance of large recircu-
lating regions. A stalled condition can be obtained either by keeping the angle
of attack fixed beyond a certain value (static stall), or by increasing its value
in time beyond the value of the static stall angle (dynamic stall). Researchers
have long been looking for new ways of controlling the flow separation on aero-
foils at high angle of attack. Recently, particular attention has been given to
devices inspired by nature. In particular, it has been observed that birds can
overcome certain flight critical conditions, by popping up some of their feathers
when flow separation starts to develop on the upper side of their wing [10, 12, 21]
(see Figure (1.1)). It is believed that the feathers lift-up limits backflow also pre-
venting an abrupt breakdown of the lift force typical of dynamic stall. With the
aim of reproducing this effect, Schatz et al. [84] have shown that a self-activated
spanwise flap positioned near the trailing edge of an aerofoil can enhance lift by
more than 10% (at a Reynolds number of Rec = U∞c/ν = 1 − 2 × 106). In a
similar experiment, Schluter [85] has also demonstrated that lift-breakdown is
less severe when such flap is used. Wang and Schluter [95] have extended the
analysis to a three dimensional wings basically confirming the aforementioned ef-
fects. Differently from other authors, Kernstine et al. [50] found that the increase
in lift can also be achieved with a flap mounted in the first half of the aerofoil,
closer to the leading edge. Venkataraman and Bottaro [92] performed a numeri-
cal study of the effect of hairy coatings on an NACA0012 aerofoil (aircraft wings
developed by the National Advisory Committee for Aeronautics) at low Reynolds
number Rec = 1100 and high angle of attack α = 70o, and found a set of coating
parameters able to deliver an increase in lift (' 9%). Finally, the effectiveness of
fixed versus free-moving flaps has been studied by Johnston and Gopalarathnam
[46]. They found that also fixed flaps can deliver an improvement in both lift and
drag at an angle of attack. However, the improvements diminish when the flaps
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Figure 1.1: (a) Frontal and (b) side view of a falcon with popped-up feathers (taken
from the measurement campaign documented in Ponitz et al. [76]).

are used for higher incidence values.
More recently, Bruecker and Weidner [17] used hairy flaps (i.e., flaps with

very small thickness) to control the dynamic stall of a wing at moderate Reynolds
number (Rec = 77000), observing a delay of the dynamic stall. The authors claim
that this delay is achieved by the action of the flap that reduces the backflow,
and is beneficial for the shear layer roll-up process. They also suggest that the
onset of non-linear growth in the shear layer is delayed by a mode-locking of the
fundamental flow instability mode with the motion of the flaps.

Beneficial aerodynamic performance were also obtained using flexible covert
mounted on a circular cylinder. Specifically, Favier et al. [32] conducted a nu-
merical investigation into a hairy coating applied to a two-dimensional circular
cylinder at a Reynolds number of ReD = 200. Their results show that the coat-
ing through the interaction with the flow is able to reduce both the mean drag
(by ' 15%) and the lift fluctuations (by ' 44%). Similar results were obtained
at much higher Reynolds numbers in experiments involving a cylinder equipped
with flexible flaps on its lee side (the flaps were not very different from the ones
considered in the present study [56]). As final examples of the aerodynamic
benefits that can be obtained exploiting the interaction between slender hairy
appendages with a fluid flow, it is also worth mentioning the net lift force that
can be generated by using a single passive filament hinged on the rear of a bluff
body (the generated lift is a consequence the wake symmetry breaking [5]) and
the modifications that flexible hairy coatings can induce in near-wall turbulence
[16, 49].

1.1 Outline
The outline of the thesis is as follows. In Chapter (2) we present the numerical
formulation, the baseline problem setup employed in this work, and the initial val-
idation campaign. Chapter (3) covers the discussion of the results obtained when
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considering the flow over a NACA0020 aerofoil at high angle of attack, firstly by
discussing the fully-separated flow at a static angle of attack, and later on by
analysing the flow during a ramp-up motion. In Chapter (4) we discuss how the
flow over the aerofoil in a static stall condition can be modified by the presence
of a flap elastically hinged on the suction side of the aerofoil. Initially, we will
illustrate the results of a preliminary two-dimensional parametric campaign that
we have carried out to roughly identify the optimal configuration and location of
the flaplet. Then, the results and the interpretation of the flow fields generated
by a full direct numerical simulations are offered also by comparing the char-
acteristics of the fields obtained with and without flaplet. Chapter (5) contains
the discussion of the effect of the flaplet during an unsteady ramp-up manoeuvre
where different optimality conditions are specified. Finally, some conclusions will
be drawn at the end of the thesis in Chapter (6).

The results presented in this thesis have been published or submitted to var-
ious archival journals and presented at international conferences.

• M. E. Rosti, M. Omidyeganeh, and A. Pinelli. Direct numerical simulation
of the flow around an aerofoil in ramp-up motion. Physics of Fluids, 28(2),
2016;

• M. E. Rosti, L. Kamps, C. Bruecker, M. Omidyeganeh, and A. Pinelli. The
PELskin project - part V - Towards the control of the flow around aerofoils
at high angle of attack using a self-activated deployable flap. Meccanica,
under review;

• M. E. Rosti, M. Omidyeganeh, and A. Pinelli. Passive control of the flow
around an aerofoil using a flexible, self adaptive flaplet. Journal of Fluid
Mechanics, under review;

• M. E. Rosti, M. Omidyeganeh, and A. Pinelli. Passive control of the flow
around unsteady aerofoils using a self-activated deployable flap. Journal of
Turbulence, under review.

• M. E. Rosti, M. Omidyeganeh, and A. Pinelli. Study of flow around NACA0020
aerofoil with hairy flaps during ramp-up motion. EDRFCM, Cambridge,
March 2015;

• A. Pinelli, M. Omidyeganeh, and M. E. Rosti. Control of dynamic stall by
elastically mounted flaps. JJ70, Salamanca, September 2015;

• M. E. Rosti, M. Omidyeganeh, and A. Pinelli. Investigation and control of
dynamic stall of an aerofoil ramp up motion. APS - DFD Meeting, Boston,
November 2015;



4 Introduction

• A. Pinelli, M. Omidyeganeh, and M. E. Rosti. Flow manipulation based
on passive and localised fluid structure interactions. ETMM11, Palermo,
September 2016 (invited talk);

• M. E. Rosti, M. Omidyeganeh, and A. Pinelli. Passive control of an aerofoil
with flexible flap. EFMC11, Seville, September 2016.



Chapter 2

Methodology

In the present thesis, we will consider incompressible two or three-dimensional
unsteady flow fields. In an inertial, Cartesian frame of reference the momentum
and mass conservation equations for an incompressible flow read as

∂ui
∂t

+ ∂uiuj
∂xj

= − ∂p

∂xi
+ 1
Re

∂2ui
∂xj∂xj

+ fi, (2.1)

∂ui
∂xi

= 0. (2.2)

where ui is the i-th velocity component, p is the pressure, fi a volume force, and
Re is the Reynolds number. In Equation (2.1) and Equation (2.2) the equations
have been made non-dimensional by choosing a reference length and velocity
scales, U∗ and L∗, and introducing the corresponding Reynolds number Re =
ρU∗L∗/µ, where ρ and µ are the density and dynamic viscosity of the fluid. The
given equations are closed by defining associated boundary and initial conditions
delivering a well posed problem.

2.1 Finite volume method
An approximate numerical solution of Equation (2.1) and Equation (2.2) is reached
using the Finite Volume Method. An exhaustive treatment on this methodology
can be found in the book by Ferziger and Peric [33]. Here for the sake of complete-
ness we shall just give a basic introduction. The incompressible Navier-Stokes
equations (Equation (2.1) and Equation (2.2)) are initially integrated over an
arbitrary control volume V , obtaining their integral forms:

∂

∂t

∫
V
ui dV +

∫
S
uiujnj dS = −

∫
V

∂p

∂xi
dV +

∫
S
τijnj dS +

∫
V
fi dV, (2.3)

∫
S
uinidS = 0. (2.4)
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Figure 2.1: (a) A typical CV and the notation used. (b) A typical CV with a skewed
grid.

Equation (2.3) refers to the i-th Cartesian component. In Equation (2.3) and
Equation (2.4) S is the surface that bounds V , ni is the ith component of the
outward normal vector to S, and τij is the viscous stress tensor

τij = 1
Re

(
∂ui
∂xj

+ ∂uj
∂xi

)
. (2.5)

To obtain the previous equations we have used the Gauss theorem∫
V

∂Fi
∂xi

dV =
∫
S
Fini dS (2.6)

applied to a generic differentiable vector field Fi.
To obtain a numerical approximation to the solution of Equation (2.3) and

Equation (2.4), the domain is subdivided into a finite number of contiguous, non-
overlapping Control Volumes (CVs), and the conservation equations are applied
to each CV, see Figure (2.1a). The method is conservative by construction, as
long as the surface integrals are the same for the CVs sharing a boundary. At
the centroid of each CV, we define a computational node where all the averages
of the computational variables are (ui and p) are formally assigned. Using this
colocated approach, the number of coefficients and data to be computed and
stored is minimized, and the programming is simplified. The colocated approach
has also other significant advantages when dealing with complicated domains, or
when the boundary conditions have discontinuities. However, this approach may
lead to some difficulties with the pressure-velocity coupling and the occurrence
of spurious oscillations in the pressure field (see Section (2.1.1)).
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In order to numerically solve our equations, we have to introduce a numer-
ical approximation for the surface and volume integrals. Since in 3D each cell
has a cuboidal shape, the net flux through a CV boundary is the sum of the
contributions over six faces ∫

S
fdS =

∑
k

∫
Sk

fdS, (2.7)

where f is any component of a flux vector in the direction normal to the face (e.g.,
the normal convective or viscous flux in the momentum equations,

∫
S uiujnj dS

and
∫
S τijnj dS, respectively). Note that, for an incompressible fluid with constant

viscosity, the viscous flux reduces to∫
S
τijnj dS = 1

Re

∫
S

∂ui
∂xj

njdS. (2.8)

The surface integral is approximated using the mid-point rule, leading to an
approximation of second-order accuracy. In this quadrature, the integral is ap-
proximated as the product of the integrand at the cell-face center and the corre-
sponding surface area. As an example the flux on the east face of a rectangular
cell would reads as:

Fe =
∫
Se

fdS ≈ feSe. (2.9)

Equation (2.9) requires the values of the variables at the face centre. To obtain
these values, we use a linear interpolation between the two nearest nodes, fE and
fP . For example, at location e we have

fe = fEλe + fP (1− λe), (2.10)

where the linear interpolation factor λe is defined as

λe = xe − xP
xE − xP

. (2.11)

This method is also second-order accurate and on a Cartesian mesh would cor-
respond to the central-difference approximation of the first derivative in a finite
difference framework. The assumption of a linear variation between points P and
E, provides also a simple method to approximate the derivative,(

∂f

∂x

)
e

≈ fE − fP
xE − xP

. (2.12)

Some terms also require integration over a CV. To compute the integral up
to second-order accuracy, the mid point rule is extended as

QP =
∫
V
qdV ≈ qPVP . (2.13)
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Since all variables are available at the CV center, no interpolation is required.
We are now able to write the full spatial approximations of Equation (2.3) and

Equation (2.4). The volume integrals, corresponding to the unsteady, pressure
and forcing terms, can be easily computed applying Equation (2.13). The con-
vective flux F c is computed by assuming that the mass flux ṁ is already known
using the midpoint rule approximation

F c
e =

∫
Se

uu · n dS ≈ ṁeue, (2.14)

here, again for the sake of simplicity, we have considered only the x component
of the velocity field, ṁe being the mass flux on the e face, computed as

ṁe =
∫
Se

ujnj dS ≈ (u · n)e Se. (2.15)

In order to compute the diffusive flux F d

F d
e =

∫
Se

1
Re

∂u

∂xj
nj dS ≈

1
Re

(∇u · n)e Se, (2.16)

the gradient of u at the cell face center is needed. First, we approximate the
derivative at the CV center by the average value over the cell

(
∂u

∂xi

)
P

≈

∫
V

∂u

∂xi
dV

VP
, (2.17)

then, we apply the Gauss theorem to the numerator∫
V

∂u

∂xi
dV =

∫
S
uei · n dS ≈

∑
c

ucS
i
c for c = e, n, w, s, b, t, (2.18)

where ei is the unit vector in the i-th direction. Finally, the derivative can be
computed as (

∂u

∂xi

)
P

≈
∑
c ucS

i
c

VP
. (2.19)

Using interpolated cell face values to compute the derivative may generate an
oscillatory solution. To solve this problem we use the so-called deferred correction
method [11] as proposed by Muzaferija [69], where an additional term is added
which is the difference between the correct and approximated flux. The diffusive
flux is corrected as follows

F d
e = F d

e impl +
[
F d
e expl − F

d
e impl

]old
, (2.20)

where "old" means a value from the previous iteration or time step, and "expl"
or "impl" means that the term is treated explicitly or implicitly, respectively.
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When the line connecting nodes P and E is orthogonal to the cell face, the
derivative with respect to n can be approximated by a derivative with respect to
the coordinate eξ along that line, and the implicit flux is written with a second
order accurate approximation as

F d
e impl = 1

Re
Se

(
∂u

∂ξ

)
e

. (2.21)

When the grid is non-orthogonal, the deferred correction term must contain the
difference between the gradient in the n and eξ directions (see Figure (2.1b)).
So, the diffusive flux can be written as

F d
e = 1

Re
Se

(
∂u

∂ξ

)
e

+ 1
Re

Se

[(
∂u

∂n

)
e

−
(
∂u

∂ξ

)
e

]old
, (2.22)

where the first term on the right hand side is the one treated implicitly, while the
second one is the deferred correction, which is calculated using interpolated cell
center gradients, resulting in the following expression for the diffusive fluxes

F d
e = 1

Re
Se
uE − uP
LP,E

+ 1
Re

Se (∇u)olde · (n− eξ) . (2.23)

If the line connecting nodes P and E is orthogonal to the cell face, the deferred
correction term is null as expected. Note that, this correction does not affect the
second-order accuracy of the method.

2.1.1 Time discretisation
The numerical solution of the incompressible Navier-Stokes equations is com-
plicated by the lack of an independent equation for the pressure. In fact, the
continuity equation does not have an explicit time derivative applied to the pres-
sure or to the density variable. Indeed, in incompressible flows, the continuity
equation is just a kinematic constraint on the velocity field, rather than a dy-
namic equation. One way to solve this problem is to rely on the fractional step
method. This technique was firstly developed by Chorin [25] and later on modi-
fied and improved by several other authors. The results obtained in the thesis rely
on a modified version of the method originally proposed by Kim and Moin [52].
The algorithm is based on the Hodge’s decomposition of the velocity field into
a solenoidal and an irrotational part, and consists of two stages: the prediction
step, where the momentum equation is solved without satisfying the continuity
equation, and the correction step, where the previous solution is corrected by
projecting the velocity field onto a divergence-free field.

We can write the numerical discretization of the incompressible Navier-Stokes
equations concisely as follows

u∗ − un

∆t = −Nl
(
un,un−1

)
+ 1
Re
L (u∗,un)− G (φn) , (2.24)
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un+1 − u∗

∆t = −G
(
φn+1

)
, (2.25)

with the constraint
D
(
un+1

)
= 0. (2.26)

u∗ is the predicted velocity field, un the solenoidal velocity field at time n, ∆t the
time step, Nl, G, D and L are the discrete non-linear, gradient, divergence and
Laplacian operators, respectively, and φ is the projection variable. Note that,
the operators include coefficients that are specific to the selected time scheme.
The variable φn+1 to be used in the projection (Equation (2.25)) can be found by
solving a Poisson equation for φ, obtained by applying the divergence operator
to Equation (2.25), which gives

Lφn+1 = 1
∆tD (u∗) , (2.27)

with the boundary condition
∂φn+1

∂n
= 0, (2.28)

with n being the outward normal vector. So, the sequence to solve the incom-
pressible Navier-Stokes equations by a fractional step method consist of a pre-
diction step (Equation (2.24)), a Poisson equation (Equation (2.27)), and a final
correction step (Equation (2.25)). Computationally speaking, the most expensive
step is the one related with the solution of the Poisson pressure equation. How-
ever, when the span-wise direction is homogeneous, periodic boundary conditions
can be assumed and a 3D Poisson equation can be transformed into a series of
two-dimensional Helmholtz equations in wave number space via a Discrete Fast
Fourier transform (FFT). In particular, assuming z to be the periodic direction,
φ is transformed in the wave number space using the discrete anti-transform

φ (x, y, z) =
N−1∑
l=0

φ̂l (x, y) exp (ilz) , (2.29)

where φ̂l is the lth Fourier coefficient of φ andN is the number of modes considered
(i.e., l = 0, . . . , N − 1). Using the orthogonality property of the Fourier system,
we obtain a set of decoupled Helmholtz equations

∂2φ̂l
∂x2 + ∂2φ̂l

∂y2 − klφ̂l = r̂l, (2.30)

where kl is the modified wave number and r̂l is the Fourier transform of the right
hand side of Equation (2.27). Further details can be found in [20].

When a colocated arrangement of variables on a numerical grid is used, the
divergence term of Equation (2.27) requires the values of the velocities at cell
faces that can be obtained by linear interpolation. As a consequence, the Poisson
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equation needs to be discretised on a grid which is coarser than the one used for
the predicted variables. The mismatch in the number of discrete values makes the
kernel of the pressure operator non trivial giving rise to pressure spurious modes.
To eliminate those modes we use a method originally proposed by Rhie and Chow
[77]. Initially, we solve the momentum equation as usual, and then (before solving
the Possion equation) the mass fluxes obtained with the interpolated velocity are
corrected by subtracting the difference between the pressure gradient and the
interpolated gradient at the cell face location obtained at the previous time step

ṁe = (u · n)e Se −∆tSe [(pE − pP )−∇p · eξ]old . (2.31)

This method automatically detects the oscillations and smooths them out.

2.1.2 Numerical implementation
The discrete counterparts of Equation (2.3) and Equation (2.4) have been imple-
mented in a well-established curvilinear finite volume code [71, 72, 81] written
in Fortran 77. As previously mentioned, the code approximates the fluxes us-
ing a second-order central formulation (Figure (2.2a)), and the Rhie and Chow
method [77] to avoid pressure oscillations. The equations are advanced in time
by a second-order semi-implicit fractional-step procedure [52], where the implicit
Crank-Nicolson scheme is used for the wall normal diffusive terms, and the ex-
plicit Adams-Bashforth scheme is employed for all the other terms. The Poisson
pressure equation obtained when using a pressure correction method to enforce
the solenoidal condition on the velocity field is transformed into a series of two-
dimensional Helmholtz equations in wave number space via Fast Fourier trans-
form (FFT) in the spanwise direction. Each of the resultant elliptic 2D problem
is then solved using a preconditioned Krylov method (PETSc library [6]). In
particular, for the problem at hand, we have found the iterative Biconjugate
Gradient Stabilized (BiCGStab) method with an algebraic multigrid precondi-
tioner (boomerAMG) [42] to behave quite efficiently. The code is parallelized

Figure 2.2: (a) Spatial accuracy of the finite volume code. The dashed lines represents
the first and second order accuracy, while the solid line is the accuracy of our finite
volume code. (b) Scalability of the finite volume code. The dashed line represents the
reference linear value, while the solid one is the speed-up of our code.
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using the domain decomposition technique and the MPI message passing library.
Figure (2.2b) shows the scalability of the code, defined as the ratio between the
time needed to perform one time-step with one processor T1 divided by the time
using n processors Tn. The test was performed with a 3D C-grid around an
aerofoil with 480 × 206 × 96 points in the x, y and z directions respectively. A
validation of the baseline code using a classical turbulent flow is given in the next
section.

2.1.3 Turbulent channel flow

y

z

x

h

-h

Figure 2.3: Sketch of the channel geometry.

We consider the flow of an incompressible viscous fluid through a channel with
impermeable walls, as sketched in fig 2.3. We introduce the Cartesian coordinate
system shown in figure 2.3, where x, y and z denote the stream-wise, wall-normal
and span-wise coordinates, while u, v and w denote the respective components of
the velocity vector field. The lower and upper walls are located at y = −h and y =
h, respectively. At the walls, we impose the no-penetration and no-slip conditions.
It is assumed that the fully developed turbulent channel flow is homogeneous in
the stream-wise and span-wise directions, so that periodic boundary conditions
can be used in these directions. To make the problem dimensionless, we define
as a characteristic length L∗ one-half the channel

L? = h, (2.32)

and as characteristic velocity U? the bulk velocity

U? = Ub = 1
2h

∫ h

−h
Udy, (2.33)

where U (y) is the mean velocity profile. With this choice, the Reynolds number
is defined as

Reb = Ubh

ν
, (2.34)
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Figure 2.4: (a) Mean velocity profile in wall units. (b) The total shear stress (solid
line), decomposed in the viscous stress (dash-dotted line) and Reynolds shear stress
(dashed line) obtained from from simulation. The circles in both the plots are used for
the results by Kim, Moin and Moser [53], while the triangles in the fist plot are used
for our result on a coarser grid.

where ν is the kinematic viscosity defined as ν = µ/ρ. The bulk Reynolds number
Reb is fixed to 2800, and the computation is carried out on a grid of 256×192×192
points, in the x, y and z directions respectively. The computational domain size
is set to 2πh×2h×πh in the x, y ans z directions. With the mentioned grid, the
resolution turns out to be ∆x+ ≈ 5 in wall units in the stream-wise direction,
∆z+ ≈ 3 in the span-wise direction, and with a minimum ∆y+ in the wall-normal
direction which is less than 1.

The wall units, indicated by the superscript " + ", are measured in terms of
the dimensionless viscous length δν , which is defined as follows

δν = 1
uτRe

, (2.35)

where uτ is the dimensionless friction velocity. Note that we use the viscous length
and the friction velocity as reference length scale and velocity scale, respectively,
in the near-wall regions. For a turbulent channel flow with solid walls, the friction
velocity is defined as follows

uτ =
√√√√ 1
Re

du

dy

∣∣∣∣∣
y=−1

, (2.36)

where u is the mean velocity, y/h = −1 is the location of the wall, and the "¯"
indicates the average over both time and homogeneous directions, x and z. The
Reynolds number based on the friction velocity uτ and the channel semi-height
is called friction Reynolds number Reτ , and is defined as Reτ = uτh/ν. In our
case, the friction Reynolds number is Reτ = 180.

Figure (2.4a) shows the mean velocity profiles u+ = u/uτ versus the logarithm
of the distance from the wall ỹ = y − 1 expressed in wall-units. The solid line
is used for the results of our simulation, while the circles for the reference values
of Kim, Moin and Moser [53]. In the same figure, the black triangles correspond
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to the results of another simulation, on a grid with half points in each direction,
which is used to assess the grid convergence of the results. The agreement is very
good, even if our friction velocity is slightly underestimated.

The total shear stress τ , defined as the sum of the Reynolds shear stress u′v′
with the viscous stress

τ = 1
Re

du

dy
− u′v′. (2.37)

is given in Figure (2.4b), compared with the results by Kim, Moin and Moser
[53]. As for the mean velocity profile, the agreement between our simulation and
the reference data is very good.

The next section will introduce the immersed boundary method which is the
technique that has been chosen to deal with the presence of complex and/or
moving portions of the boundary.

2.2 Immersed Boundary Method
The Immersed Boundary Method (IBM) is a numerical technique used to simulate
flow fields past bodies that do not necessarily conform with the computational
grid. The pioneer of this numerical technique has been Charles Peskin that back
in the seventies was able to simulate the flow of blood inside a heart [73]. As
mentioned, the main feature of this method is that the numerical grid does not
need to conform to the geometry of the object, which is replaced by a body force
distribution f that mimic the effect of the body on the fluid by restoring the
desired velocity boundary values on its immersed surface. The main advantage
of the IBM is the simplification of the grid generation task. In fact, grid topology
and its quality are not determined by the complexity of the geometry. The
advantage of the IBM becomes quite clear for flows with moving boundaries,
where the process of generating a new grid at each time step is avoided, since the
grid can be kept stationary and non-deforming. A drawback of the approach is
that the grid lines are not aligned with the body surface, so in order to obtain the
required resolution, higher number of grid points may be required. Many IBMs
have been proposed in the past. The main difference between the methods is
related with the way in which the Immersed Boundary force is computed. IBMs
can be grouped in two main categories, the continuous and discrete forcing ones.
In the first approach the forcing is incorporated into the continuous equations
before discretization, whereas in the second approach the forcing is introduced
after the equations are discretized. The method that we will use belongs to the
first group, and is termed as Reproducing Kernel Particle Method (RKPM) and
was developed by Pinelli et al. [61, 62, 74].

Next, we explain how the equations are modified to take into account the
presence of an immersed body when using the RKPM approach. Firstly, the
surface Γ of the immersed surface delimiting the body is discretized using N
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markers, called Lagrangian points X. The latters, in general do not correspond
with the grid nodes x. To advance in time the Navier-Stokes equations, a simple
prediction step (Equation (2.24)) is performed, without taking into account the
immersed object. The obtained velocity field u∗ is then interpolated (with an
interpolator operator I) onto the embedded geometry Γ,

U ∗ = I (u∗) . (2.38)

The values of U ∗ are used to determine a distribution of singular forces along Γ
that restore the prescribed boundary values UΓ as

F ∗ = UΓ −U ∗

∆t . (2.39)

The force field defined over Γ is then transformed into a body force distribution
applied to the fluid grid using a convolution operator C

f ∗ = C (F ∗) . (2.40)

The momentum conservation equation is then solved again with the computed
volume force field added as a source term

u∗ − un

∆t = −Nl
(
un,un−1

)
+ 1
Re
L (u∗,un)− G (φn) + f ∗. (2.41)

Finally, the time advancement step can be completed with the usual solution of
the pressure Poisson equation and the projection step. The given procedure is
common to a number of IB methods. The step that define the present method
concern the way in which the operators I and C are built.

2.2.1 Interpolation and convolution
We use the Reproducing Kernel Particle Method (RKPM) [61, 62, 101, 74] to
define interpolation and spreading operators. In this method the approximation
fa (x) of the value of a given smooth function at point x ∈ Ω can be expressed as
a kernel approximation

fa (x) =
∫

Ω
wδ (x− s) f (s) ds, (2.42)

where wδ is a non-negative kernel function of compact support, and the subscript
indicates that the kernel depends on a parameter δ, called dilation parameter,
which determines the dimension of the support ΩI . So, wδ is non-zero only in a
sub-domain ΩI of Ω and zero elsewhere. A discrete approximation of the kernel
function was proposed by Roma et al. [79] (see Figure (2.5a))
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Figure 2.5: (a) Kernel function proposed by Roma et al. [79]. (b) The black rectangle
is the cage around one of the Lagrangian points, shown as dots. The squares represents
grid points, and the black ones are the grid points falling within the cage.

wδ (r) =


1
6

(
5− 3|r| −

√
−3 (1− |r|)2 + 1

)
, if 0.5 ≤ |r| ≤ 1.5,

1
3

(
1 +
√
−3r2 + 1

)
, if 0.0 ≤ |r| ≤ 1.5,

0, otherwise,

(2.43)

where r = (x− s) /δ. This approximation of wδ satisfies the following properties
1. wδ (r) is continuous;

2. wδ (r) = 0 if |r| > 1.5;

3. ∑l wδ (r − l) = 1;

4. ∑l (r − l)wδ (r − l) = 0;

5. ∑l [wδ (r − l)]2 = 1/2.
In the the last three properties, the sums are performed ∀l ∈ N, and are satisfied
∀r ∈ R. For example, for r = 0.0, the function wd is not null for l = −1, 0, 1 where
it is equal to 1

6 ,
2
3 ,

1
6 (see the dots in Figure (2.5a)). Since the previous properties

involve the natural number l, they can be satisfied by a function interpolated
using Equation (2.42) and Equation (2.43) only if the nodes are equispaced. To
extend this approach to a non-uniform nodes distribution, following Liu et al.
[62] and Pinelli et al. [74], we use a modified window function w̃δ, defined as

w̃δ (x− s) =
n∑
i=0

bi (x− s)iwδ (x− s) , (2.44)

where bi are n+ 1 coefficients determined by imposing the continuous equivalent
of properties 3 and 4, which are

m̃i (x) =
∫

Ω
(x− s)i w̃δ (x− s) ds = δi0 for i = 0, 1, . . . , n (2.45)
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where δij is the Kronecker’s delta. Note that, these conditions imply the exact
representation of the elements of the canonical polynomial base {1, x, x2, . . .}.
The number n is the higher order of the polynomial that we want to represent
exactly. For example, n = 2 would lead to an exact representation of all polyno-
mials of degree up to 2. Substituting Equation (2.44) into Equation (2.45), we
obtain

m̃i (x) =
∫

Ω
(x− s)i w̃δ (x− s) ds =

n∑
j=0

bjmi+j (x) = δi0, (2.46)

for i = 0, 1, . . . , n, where we have defined

mi (x) =
∫

Ω
(x− s)iwδ (x− s) ds. (2.47)

The above equations form a symmetric linear system M~b = ~e1, where the right
hand side ~e1 is a vector, whose elements are all zeros, except the first one which
is equal to 1. From the solution of this linear system (Equation (2.46)) we can
obtain the coefficients bi, and, finally, we can write the corrected window function
(here given for n = 2) as

w̃δ (x− s) = [bo + (x− s) b1 + (x− s)2 b2]wδ (x− s) . (2.48)

The procedure can be extended to higher dimensions, defining the window
function as a Cartesian product of the 1D kernels. In 2D, it becomes

wδ,η (x− s, y − t) = wδ (x− s)wη (y − t) (2.49)

and in 3D

wδ,η,σ (x− s, y − t, z − v) = wδ (x− s)wη (y − t)wσ (z − v) , (2.50)

where δ, η and σ are the dilatation parameters in the coordinates directions. The
linear systems to find the coefficients bi,j and bi,j,k are obtained from the following
conditions

m̃i,j =
∫

Ω
(x− s)i (y − t)j w̃δ,ηds = δl0 for i, j = 0, 1, . . . , n, (2.51)

in 2D, where l = i+ j and i+ j ≤ n, and

m̃i,j,k =
∫

Ω
(x− s)i (y − t)j (z − t)k w̃δ,η,σds = δl0 for i, j, k = 0, 1, . . . , n, (2.52)

in 3D, where l = i+ j + k and i+ j + k ≤ n. So, the corrected window functions
in 2D and 3D are

w̃δ,η (x− s, y − t) = [b0,0 + (x− s) b1,0 + (y − t) b0,1+
(x− s) (y − t) b1,1 + (x− s)2 b2,0 + (y − t)2 b0,2]×

wδ,η (x− s, y − t) ,
(2.53)
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and

w̃δ,η,σ (x− s, y − t, z − v) = [b0,0,0 + (x− s) b1,0,0 + (y − t) b0,1,0 + (z − v) b0,0,1+
(x− s) (y − t) b1,1,0 + (y − t) (z − v) b0,1,1 + (z − v) (x− s) b1,0,1+

(x− s)2 b2,0,0 + (y − t)2 b0,2,0 + (z − v)2 b0,0,2]×
wδ,η,σ (x− s, y − t, z − v) ,

(2.54)

respectively.
Finally, we briefly describe the implementation of the IB based on RKPM.

Around each Lagrangian node X we define a cage that contains at least three
nodes of the underlying mesh in each direction, as shown in Figure (2.5b), whose
edges measure 3δ, 3η and 3σ in x, y and z, respectively. After finding the
set of mesh nodes that fall within the cage, the terms of the moment matrix
(Equation (2.52)) can be numerically evaluated to assemble the local window
function, using the mid-point quadrature rule. The coefficients~b of the correction
polynomials are found by solving the symmetric linear system M~b = ~e1 for each
Lagrangian points. Due to the very low values that the window function may
take at the nodes close to the boundary of the cage, the moment matrix may
become ill conditioned. This problem is avoided by rescaling the linear system,
and solving the equivalent one HMH−1~b = ~e1, where the diagonal matrix H has
the inverse of the dilation factors in the main diagonal. In 3D H is

H = diag
(

1, 1
δ
,

1
η
,

1
σ
,

1
δη
,

1
ησ
,

1
δσ
,

1
δ2 ,

1
η2 ,

1
σ2

)
. (2.55)

Once the coefficients b have been found, the window function w̃δ,η,σ can be used for
the interpolation (Equation (2.38)) and spreading (Equation (2.38)) operations.
In particular, the discrete interpolation, using a mid point rule becomes

Ul = I (ui,j,k) =
∑

i,j,k∈ΩI

ui,j,kw̃δ,η,σ (xi,j,k −Xl) ∆Vi,j,k, (2.56)

while the spreading operation reads

fi,j,k = C (Fl) =
N∑
l=1

Flw̃δ,η,σ (xi,j,k −Xl) εl, (2.57)

where εl is a characteristic volume related to the local dilation coefficients of the
window function. To determine the correct value of ε, first, we consider the value
of the force on the Lagrangian points, obtained by interpolation

Fl =
∑

i,j,k∈ΩI

fi,j,kw̃δ,η,σ (xi,j,k −Xl) ∆Vi,j,k, (2.58)
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then, we replace fi,j,k with Equation (2.57)

Fl =
∑

i,j,k∈ΩI

[
N∑
l=1

Fmw̃δ,η,σ (xi,j,k −Xm) εm
]
w̃δ,η,σ (xi,j,k −Xl) ∆Vi,j,k. (2.59)

Equation (2.59) can be written using a matrix notation as

Adiag (~ε) ~F = ~F . (2.60)

By requiring that ~ε is independent of the actual force distribution, we obtain the
constraint det [A diag (~ε)] = 0, whose solution is found by solving

A~ε = ~1, (2.61)

where ~1 is a vector, whose elements are all ones. As shown by Pinelli et al. [74],
the conditioning of the matrix A depends on the ratios between the distances of
the Lagrangian nodes and the local grid size. When the Lagrangian spacing is
approximately equal to the local grid size (or slightly higher), the linear system
for ~ε is well conditioned and is easily solved.

2.2.2 Flow around a cylinder

y

x
D

20D

20D

10D 30D

Figure 2.6: Sketch of the computational domain around a cylinder.

To validate the RKPM immersed boundary implementation, we consider the
flow of an incompressible viscous fluid around a circular cylinder, as sketched in
Figure (2.6). We introduce the Cartesian coordinate system shown in Figure (2.6),
where x and y denote the stream-wise and normal coordinates, while u and v de-
note the respective components of the velocity vector field. On the lower and
upper surfaces, we impose the free-slip condition, while the no-penetration and
no-slip conditions are imposed on the body surface. Uniform velocity in the
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stream-wise direction U∞ is imposed at the inlet of the domain, while a convec-
tive outlet condition is imposed at the outlet. To make the problem dimensionless,
we use as a characteristic length L∗ the cylinder diameter

L∗ = D, (2.62)

and as characteristic velocity U∗ the free-stream velocity

U∗ = U∞. (2.63)

Consistently, the Reynolds number is defined as

ReD = U∞D

ν
. (2.64)

The diameter Reynolds number is fixed to ReD = 100, and the computation is

Figure 2.7: (a) Grid in the proximity of the cylinder (nodes are plotted with a skip
index of 5). (b) The values of ε for every Lagrangian points.

carried out on a grid of 696 × 696 points, covering a computational domain of
40D × 40D. The center of the cylinder is located at (10D, 20D), and its surface
is discretised with 320 equispaced Lagrangian points. The grid has an uniform
spacing of 0.001 in the cylinder region, and stretches towards the boundaries of
the domain. Note that, grid points are present also inside the cylinder, as shown
in Figure (2.7b). Figure (2.7b) reports the values of ε for all the Lagrangian
points. Note that, the square root of the average value 0.00011 is approximately
equal to the mesh size.

Figure (2.8a) shows the instantaneous span-wise vorticity ωz fields around
the cylinder. At this Reynolds number, the wake of the cylinder is charac-
terised by a von Karman vortex street typical of bluff bodies. Vortices of op-
posite sign are shed from the cylinder periodically, at a Strouhal number equal
to St = fsD/U∞ = 0.17, which is close to the experimental value of St = 0.165
reported by Williamson [97]. The value was obtained by the spectrum of the in-
stantaneous lift coefficient value, whose time history is reported in Figure (2.8b)
with a solid line together with the drag coefficient shown with a dashed line. The
mean lift and drag coefficients are CL = 0.0 and CD = 1.38, respectively, with
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Figure 2.8: (a) Contours of the span-wise vorticity ωz. (b) Evolution of the lift CL
(blue) and drag coefficients CD (red) over time.

Table 2.1: Aerodynamic coefficients for the cases analysed. The data from the first
row are taken from Guilmineau and Queutey [37].

Case N Cmax
L CD

Ref [37] − 0.36 1.35
Cyl-1 102 0.32 1.46
Cyl-2 144 0.33 1.45
Cyl-3 240 0.34 1.45
Cyl-4 288 0.34 1.41
Cyl-5 320 0.35 1.38
Cyl-6 350 0.35 1.38

Figure 2.9: (a) Contours of the stream-wise velocity u. (b) u (solid line) and v
(dashed line) velocity profiles, coloured in red and blue, respectively, at x = 10D.

the maximum absolute lift value equal to Cmax
L = 0.35. These results are in good

agreement with the one obtained by Guilmineau and Queutey [37] who found a
mean drag coefficient CD = 1.35, and a maximum lift equal to Cmax

L = 0.36.
Table (2.1) reports the mean drag coefficients CD and the maximum instan-
taneous lift coefficients Cmax

L obtained from various simulations, changing the
number of Lagrangian points used to represent the cylinder surface. We notice
that the cases with 320 and 350 points have the same values, thus indicating that
320 points is enough to correctly represent the solid cylinder at this Reynolds
number.

Figure (2.9a) shows the instantaneous x-component of the velocity field around
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Figure 2.10: Sketch of the computational domain.

the cylinder. In Figure (2.9b) the u and v velocity profiles on a vertical line pass-
ing through the centre of the cylinder at x = 10D are reported using solid and
dashed lines, respectively. Both the velocity components have values close to 0
at the cylinder boundary, and small but non zero values inside the cylinder, a
typical situation encountered when using IB methods.

2.3 Flow around aerofoils
We now briefly describe the numerical set-up that has been used as a common
ground to simulate the flow around an infinite NACA0020 wing. In particular,
we will introduce the grid system, the boundary conditions, and the technique
used to keep into account the aerofoil rotation. This section finalizes with the
description of a test case used to validate the numerical implementation used for
the DNS of the flow around aerofoils.

2.3.1 Numerical set-up
We now consider an incompressible three-dimensional unsteady flow field around
a straight wing with an infinite span-wise dimension z (x3). The computational
domain is shown in Figure (2.10). The coordinate system is Cartesian with the x
and y axis (x1 and x2) denoting the directions parallel and normal to the aerofoil
chord, respectively. Also, u, v and w (u1, u2 and u3) denote the correspondent
components of the velocity vector field parallel and normal to the chord, and
along the span. The Reynolds number Rec = U∞c/ν is based on the chord
length of the aerofoil c and the approaching free-stream velocity magnitude U∞.
We use U∞ and c as the velocity and length scales for normalisation throughout
the rest of the thesis.

The flow domain around the aerofoil is meshed using a body fitted C grid
arrangement, as in Figure (2.10). The grid system for the three dimensional case
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is obtained by repeating the baseline 2D grid uniformly in the spanwise direc-
tion. With this arrangement, the external surface that bounds the computational
domain, contains both the inlet and the outlet (see Figure (2.10)). To determine
which portion of the boundary in all parallel x-y planes is either an inlet or an
outlet, at each time step a local spanwise average of the fluid velocity is evaluated
in a tiny region close to the boundary. When the averaged flow direction points
outward, the corresponding portion of the boundary is assumed to be an outlet,
and is treated using a convective boundary condition. Conversely, if the flow
direction is directed inward, the corresponding boundary surface is considered
to be an inlet, and a Dirichlet type condition based on an irrotational approxi-
mation is employed. In particular, the values to be assigned to the velocity on
the Dirichlet portions of the boundary are determined by solving a companion
potential equation discretised via a Hess-Smith panel method [43].

Finally the remaining boundary conditions are imposed by enforcing: imper-
meability and no slip conditions on the aerofoil wall, periodic conditions on the
planes bounding the domain in the spanwise direction, and continuity of the flow
variables through the symmetry plane generated by the C-grid shape downstream
of the trailing edge.

2.3.2 Aerofoil rotation
When considering an aerofoil undergoing a time variation in its angle of incidence,
one can consider a frame of reference mounted on the aerofoil. In particular, the
frame shown in 2.10, is a non-inertial one, which rotates around the z-axis, having
its centre of rotation located at a quarter of the chord (xo = 0.25c). We define
the angle of rotation between the two reference axis as θ = −α. The Navier-
Stokes equations (Equation (2.1) and Equation (2.2)) in a non-inertial frame of
reference are modified as follows,

∂ui
∂t

+ ∂uiuj
∂xj

= − ∂p

∂xi
+ 1
Re

∂2ui
∂xj∂xj

+
(
θ̈Iθijxj + 2θ̇Iθijuj + θ̇2xi

)
, (2.65)

∂ui
∂xi

= 0. (2.66)

where all the variables are evaluated in the non-inertial frame of reference, and
the terms in the brackets are the inertial forces. In particular, the three terms are
the Euler, the Coriolis, and the centrifugal forces, respectively. Iθ is an auxiliary
matrix defined as

Iθ =

 0 1 0
−1 0 0
0 0 1

 . (2.67)

The boundary condition are modified as well. In particular, a Dirichlet condition
becomes

ui = Rθ
ijvj + θ̇Iθijxj, (2.68)
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Figure 2.11: Lift CL (blue) and drag CD (red) coefficients as a function of time. The
solid line is used for the case with inertial forces, while the dashed line for the case
without. The green line represents the time variation of the angle of attack.

where vi is the Dirichlet value for the velocity in the inertial frame, and Rθ is the
rotation matrix

Rθ
ij =

 cos (θ) sin (θ) 0
− sin (θ) cos (θ) 0

0 0 1

 , (2.69)

while the Neumann condition for the Poisson equation remains unchanged. To
avoid numerical oscillations the function θ = θ (t) has been made continuous up
to its second derivative, thus, we use a ramp function with smoothed start and
finish.

An alternative, simplified approach to represent the time variation of the angle
of attack is to modify the Dirichlet inlet conditions in time. At each time step, the
velocity components are modified to keep into account the change in the direction
of the freestream velocity vector. This method does not reproduce standard
wind tunnel experiments where the aerofoil is rotated around a revolution axis.
However, for low values of θ̇ and θ̈, the two approaches lead to similar results in
terms of integral quantities, with some discrepancy in the shape and evolution of
the wake (see Wong et al. [98]). In the ramp-up manoeuvre that will be analysed,
we will consider θ̇ as a constant except in short periods of time at the beginning
and at the end of the manoeuvre, when θ̈ is adjusted to enforce a smooth time
variation of θ. In Figure (2.11), we compare the lift and drag time history using
the two described approaches, using a value of θ̇c/U∞ = 0.12. In the graph, the
solid lines are used for the solution of the Navier-Stokes equations written in a
non-inertial frame of reference, while the dashed lines are for the one obtained
by simply varying the angle of attack by imposing the boundary condition at
the far-field consistent with the instantaneous direction of the velocity vector at
infinity. We can notice that the two cases are quite similar, with both showing
the lift overshoot and its breakdown typical of dynamic stall (this behaviour will
be discussed in the next chapters of the thesis). In view of the marginal difference
in the results obtained using the two approaches, we have decided to carry out
all the unsteady simulations using an inertial frame of reference and varying the
inlet conditions. This approach allows simpler considerations and computations.
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Table 2.2: Aerodynamic coefficients, separation and reattachment points for a
NACA0012 at α = 5o and α = 8o (Rec = 50000). The first two rows values are
from Lehmkuhl et al. [59], the second two correspond to our predictions.

Case α CL CD xs/c xr/c
Val-5-Ref 5o 0.57 0.029 0.065 0.57
Val-8-Ref 8o 0.76 0.050 0.024 0.32
Val-5 5o 0.57 0.028 0.100 0.57
Val-8 8o 0.73 0.049 0.032 0.30

2.3.3 Flow around an aerofoil: validation

The baseline code used for this thesis has been extensively validated for various
turbulent flows in the past [70, 71, 72]. However, to further corroborate the
predictive capabilities of the code in aeronautical contexts, we report a specific
validation of the flow over a NACA0012 aerofoil. We compare our numerical
results with the ones obtained by Lehmkuhl et al. [59] and by Rodriguez et al.
[78]. In particular, we have considered the aerofoil at a chord Reynolds number
Rec = 5×104, and at angles of attack α = 5o and α = 8o. The simulation domain
has been set up and discretised as previously described. We have used a grid of
2545× 490× 48 points in the x1, x2 and x3 directions, with a reduced spanwise
extent of the domain (set to 0.2c, as in [78]).

The comparison with the reference data turns out to be quite satisfactory.
In particular, Figure (2.12a) shows the pressure coefficient distribution over the
aerofoil surface at the two angles of attack obtained in the present simulations
versus the ones given in [59]. At both angles of attack all the predictions show
the presence of a separation bubble on the suction side of the aerofoil, resulting in
a plateau in the pressure coefficient. At α = 5o the flow separates at xs ≈ 0.10c
and reattaches at xr ≈ 0.57c, while at α = 8o the separation occurs at xs ≈ 0.03c
and the reattachment at xr ≈ 0.30c. A quantitative comparison with the results

Figure 2.12: (a) Distribution of the mean pressure coefficient over the NACA 0012
aerofoil at 5o (triangle) and 8o (circle). (b) Mean x-velocity profiles at 8o. The profiles
are at x/c = 0.7, 0.8, 0.9, 1.0, and 1.2. In both figures, the solid lines are from the
actual simulations, while symbols are used for the results from Lehmkuhl et al. [59].
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by Lehmkuhl et al. [59] is given in Table (2.2). In general, we find an overall
good agreement with the reference results, with a slightly retarded separation
predicted by our simulations. Figure (2.12b) shows the mean x-velocity profiles
in the vicinity of the trailing-edge and in the near wake region at α = 8o. Again,
good agreement with the results from the reference is observed.



Chapter 3

Flow around an aerofoil in static
and dynamic stall

3.1 Introduction

The flow around aerofoil at high angle of attack in full stalled condition is a
problem of great interest in aerodynamics and fluid-dynamics, since it involves
separation of the flow from the leading edge, transition to turbulence in the sep-
arated shear layer and the shedding of vortices in the wake, the latter being
responsible of strong fluctuation in the lift and drag. The static stall of aerofoil
can be classified into three basic types [48, 65]: i) trailing-edge stall, when the
separation starts from the trailing edge and moves forward with increasing angle
of attack, ii) leading-edge stall, which results from the burst of laminar separation
bubble, and iii) thin-aerofoil stall, characterised by flow separation at the leading
edge with reattachment in a point which moves progressively downstream with
increasing angle of attack. Note that, the aerofoil stall type depends on several
variables (Reynolds number, surface roughness or free-stream turbulence), there-
fore, its stall type may change when flow conditions are changed. Broeren and
Bragg [15] showed that the most severe unsteady effects are those encountered in
the thin-aerofoil and trailing-edge stall type.

Dynamic stall is an unsteady phenomenon that appears on lifting objects in
response to time variations of the angle of attack. A classical example is the
flow over aerofoils undergoing large amplitude pitching motions that can lead
to dramatic changes in the aerodynamic loads and thus to potentially catas-
trophic technological consequences. Because of its dramatic impact on several
applications, a considerable number of researches have extensively studied these
phenomena in the past [38, 63, 64, 67, 68, 17]. Indeed, dynamic stall can affect
the performance and operational limits of many engineering and aeronautical ap-
plications, such as helicopters, highly manoeuvrable aircraft and wind turbines.
The aim of dynamic stall research varies for each application. For example, while
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on the helicopter blades the objective is mainly to inhibit the formation of the
dynamic stall vortex, on fixed wing aircraft, the idea could be to sustain the
lift overshoot generated by the dynamic stall vortex formation to enhance the
manoeuvrability.

So far, experimental works have mainly focused on unsteady flows over two-
dimensional aerofoils undergoing prescribed pitching motions [38, 28, 29, 30, 31,
63, 64, 57, 67, 68]. Most of these works [38, 28, 29, 30, 31, 63, 64] have also
investigated the influence on the aerodynamic response of various parameters,
such as aerofoil geometry, Reynolds and Mach numbers, oscillation amplitude and
frequency. Halfman et al. [38] created a combined experimental and theoretical
method able to predict the effect of the dynamic stall on the aerodynamic load.
This approach was further developed by Ericsson and Reding [28, 29, 30, 31].
McCroskey [63, 64] described the main physical features of the phenomenon and
classified the dynamic stall into two categories: light and deep stall, the former
being characterised by a loss of lift and an increase in drag which are of the same
magnitude as the one associated with the classical static stall, and by a size of
the separated region in the order of the aerofoil thickness. Conversely, deep stall
is characterised by a lift overshoot, due to the passage of a large scale vortex over
the suction side of the aerofoil, followed by a lift breakdown associated with the
vortex detachment. Deep stall is also characterised by a separated region with
a size in the order of the aerofoil chord. Shih et al. [87], using particle image
velocimetry visualisations, suggested that the main stall vortex is induced by the
early boundary layer separation near the leading-edge of the aerofoil, and that
full stall occurs when the boundary layer detaches completely from the aerofoil.
Acharya and Metwally [2] have highlighted the presence of two pressure peaks in
the forward portion of the aerofoil. The first suction peak grows in magnitude
as the aerofoil pitches up, while the second one corresponds to the dynamic stall
vortex and moves downstream.

High fidelity numerical simulations of dynamic stall in configuration of aero-
nautical interest are particularly expensive due to the broad range of time and
space scales involved in the phenomenon: the unsteady variations of the angle
of attack becomes slower and slower compared to the fastest turbulence time
scale as the Reynolds number is increased. For this reasons Direct and Large
Eddy Simulations (DNS and LES) are confined to low/intermediate Reynolds
numbers while higher Reynolds Simulations are normally dealt with Reynolds-
Averaged Navier-Stokes simulations (RANS). However, conventional turbulence
models are known to fail in producing reliable solutions in such complex, out of
equilibrium conditions: unsteady, recirculating and locally transitional flow.

A complete review on the numerical simulations of dynamic stall [83, 99, 91,
7, 96, 26, 34] can be found in the work of Ekaterinaris and Platzer [27]. One
of the major outcomes of this survey is a list of research topics that required
further advancements for achieving reliable predictions. Several other works have
highlighted the difficulties that RANS calculations encounter when dealing with
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dynamic stall. In particular, Wang et al. [96] used two variants of the k−ω model,
the standard and the SST one, to simulate the flow at moderate high Reynolds
number Rec = 105. From a comparison with experimental results, they noticed
that the models can not precisely capture the size and position of the dynamic
stall vortex. Moreover, the quality of the predictions of the models deteriorate as
the angle of attack increases. Dumlupinar and Murthy [26] further investigated
the performances of various turbulence models and pointed out that different
turbulence closures predict a broad range of different behaviours even in the light
stall case.

Although several experimental and numerical studies have contributed in elu-
cidating the main physical mechanism that come into play on the flow behaviour
when the angle of attack undergoes a dynamic change, to our knowledge the only
high fidelity numerical simulations (i.e., DNS or resolved LES) which have been
carried out so far are the implicit Large Eddy Simulations of a pitching aero-
foil undertaken by Visbal [93, 94]. Those simulations can be considered to be
a pioneering work aimed towards a more detailed understanding of the physical
mechanisms that determine the dynamic stall vortex creation and its detach-
ment. The understanding of this basic phenomenon would enable to devise new
strategies and devices to control the changes in the aerodynamic loads. In this
work, for the very first time we aim at performing a direct numerical simulation
of the transitional flow around an aerofoil in ramp-up motion. In a companion
simulation we also study the flow in a fully separated condition (at the same max-
imum angle of attack) to establish a baseline benchmark case to allow a cross
comparison between the aerodynamic behaviour in a static and dynamic stalled
condition.

3.2 Set-up
The aerofoil that has been selected for the present study is a symmetric NACA0020.
All the simulations have been undertaken by fixing the Reynolds number based
on the magnitude of the freestream velocity and the chord length to 20000. The
angle of attack is kept at 20o in the static case, and varies according to a ramp
function in the dynamic case. In the latter, the angle of attack is varied at a con-
stant rate equal to α̇ = 0.12U∞/c until a maximum incidence of 20o is achieved.

We now give more details on the grid system. The mesh in Figure (3.1)
has been generated in the xy-plane with particular care to its orthogonality and
stretching features using the commercial software Pointwise [75], with hyper-
bolic PDE extrusion methods. The resulting grid has a minimum included angle
(83.19o) exactly matching the geometrical constraint of the trailing edge, see
Figure (3.1), while the average grid included angle in all the domain is equal to
89.97. In the wall normal direction, the grid is almost uniform from the aerofoil
surface up to 3 chords in order to capture all the separated region and the wake
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Figure 3.1: Grid in the proximity of the aerofoil (nodes are plotted with a skip index
of six). The inserted figure is an enlargement of the area surrounding the trailing edge.

Figure 3.2: Mean streamwise velocity < u > (a) and shear component of the Reynolds
sress tensor < u′v′ > (b) profiles over the wing and in the near wake. The solid lines
are used for the reference grid, the circles and the triangles for the coarse and fine grids,
respectively.

at high Reynolds number. Further away from the surface, it is coarsened with an
increasing stretching factor, which maximum is located near the external bound-
ary where it is equal to 1.03. In the direction parallel to the aerofoil, the grid
is uniform over the wing and very slightly stretched (1.001) in the wake region.
A buffer layer with higher stretching factor (1.015) is used near the outlet to
suppress reflections. The three dimensional mesh is then obtained by repeating
the two dimension grid in the spanwise direction with uniform spacing.

The grid density has been tuned by considering a number of preliminary
two and three dimensional simulations. The former allowed us to establish the
grid spacing requirements in the laminar portion of the flow featuring separation
and convective instabilities. The latter was used to determine the grid reso-
lution requirements in the turbulent flow regions. Through these preliminary
simulations, undertaken at various incidence angles, we have found that a grid
with 2785 × 626 × 97 nodes in the x1, x2 and x3 direction (−2c < x1 < 8c,
−7c < x2 < 7c, and 0 < x3 < 0.9c), respectively, delivered a sound resolution



3.2 Set-up 31

Figure 3.3: Contours of the ratio between the grid size h and the Kolmogorov length
scale η. Contour levels go from 0 (white) to 1.2 (red).

Figure 3.4: (a) Mesh resolution at the wall. The resolution in the x, y and z directions
are shown with a solid, dashed and dash-dotted line, respectively. (b) Span-wise two-
point correlation of the u velocity component in the near wake region.

compromise throughout the whole incidence range. We also made sure that, in
terms of local wall units the corresponding mesh resolution verifies ∆x+ < 3.0,
∆y+ < 0.5 and ∆z+ < 7.5 where the superscript + indicates values made non-
dimensional using the viscous length ν/uτ and the friction velocity uτ =

√
τw/ρ

(see Figure (3.4a)). The grid dependency of the results has been evaluated by
considering the first and second order statistics. In particular, we have tested a
coarser and a finer grid obtained by decreasing and increasing by 30% the number
of grid points in all the three directions, and the comparison between the three
cases is shown in Figure (3.2). The comparison between the medium and finer
grid showed no significant differences.

The quality of the grid resolution used in the present computations has been
also assessed by means of a posteriori analysis of the zones off the wall. To do
this, the grid size h ≈ 3

√
V has been compared to the Kolmogorov length scale η,

obtained from the dissipation rate ε as,

η =
(
ν3

ε

) 1
4

, (3.1)

where the turbulent kinetic energy dissipation rate can be evaluated as

ε = 2ν < S ′ijS ′ij >, (3.2)
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being S ′ij the fluctuation rate of strain tensor. Figure (3.3) shows the contour
of the ratio h/η close to the aerofoil, which is in the order of one in the whole
recirculating region, i.e., h ≈ O (η). So, the grid spacing should be fine enough
to resolve the smallest flow scales at the selected Reynolds number.

Finally, concerning the spanwise size of the domain, its adequacy to contain
the largest scales of the flow has been determined by comparing the spanwise two-
point correlation at various xy coordinates. The two-point correlation is defined
as follows

Rii(x, r) = u′i(x)u′i(x + r)
u′2i (x)

, (3.3)

where the bar denotes average over time and homogeneous direction z. The
computed two-point correlation, shown in Figure (3.4b), becomes negligible when
approaching 0.13c, less than half of the domain size (0.45c), which guarantees a
good decorrelation between the periodic end planes.

3.3 Static high angle of attack

3.3.1 Flow statistics
We now consider the flow over the NACA 0020 aerofoil at an angle of incidence of
20o. The flow statistics have been collected during 100c/U∞ time units after the
initial transient. Averaging in the spanwise homogeneous direction and over 100
external time units (based on c and U∞) was largely sufficient to produce statis-
tically steady results. The mean x-velocity component is shown in Figure (3.5a),
together with the pressure coefficient Cp (Figure (3.5b)) and the friction coeffi-
cient Cf (Figure (3.5c)). From the mean velocity iso contours in Figure (3.5a), it
clearly appears that the aerofoil is in a fully stalled condition with a large recir-
culation zone present on the whole suction side. The separation bubble occupies
a volume of 0.5c in the y-direction and 0.3c in the x-direction behind the trailing
edge, where a secondary recirculation appears. The primary recirculation zone
generates a plateau in the pressure coefficient (Figure (3.5b)) which extends on
the whole suction side after a small suction peak near the leading edge, while the
reduced pressure region at the trailing edge is due to the secondary recirculation.
Another smaller recirculation bubble is visible at 0.25c centred in proximity of the
location of the aerofoil maximum thickness. The presence of this separation bub-
ble, extending from x = 0.15c to x = 0.50c, can also be educed from the friction
coefficient distribution (Figure (3.5c)). Figure (3.5a) also shows u-velocity pro-
files in 3 different positions along the chord (at the leading edge x = 0.0c, at the
mid chord x = 0.5c, and at the trailing edge x = 1.0c) and further downstream
in a location within the wake (x = 1.5c). The given profiles show that at the
leading edge, the flow is attached and the boundary layer starts developing with
a strong adverse pressure gradient (Figure (3.5b)) that results into separation of



3.3 Static high angle of attack 33

Figure 3.5: (a) Contours of mean flow x velocity and streamlines, (b) pressure and
(c) friction coefficient of NACA 0020 aerofoil at an angle of attack α = 20o and with a
Reynolds number Rec = 2× 104.

the flow at x = 0.025c; at mid chord the flow is reversed near the aerofoil and,
after attaining a maximum negative velocity value at y = 0.15c, it grows until
reaching zero value at y = 0.26c; at the trailing edge, the x-velocity component
becomes zero at y = 0.04c after having formed a tiny shear layer with positive
velocity, and further away from the aerofoil it reaches the value −0.29U∞ (close
to the absolute minimum in the whole domain) at y = 0.21c, to recover again a
zero value at y = 0.33c. Finally, the last profile shows the velocity profile within
the wake, featuring a characteristic defect shape and a positive minimum value
0.22U∞ reached at y = 0.40c.

Figure (3.6) shows the diagonal u′tu′t (Figure (3.6a)) and off diagonal u′tu′n
(Figure (3.6b)) components of the Reynolds stress tensor, where ut and un are the
fluctuating velocity components tangent and normal to the free-stream velocity
direction, respectively. High values of the stresses are present in the wake behind
the aerofoil, and in other two regions: within a tiny shear layer originating from
the leading edge which bounds the clockwise recirculating region, and behind the
trailing edge where the anti-clockwise recirculation takes place. All the Reynolds
stresses vanish at the wall due to the no-slip condition and far from the aerofoil
surface where the flow is laminar. One can also notice that the approaching flow
is laminar, as shown by the 0 values of the stresses profile at the leading edge.
At x = 0.5c the stresses have low intensities in the recirculating region near the
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Figure 3.6: (a) Contours of tangent < u′tu
′
t > /U2

∞ (b) and shear < u′tu
′
n > /U2

∞
components of the Reynolds stress tensor. Mean flow streamlines and some profiles are
also shown.

Figure 3.7: (a) Lift CL (solid line) and drag CD (dashed line) coefficients as a function
of time. (b) Spectra of the time autocorrelation of the u velocity component at points
P01 (gray solid line), P02 (black solid line) and P03 (dashed line).

wall, and then form a peak located at y = 0.12c. In the wake behind the trailing
edge the Reynolds stresses have two peaks located at y = 0.26c and 0.59c, the
first peak having a higher intensity than the second. The high stress intensity in
the wake zone is mainly due to the flow separation taking place at the trailing
edge of the aerofoil, with a smaller contribution from the shear layer formed at
the leading edge. Both these regions are responsible to shed vorticity of opposite
sign in the wake, carrying different contributions in terms of intensities and thus
breaking the symmetry of the wake.

Figure (3.7a) shows the lift and drag coefficients as a function of time. These
distributions have been obtained by integrating the pressure and shear stress at
the wall. Their mean values are CL = 0.64 and CD = 0.35, respectively. These
values, compared with the ones reported by Skillen et al. [88], obtained via a
large eddy simulation of the flow around a similar aerofoil at same incidence but
at higher Reynolds number, show small discrepancies with slightly higher lift
(3%) and drag (6%) coefficients. From the figure, it is also possible to notice the
presence of a dominant frequency. This frequency corresponds to the shedding of
vortices in the wake, and its non dimensional value in terms of Strouhal number
is St = fsc/U∞ ≈ 0.534. An alternative Strouhal number based on the windward
length c sin(α) gives a value of St′ = fsc sin(α)/U∞ = 0.183. This value falls
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within the range 0.175− 0.185 in agreement with the results of Knisely [55] that
also showed that the Strouhal number tends to become independent of the shape
of the bluff object when the angle of attack is increased. To further investigate the
unsteady nature of the flow field and in particular aiming at tracing the footprint
of the vortex generation process originating from the shear layer instability at
the leading edge we have computed the spectrum of the time autocorrelation at
three different locations (Figure (3.7b)) (P01, P02 and P03). The first one (P01)
is located in the shear layer close to the leading edge at x = 0.10c, y = 0.10c, the
second one (P02) in the shear layer near the midchord at x = 0.40c, y = 0.28c,
and the last (P03) near the trailing edge at x = 1.05c, y = 0.08c. All the
spectra show a peak at St = 0.534 which is the reported principal wake shedding
frequency (f2). In the shear layer near the leading edge (P01), we observed a
peak at lower frequency f1 = 0.25U∞/c, corresponding to approximately half
the shedding frequency and related to a low frequency flapping motion of the
shear layer [78, 54, 23, 22, 44]. In the same spectrum a third peak is present at
f4 = 9.75U∞/c corresponding to the vortex generation due to the leading edge
KH shear layer instability. Another smooth peak at frequency f3 = 2.52U∞/c
is present in the spectrum corresponding to the midchord location (P02). This
frequency is lower than f4 due to the merging of vortices which grows in size. An
analogous trend can be observed in Rodriguez et al. [78].

3.3.2 Flow structure
More details on the emerging coherent structures, their interactions and the wake
formation process, have been educed using the Q-criterion proposed by Hunt et
al. [45]. This technique allocates a vortex to all spatial regions that verify the
condition

Q = 1
2
(
|Ω|2 − |S|2

)
> 0, (3.4)

where S = 1
2

(
∇u + ∇uT

)
is the rate of strain tensor and Ω = 1

2

(
∇u−∇uT

)
is the vorticity tensor. Instantaneous Q iso-surfaces are shown in Figure (3.8a).
From this figure, the principal flow features are easily observed: the laminar flow
separates at the leading edge, forming a shear layer that rolls up into Kelvin-
Helmholtz (KH) vortices [18, 19, 100, 89, 1]; this instability, locally, triggers the
flow transition to turbulence; further downstream a turbulent separated region
appears to be characterized by fine texture small-scales structures, which even-
tually merge into coherent larger structures; finally behind the aerofoil, a large
turbulent wake is formed, whose shape is similar to a von Karman vortex street
typical of bluff bodies, as clearly shown in Figure (3.8b). However, in contrast
to classical vortex shedding process showing an alternately series of vortices of
opposite sign and equal strength, here the wake is highly asymmetric presenting
vortices of uneven strength. As already mentioned, the loss of symmetry and the
irregularity of the vortices pattern is related to the interaction between the two
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Figure 3.8: (a) Visualisation of instantaneous vorticity field by means of Q-iso-
surfaces (Q = 150U2

∞/c
2) coloured by the y-coordinate (distance from centreline). (b)

Instantaneous contour plot of the spanwise component of the vorticity ωz, averaged in
the homogeneous z-direction. Blue negative vorticity, red positive (±7U∞/c).

vortex generating mechanisms (see Breuer and Jovicic [14, 13]): the vortices roll
up under the action of the KH leading edge shear layer instability and the street
of vortices characterising the wake behind the trailing edge. From Figure (3.8a)
shows also the presence of braid-like vortices between each shedding rollers.

Within the Eulerian coherent structures educing techniques, the Q-criterion
is probably the most popular one. Even though it enjoys the Galilean invariance
property, it has other shortcomings that are typical of Eulerian methods: it
lacks objectivity (i.e., not independent of frame rotations), it is based on the
numerical evaluation of gradients that may introduce further noise and it requires
the empirical specification of a threshold value. On the other hand, methods that
are based on a Lagrangian formulation overcome those weaknesses. In particular,
one of the most popular Lagrangian approaches is based on computing the Finite-
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Figure 3.9: Instantaneous contour plot of the FTLE σT (defined in (3.6)) during a
shedding period. Snapshots have been sampled at 6 time instantaneous snapshots by
an increment ∆T ≈ 0.35c/U∞. Darker colours are associated with most unstable LCS.
The contour levels go from 0 (white) to 7U∞/c (red).

Time Lyapunov Exponents (FTLE) (see Haller [39] and Shadden et al. [86]). The
FTLE σT (x, t) is a scalar function of space and time which measures the rate
of separation of neighbouring particle trajectories initialised within a small ball
centred at x at time t. More precisely, if x (t,x0, t0) denotes the position of a
particle at time t that originated from position x0 at time t0, a measure of particles
separation rate can be related to the largest singular value of the Cauchy-Green
deformation tensor computed over a finite time interval [t0, t0 + T ]

∆ = ∂x (t0 + T,x0, t0)
∂x0

. (3.5)

Once the largest singular value λmax (∆) is found, the FTLE over the time interval
[t0, t0 + T ] is defined as

σT (x, t) = 1
T
ln
√
λmax (∆), (3.6)

One can use both positive and negative integration times to evince either at-
tracting Lagrangian Coherent Structures (LCS, unstable manifolds) with nega-
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tive integration time T < 0, or repelling LCS (stable manifolds) characterised by
positive integration time T > 0 [40]. LCS are therefore used to classify regions
in the flow undergoing different dynamical conditions. In particular, the recircu-
lating regions are identified by their association with unstable LCS. Figure (3.9)
shows contours of the FTLE, where the coherent structures are associated to local
extrema of σT . The six different instantaneous snapshots considered in the figure
cover a full shedding period ∆t = 1.75c/U∞ (see Figure (3.7a)). Figure (3.9a)
corresponds to the beginning of the shedding cycle, with no vortex at the trailing
edge, and the leading edge shear layer rolling up under the action of a Kelvin-
Helmholtz instability. Later on (Figure (3.9b)), also the trailing edge shear layer
undergoes a KH instability rolling up and inducing the generation of a trailing
edge vortex. In the following instantaneous snapshots, the trailing edge vortex in-
creases in size (Figure (3.9c-d)), interfering with the leading edge KH instability
also affecting the thickness and the location of the shear layer. This interaction
continues until the trailing edge vortex is fully established and detaches from
the aerofoil (Figure (3.9e)). As the trailing edge vortex is convected downstream
(Figure (3.9f)), the leading edge shear layer is no more drawn into the separated
region, and the undisturbed KH instability process associated with the leading
edge induced shear layer is recovered. Ultimately, this cyclic interaction between
the leading and trailing shear layers is the responsible of the asymmetry in the
wake pattern. At the trailing edge, vortices generated by the flow separation
from the aerofoil surface are shed into the wake, while the small scale vortices
generated by the Kelvin-Helmholtz instability of the shear layer at the leading
edge are periodically either trapped in the recirculating bubble or shed into the
wake also increasing their size via a pairing process.

3.4 High angle of attack: ramp-up transient
We now consider the evolution of the flow field around the aerofoil during a ramp-
up motion. As already mentioned, in this manoeuvre the angle of attack follows
a ramp function in time with an initial linear increase followed by a steady value
of the angle. In particular, the angle of attack is varied linearly from 0o to 20o
with a reduced frequency of k = α̇ = 0.12U∞/c. These values have been selected
because matching the experimental conditions of Brucker and Weidner [17] (the
reduced frequency is also very close to the one of Mulleners and Raffel [67]).
All the simulations have been obtained using snapshots from a fully developed
zero degree angle of attack flow conditions. Because of the intrinsic unsteady
nature of the flow field, time averaged statistics can no more be defined, and only
averages in the homogeneous z-direction can be used. Convergence of the flow
statistical quantities has been enhanced by also introducing ensemble averages
obtained from different initial conditions. In particular, we have considered ten
realisations obtained using ten initial conditions obtained from instantaneous zero
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Figure 3.10: (a) Lift (blue line) and drag (red line) coefficient over time, with the
selection of 6 particular times indicated by the dashed line and the symbols. The solid
line is used for the ramp-up case, while the dashed line is for the case at α = 20o.
(b)-(c) Pressure coefficient Cp and (d)-(e) friction coefficient Cf at the selected times.

degree flow fields sampled within two shedding cycles. Flow statistics obtained
using ensemble averages and span wise planes were fairly converged.

Figure (3.10a) shows the time history of the lift and drag coefficients during
the ramp-up motion (solid lines), compared to the case at fixed angle of attack
α = 20o (dashed lines). From the force coefficients diagram we can easily recog-
nise the typical stages of dynamic stall, as described for example by McCroskey
[63]. The lift and drag coefficients first increase until reaching maximum values
after the end of the linear increase of the angle of attack. Due to the passage
of a large scale vortex over the suction side of the aerofoil, the magnitude of the
maxima are larger than the static stall values. As this vortex detaches, the force
drops abruptly. Finally, they oscillate slowly converging towards the asymptotic
static stall values. The maximum lift and drag coefficients are 1.58 and 0.67,
respectively, about twice the values of the static case. In the decaying region,
the amplitude of the oscillations is much higher than in the static case, while the
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Figure 3.11: Contour plots of the space and ensemble average of the spanwise com-
ponent of vorticity ωz, sampled at the times given in Figure (3.10a). Blue negative
vorticity, red positive (±7U∞/c).

characteristic shedding frequency is lower in the ramp-up case. Those differences
between the dynamic and the static cases become less accentuate approaching
the asymptotic state.

Figure (3.10b-c) and Figure (3.10d-e) show the time evolution of the pressure
and friction coefficients, Cp and Cf , and Figure (3.11) displays the contours of
the span-wise z-component of vorticity ωz, averaged in the span-wise homoge-
neous z-direction, sampled at the same six times as the corresponding Cp and
Cf distributions (i.e., , the six time instants marked in Figure (3.10a)), with the
first corresponding to α = 0o, the second to α = 10o, and the others to α = 20o.
At α = 0o the Cp distribution is symmetric (Figure (3.10b)), with a plateau
starting at about the mid-chord position, indicating the presence of a separated
region. The rightmost local minimum located by the trailing edge is induced by
vortex shedding. The friction coefficient on the suction side of the aerofoil con-
firms the mentioned boundary layer features, displaying a peak near the leading
edge, followed by a smooth decrease (Figure (3.10d)) and the presence of the
separation point at about the mid-chord. The flow is symmetric over most of
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the aerofoil surface (Figure (3.11a)), except at the trailing edge and in the wake,
where contra-rotating vortices are shed from the suction and pressure sides of the
wing. As the angle of attack reaches the value of 10o, the pressure distribution
(Figure (3.10b)) and the flow (Figure (3.11b)) are no more symmetric, and the
lift starts to increase consequently. The maximum friction coefficient moves to-
wards the leading edge, as well as the separation point (Figure (3.10d)). When
the static stall angle is reached, small amplitude Cf oscillations in the trailing
edge area become visible. At α = 20o the lift is still increasing, consistently
with the pressure decrease on the suction side (Figure (3.10b)). Also, even if
the separation point has now reached the static stall value, the pressure coeffi-
cient distribution does not show the typical separation plateau. Compared to
the static case, the Cf oscillations take place further upstream towards the lead-
ing edge (Figure (3.10d)). When the maximum lift coefficient is approached, the
peak of the pressure near the leading-edge is still increasing, and a second peak
appears around the mid-chord (Figure (3.10c)). This new peak is induced by a
large vortex which has started to form on the suction side (i.e., the so called dy-
namic stall vortex), see Figure (3.11d). Further downstream, the pressure drops
rapidly, while the friction coefficient (Figure (3.10e)) reaches a maximum nega-
tive value. During this phase, no vortices are shed from the trailing edge, as can
be educed from Figure (3.11d). In later stages, as shown in Figure (3.10c) the
pressure peak value at the leading edge starts to decrease, while the secondary
peak intensity keeps on increasing in magnitude, moving towards the trailing
edge, as the dynamic stall vortex is convected downstream. During the displace-
ment of the dynamic stall vortex, an induced counter rotating vortex is formed
at the trailing edge, see Figure (3.11e). When the dynamic stall vortex finally
detaches from the aerofoil and the trailing edge vortex reaches its maximum size
(Figure (3.11f)), the pressure attains an almost constant distribution indicating
a fully separated flow condition (Figure (3.10c)). However, the lift will then start
to increase again due to the formation of another shed vortex, whose magni-

Figure 3.12: (a) Time evolution of the downstream separation point during the ramp-
up manoeuvre (solid line). The dashed line represents the separation point at 20o. (b)
Fluctuations of the x-velocity components u′ as a function of time for various points
near the aerofoil surface. The fluctuations are scaled by a factor of 10 and shifted.
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tude and intensity is weaker than the first one. This cyclic shedding process
is damped in time with vortices of lower intensities until the static condition is
asymptotically reached. The time evolution of the separation point is reported in
Figure (3.12a). At α = 0o the separation point is located at xs = 0.47c, moving
towards the leading edge as the angle of attack is increased. As already remarked,
the static stall separation point xs = 0.025c is firstly reached when the ramp-up
motion is finalised at t = 3.5c/U∞. In the subsequent stage, when the incidence
angle is constant (α = 20o), the separation line moves further upstream featuring
a damped oscillating trajectory around its static location.

When commenting Figure (3.10d-e), we have already highlighted the presence
of some oscillations in the Cf distribution by the trailing edge region. These
oscillations amplify in time affecting larger portions of the profile. The driving
mechanism that trigger these oscillations is associated with a KH shear layer
instability that starts at the trailing edge and propagates up-stream in time.
This phenomenon is analysed in Figure (3.12b) showing the evolution over time
of the fluctuations of the stream-wise velocity component at various locations
along the aerofoil suction side (as shown in the figure), at a wall normal distance
of 0.1c. The bullets used in the figure indicate the time when the amplitude
of the fluctuation reaches the 2.5% of the average value. From this diagram, it
appears clearly that initially the x-wise velocity fluctuations are confined to the
trailing edge region. Only after 2 time units the fluctuations reach the half chord
location. Later on they travel slowly further upstream, but never contaminating
the leading edge portion of the aerofoil. Thus, it is clear that the separated region
moves upstream in time, with an initial velocity approximately equal to 0.15U∞.

Next, we focus on the time evolution of the turbulent kinetic energy k = 1/2 <
u′iu
′
i >, shown in Figure (3.13), together with the corresponding mean streaklines.

At α = 0o the flow accommodates smoothly around the aerofoil with low levels
of turbulent kinetic energy confined in the wake behind the trailing edge. As
the angle of attack is increased (Figure (3.13b-c)), a recirculation zone is formed
on the suction side of the aerofoil in the trailing edge region. At later stages,
a complete separation occurs affecting the whole suction side (Figure (3.13d)).
The associated recirculation zone display high levels of turbulent kinetic energy.
The following time frame, Figure (3.13e), shows a completely formed dynamic
stall vortex that, later on, will be convected downstream towards the trailing
edge. A new contra-rotating bubble is formed at the trailing edge, and other two
recirculation regions appear, one at about the the mid-chord location and the
other around x = 0.15c. Both of them finally vanish when the dynamic stall and
trailing edge vortices are shed away from the aerofoil (see Figure (3.13f)).

To better understand the vortex formation and transport processes and the
origin of the instabilities arising in the flow, we turn our attention to Figure (3.14)
where the evolution of the FTLE σTt is reported. In the figure, the frames are
organised time wise, with the right column covering the same instantaneous
snapshots marked in Figure (3.10), while the left column displays contours at
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Figure 3.13: Contour plots of the ensemble average among solutions with different
initial conditions of the turbulent kinetic energy k, averaged in the homogeneous z-
direction, at the times showed in Figure (3.10). The contour level go from 0 (white) to
0.15U2

∞ (red).

times sampled in-between. Figure (3.14a) corresponds to the earliest stage at
t = 0.715c/U∞, when the angle of attack is α = 5o. Initially, in panel a, the flow
is slightly asymmetric, with two shear layers developing around the mid-chord.
In the next two panels (b and c), the flow on the pressure side tends to reattach,
while the suction side shows an early separation with the trailing edge shear layer
initiating to roll up, and shedding vortices at the trailing edge. At α = 20o the
shear layer rolls-up into a recirculating region that closes at around the mid-chord
(Figure (3.14d)). This roll-up process continues (Figure (3.14e-f)) leading to the
formation of a large scale vortical structure, i.e., the dynamic stall vortex. As al-
ready noticed, while this large scale vortex is formed, no vortices are shed from the
trailing edge and an almost straight shear layer is formed. The latter is displaced
towards the suction side and distorted by the clock-wise rotation of the dynamic
stall vortex (Figure (3.14g)), causing its fast roll-up (Figure (3.14h)). The newly
generated trailing edge vortex pushes the dynamic stall vortex upwards causing
its detachment from the aerofoil while it grows in size (Figure (3.14i)). Also the
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Figure 3.14: Contour plot of the FTLE σT . Time increases from left to right and
from top to bottom, with a sampling time interval of ∆t = 0.715c/U∞. The initial
time (a) corresponds to α = 5o. The contour levels go from 0 (white) to 7U∞/c (red).

leading edge shear layer is influenced by the presence of the trailing edge vortex
forming a larger angle with the chord. When the trailing edge vortex is shed,
the leading edge shear layer moves again closer to the aerofoil (Figure (3.14j))
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Figure 3.15: Vortices positions as a function of time, and sketch of the main events
occurring during the dynamic stall.

and starts to roll-up forming a new vortex. This cycle is repeated for a few more
times while the intensity of the vortex decays.

To better track the movement of the large scale coherent structures, we have
also performed a supplementary vortex eduction study and tracked the cores of
the vortices identified using the criterion proposed by Kida and Miura [51]. This
methodology defines vortex cores in a two dimensional setting by checking on the
correspondence of a local pressure minima and the verification of a swirl condition.
In particular, the criterion on the swirl reads as S < 0, where S is the discriminant
of the velocity gradient tensor in the plane, i.e., S = (∂u/∂x− ∂v/∂y)2 /4 +
∂u/∂y ∂v/∂x. To eliminate the noise induced by very low intensity vortices, we
have pre-filtered all the vorticity contributions with span-wise vorticity values
lower than 0.01U∞/c. The evolution of the vortices trajectories, obtained by
joining the space locations verifying the two criteria, are plotted in Figure (3.15).
The vortices are classified into five groups, marked with different colors. At initial
times, vortices are shed only at the trailing-edge (green), but as the separation
point moves upstream (Figure (3.12)), vortices start also to be shed from the
suction side of the aerofoil at increasingly up-stream locations (magenta). Later,
at t ≈ 4c/U∞, the vortices at mid-chord start to merge and the dynamic stall
vortex is formed (blue). The dynamic stall vortex first remains almost stationary
in its position while it is formed, while later on it is convected downstream with a
phase velocity of about 0.25U∞. As the latter approaches the end of the aerofoil,
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the trailing edge vortex is generated (red). This newly formed vortex is first
attracted towards the dynamic stall vortex upstream, and, when it is fully formed
moves away from the aerofoil surface. Meanwhile, the leading edge shear layer
keeps shedding vortices (yellow) which merge into other large scale structures.



Chapter 4

Control of the flow around an
aerofoil at high angle of attack

4.1 Introduction

The control of flow separation in wings at high angle of attack has been the focus
of many research activities in the past. In particular, a number of biomimetic
methodologies for separation control on wings in highly loaded conditions have
been inspired by observing the flight or swimming characteristics of certain birds
and fish (see [8, 10, 24, 3]). In particular, the idea of reproducing the pop-up of
birds feathers for stall delay and control is becoming increasingly popular because
of its passive but still self-adaptive character: the feathers lift up is believed to
be induced by the back-flow occurring when the flow separates as a consequence
of the increased angle of attack (see [10, 12, 21]).

The experimental results reported by Schatz et al. [84] show that the use of
self deploying flexible flaps, mounted on the suction side of a wing (HQ17 aero-
foil), can deliver an increase in lift of about 10% in nominally stalled conditions
at a chord Reynolds number, Rec ' 106 (Rec = U∞c/ν is the Reynolds number
based on the magnitude of the free stream velocity U∞ and the aerofoil chord
c). More recent experiments by Schluter [85] have also studied the effectiveness
of an adaptive passive flap on a SD8020 aerofoil at moderate Reynolds number
(Rec = 3 − 4 × 104) showing that its use promotes a lift increase in near stall
conditions. Wang and Schluter [95] have extended the previous analysis to gen-
uinely three-dimensional conditions considering the effects of a passive flap on
a wing of finite span with the same aerofoil section. They found that the flap
still deliver a substantial lift benefit if extending over the 80% of the wingspan
leaving the tip clear. They also observed that the position and the length of
the flap leading to improved aerodynamic performances were independent of the
three dimensional character of the flow field. [9] have extensively investigated
the effects of wing mounted movable flaps in a series of wind tunnel experiments.
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Their results indicate that adaptive flaps show good aerodynamic performances
on wings with a large aspect ratio by successfully suppressing flow separation
that develops gradually upstream from the trailing edge. Traub and Jaybush [90]
have systematically evaluated the effect of several self-actuated 3D spoiler ge-
ometries using wind tunnel experiments at Rec = 2.25× 105 on a SD7062 profile.
The best results, in terms of largest lift increase in quasi stalled conditions, were
obtained when considering a square slotted spoiler. Bramesfeld and Maughmer
[12] explored the effect of small, movable tabs mounted on the suction side of
a S824 aerofoil in a low-speed wind tunnel experiment conducted at Rec ' 106.
From the surface pressure distributions they discovered that the effectors act as
pressure dams that reduce the adverse effects of the separation, allowing higher
pressures upstream of their location. Johnston et al. ([47] and [46]) made a com-
parison of the effectiveness of free-moving and fixed flaps mounted at different
deployment angles over an angle of attack range from 12o to 20o, and found a
similar behaviour in term of lift, with the maximum lift obtained for deployment
angle less than 60o. However, they found that the fixed flap produces more drag
than the free-moving one. Recently, Bruecker and Weidner [17] used flexible
flaps to delay the dynamic stall lift breakdown of a NACA0020 wing at mod-
erate Reynolds number (i.e., Rec = 7.7 × 105) in ramp-up motion (α0 = 0 and
αs = 20o). The authors also offer a mechanistic explanation of the stall delay
that would be due to a reduction of the backflow, and by a re-organisation of the
shear layer roll-up process. In turns, the modified roll-up pattern would cause a
delay in the onset of the non-linear growth of the shear layer via a mode-locking
of the fundamental instability mode with the motion of the flaps. In disagreement
with the majority of the research community, Kernstine et al. [50] found that the
highest increase in lift, on separation onset, was obtained with a flap mounted in
the first half of a NACA2412 aerofoil, slightly downstream of the leading edge.
Very recently another parametric study on the geometry and location of the flap
was performed by Altman and Allemand [4]. Their experiments could not con-
firm the best configuration suggested by Kernstine et al. [50]. More in general,
the authors conjecture that it might not be possible to design a universal flap
configuration improving post-stall performances.

Apart from the aerodynamic improvements offered by adaptive flaps in stall
conditions, the use of similar devices has also been explored as a method for
reducing structural vibrations in aerofoils. Liu et al. [60] and Montefort et al.
[66] have investigated the effects of a single flexible, polymeric rectangular flap
and of an array of small rectangular polymeric flaplets attached near the leading
edge on the upper wing surface, considering a NACA0012 aerofoil and a flat-
plate. They found that by manipulating the unsteady structure of the flow, these
devices were able to reduce significantly wing vibrations particularly near the
dominant first torsional mode.

The present contribution will just focus on the impact that self-adaptive very
thin flaps have on the flow field structure around a wing at high angle of attack.
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Figure 4.1: (a) Sketch of the flap hinged on the suction side of the aerofoil. (b) 3D
sketch of the flap.

In particular, the possibility of controlling the flow around a NACA0020 aerofoil
using passive, self-adaptive, almost zero-thickness flaps attached to the suction
side of the aerofoil will be explored performing a series of Direct Numerical Simu-
lation. After having reported the results of a preliminary parametric study meant
to bound the characteristics of the best performing geometries and locations, the
attention will move on a detailed analysis of the three-dimensional flow field gen-
erated by the wing at α = 20o degrees when a quasi optimal flaplet is mounted
on its suction side at Rec = 2× 105. By carrying out an in-depth analysis of flow
fields generated by direct numerical simulations, we will characterise the main
effects induced by the presence of the flap and we will also propose a conceptual
explanation of their effectiveness in delivering aerodynamic benefits in stalled
configurations.

4.2 Fluid-flap interaction model
Figure (4.1a) shows the configuration that we have analysed in this study, it
comprises a NACA0020 aerofoil with a rigid, very thin (in the order of the grid
size) flaplet of length L mounted on the wing suction side. The flap is hinged to
the surface via a torsional spring that constraints its motion to take place on the
x− y plane. The evolution of the flap angular displacement, θ(t) can be modeled
using the canonical second order differential equation:

Iθ̈ + Cθ̇ +Kθ = T , (4.1)

In equation (4.1), I is the flap moment of inertia with respect to the rotation
axis (i.e., I = mL2/3, m being the mass of the flap per unit spanwise length),
C is an angular damping factor and K is the spring rotational stiffness (C and
K are per unit spanwise length too). Finally, T is the total torque per unit
spanwise length exerted by the fluid forces on the flap. When no damping is
considered, a compact way to characterise the physical properties of the flap is
based on specifying the spring stiffness K in terms of the moment of inertia I and
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its natural frequency f , obtained from the solution of the homogeneous equation
associated to Equation (4.1): K = (2πf)2 I.

The motion of the flap and its interaction with the surrounding fluid are
kept into account using the RKPM immersed boundary method that has been
previously described in Section (2.2).

Aside from the flow field time advancement, also the position of the flap needs
to be updated. Once the torque in Equation (4.1) is computed by integrating
each contribution of the singular forces along the whole flap (obtained using
the IB method, see Equation (2.39)), the new angular position θ(t) is found by
integrating Equation (4.1) in time. Finally, all the flap Lagrangian coordinates,
and their respective velocities are updated consistently with a rigid body rotation
about the hinge. The global time advancement scheme finalises with the solution
of a pressure Poisson equation and the final projection of the velocity field onto
the consistent divergence free space.

4.3 Baseline flow characterisation
The main features of the flowfield around a NACA0020 aerofoil at 20o angle of
attack and at Rec = 2×104 that we wish to manipulate, have been already given
in Chapter (3). Here, we will briefly summarise some of the results also intro-
ducing some further detail that will allow for a more exhaustive comparison with
the flow field obtained when the aerofoil in the same conditions is equipped with
a flap. The flow is mainly characterised by a large recirculation zone covering
almost the whole suction side as shown in Figure (4.2a) [81]. Moreover, both a
secondary counter rotating vortex located by the trailing edge, and another very
small recirculation bubble close to the aerofoil maximum thickness can also be ob-
served. All the mentioned spanwise vortices are enclosed within a region bounded
by the two shear layers originating at the leading and trailing edges. The leading
edge shear layer is induced by the early separation of the free stream laminar
flow approaching the wing (see Figure (4.3)) and by the subsequent convective

Figure 4.2: (a) Contours of mean flow streamwise velocity and streamlines. Contour
goes from −0.3U∞ (blue) to 1.4U∞ (red). (b) Instantaneous lift CL (solid line) and
drag CD (dashed line) coefficients as a function of time.
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Kelvin-Helmholtz (KH) instability that determines its downstream development
eventually leading to turbulent transition. A similar behaviour is observed for
the trailing edge shear layer that undergoes a KH instability too with a con-
sequent roll up responsible for the formation of the trailing edge vortex street
(Figure (4.3)). Further downstream, past the aerofoil, a large wake is formed by
the joint contribution of the vorticity generated from both the leading and trail-
ing edges. The uneven vorticity contributions from the two layers is ultimately
responsible for the lack of symmetry characterising the wake topology. The global
effect of the wake unsteadiness can be evinced from Figure (4.2b) showing the
time evolutions of the lift and drag coefficients obtained by integrating the wall
pressure and the shear stress at each time step (mean values: CL = 0.64 and
CD = 0.35). From the figure, one can observe the presence of a dominant oscil-
lation period clearly associated to the alternating vortex shedding in the wake,
with a corresponding non dimensional frequency, in terms of Strouhal number,
equal to St = fsc/U∞ ≈ 0.534 [81]. The unsteady behaviour of the spanwise
vorticity field, determined by the shear layers instabilities and by the mutual
interaction of the vortices embedded in the wake, is the ultimate responsible of
the aerodynamic response of the aerofoil to stalled conditions. For this reason,
any control strategy that aims at an overall improvement of the aerodynamic
efficiency must tackle the direct manipulation of the vorticity field and its un-
steadiness. Along this line of thought, this work investigates on the possibility of
controlling the vorticity field generated by an aerofoil at high angle of attack using
a self adaptive flaplet mounted on its suction side. In particular, the objective is
to find a configuration that palliates the detrimental effects of stall by producing

Figure 4.3: Contours of instantaneous flow streamwise velocity and streamlines. Con-
tour goes from −0.3U∞ (blue) to 1.4U∞ (red), and the snapshots cover a full shedding
period of 1.87c/U∞.
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Figure 4.4: Contours of the mean flow x-component velocity u. The colour contour is
used for the 2D case, and goes from −0.4U∞ (blue) to 1.2U∞ (red), while the contour
lines (with the same levels separated by 0.6U∞) is used for the 3D case.

increased lift. To pursue such an objective, a parametric study covering a fully
three-dimensional flow at the targeted chord Reynolds number would be compu-
tationally unrealistic. For this reason, a preliminary study on a low Reynolds
number, fully laminar, two-dimensional flow has been carried out with the objec-
tive of bounding the parametric range that needs to be explored for achieving a
good flap design in a realistic three dimensional scenario. Before describing the
initial two-dimensional parametric study, a comparison between the two baseline
cases (i.e., fully 3D case at higher Reynolds number versus the laminar case at
lower Reynolds numbers) will be introduced to provide a conceptual justification
of the procedure that has been followed. Figure (4.4) compares the character of
the mean three dimensional x−wise velocity field at Rec = 2× 104 and α = 20o

Figure 4.5: Contours of the instantaneous spanwise component of vorticity ωz, cor-
responding with the minimum (top) and maximum (bottom) lift coefficients over one
shedding period for the 2D (left) and 3D (right) cases. Blue lines used for negative,
clockwise vorticity, red ones for positive values (±5U∞/c).
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with the two dimensional field obtained at the same angle of attack but at much
lower Reynolds number, i.e., Rec = 2× 103. The two velocity fields show similar
qualitative features: large recirculating regions of comparable magnitude cover-
ing the whole suction side of the aerofoil (i.e., the sizes of the recirculating regions
are 0.5c and 0.35c in the 2D and 3D case, respectively). In both cases, the flow
separates at the leading edge (xs ≈ 0.025) reattaching at xr ≈ 0.9 in the 2D case,
while staying detached along all the rest of the suction side for the 3D case. The
unsteadiness of both the 2D and the 3D stalled cases is mainly determined by
the presence, the interaction and the shedding of the two large counter rotating
vortices that characterise the region above the aerofoil (see Figure (4.5)). The
dynamic of these two large vortices governing the lift oscillations, is mainly of
2D, laminar nature and basically involves only the interaction of the very large
coherent structures embedded in the flow. Although the quantitative differences
between the two-dimensional and the three-dimensional case are not negligible,
the dominating effects and the events sequencing appear to be qualitatively simi-
lar. Moreover, since the self adaptive flap that we will use extends over the whole
span of the wing, no significant 3D effects will be introduced by its presence as
the flaplet will mainly interfere with the largest integral scales of the flow which
are intrinsically two-dimensional in character.

4.4 Flaplet design in 2D
Motivated by the aforementioned considerations, we have initially focused on the
geometrical properties (i.e., size and location) and the flap dynamic response (i.e.,
its natural frequency) that deliver an optimal condition in a two dimensional, fully
laminar flow at α = 20o. Here, we define an optimal condition as the one that
delivers the highest lift coefficient CL, preserving or improving the aerodynamic
efficiency E = CL/CD. We have started our analysis by considering the low
Reynolds number (i.e., Rec = 2 × 103), 2D flow over a NACA0020 aerofoil at
α = 20o without any added flap. Figure (4.6) shows the time evolution of the lift

Figure 4.6: Instantaneous lift CL (solid line) and drag CD (dashed line) coefficients as
a function of time. The dots indicate the selected time snapshots shown in Figure (4.7).
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Figure 4.7: Contours of the instantaneous spanwise component of vorticity ωz during
two shedding cycles (corresponding to 3.247c/U∞ non-dimensional time units). The
snapshots correspond with the time instants marked in Figure (4.6). Blue negative
(clockwise) vorticity, red positive (counter clockwise) in the range ±5U∞/c.

and drag coefficients for the baseline configuration. Both coefficients are charac-
terised by periodic oscillations: every period of lift coefficient corresponds to the
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Table 4.1: Flap configurations considered in the 2D parametric study.

Case f/f0 L/c xF/c K × 103 I × 103 CL CD E
Ref − − − − − 0.9365 0.5024 1.8641
F0.25-L0.10-X0.7 0.25 0.10 0.7 2.3461 3.3333 1.0290 0.5038 2.0424
F0.50-L0.10-X0.7 0.50 0.10 0.7 9.3847 3.3333 0.9023 0.4889 1.8457
F1.00-L0.10-X0.7 1.00 0.10 0.7 37.539 3.3333 0.9804 0.5052 1.9407
F2.00-L0.10-X0.7 2.00 0.10 0.7 150.15 3.3333 0.8815 0.4778 1.8448
F4.00-L0.10-X0.7 4.00 0.10 0.7 600.62 3.3333 0.8519 0.4779 1.7828
F0.25-L0.20-X0.7 0.25 0.20 0.7 9.3847 13.333 0.9324 0.5074 1.8376
F0.50-L0.20-X0.7 0.50 0.20 0.7 37.539 13.333 0.8292 0.4822 1.7196
F1.00-L0.20-X0.7 1.00 0.20 0.7 150.15 13.333 1.2659 0.5572 2.2718
F2.00-L0.20-X0.7 2.00 0.20 0.7 600.62 13.333 0.7800 0.4620 1.6883
F4.00-L0.20-X0.7 4.00 0.20 0.7 2402.5 13.333 0.7805 0.4620 1.6883
F0.25-L0.30-X0.7 0.25 0.30 0.7 21.115 30.000 0.7062 0.4539 1.5556
F0.50-L0.30-X0.7 0.50 0.30 0.7 84.462 30.000 0.8688 0.5140 1.6903
F1.00-L0.30-X0.7 1.00 0.30 0.7 337.85 30.000 0.8511 0.4679 1.8192
F2.00-L0.30-X0.7 2.00 0.30 0.7 1351.4 30.000 0.8538 0.4915 1.7372
F4.00-L0.30-X0.7 4.00 0.30 0.7 5405.6 30.000 0.8260 0.4844 1.7051
F1.00-L0.20-X0.6 1.00 0.20 0.6 150.15 13.333 1.1076 0.5021 1.3871
F1.00-L0.20-X0.8 1.00 0.20 0.8 150.15 13.333 0.6965 0.4424 1.5746

shedding of a vortex, at a shedding frequency equal to fs = 0.555U∞/c. The lift
coefficient evolution also shows the presence of a lower frequency f = 0.308U∞/c
(almost half the shedding frequency). The instantaneous vorticity fields ωz over
this two shedding periods are shown in Figure (4.7). The presence of two dom-
inant vortices formed as a consequence of the leading and trailing edge shear
layer instabilities characterises all the time series. In particular, their opposite
circulations are responsible for the lift and downforce generated by the clockwise
rotating vortex (blue), and the counter clockwise rotating one (red), respectively.
The first few snapshots of the reported vorticity time series correspond to a max-
imum lift condition in which the leading edge vortex has already formed while
the trailing edge one is rolling up, on the verge of being shed from the aerofoil
(Figure (4.7a-e)). The roll up of the trailing edge vortex, corresponds to a de-
crease in lift that gradually disappears as the vortex is shed into the wake. In the
following time instants of the sequence (Figure (4.7f-j)), another pair of vortices
is formed and shed away from the aerofoil. However, the newly generated lifting
vortex quickly detaches from the wing surface, thus preventing the lift to raise.
As the lift vortex is shed into the wake, it starts interacting with the trailing
edge vortex that rolls up increasing its size. This interaction energises the trail-
ing edge vortex with a consequent further decrease in lift, and with an impact in
determining the structure of the near-wake (see Figure (4.7e) and Figure (4.7j)).
The final snapshots of the series, correspond to the end of the cycle with the
generation of a new lifting vortex leading to the beginning of a new cycle.

Next, we have proceeded to perform a parametric study on the aerodynamic
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Figure 4.8: Mean lift CL as a function of (a) the spring natural frequency f and of
(b) the position of the hinge xF . The dashed, solid and dash-dot lines are used for the
cases with L = 0.1c, L = 0.2c and L = 0.3c, respectively.

effects of the flaplet configuration. In particular, the flap reaction to the un-
derlying unsteady flow field can be tuned by acting on various parameters: its
length, position, inertia, spring stiffness and damping factor. The outcomes of the
analysis conducted by varying the aforementioned parameters are summarised in
Table (4.1) reporting some typical variations of the averaged aerodynamic coef-
ficients (last three columns) when changing the flaplet characteristics (second to
fifth columns). In particular, the length L of the flap was varied between 0.1c
and 0.3c, the position of the flap hinge xF ranged between 0.6c and 0.8c (mea-
sured from the leading edge), the stiffness K of the spring was set such that its
natural frequency f was between 1/4th and 4 times the shedding frequency f0
of the baseline case without flap. The effects of the length and stiffness of the
torsional spring on the value of the mean lift coefficient CL are also reported
graphically in Figure (4.8a). An optimum condition (i.e., maximum lift increase
with respect to the baseline case) is achieved with a flaplet 0.2c long, resonating
with the shedding frequency (flap natural frequency equal to the shedding one).
Except for the cases of flaplets of very low natural frequency, if the latter doesn’t
match the baseline flow shedding frequency, the lift coefficient turns out to be
almost unaffected by the length of the flap. On the other hand, when consid-
ering resonating conditions, the maximum lift and efficiency are achieved using
a flaplet L = 0.2c long, a size roughly corresponding to half the dimensions of
the recirculation region. Figure (4.8b) shows how the lift coefficient changes as
a function of the hinge position when considering a L = 0.2c long flaplet in res-
onating conditions. The optimal position, in terms of maximum lift, is at about
0.7c, where, when unlifted, the flaplet end almost reaches the trailing edge.

In summary, when a low Reynolds number, 2D case at an angle of attack
of α = 20o is considered, the flaplet configuration that maximises the mean lift
features a length of 0.2c, a hinge location at 0.7c and a spring stiffness leading to
a flaplet natural frequency matching the shedding one. For this specific flow con-
dition and with the mentioned configuration, the flaplet interferes actively with
the unsteady vorticity field delivering a 20% increase in the average aerodynamic
efficiency. The corresponding time variations of the lift CL and drag CD coeffi-
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Figure 4.9: Optimal flaplet configuration: instantaneous lift CL (solid line) and drag
CD (dashed line) coefficients as a function of time. The thin solid line represents the
elevation y of the tip of the flap. The set of bullets on the graphs indicates the instants
in time where the vorticity snapshots have been sampled, see Figure (4.10).

cients are reported in Figure (4.9) together with the elevation y of the tip of the
flap from the aerofoil. The time averaged CL is 35% higher than the case with-
out flap (see Figure (4.6)), while the shedding frequency remains unchanged (i.e.,
fs = 0.555U∞/c). However, differently from the baseline case, the presence of the
flap seems to regularise the shedding pattern, with all the lift extrema attaining
almost the same value at each shedding period (see Figure (4.6)). Figure (4.10)
shows the spanwise vorticity over two shedding cycles at the times marked in
Figure (4.9a). In the initial snapshots (Figure (4.10a-b)), when the flap is almost
laying on the aerofoil surface, a first vortex detaches from the trailing edge. Sub-
sequently, (Figure (4.10c-d)) the flap reaches its maximum elevation while a large
lifting vortex is formed above the aerofoil inducing a maximum lift force. The
cycle is closed by the formation of a new trailing edge vortex (Figure (4.10e-f)).
The mutual interaction of the flow field with the flaplet has a strong impact on the
shedding process and therefore with the structure of the wake (see Figure (4.10f)
and Figure (4.10j)). The importance of the interaction is further stressed by the
high correlation between the lift oscillations and the flap motion (correlation co-
efficient is ≈ 0.6), and in particular by the fact that the maximum lift is reached
when the flap is almost at its maximum elevation (the time lag between the two
functions is ≈ 0.2c/U∞).

As a further measure of the effect of the flaplet on the vorticity field, we have
quantified the circulations of the velocity field along two closed rectangular loops
bounding the lifting vortex (x ∈ [0.5, 1.0], y ∈ [0.3, 0.6]), and the trailing edge
vortex (x ∈ [0.8, 1.3], y ∈ [0.0, 0.3]), respectively (see Figure (4.5)). The circula-
tion of the leading edge vortex which is responsible for the lift generation is only
slightly increased by the presence of the flaplet (i.e., ≈ 3%), while the circulation
of the trailing edge vortex, responsible for the generation of the downforce, is
substantially reduced by a factor of ≈ 20%. Therefore, the increase in the aver-
age lift induced by the presence of the flaplet is mainly related with the reduction
of the downward force induced by the trailing edge vortex.
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Figure 4.10: Optimal flaplet configuration: contours of the instantaneous spanwise
vorticity ωz, at the time instants highlighted in Figure (4.9). Blue negative vorticity
(clockwise), red positive (±5U∞/c).

This preliminary study conducted in a simplified 2D, laminar scenario has
allowed to determine a point in the parameters space leading to a maximum in-
crease in both lift and aerodynamic efficiency. The analysis has also characterised
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Figure 4.11: (a) Lift CL (black) and drag CD (gray) coefficients as a function of time.
(b) Evolution of the aerodynamic efficiency E = CL/CD. Solid lines are used for the
aerofoil with flap, while dashed lines for the reference values.

Figure 4.12: (a) Pressure CP and (b) friction Cf coefficient distributions. Solid and
dashed lines are used for the aerofoil with and without flap, respectively.

the features of the unsteady vorticity fields that develops when the optimal flap is
used. The validity of our conjecture about the possibility of extending the results
obtained with a simplified 2D scenario to a realistic 3D one will be discussed
next.

4.5 Effect of the adaptive flaplet on a 3D aerofoil
We now compare the three-dimensional flow fields around a NACA0020 at an
angle of incidence of 20o and at Rec = 2 × 104, obtained when considering the
unmodified aerofoil and when equipping the wing with a flaplet extending along
its whole span, and featuring the optimal configuration discussed in the previous
section (flap length L = 0.2c, hinge location at x = 0.7c). Furthermore, inspired
by the two-dimensional results, the stiffness of the torsional spring has been set
to K = 0.150 leading to a natural frequency that matches the shedding one of
the unmodified aerofoil.

Figure (4.11a) compares the time evolution of the lift and drag coefficients of
the reference case versus the ones obtained when using the flaplet. Their time
averaged values are CL = 0.64 and CD = 0.35, for the baseline case, increasing to
CL = 0.74 and CD = 0.37 with the flap, thus obtaining a 16% improvement in lift
and a slightly augmented drag (6%). The aerodynamic efficiency, E = CL/CD



60 Control of the flow around an aerofoil at high angle of attack

Figure 4.13: Contours of the mean (i.e., time and z-averaged) spanwise component
of vorticity ωz and mean streamlines of the NACA 0020 aerofoil at α = 20o and
Rec = 2 × 104. Left panel (a): results for the baseline wing; right panel (b): wing
equipped with a flaplet (L = 0.2c, xF = 0.7c, K = 0.150). Blue negative vorticity
(clockwise), red positive (±7U∞/c).

is reported in Figure (4.11b) showing a net improvement when the flaplet is in-
troduced with a mean efficiency growth from 1.8 (baseline case) to 2.0 (i.e., 11%
increase with the flap). This improvement is in good agreement with the exper-
imental results reported by Schatz et al. [84]. Furthermore, the time evolution
of the aerodynamic coefficients clearly reveals the presence of a dominant fre-
quency that corresponds to the shedding rate of the vortices into the wake. The
introduction of the flaplet does not modify the value of the associated Strouhal
number St = fsc/U∞ that remains fixed to St = 0.534, a value that is almost the
same as the one found in the 2D case at lower Reynolds number.

When we compare the mean pressure coefficients Cp of the two configuration,
as shown in Figure (4.12a), we notice that the pressure on the suction side of
the aerofoil with flap is reduced upstream the flap position, thus generating a
higher lift, in agreement with the results by Schatz et al. [84] and Bramesfeld and
Maughmer [12], and then increases, downstream the location of its hinge. The
friction coefficient Cf , reported in Figure (4.12b), shows that the two aerofoils
have a similar friction profile, with an early leading edge separation located at
x ≈ 0.025c [81], except, in the leading edge peak which is enhanced by 10% in
the case with flap.

Next, we analyse the effect of the flaplet on the average fields. We start
by comparing the contours of the mean spanwise component of vorticity ωz in
Figure (4.13). The figure shows that both the aerofoils are in a fully stalled
condition with a large recirculation zone present on the whole suction side. An-
other smaller recirculation bubble is visible in both cases at about 0.25c from
the leading edge, in proximity of the location of the aerofoil maximum thickness.
The backflow region with positive vorticity (i.e., red: counter clock wise) on the
suction side is clearly reduced when the flap is in use. Moreover, we can also
notice that the presence of the flaplet reduces the size of the positive vorticity
recirculating region by the trailing edge, also displacing the peak of positive vor-
ticity further downstream, well beyond the trailing edge. More information on
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Figure 4.14: Mean x-wise (a) and y-wise (b) velocity components profiles over the
aerofoil and in the near wake. Lines are used for the aerofoil without flap; symbols
refer to aerofoil with flap.

the mean flow can be educed from the velocity profiles in Figure (4.14) where the
x and y velocity components are shown. While the mean flow velocity on the
pressure side is basically unaffected by the presence of the flaplet, on the suc-
tion side the velocity field changes in the region spanned by the flap movement.
As compared to the baseline case, upstream of the flap location, at x = 0.6c,
both velocity components are reduced in amplitude, with a corresponding overall
reduction of reversed flow. Downstream of the flap, at x = 0.9c, in the region
traversed by the flap oscillations, the velocity intensity is reduced because of the
no-slip and no-penetration boundary condition on the flap solid surface. Finally,
in the near wake region, the velocity defect is slightly enhanced in the case with
flap.

The effects of the flaplet on the flow become can be seen when considering the
distribution of higher order statistical quantities. Figure (4.15a), shows a compar-
ison of the averaged turbulent kinetic energy k = 1/2 < u′iu

′
i >, in the controlled

and uncontrolled cases. Consistently with the upstream laminar conditions, the
kinetic energy is initially zero for both the aerofoils. Further downstream in the
shear layer originated at the leading edge, k starts to grow similarly in both cases.
On the other hand, the second shear layer formed past the trailing edge is influ-
enced by the action of the flaplet. Its motion reduces the intensity of the velocity

Figure 4.15: (a) Mean turbulent kinetic energy profiles over the aerofoil and in the
near wake, and (b) further downstream at x ≈ 5.5c. Lines are used for the aerofoil
without flap; symbols refer to aerofoil with flap.
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Figure 4.16: Intermittency factor I− = P (u < 0) for the reference (a) and flap (b)
cases. Contour levels go from blue (I− = 0) to red (I− = 1).

fluctuations. Downstream of the aerofoil, the two shear layers merge into the
wake where the reduced levels of k, due to the flaplet action, are evident. This
is clearly visible from Figure (4.15b) showing the turbulent kinetic energy profile
at x ≈ 5.5c.

As previously mentioned, one of the consequences of the action of the flaplet
on the flow field is the reduction in the intensity of the backflow on the aerofoil
surface. To quantify this effect, in Figure (4.16) we display the probability of
finding a negative streamwise velocity component P (u < 0) in the two cases. In
both situations, this probability is obviously zero in the outer flow where the u
velocity is always positive, while its value increases in the recirculating region. In
the reference case, the highest probability of backflow corresponds to the region
close to the trailing edge, at x ≈ 0.8. In the case where the flaplet is active,
the probability of having backflow is remarkably reduced not only in the region
spanned by the flap movement but also upstream of it.

To gain further insight on the effect of the flaplet-flow interaction we have
used the classical Q-criterion. Instantaneous Q iso-surfaces corresponding to the
case without and with flaplet are shown in Figure (4.17) and Figure (4.18). From
the first figure, it appears that the action of the flap contributes to the reductions
of both the backflow and the generation of turbulent structures upstream of its
location. From the second figure, it is possible to recognise the principal flow
features of the baseline case [81]. These are summarised hereafter to introduce
the comparison with the active flaplet case. Initially, the incoming laminar flow
separates at the leading edge, forming a shear layer that rolls up into Kelvin-
Helmholtz (KH) vortices (see [18], [19], [100], [89] and [1]); this instability, locally,
triggers the flow transition to turbulence; further downstream, the turbulent
separated region appears to be characterized by fine texture, small-scale eddies,
eventually merging into coherent larger structures; finally behind the aerofoil,
a large turbulent wake is formed, the dynamics of which are similar to a von
Karman vortex street typical of bluff body wakes. In contrast to classical vortex
shedding process showing an alternately series of vortices of opposite sign and
equal strength, here the wake is highly asymmetric presenting vortices of uneven
strength. The loss of symmetry and the irregularity of the vortices pattern is
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Figure 4.17: Visualisation of instantaneous vorticity field by means of Q-iso-surfaces
(Q = 450U2

∞/c
2) coloured by the y-coordinate (distance from centerline). (a) and (b)

are the cases without and with the flap, respectively.

Figure 4.18: Visualisation of instantaneous vorticity field by means of Q-iso-surfaces
(Q = 450U2

∞/c
2) coloured by the y-coordinate (distance from centerline). (a) and (b)

are the cases without and with the flap, respectively.

related to the interaction between the two vortex generating mechanisms (see
[14] and [13]): the vortices rolling up under the action of the KH leading edge
shear layer instability and the street of vortices shedding from the trailing edge.
The main features of this flow process, largely present also in the 2D, laminar
case, remain practically unaffected by the presence of the flap, except in the
leading edge area, where the instability of the KH rollers is displaced downstream.
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Figure 4.19: Istantaneous contour plot of the FTLE σT during a shedding period for
the case with flap. The contour levels go from 0 (white) to 7U∞/c (red). The black
contour lines are used for the baseline case without flap.

This feature can be observed by referring to Figure (4.19), where the Finite Time
Lyapunov Exponent is used. Figure (4.19a) is the beginning of the shedding cycle,
with no vortex at the trailing edge, and the leading edge shear layer rolling up
under the action of a KH instability. Figure (4.19b-e) show how the trailing edge
shear layer undergoes a KH instability also. The shear layer rolls up inducing the
generation of a trailing edge vortex, which eventually detaches (Figure (4.19f)).
It is apparent that the rolling-up of the leading edge shear layer in the case
with flap (colour contours), takes place further downstream as compared to the
baseline case (line contour). Also the previously described trailing edge vortex
downstream displacement is evident from this figures.

By looking at the time variation of the vorticity field another important ef-
fect of the interaction between the flow and the flaplet emerges. In particu-
lar, in Figure (4.20) and Figure (4.21), we compare the evolution of the span-
wise vorticity ωz over two shedding cycles for both the cases, with and without
flap. The sequence of the reference case starts with the lifting vortex recently
shed, and the trailing edge vortex being freshly formed and ready to be shed
(Figure (4.20a)). As the lifting vortex detaches, another one is generated above
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Figure 4.20: Baseline aerofoil: contours of the instantaneous spanwise component of
vorticity ωz, over two shedding periods. Blue negative vorticity (i.e., clockwise), red
positive (±5U∞/c).

the aerofoil (see Figure (4.20b-d)), and eventually shed into the wake at a later
stage (see Figure (4.20e)) when the formation of the next trailing edge vortex
takes place. The latter does not undergo a full evolution as it clearly appears from
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Figure 4.21: Aerofoil equipped with the flaplet: contours of the instantaneous span-
wise component of vorticity ωz, over a time of two shedding periods. Contours as in
figure 4.20

the following snapshots. In the following shedding cycle (see Figure (4.20f-j))
the aforedescribed process almost repeats identically but with a remarkable dif-
ference: the trailing edge vortex is generated slightly more downstream than
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Figure 4.22: Contours of the conditional averaged spanwise component of vorticity
ωz, for the case with (b, d) and without (a, c) flap. Blue negative vorticity (i.e.,
clockwise), red positive (±5U∞/c). The top and bottom rows correspond to the times
of maximum and minimum lift, respectively.

the previous one, thus allowing the new lifting vortex to expand more than its
predecessor (see Figure (4.20a) and Figure (4.20f)). The presence of the flaplet
alters the previously described sequence. Here, the initial snapshot has been
chosen to match the condition in which the flaplet lays on the aerofoil surface
(Figure (4.21a)). In this situation, the trailing edge vortex has just been shed,
and the lifting vortex is forming. As the flap lifts up (Figure (4.21b-c)) under
the action of the pressure gradient induced by the passage of the lift vortex, a
new trailing edge vortex is formed while the lifting vortex is shed away. As a
consequence, the flap moves downward (Figure (4.21d-e)) under the action of the
trailing edge vortex that is forming and subsequently, detaches from the trail-
ing edge. The formation and roll up of the trailing edge vortex is conditioned
by the movement of the flap that during its downward rotation generates a jet
that pushes the vortex downstream. The displacement of the trailing edge vor-
tex away from the aerofoil at every shedding cycle allows the incoming lifting
vortex to grow and develop more freely without the constraint generated by the
vicinity of a counter rotating vortex. The detachment of the trailing edge vortex
induced by the flap generated jet has also a regularisation effect on the shedding
cycle that now repeats identically with no difference between consecutive cycles.
As the snapshots indicate, the position of the flap is strongly related with the
passage of the lifting vortex. In particular, we have measured a correlation coef-
ficient between the evolution of the lift and the flap position equal to 0.6. These
findings are quite similar to the ones observed for the 2D laminar flow where the
flaplet was regularising the lift/drag cycle with a movement characterised by the
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Figure 4.23: Time cross correlation ρ of the lift coefficient CL and spanwise vorticity
ωz at the location (2.0c; 0.4c). Solid and dashed lines are used for the case with and
without flap, respectively.

same value of the lift-flap position correlation coefficient.
To gain further insight into the increased regularity of the shedding cycle, we

have computed flow field averages conditioned by the value of the lift coefficient
(i.e., ensemble averages between samples sharing the same phase in the shedding
cycle). In particular, we averaged spanwise vorticity fields corresponding either
to the maximum (Figure (4.22a-b)) or to the minimum (Figure (4.22c-d)) lift
force for both the cases. For both situations of minimum and maximum lift, it
is possible to notice that the positive rollers (red ones, generating downforce)
are displaced to the right when the flaplet is used. Moreover, with the flap, the
lift generating vortex seems to be more compact in the maximum lift condition.
Concerning the wake, the vortex street generated with the flap is more regular
with an almost uniform sequencing of the counter rotating vortices. The enhanced
regularity of the cycle is also confirmed in Figure (4.23) showing the time cross
correlation ρ of the lift coefficient CL and the spanwise vorticity ωz at location
(2.0c; 0.4c) (x coordinate measured from the leading edge, y from the profile
chord). The cross correlation ρ is defined as follows

ρ (τ) = E [CL (t)ωz (t+ τ)]
σ [CL] σ [ωz]

, (4.2)

where E [ ] and σ [ ] indicate the expected value and the standard deviation,
respectively. In the case with flap, the evolution of the time cross correlation
shows a clear periodic behaviour with high levels of correlations (0.35). While in
the case without flap, the correlation is much lower (0.05).

Finally, as already done in the 2D case, to determine which mechanism is
the main responsible for the increase in average lift obtained with the flap, we
have computed the circulation Γ over two closed surfaces C embedding the lift
and the trailing edge vortices, respectively. The former is defined over the region
x ∈ [0.5, 1.0], y ∈ [0.3, 0.6], the latter covers the area x ∈ [0.8, 1.3], y ∈ [0.0, 0.3]
(see Figure (4.5)).

Similarly to what we have observed for the 2D laminar case, the circulation
of the leading edge vortex (the one that generates lift) is only slightly increased
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by the flap presence (≈ 2%), while the circulation of the trailing edge vortex (the
one that reduces the lift, or increase the downforce) is substantially reduced by
a factor of ≈ 15%. Therefore, we can draw the same conclusion as the one given
for the 2D case: the increase in lift promoted by the usage of the flap is mainly
due to the reduction of the intensity of the trailing edge vortex, rather than an
increase in the circulation of the lifting vortex.





Chapter 5

Control of the flow around an
aerofoil in ramp-up motion

5.1 Introduction

The demand for helicopters with increased performance and the quest for effi-
ciency improvements in vertical axis wind turbines have prompted further inves-
tigations into the dynamic stall that often appears on rotors retreating blades.
Dynamic stall is an unsteady phenomenon that takes place on lifting objects in
response to time variations of the angle of attack, and it is responsible for dra-
matic changes in the aerodynamic loads, high vibration affecting the dynamic
performance, and occurrence of aeroelastic instability (stall flutter). A consid-
erable number of researches have extensively studied these phenomena in the
past [38, 63, 64, 67, 68, 17]. Experimental works have mainly focused on un-
steady flows over two-dimensional aerofoils undergoing prescribed pitching mo-
tions [38, 28, 29, 30, 31, 63, 64, 57, 67, 68]. McCroskey [63, 64] discovered that the
stall is characterised by a lift overshoot, due to the passage of a large scale vortex
over the suction side of the aerofoil, followed by a lift breakdown associated with
the vortex detachment, and Shih et al. [87] suggested that the main stall vortex
is induced by the early boundary layer separation near the leading-edge of the
aerofoil, and that full stall occurs when the boundary layer detaches completely
from the aerofoil.

High fidelity numerical simulations of dynamic stall in configuration of aero-
nautical interest are particularly expensive due to the broad range of time and
space scales involved in the phenomenon. However, conventional turbulence mod-
els are known to fail in producing reliable solutions in such complex, out of
equilibrium conditions: unsteady, recirculating and locally transitional flow. A
general, but somehow outdated review on the numerical simulations of dynamic
stall [83, 99, 91, 7, 96, 26, 34] can be found in the work of Ekaterinaris and Platzer
[27]. Several other works have highlighted the difficulties that RANS calculations
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encounter when dealing with dynamic stall. In particular, Wang et al. [96] used
two variants of the k − ω model, the standard and the SST one, to simulate the
flow at moderate high Reynolds number Rec = 105. From a comparison with
experimental results, they noticed that the models can not precisely capture the
size and position of the dynamic stall vortex. Moreover, the quality of the predic-
tions of the models deteriorate as the angle of attack increases. Dumlupinar and
Murthy [26] further investigated the performances of various turbulence models
and pointed out that different turbulence closures predict a broad range of dif-
ferent behaviours even in light stall cases. Recently, Rosti et al. [81] performed a
DNS of flow around a NACA0020 aerofoil, with the aim of elucidating the phys-
ical mechanisms that determine the dynamic stall vortex creation, its evolution
along the aerofoil and the subsequent detachment.

Because of the undesirable aerodynamic and structural consequences of dy-
namic stall, many researchers have focused on the development of control tech-
niques able to palliate such adverse effects. In this framework, a number of dif-
ferent passive and active control techniques [58, 41, 35, 36] have been proposed
in the past. More recently, researchers have been looking at biomimetic devices
to control flow separation on aerofoils at high angle of attack. In particular, it
has been observed that birds can overcome certain flight critical conditions, by
popping up some of their feathers when flow separation starts to develop on the
upper side of their wing [10, 12, 21]. It is believed that the feathers lift up may
contain backflow thus preventing an abrupt breakdown of aerofoil lift typical of
dynamic stall. With the aim of demonstrating the effectiveness of devices mim-
icking the feathers pop-up, Schatz et al. [84] have shown that a self-activated
spanwise flap elastically mounted by the trailing edge of an aerofoil can enhance
lift by more than 10% at a chord Reynolds number Rec = U∞c/ν (U∞ being the
magnitude of the free stream velocity, c the aerofoil chord and ν the kinematic
viscosity) in the range of 106. In a related experiment, Schluter [85] has also
demonstrated that dynamic stall lift-breakdown is less severe when a similar flap
is used.

More recently, Bruecker and Weidner [17] used hairy flaps (i.e., flaps with a
thickness much smaller than the plant form sizes) to manipulate the dynamic
stall of a wing at moderate Reynolds number Rec = 77000, observing a delay
of the dynamic stall. The authors claim that the delay is achieved by both the
reduction of the backflow, and by regularising of the shear layer roll-up process.
Moreover, they suggest that the onset of the shear layer non-linear growth is
delayed via mode-locking of the fundamental instability mode with the motion of
the flaps. Rosti et al. [80, 82] performed a DNS of the flow around a NACA0020
aerofoil with a flap mounted via a torsional spring on its suction side at a fixed
angle of attack 20o. They found an increase in lift by around 20% when the spring
stiffness, geometry and location are properly tuned. Under these conditions, a
pulsed jet induced by the flaplet oscillatory movement, that is in turn due to
the periodic transit of a large recirculation bubble on the aerofoil suction side,
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displaces the trailing edge vortices further downstream, away from the wing.
The consequences of this downstream displacement of the trailing edge generated
vortices, are: a reduction of the downforce generated by these vortices and a
regularisation of the shedding cycle that reveals to be much more ordered in time
and space when the flaplet is activated.

5.2 Results and discussions
To introduce the effects produced by the presence of a membrane-like flap hinged
on the suction side of an aerofoil, we first briefly summarise some of the re-
sults of the baseline flow under consideration, that have been already given in
Chapter (3): the flow around a NACA0020 aerofoil undergoing a ramp-up ma-
noeuvre without the application of any control device at a chord Reynolds number
fixed to the value of Rec = 2 × 104. In particular, the angle of attack under-
goes an initial linear increase from α = 0 to α = 20o with a reduced frequency
k = 0.12U∞/c followed by a steady value of the angle at α = 20o. The variation
of α with time matches the experimental conditions of Brucker and Weidner [17]
and is also very similar to the one considered in [68].

5.2.1 Baseline flow description

All the ramp-up simulations are initialized from a fully developed, zero degree
angle of attack flow condition. All averaged quantities that will be presented
have been obtained employing a double averaging procedure: space averaging
in the homogeneous z-direction and ensemble averaging at same time instants
obtained from simulations using different initial conditions. In particular, we
have considered ten realisations obtained using ten different initial conditions
obtained from instantaneous zero degree flow fields sampled within two shedding
cycles.

Figure (5.1a) shows the time evolution of the lift and drag coefficients during
the ramp-up motion for the baseline configuration without flap (solid lines). Ini-
tially, both coefficients increase until reaching their maximum values well after
the end of the linear increase of the angle of attack. At about 5tU∞/c, the lift
decreases abruptly while the drag starts to diminish at a later time. As it will
be described later on, the drop in the force coefficients, is related to the detach-
ment of the dynamic stall vortex from the aerofoil. At a later time, the integral
forces oscillate slowly converging towards the asymptotic static-stall values, in
agreement with the physical description given by McCroskey [63]. During their
time evolution, the maximum values achieved by the lift and drag coefficients are
CL = 1.58 and CD = 0.67, respectively. Both these values are about the double
of the corresponding coefficients measured in the static case at α = 20o.
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Figure 5.1: (a) Lift (blue line) and drag (red line) coefficients as a function of time.
The green line is representative of the time variation of the angle of attack. Along this
last line, the symbols indicate 6 particular time instants for which integral quantities
along the aerofoil are represented in the remaining panels of the figure. In these dia-
grams, solid continuous lines represent the baseline cases while the symbols are for the
cases of the aerofoil equipped with the flap. Also the colours indicate the time level at
which the information has been extracted (consistently with the colours of the symbols
of the top panel). (b)-(c) Pressure coefficient Cp and (d)-(e) friction coefficient Cf at
the selected times.

The other panels of Figure (5.1) show the time evolution of the pressure co-
efficients Cp (b and c) and of the friction coefficients Cf (d and e). Figure (5.2)
displays the contours of the span-wise, z-component of vorticity ωz, averaged
in the homogeneous z-direction at the same six times as the ones considered in
Figure (5.1). In particular, the first plot corresponds to the zero degree angle
of attack, the second to α = 10o and the others at various time instants at
α = 20o. Figure (5.2a) shows how the flow is mostly symmetric over the aerofoil
surface when α = 0o. Consistently, also the Cp distribution appears to be sym-
metric (Figure (5.1b)), with a plateau starting at about the mid-chord position,
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Figure 5.2: Contour plots of the space average of the spanwise component of vorticity
ωz of the baseline simulation. The contours plots have been obtained at the times
indicated in Figure (5.1a). Blue negative vorticity, red positive (±7U∞/c).

indicating the presence of a separated region. The presence of the separated
flow appears clearly from the friction coefficient distribution (Figure (5.1d)) that
presents a peak near the leading edge, followed by a smooth decrease and a sepa-
ration point at about the mid-chord location. As the angle of attack is increased,
the pressure distribution (Figure (5.1b)) and the flow field (Figure (5.2b-c)) loose
their symmetry with a consequent lift increase. At increased angles of attack, the
maximum friction coefficient and the separation point move towards the leading
edge (Figure (5.1d)). Even after having reached the maximum incidence, the
lift coefficient keeps increasing (Figure (5.1a)) with a pressure coefficient distri-
bution that does not show the typical separation plateau. As the peak of the
pressure near the leading-edge is still increasing, and a second peak appears
around the mid-chord (Figure (5.1c)). The latter is the footprint of a large vor-
tex which has started to form on the suction side (i.e., the so called dynamic
stall vortex), see Figure (5.2d). It is also noted that until the maximum lift
is not reached, no vortices are shed from the trailing edge as can be educed
from Figure (5.2d). After its formation, the dynamic stall vortex is convected
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Figure 5.3: Time evolutions of the (a) downstream separation point and (b) aerody-
namic efficiency E = CL/CD during the ramp-up manoeuvre. Solid lines and symbols
are used for the baseline and controlled cases, respectively. The dashed line in (a)
represents the separation point at 20o.

downstream towards the trailing edge (as indicated by the displacement of the
second pressure peak in Figure (5.1c)), where an induced counter rotating vortex
is formed, see Figure (5.2e). When the dynamic stall vortex finally detaches from
the aerofoil and the trailing edge vortex reaches its maximum size (Figure (5.2f)),
the pressure attains an almost constant distribution indicating a fully separated
flow condition (Figure (5.1c)). The complete time evolution of the separation
point is reported by the solid line in Figure (5.3a). At α = 0o the separation
point is located at xs = 0.47c, moving towards the leading edge as the angle
of attack is increased. As already remarked, the static stall separation point
xs = 0.025c (dashed line) is firstly reached when the ramp-up motion is finalised
at t = 3.5c/U∞. In the subsequent stage, when the incidence angle is constant
(α = 20o), the separation line moves further upstream followed by a damped
oscillating positioning around its static value.

5.2.2 Hinged flap: parametric study
We now turn our attention to the effects of a membrane-like flap mounted on the
suction side of the aerofoil during the same ramp-up motion. As an initial step,
we had to identify a design of the flap able to deliver substantial aerodynamic
benefits during the manoeuvre. A proper design must keep into account that the
flap motion and its effects on the flow field are controlled by various parameters,
such as its length, inertia, position, the torsional spring stiffness and its damping
factor. In the previous chapter, focusing on stall at fixed angle of attack (at
α = 20o), we have carried out a parametric study aimed to identify an optimal
control condition defined as the one that delivers the highest lift coefficient CL
while preserving or improving the aerodynamic efficiency E = CL/CD. For the
present study, where the incidence varies with time, we proceed with a similar
parametric study but pursuing a different aerodynamic condition. In particular,
we define as a desired condition the one that maintains high efficiency during
all the manoeuvre, postpones the dynamic stall, i.e., the lift breakdown, and
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Table 5.1: Flap configurations considered in the parametric study. The aerofoil is
NACA0020 and the Reynolds number is Rec = 20000. The flap parameters, i.e., the
ratio between the spring natural frequency and the shedding frequency f/f0, the flap’s
length L, the hinge position xF , the spring rotational stiffness K, and the moment of
inertia I are provided.

Case f/f0 L/c xF/c K × 103 I × 103

Ref − − − − −
F0.25-L0.10-X0.7 0.25 0.10 0.7 2.3461 3.3333
F0.50-L0.10-X0.7 0.50 0.10 0.7 9.3847 3.3333
F1.00-L0.10-X0.7 1.00 0.10 0.7 37.539 3.3333
F2.00-L0.10-X0.7 2.00 0.10 0.7 150.15 3.3333
F4.00-L0.10-X0.7 4.00 0.10 0.7 600.62 3.3333
F0.25-L0.20-X0.7 0.25 0.20 0.7 9.3847 13.333
F0.50-L0.20-X0.7 0.50 0.20 0.7 37.539 13.333
F1.00-L0.20-X0.7 1.00 0.20 0.7 150.15 13.333
F2.00-L0.20-X0.7 2.00 0.20 0.7 600.62 13.333
F4.00-L0.20-X0.7 4.00 0.20 0.7 2402.5 13.333
F0.25-L0.30-X0.7 0.25 0.30 0.7 21.115 30.000
F0.50-L0.30-X0.7 0.50 0.30 0.7 84.462 30.000
F1.00-L0.30-X0.7 1.00 0.30 0.7 337.85 30.000
F2.00-L0.30-X0.7 2.00 0.30 0.7 1351.4 30.000
F4.00-L0.30-X0.7 4.00 0.30 0.7 5405.6 30.000

reduces the subsequent degradation rate of the lift coefficient. Table (5.1) details
all the flap configurations that have been considered. In particular, apart from
the baseline case without flap, we have analysed flap lengths in the range L/c =
0.1 − 0.3, and spring stiffnesses in the range K = 0.037 − 0.600. Note that the
spring stiffness can be related to the natural frequency of the flap asK = I (2πf)2,
where I is the moment of inertia with respect to the rotation axis given by
I = mL2/3, (m being the mass per unit spanwise length). The chosen stiffness
values correspond to flap natural frequencies ranging between the half and the
double of the shedding frequency of the baseline foil at the maximum angle of
attack achieved in the ramp-up motion, i.e., f0 = 0.58U∞/c at α = 20o. In the
previous chapter (see also [80] and [82]), we have also analysed both the effects
of the flap hinge position, and of a different configuration consisting of two flaps
positioned in tandem on the suction side of the aerofoil. The effect of these
parameters has not been considered in this study, since it was found that the
aerodynamic performances were not very sensitive to their introduction. Having
considered all the cases reported in Table (5.1), we have found that the best
performance is achieved when using a flap 0.1c long, resonating with the shedding
frequency of the uncontrolled aerofoil at an incidence of α = 20o. A summary of
the time evolution of the lift coefficients during the ramp-up manoeuvre obtained
using various flap configurations is reported in Figure (5.4) (note that, only the
lift breakdown phase is shown in the figure).
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Figure 5.4: Evolution of the lift CL for some of the cases considered in the parametric
study. In panel (a), the length of the flap is varied, while keeping the flap natural
frequency equal to the foil shedding frequency. The blue, black and red lines are used
to identify the lift coefficients obtained with flap lengths equal to L = 0.1c, 0.2c and
0.3c, respectively. In panel (b) we consider cases where the length of the flap is frozen
to L = 0.1c, and the natural frequency of the flap is changed; the blue, light blue, black,
orange and red lines are used for f = 0.25f0, 0.5f0, 1.0f0, 2.0f0 and 4.0f0, respectively
(f0 being the shedding frequency of the baseline foil at 20o incidence). The dashed line
is used to indicate the reference cases.

5.2.3 Flow around the foil equipped with the selected flap
In this section we will be focusing on the aerodynamic performances and on the
flow field generated around a NACA0020 aerofoil equipped with a zero thickness
flap mounted on its suction side during the ramp-up motion under consideration.
The chosen flap configuration corresponds to the one delivering the best perfor-
mances as determined via the parametric campaign described in the previous
section: flap length 0.1c, hinged at 0.7c, infinitely long in the spanwise direc-
tion, and with a torsional stiffness adjusted to produce a flap natural frequency
matching f0 (the shedding frequency of the baseline profile at 20o incidence).
For convenience, in what follows the aerofoil equipped with the aforementioned,
quasi-optimal flap will be simply termed either as the controlled aerofoil, or the
aerofoil with the flap. A comparison of the time evolution of the lift and drag
coefficients of the baseline aerofoil (continuous line) versus the controlled one
(dotted line) during the ramp-up motion is displayed in Figure (5.1). From the
diagram, it appears that the drag coefficient CD is only slightly influenced by the
presence of the flap, while the lift coefficient CL is increased during the initial
7tU∞/c time units, thus indicating an overall increase in aerodynamic efficiency
E during the ramp-up motion. Figure (5.3b) reports the time variations of the
aerodynamic efficiency E (defined as the ratio between the lift and drag coef-
ficients, i.e., E = CL/CD). The graph shows how the controlled case presents
higher values of the efficiency than the baseline one during the whole manoeuvre,
with a maximum which is approximately 10% higher than in the uncontrolled
case. From the figure, it also appears that higher efficiency is also maintained
during the whole lift breakdown phase. Moreover, in the most critical condition,
the minimum lift coefficient at the end of the lift breakdown is sensibly higher



5.2 Results and discussions 79

Figure 5.5: Contour plots of the space average of the spanwise component of vorticity
ωz for the controlled case with flap, sampled at the times given in Figure (5.1a). Blue
negative vorticity, red positive (±7U∞/c).

(about 12%) in the controlled case than in the uncontrolled one (i.e., with flap:
Cmin
L = 1.0; baseline case: Cmin

L = 0.89). Thus, when the flap is used, a less
severe lift deficit following the dynamic stall overshoot delivers a smoother aero-
dynamic response to the unsteady change of incidence. The milder aerodynamic
response induced by the presence of the flap is also enhanced by the extended
time interval over which the lift decreases after the first lift maximum: in the
controlled case this period of time is extended by 5% as compared to the baseline
case.

Figure (5.5) shows the flow evolution during the ramp-up manoeuvre in terms
of spatial averaged spanwise vorticity when the flap is in use. The selected snap-
shots and vorticity levels correspond to the ones of the baseline case illustrated in
Figure (5.2). Initially, at α = 0o, the flow is mostly attached to the aerofoil, and
the flaplet lies tangentially on the aerofoil surface (Figure (5.5a)). As the angle of
attack is increased and the separation point moves upstream (Figure (5.5b-c)),
the flap starts to lift reducing the backflow advancing from the trailing edge.
Within this stage, the pressure coefficient Cp (Figure (5.1b)) of the controlled
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case shows a higher leading edge pressure peak. It is also noted that the presence
of the flap postpones the Cf oscillations (see Figure (5.1d)). In the following
stage, when the dynamic stall vortex is forming and maximum lift is almost
reached (Figure (5.5c-e)), the flap reverses his movement, now directing towards
the wing surface. The flap downward motion generates a jet that displaces the
forming trailing edge vortex downstream. This flap-flow interaction process de-
lays the detachment of the dynamic stall vortex, resulting in a higher maximum
lift value (maximum value in the controlled case: Cmax

L = 1.68), and in a milder
lift breakdown. A footprint of the same process can also be observed in the Cp
and Cf distributions in Figure (5.1c,e) that show how the second pressure peak
and the friction oscillations due the movement of the dynamic stall vortex oc-
cur at a chord location closer to the leading edge. Differently from the previous
magnitudes, the time displacement of the mean separation point over the suction
side, shown in Figure (5.3a), is only slightly altered by the presence of the flap.

When describing Figure (5.1d-e), we have already highlighted the presence
of some oscillations in the Cf distribution by the trailing edge region. These
oscillations amplify in time thus affecting larger portions of the foil. The physical
mechanism responsible for these oscillations is a shear layer instability of Kelvin-
Helmholtz type that originates from the trailing edge and propagates upstream in
time. The time-space propagation of this instability is analysed in Figure (5.6a)
that shows the evolution over time of the fluctuations of the stream-wise velocity
component at various x locations at a wall normal distance of 0.1c above the
aerofoil suction side. The red and blue curves are used for the baseline and
controlled cases, respectively. The symbols in the same figure indicate the time
when the amplitude of the fluctuation reaches 2.5% of the averaged streamwise
velocity value. In this diagram it is clear that in the baseline case initially the
x-wise velocity fluctuations are confined to the trailing edge region and that only
after 2 time units the fluctuations reach the half chord location. At a later
stage, the fluctuations travel slowly further upstream, but never contaminating
the leading edge portion of the aerofoil. This behaviour proves that in the baseline
case, during the ramp-up motion, the separated region travels upstream from the
trailing edge. When the flap is considered, the situation is quite different. In this
case, the locations upstream of the flap hinge are reached by the perturbations
with a slight time delay, while the the fluctuations downstream of the hinge are
strongly reduced in amplitude and postponed in time. Table (5.2) confirms the
aforementioned effect of the flap in reducing the velocity fluctuations in the rear
part of the aerofoil (by approximately 10%) while leaving the intensity of the
fluctuations almost unchanged in the front part.

Figure (5.6b) and Table (5.2) also illustrate the behaviour of the pressure
fluctuations that further highlights the difference between the two cases with a
maximum reduction of pressure rms of about 25% at 80% of the chord.

Further insight into the physical processes taking place during the ramp-up
motion can be gained by analysing the time emergence of coherent structures,
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Figure 5.6: Fluctuations of the (a) x-velocity components u′ and (b) pressure p as a
function of time for various points near the aerofoil surface. For clarity, the fluctuations
are shifted according to the chord location where they were measured. Red lines are for
the baseline case, blue lines are for the aerofoil with the flap. For further explanations
see the text

their mutual interactions and the generation of the wake. In particular, vortical
coherent structures have been identified using the Q-criterion. Instantaneous
Q iso-surfaces are shown in Figure (5.7). The left column corresponds to the
baseline profile, while the right one presents the case of the aerofoil with the flap.
The rows in the figure have been captured at the same time after the beginning of
the ramp-up motion. Panels in the first row (a and b) correspond to the earliest
stages at t = 1.45c/U∞, when the angle of attack is α = 10o. The flow is very
similar in the two cases presenting a slight asymmetry, with coherent structures
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Table 5.2: Percentage variations of the r.m.s. values of the streamwise velocity com-
ponent and pressure fluctuations in the aerofoil with flap with respect to the baseline
foil. The locations x/c are the same as the ones Figure (5.6)

x/c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
u′% 0 0 −1 −1 −1 −6 −10 −10 −12 −8
p′% 3 2 2 1 0 −5 −15 −25 −21 −20

generated only past the trailing edge area of the suction side. At α = 20o (panels c
and d), the shear layer rolls-up into a recirculating region that closes at about the
mid-chord location. However, the size and intensity of the large roller is strongly
reduced when the flap is in use. Moreover in the controlled case, the whole shear
layer instability and the consequent roll-up appear to be shifted downstream
indicating a time delay in the whole instability process. The next panels (e, f
and g and h) show how the roll-up process continues to develop leading to the
formation of a very large recirculating zone (i.e., the dynamic stall vortex) that
basically covers all the foil suction side. Again, the recirculating region and its
intensity seem to be diminished by the action of the flap that also delays the
process in time. In the same panels, it is also possible to observe the presence
of a trailing edge vortex that interacts with the dynamic stall vortex inducing
an upward displacement of the latter. As compared to the baseline case, in the
controlled case, the trailing edge vortex is also displaced downstream. When the
trailing edge vortex is shed, the leading edge shear layer starts to roll-up again
forming a new vortex (see panels i and j). The whole process is then cyclically
repeated in time with the intensity of the fluctuations slowly damped out to reach
asymptotically the final stationary stalled condition.

A further analysis that allows to better understand the unsteady vortex forma-
tion, the associated transport processes and the origin of the instabilities arising
in the flow is based on the study of the evolution of the Finite-Time Lyapunov Ex-
ponents (FTLE). Figure (5.8) shows contours of the FTLE during a time period
equal to the one considered in Figure (5.1). The frames are organised chrono-
logically, with the left and right columns corresponding to the baseline and con-
trolled cases, respectively. Starting from t = 1.45c/U∞, the snapshots have been
extracted at the same time instants as the ones marked in Figure (5.1). In panels
a and b, the corresponding flow field is slightly asymmetric with two shear layers
originating from the mid-chord region. The next two panels (b and c), show how
the flow on the pressure side of the foil tends to reattach, while on the suction
side an early separation is visible. Also, the shear layer at the trailing edge starts
to roll up. As the shear layer roll-up process continues, a recirculation region
is progressively built up on the foil suction side (see panel e and f), ultimately
leading to the formation of a large scale vortical structure, i.e., the dynamic stall
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Figure 5.7: Visualisation of instantaneous vorticity field by means of Q-iso-surfaces
(Q = 500U2

∞/c
2 for a-f a,d and Q = 1000U2

∞/c
2 for g-j) coloured by the instantaneous

spanwise component of the vorticity ωz = ±40 (red positive, blue negative). The left
and right columns are used for the baseline and controlled cases, respectively.

vortex. As already remarked when analysing Figure (5.7), the sequence of panels
a-c-e and b-d-f show again that the action of the flap retards the roll up of the
shear layers. It is also highlighted that, while the large scale, dynamic stall vor-
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Figure 5.8: Contour plot of the FTLE σT . Time increases from top to bottom, with
a sampling time interval of ∆t = 1.45c/U∞. The initial time (a-b) corresponds to
α = 10o. The contour levels go from 0 (white) to 7U∞/c (red). The left and right
columns are used for the baseline and controlled cases, respectively.

tex is formed, no vortices are shed from the trailing edge and an almost stable
straight shear layer develops from it. The last two panels (i and j) show how
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Figure 5.9: Spanwise pressure autocorrelation at various locations along the aerofoil
suction side, computed at a distance of 0.1c from the wall. Time snapshots correspond
to the ones given in Figure (5.1a). Solid line is the baseline case while symbols are for
the case with flap.

the trailing edge shear layer rolls-up forming a fresh trailing edge vortex which
pushes the dynamic stall vortex upwards causing its detachment. From panel j
it also appears that the action of the flap strongly delays the formation of the
trailing edge vortex.

Finally, we analyse the spanwise two-point pressure autocorrelation Rpp at
various xy coordinates. The autocorrelation is defined as

Rpp(z, r) = p′(z)p′(z + r)
p′2(z)

, (5.1)

where the bar denotes the double average over time and along the homogeneous
direction z. The pressure autocorrelation snapshots shown in Figure (5.9) have
been extracted at the same time instants as those shown in Figure (5.1) that,
in turn, correspond to the panels of Figure (5.7) and Figure (5.8). All the rep-
resented values have been obtained at a distance of 0.1c from the wall. In the
first panel of Figure (5.9), the flow is mostly attached to the aerofoil, and all the
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points are in the laminar region. A wake induced, low amplitude pressure wave
(amplitude ∼ 0.3% of the mean value) is visible at all the selected locations in
panels a and b. In panel a, the controlled case shows the same behaviour except
at the trailing edge, where the correlation reaches higher negative values. A more
clear difference between the two cases is visible in panel b, that corresponds to
the moment in which the angle of attack has reached 20o, and the separation
point has moved upstream as shown in Figure (5.3a). In the baseline case the
correlation rapidly goes to zero for all the points in the rear part of the aero-
foil, indicating transition to turbulence. Differently, the case with flap maintains
higher values of the autocorrelation function in all the region covered by the flap
motion. In later stages (panels c and d), when the trailing edge vortex is starting
to roll up, the baseline case takes on a higher value of the correlation function
(see Figure (5.7e)). The lower value in the controlled case is due to the action of
the flap that delays the formation of the trailing edge vortex. Finally in panel e,
most of the correlation values are quite low, except in the region spanned by the
flap motion (in the controlled case), where the correlation seems to grow again
because of the coherent local flow motion induced by the flap movement.
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Conclusions

We have carried out a number of direct numerical simulations of the flow around
a NACA 0020 aerofoil at a chord Reynolds number of Rec = 20000, subject to
variations of the incidence angle. After describing and validating the numerical
approach with results from the literature, the flow around the aerofoil has been
simulated in both a static stall condition at 20o and during a ramp-up manoeuvre
leading to a a dynamic stall condition (i.e., the angle of attack varying linearly
from 0o to 20o at a non-dimensional rate of α̇rad = 0.12U∞/c).

In the static stall case, the mean flow is dominated by a large recirculation zone
present on the whole suction side, with a secondary smaller recirculation bubble
located in correspondence of the aerofoil maximum thickness. The instantaneous
behaviour highlights the presence of a shear layer formed at the leading edge
that undergoes a convective Kelvin-Helmholtz instability. On the other hand,
while from the trailing edge the separated flow rolls-up and generates a large
vortex which has a blocking effect on structures originated at the leading edge.
Behind the aerofoil a large wake is formed, mainly due to flow separation at the
trailing edge of the aerofoil, and with a smaller contribution from the shear layer
formed at the leading edge. The different contributions of these two regions are
responsible for the wake lack of symmetry. The breaking of the symmetry also
manifests when considering the spectra of the time autocorrelation of the velocity
computed in the leading edge shear layer and near the trailing edge. Both the
spectra show a clear peak corresponding to the principal wake shedding frequency,
while only the leading edge spectrum shows a smooth peak at higher frequency,
corresponding to the vortex generation induced by the Kelvin-Helmholtz shear
layer instability. Also, in the same spectrum, a low frequency peak appears at
approximately half the shedding frequency. This peak corresponds to the flapping
motion of the shear layer.

In the ramp-up case, the lift force initially increases monotonically in time
even after having attained the maximum incidence angle. Subsequently, it drops
dramatically eventually converging towards the static stall values. During the
linear growth of the angle of incidence, the separation point moves from the trail-
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ing edge towards the leading edge. The backward displacement of the separation
line is associated with the formation of a large scale vortex on the suction side of
the aerofoil. The unsteady evolution of this vortex, usually termed as dynamic
stall vortex, is ultimately responsible for time variations of the aerodynamic force
coefficients. As the separation line moves upstream along the suction side, vor-
tices generate, merge and eventually coalesce into one large dynamic stall vortex.
This mechanism is mainly driven by the Kelvin-Helmholtz instability generated
at the leading edge. Indeed, the convective KH instability associated with the
leading edge generated shear layer, continuously produce fine grain vorticity that
merges generating spanwise oriented large scale structures.

The second part of the thesis work has focused on the use of passive, self actu-
ated flaps to be used as lift enhancement devices in nominally stalled conditions.
The main objective was to discover how the mutual interaction between these
self deployable devices and the unsteady flow field generated by a foil at high an-
gle of attack can improve the aerodynamic efficiency of stalled wings. Although
the design of optimal flaps (i.e., delivering maximum lift increase) was not a pri-
mary objective of this work, we had to carry out a preliminary selection study
to determine the characteristics (i.e., size, location and natural frequency) of a
self-adaptive flaplet able to deliver substantial aerodynamic benefits in a stalled
condition. This initial study has been conducted on a baseline NACA0020 aerofoil
at 20o degrees angle of attack at low (fully laminar) chord Reynolds number (i.e.,
Rec = 2×103). The impact on the aerodynamic performance of a rigid, thin flap
hinged with a torsional spring on the aerofoil suction side has been analysed via a
parametric study involving the size of the flap, the hinge location and the spring
stiffness. It has been found that, in order to obtain effective flow manipulations,
it is of fundamental importance to lock-in the flap oscillation frequency with the
foil Strouhal number. When operating in resonating conditions, the aerodynamic
forces become quite sensitive to the geometric properties of the flap. In particu-
lar, optimal performances (i.e., ≈ 20% increase in lift) are achieved with a flap
length of one fifth of the chord hinged at about 70% of the aerofoil. Once the
geometric and physical characteristics of an aerodynamically efficient flaplet have
been determined, we turned our attention to the understanding of the flow-flap
interaction mechanisms responsible for the improved foil performances at high
angle of attack. To this end, we have carried out Direct Numerical Simulations
of the flow past a NACA0020 aerofoil at 20o angle of attack at a chord Reynolds
number of 2 × 104 considering both the baseline wing and the wing equipped
with the optimal flaplet as determined in the 2D parametric campaign. Initially,
considering the baseline wing, it has been observed the main flow mechanisms
taking place in the fully three-dimensional scenario, involving a laminar separa-
tion, a subsequent reattachment and a laminar-turbulent transition, determine a
flow behaviour that is qualitatively similar to the two dimensional case used for
the preliminary design study. The reasons for this similarity are related with the
common laminar separation, and the convective inviscid instability of the leading
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edge shear layer responsible for the roll up of the large recirculation bubble on
the aerofoil. In a second phase, we have systematically compared the flow fields
generated with and without the flap. Although the mean velocity fields and the
mean kinetic energy are very similar, the optimal flaplet has a very strong impact
in manipulating the unsteady character of the vorticity field. In particular, the
flap is popped up by the passage of the lift vortex and when relaxing back to the
equilibrium position generates a jet almost tangent to the wing surface, directed
towards the trailing edge. This jet detaches the vortex street generated by the
trailing edge shear layer instability away from the aerofoil. The displacement of
the trailing edge vortices has a twofold effect. On one hand, there is a net decrease
in the downforce that is directly generated by these vortices leading to a global
increase of the lift. On the other hand, the displacement of the trailing edge vor-
tex allow for a complete evolution of the leading edge generated vortex that now
does not interact directly with the trailing edge vortices. As a consequence, the
periodic character of the wake is now mainly controlled by the shedding of the
leading edge vorticity into the wake. The decoupling of the two main vorticity
layers regularises the shedding cycle also promoting a much more ordered wake
topology.

In the final stage of the present thesis, we have considered the use of a similar
flaplet as a control device able to mitigate the severe consequences of dynamic
stall. In particular, we have considered the same NACA0020 aerofoil undergoing
a ramp-up manoeuvre (i.e., incidence angle α initially increasing linearly from 0o
to 20o with a reduced frequency of 0.12U∞/c, followed by a plateau at α = 20o) at
a chord Reynolds number of 2× 104. After having conducted a detailed analysis
of the baseline flow without flap, a number of different flap configurations have
been considered having set as an aerodynamic objective one that: i) postpones
the dynamic stall, ii) reduces the subsequent lift coefficient degradation rate and
iii) delivers a high efficiency throughout the whole manoeuvre. Similarly to the
static case, we have considered a family of rigid, membrane-like flaps hinged at
the same location on the foil suction side (i.e., 70% of the chord) via a torsional
spring. Each different flap configuration, obtained by modifying the flap natural
frequency (i.e., spring stiffness) and its length, has been evaluated in terms of
the aforementioned criteria. Finally, it has been found that a flap measuring
10% of the chord (thus shorter than the optimal flap found for the static case),
with a natural frequency matching the shedding frequency of the baseline foil
at α = 20o (in steady stalled conditions) delivers the best performances in term
of the desired aerodynamic objectives. To better understand some light on the
physical mechanisms that improve the time evolution of the lift coefficient during
the ramp-up motion, we have also systematically analysed the flow topology and
its variations when the flap interacts with the flow field. It has been observed
that already from the beginning of the linear increase of the incidence angle, the
presence of the flap appears to delay the whole dynamic stall process. In par-
ticular, its action retards the initial roll up process associated with the vorticity
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generated by the shear layer instability originating at the leading edge. This
delay is also accompanied by a decreases of the generated dynamic stall vortex
intensity. The passage of this dominant vortex, lifts up the flap partially inhibit-
ing the interaction between the vortex advected along the suction side of the foil
and the trailing edge shear layer that also appears to be stabilised by the flap
action. The final flap downward motion also contributes to delay and to diminish
the intensity of the trailing edge vortex. The described stages constitute a cycle
that repeats in time slowly reducing in intensity until the transient is completed
and the steady angle of attack cyclic condition is recovered.

This thesis has probably just scratched the surface of a novel methodologies
for flow control based on adaptive but passive control devices. These devices can
achieve profound fluid dynamic modifications taking advantage of fluid-structure
interaction processes. Techniques based on wide range of compliant elements,
ranging from elastic flaps to dense poro-elastic carpets can open new horizons
in the manipulation of different time and length scales of a flow field. Those
manipulations can target a number of objectives not only related with wing aero-
dynamics. Enhanced mass and heat transfer, skin friction drag reduction and
energy harvesting are just few examples of the potential applications of technolo-
gies based on a smart exploitation of fluid-structure interaction.







Appendix A

Pitching aerofoil

In this section, we present an ongoing research that extends the investigation
carried out for the ramp-up manoeuvre to pitching cases. Research on pitch-
ing aerofoils is a crucial need in wind turbines aerodynamics and in rotorcraft
dynamics. Even though an exhaustive study of this manouvre goes beyond the
scope of the thesis, we have decided to include some preliminary results, because
obtained in the same generated context of the present thesis. In particular, we
have started by considering the flow around a NACA0020 aerofoil undergoing a
pitching motion at a chord Reynolds number fixed to the value of Rec = 2× 104.
The angle of attack is varied sinusoidally around α0 = 0o, with a maximum
angle of αA = 20o, at reduced frequency of k = πfU∞/c = 0.27 (the angle of
attack grows from 0o to 20o in the same time interval as the ramp-up simulations
presented in the previous chapters)

α (t) = α0 + αA sin (2πft) . (A.1)

The simulation is initialized from a fully developed, zero degree angle of attack
flow condition. All averaged quantities that will be presented have been obtained
employing a double averaging procedure: space averaging in the homogeneous
z-direction and phase averaging. The phase average covers ten cycles, after three
initial transient cycles that have been discarded. The simulation was still under-
going at the time this section has been written.

Figure (A.1a) shows the time evolution of the lift and drag coefficients dur-
ing the pitching motion. Initially, while the angle of attack is increased, both
coefficients increase, and their maximum values are reached when the angle is
already decreasing. After half cycle the angle of attack is null again, then the
drag starts to increase again, while the lift coefficient becomes negative and has
the same behaviour of the first half cycle but with negative values. As it will be
described later on, the increase and drop in the force coefficients, are related to
the formation and detachment of the dynamic stall vortex from the aerofoil, in
agreement with the physical description given by McCroskey [63]. During their
time evolution, the maximum values achieved by the lift and drag coefficients are
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Figure A.1: Lift (blue line) and drag (red line) coefficients as a function of (a) time
and (b) angle of attack. The green line in (a) is representative of the time variation
of the angle of attack. Along this last line, the symbols indicate 16 particular time
instants for which integral quantities along the aerofoil are represented in the other
figures.

CL = 1.45 and CD = 0.34, respectively. Note that, when the angle of attack is
equal to zero, the lift and drag coefficients have different values depending on the
phase. This is due to the hysteresis cycle, clearly shown in Figure (A.1b), where
the force coefficients are shown as a function of the angle of attack.

Figure (A.2) and Figure (A.3) display the contours of the span-wise, compo-
nent of vorticity ωz, averaged in the homogeneous z-direction at the same sixteen
times as the ones considered in Figure (A.1). In particular, the first plot corre-
sponds to the zero degree phase, the second to φ = 22.5o and so on. Figure (A.2a)
shows how the flow is not completely symmetric over the aerofoil surface when
φ = 0o, as already noted. Indeed, during the upstroke the separation point is on
the suction side of the aerofoil, and the wake is tilted upward. As the phase an-
gle is increased, the flow fields (Figure (A.2b-d)) completely loose their symmetry
with a consequent lift increase, and the separation point keeps moving towards
the leading edge. A large vortex has started to form on the suction side (i.e.,
the so called dynamic stall vortex), as the result of the roll-up process of smaller
scale vortices (Figure (A.2b)). It is also noted that, until the maximum lift is
not reached, no vortices are shed from the trailing edge as can be educed from
Figure (A.2d). After its formation, the dynamic stall vortex is convected down-
stream towards the trailing edge, where an induced counter rotating vortex is
formed, see Figure (A.2e), when the downstroke motion has just started, but the
lift is still growing. When the dynamic stall vortex finally detaches from the aero-
foil and the trailing edge vortex reaches its maximum size (Figure (A.2f)), a fully
separated flow condition is reached, and the lift coefficient finally decreases. As
the phase angle approaches 0o again (Figure (A.2g-h)), the dynamic and trailing
edge vortices are convected downstream, and the separation point moves down-
stream towards the trailing edge. From the phase φ = 180o onwards, shown in
Figure (A.3), the same process is repeated with the pressure and suction side
inverted.

A more detatiled analysis and the effects that an elastically mounted flap can
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Figure A.2: Contour plots of the space and phase average of the spanwise component
of vorticity ωz, sampled at the times given in Figure (A.1). Blue negative vorticity, red
positive (±7U∞/c).

have on the unsteady flow field will be the subjects of future publications.
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Figure A.3: Same as Figure (A.2)
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