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Nonlinear and multiplayer evolutionary games

Mark Broom and Jan Rychtář

Abstract Classical evolutionary game theory has typically considered populations
within which randomly selected pairs of individuals play games against each other,
and the resulting payoff functions are linear. These simple functions have led to a
number of pleasing results for the dynamic theory, the static theory of evolutionar-
ily stable strategies, and the relationship between them. We discuss such games, to-
gether with a basic introduction to evolutionary game theory, in Section 1. Realistic
populations, however, will generally not have these nice properties, and the payoffs
will be nonlinear. In Section 2 we discuss various ways in which nonlinearity can
appear in evolutionary games, including pairwise games with strategy-dependent
interaction rates, and playing the field games, where payoffs depend upon the en-
tire population composition, and not on individual games. In Section 3 we consider
multiplayer games, where payoffs are the result of interactions between groups of
size greater than two, which again leads to nonlinearity, and a breakdown of some
of the classical results of Section 1. Finally in Section 4 we summarise and discuss
the previous sections.
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1 Introduction

In this paper we consider nonlinear and multiplayer evolutionary games. We start
in Section 1 with an introduction to evolutionary games for those not familiar with
them, focusing on matrix games, which are linear in character, and discussing a
number of the key results. We then move on to consider the general idea of non-
linear evolutionary games, including some specific types of such games in Section
2. We believe that these results, and those in the following section, will generally
be less familiar to the audience. In Section 3 we consider multiplayer games. The
specific type that we consider, and the most commonly used, is multiplayer matrix
games, which can be though of as a special type of the nonlinear games in Section
2, although we note that multiplayer games in general do not simply reduce to this
type. The text in significant part follows a tutorial talk given by MB at the Interna-
tional Society on Dynamic Games Symposium in Amsterdam in July 2014, which
in turn followed aspects of the book Broom and Rychtář (2013).

1.1 What is evolutionary game theory?

Evolutionary game theory as we know it today began in the 1960s, in particular
with the consideration of the sex-ratio problem (Hamilton, 1967), although similar
reasoning on this problem goes back much earlier to Dusing (see Edwards, 2000)
and Fisher (Fisher, 1930). The most influential work on our modern understand-
ing is that of Maynard Smith and collaborators (Maynard Smith and Price, 1973;
Maynard Smith, 1982).

In (non-cooperative) game theory, a game is comprised of three key elements, the
players, the strategies available to be employed by the players, and the payoffs to
the players, which are functions of the strategies chosen. For an evolutionary game
we also need a population, and a way for our population to evolve through time, an
evolutionary dynamics.

A pure strategy is a choice of what to play in a given interaction. Supposing that
the pure strategies comprise the finite set {S1,S2, . . . ,Sn}, then a mixed strategy is
defined as a probability vector p = (p1, p2, . . . , pn), pi being the probability that the
player will play pure strategy Si. Thus a pure strategy can be written in this way, e.g.
Si is (0, . . . ,0,1,0, . . . ,0) with 1 at the ith place, and a mixed strategy can be written
as a convex combination of pure strategies,

p = (p1, p2, . . . , pn) =
n

∑
i=1

piSi. (1)

The set of all mixed strategies can be represented by a simplex in Rn with vertices
at {S1,S2, . . . ,Sn}. The Support of p, S(p), is defined by S(p) = {i : pi > 0}, so that
it is the set of pure strategies which have a positive probability of being played by a
p-player. The notion of a mixed strategy is naturally extended even to cases where
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the set of pure strategies is infinite, as in the “war of attrition” game, for example
Bishop and Cannings (1978).

Pure strategy Pure strategyMixed strategy

S1 = (1, 0) S2 = (0, 1)p = (p1, p2)

p2 p1

Pure strategy Pure strategy

Pure strategy

S1 = (1, 0, 0) S2 = (0, 1, 0)

S3 = (0, 0, 1)

p1

p3

p2

p = (p1, p2, p3)

Fig. 1 Visualization of pure and mixed strategies for games with two or three strategies.

Payoffs for a game played by two players with each having a finite number of
pure strategies can be represented by two matrices. For example, if player 1 has the
strategy set S = {S1, . . . ,Sn} and player 2 has the strategy set T = {T1, . . . ,Tm}, then
the payoffs in this game are written as

A = (ai j)i=1,...,n; j=1,...,m,B = (bi j)i=1,...,m; j=1,...,n, (2)

where ai j (b ji) is the reward to players 1 (2) after player 1 (2) chooses pure strategy
Si (Tj). We thus have the payoffs written as a pair of n×m matrices A and BT , which
is known as a bimatrix representation. This is often written as a single matrix whose
entries are ordered pairs of values.

Note that here we write the payoffs from the point of view of the player receiving
the reward (i.e. the index of their strategy comes first). It is often the case in other
works that the index of player 1 is written first.

Often in evolutionary games, the choice of which player is player 1 is arbitrary,
and thus the strategies available to the two players are identical. In this case, n = m
and (after a possible renumbering) Si = Ti for all i. Since the ordering of players is
arbitrary, if we swap them their payoffs are unchanged, so that bi j = ai j, i.e. A = B.
This means that all payoffs can be written as a single n×n matrix

A = (ai j)i, j=1,...,n, (3)

where in this case, ai j is the payoff to a player playing pure strategy Si when its
opponent plays strategy S j. Such a game is called a matrix game.

Consider a game with payoffs given by a matrix A. If player 1 plays p and player
2 plays q, then the proportion of games involving the first player playing Si and the
second player playing S j is simply piq j. The expected reward to player 1 is thus
given by

E[p,q] = ∑
i, j

ai j piq j = pAqT. (4)
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Note that, when comparing payoffs, we can ignore difficult cases involving equal-
ities by assuming our games are generic (Samuelson, 1997; Broom and Rychtář,
2013). In most of the following we will make this assumption.

In the above, we have considered a single game between two individuals. How-
ever, evolutionary games consist of populations, and individuals are not (usually)
involved in only a single contest. They may play many different contest, against
many different opponents, with each contributing a relatively small contribution to
the total reward.

We consider a function E [σ ;Π ], the fitness of an individual using a strategy σ in
a population represented by Π . The term δp is used to represent a population where
the probability of a randomly selected player being a p-player is 1. The term δi
similarly denotes a population consisting only of individuals playing pure strategy Si
(with probability 1). The term ∑i piδi thus means a population where the proportion
of Si-playing individuals is pi.

1.2 Two approaches to game analysis

1.2.1 Dynamic analysis

In all that follows we assume a very large (effectively infinite) population, with
overlapping generations and asexual reproduction, where offspring are direct copies
of their parent. The evolution of a population can be modelled using evolutionary
dynamics, where the proportion of individuals playing a given strategy changes ac-
cording to their fitness.

In the following we shall assume a population consisting only of pure strategists.
Thus we consider a population represented by pT = ∑i piδi, i.e. where the frequency
of Si-playing individuals is pi. We denote the fitness of individuals playing Si in this
population to be fi(p). The birth rate of individuals in the population is proportional
to their fitness.

We assume that the composition of the population changes according to the dif-
ferential equation

d
dt

pi = pi

(
fi
(
p(t)

)
− f̄ (p(t))

)
. (5)

This is the continuous replicator dynamics, the most commonly used evolutionary
dynamics, originating in Taylor and Jonker (1978) (see also Hofbauer and Sigmund,
1998). For a derivation see Broom and Rychtář (2013). We also note the existence
of the discrete replicator dynamics, the equivalent dynamics for non-overlapping
generations (see Bishop and Cannings, 1978).

For matrix games the continuous replicator dynamics (5) becomes

d
dt

pi = pi

((
A
(
p(t)

)T
)

i
−p(t)A

(
p(t)

)T
)
. (6)
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1.2.2 Static analysis

An alternative methodology is to use a static analysis, which does not consider how
the population reached a particular point in the strategy space, but assuming that
the population is at that point, asks whether other strategies can do better within the
population?

Consider a population where the vast majority of individuals play strategy S,
while a very small proportion ε > 0 of “mutants” play strategy M. The strate-
gies S and M thus compete within the population (1− ε)δS + εδM . A strategy S
is evolutionarily stable against strategy M if there is εM > 0 such that

E [S;(1− ε)δS + εδM]> E [M;(1− ε)δS + εδM] (7)

for all ε < εM . S is an evolutionarily stable strategy (ESS) if it is evolutionarily
stable against M for every other strategy M 6= S (Maynard Smith and Price, 1973;
Maynard Smith, 1982).

For matrix games, the linearity of the payoffs gives

E [p;(1− ε)δp + εδq] = E[p,(1− ε)p+ εq] = (8)

pA((1− ε)p+ εq)T = (1− ε)pApT + εpAqT. (9)

It is easy to show that this means a strategy p is an Evolutionarily Stable Strategy
(ESS) for a matrix game, if and only if for any mixed strategy q 6= p

E[p,p]≥ E[q,p], (10)
If E[p,p] = E[q,p], then E[p,q]> E[q,q], (11)

(see e.g. Broom and Rychtář, 2013).
We note that inequality (10) is the Nash equilibrium condition, but that, while

necessary, it is not sufficient for stability. If (11) does not hold, then p may be in-
vaded by a mutant that does equally well against the majority of individuals in the
population (that play p) but gets a (tiny) advantage against them by outperforming
them in the (rare) contests with other mutants (playing q).

Alternatively there is the possibility that the mutant and the residents do equally
well against the mutants too. In this latter case invasion can occur by “drift”; both
types do equally well, so in the absence of selective advantage random chance de-
cides whether the frequency of mutants increases or decreases.

We define T (p) as the set of pure strategies with equal payoffs against p, i.e.

T (p) = {i : E[Si,p] = E[p,p]}. (12)

Theorem 1 (Bishop Cannings Theorem). If p is an ESS of the matrix game A and
q 6= p is such that S(q)⊆ T (p), then q is not an ESS of matrix game A.

For a proof, see Bishop and Cannings (1976).
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1.2.3 Dynamic versus static analysis

Dynamic and static analyses are mainly complementary, however the relationship
between the two is not straightforward, and there is some apparent inconsistency
between the theories. Comparing the static ESS analysis and replicator dynamics,
we see that the information required for each type of analysis is different. To deter-
mine whether p is an ESS, we need the minimum of a function

q→ E [p;(1− ε)δp + εδq]−E [q;(1− ε)δp + εδq] (13)

to be attained for q = p for all sufficiently small ε > 0.
To understand the replicator dynamics, however, we need E [Si;pT] for all i and

all p. Thus a major difference between the two methods is that the static analysis
considers monomorphic populations δp while the dynamic analysis considers mixed
populations pT = ∑i piδi.

The analyses can thus produce the same (or at least similar) results only if there is
an identification between δp and pT, as in the case of matrix games, and we note that
most of the comparative analysis between the methods has assumed matrix games.

Theorem 2 (Folk theorem of evolutionary game theory, Hofbauer and Sigmund
(2003)). For a matrix game with payoffs given by matrix A, we have:

1) If p is a Nash equilibrium, and so an ESS, of a matrix game, then pT is a rest
point of the dynamics , i.e. the population does not evolve further from the state
pT = ∑i piδi.

2) If p is a strict Nash equilibrium, then p is locally asymptotically stable.
3) If the rest point p∗ of the dynamics is also the limit of an interior orbit, then it is

a Nash equilibrium.
4) If the rest point p is Lyapunov stable, then p is a Nash equilibrium.

An ESS is an attractor of the replicator dynamics, and the population converges
to the ESS for every strategy sufficiently close to it. If p is an internal ESS, then
global convergence to p is assured (Zeeman, 1980).

It is also true that if the replicator dynamics has a unique internal rest point p∗,
under certain conditions (satisfied for matrix games)

lim
t→∞

1
T

∫ T

0
pi(t)dt = p∗i , (14)

so that the long-term average strategy is given by this rest point, even if there is
considerable variation at any given time.

Thus for matrix games, identifying ESSs and Nash equilibria of a game gives a
lot of important information about the dynamics. For example, if p is an internal
ESS, then global convergence to p is assured.

However, there are cases when an ESS analysis does not provide such a complete
picture. In particular, there are attractors of the replicator dynamics that are not
ESSs. To see this, consider the matrix



Nonlinear and multiplayer evolutionary games 7 0 1 −1
−2 0 2
2 −1 0

 . (15)

(see Hofbauer and Sigmund, 1998). The replicator dynamics for this game has a
unique internal attractor, but this attractor is not an ESS. This happens because we
can find an invading mixture for p where the dynamics effectively forces the mixture
into a combination that no longer invades. Thus if the invading group is comprised
of mixed strategists it can invade, whereas if it is comprised of a mixture of pure
strategists it cannot. Note that for the discrete dynamics the situation is even more
complex, since then it is not guaranteed that an ESS is an attractor (Cannings, 1990).

1.3 Two classic matrix games

Two well-known examples of matrix games are the Hawk-Dove game (Maynard Smith
and Price, 1973) and the prisoner’s dilemma (Tucker, 1980). These both represent
important biological/ social scenarios.

1.3.1 The Hawk Dove game

For the Hawk-Dove game, individual compete against other randomly chosen indi-
viduals for a reward (e.g. a territory) of value V > 0. Each of the contestants has
two pure strategies available, Hawk (H) and Dove (D). Hawks fight, whereas Doves
merely display. Doves divide the reward, a Hawk always beats a Dove, whereas two
Hawks fight, with the loser incurring a cost C. This gives the payoff matrix as


Hawk Dove

Hawk
V −C

2
V

Dove 0
V
2

. (16)

Denoting a mixed strategy p = (p,1− p) to mean to play Hawk with probability
p and to play Dove otherwise, it is easy to show that pure Dove is never an ESS,
pure Hawk is an ESS if V ≥C. For V <C, p = (V/C,1−V/C) is the unique ESS
(see e.g. Broom and Rychtář, 2013).

1.3.2 The prisoner’s dilemma

In the Prisoner’s dilemma, a pair of individuals can either cooperate (play C) or try
to obtain an advantage by defecting and exploiting the other (play D). The payoffs
are given by the payoff matrix
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(Cooperate De f ect
Cooperate R S
De f ect T P

)
. (17)

Whilst the individual numbers are not important, for the classical dilemma we need
T >R>P> S. We also need the additional condition 2R> S+T which is necessary
for the evolution of cooperation. In this game Defect is the unique ESS, although if
both players cooperated they would do better. The game is widely used to consider
the issue of (especially human cooperation), and of how it can be established against
cheating. Many variants of the above game, usually using multiple interactions of
some kind, have been developed to this end (see e.g. Axelrod, 1981; Nowak, 2006).

2 Nonlinear games

2.1 Overview and general theory

In the previous section we considered matrix games, where

E [p;qT ] = pAqT. (18)

The above payoffs can alternatively be written in the form ∑i pi(AqT)i or ∑ j(pA) jq j,
and so payoffs are linear in both the strategy of the focal individual and the strategy
of the population and, as we have seen, this has nice static and dynamic properties.

More generally, we say that E is linear on the left if it is linear in the strategy of
the focal player, i.e.

E

[
∑

i
αipi;Π

]
= ∑

i
αiE [pi;Π ] (19)

for every population Π , every m−tuple of individual strategies p1, . . . ,pm and every
collection of constants αi ≥ 0 such that ∑i αi = 1 (Broom and Rychtář, 2013).

We say that E is linear on the right if it is linear in the strategy of the population,
i.e.

E

[
p;∑

i
αiδqi

]
= ∑

i
αiE [p;δqi ] (20)

for every individual strategy p, every m−tuple q1, . . . ,qm and every collection of
αi’s from [0,1] such that ∑i αi = 1 (Broom and Rychtář, 2013).

Recall that for matrix games, the payoff to an individual is the same whether it
faces opponents playing a polymorphic mixture of pure strategies or a monomorphic
population. We say that a game has polymorphic-monomorphic equivalence if for
every strategy p, any finite collection of strategies {qi}m

i=1 and any corresponding
collection of m constants αi ≥ 0 such that ∑

m
i αi = 1 we have
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E

[
p;∑

i
αiδqi

]
= E

[
p;δ∑i αiqi

]
, (21)

(Broom and Rychtář, 2013). Note that he concept of polymorphic-monomorphic
equivalence holds only in respect of static analyses, and there is no such concept in
terms of dynamics.

The payoff is linear on the left for many evolutionary games because E [p;Π ] is
often defined to be the average of the payoffs to players of pure strategy Si, weighted
by the selection probability pi, for all i. It is common, however, that the payoff is
nonlinear on the right, which occurs whenever the game does not involve pairwise
contests against randomly selected opponents.

The payoff function can be nonlinear on the left, if a strategy is a pure strategy
drawn from a continuum, but that the payoff is nonlinear as a function of this pure
strategy, such as in the tree height game from Kokko (2007) that we consider in
Section 2.4. Nearly all real situations feature nonlinearity of some type, and when
models of real behaviours are developed, the payoffs involved are indeed generally
nonlinear in some way.

Some results for linear games can be generalized and reformulated for nonlinear
games. The conditions (10) and (11) can be generalized as follows:

Theorem 3. For games with generic payoffs, if the incentive function

hp,q,u = E [p;(1−u)δp +uδq]−E [q;(1−u)δp +uδq] (22)

is differentiable (from the right) at u = 0 for every p and q, then p is an ESS if and
only if for every q 6= p;

1. E [p;δp]≥ E [q;δp] and

2. if E [p;δp] = E [q;δp], then ∂

∂u

∣∣∣
(u=0)

hp,q,u > 0.

For a proof, see (Broom and Rychtář, 2013).

Theorem 4. Let E be linear in the focal player strategy, i.e. (19) holds, and let
the function hp,q,u be differentiable w.r.t u at u = 0. Let p = (pi) be an ESS. Then
E [p;δp] = E [Si;δp] for any pure strategy Si such that i ∈ S(p) = { j; p j > 0}.

For a proof see Broom and Rychtář (2013). We note that it is enough to assume
hp,q,u to be continuous.

If the payoff is not linear but strictly convex so that, for all q and all p with at
least two elements in S(p),

∑
i

piE [Si;δq]> E [p;δq], (23)

then any ESS must be a pure strategy.



10 Mark Broom and Jan Rychtář

Lemma 1 below shows that the payoffs of games that are linear in the focal
player strategy and satisfy polymorphic monomorphic equivalence (21) must be of
a special form. These games are called population games, or playing the field games.

Lemma 1. If the payoffs of the game are linear in the focal player strategy (i.e.
satisfy (19)) and satisfy polymorphic monomorphic equivalence (21), then for every
x,y,z and every ε ∈ [0,1]

E [x;(1− ε)δy + εδz] = ∑
i

xi fi
(
(1− ε)y+ εz

)
(24)

where fi(q) = E [Si;δq].

Below we write payoffs in the form E [p;δq] = ∑i pi fi(q) for some functions fi,
and this indicates that payoffs are linear in the focal player strategy and also satisfy
polymorphic monomorphic equivalence.

Theorem 5. Let the payoffs be such that E [p;δq] = ∑i pi fi(q) for some continuous
functions fi. Then the strategy p is an ESS if and only if it is locally superior, i.e.
there is U(p) a neighbourhood of p such that

E [p;δq]> E [q;δq], for all q(6= p) ∈U(p). (25)

For a proof, see Palm (1984).

2.2 Playing the field

In this section we consider payoff functions of the form

E [p;Π ] = ∑ pi fi(Π) (26)

where the fi’s are (in general nonlinear) functions of the population strategy Π .
Such playing the field games are the most natural way of incorporating nonlinearity
into a game model, since the fitness function automatically includes the population
frequencies of the different strategies.

An example is the sex ratio game, one of the classical models of evolutionary
game theory (Hamilton, 1967). The model considers the question of why the sex
ratio in most animals is close to a half? At first sight there needs to be far less
males than females, since often the only male contribution is in mating; in many
species most offspring are fathered by a small number of males and the rest make
no contribution.

Assume that the strategy of an individual female is its choice of the proportion of
male offspring. Let p be the strategy of a small invading group in a population that
plays strategy m. Every individual has the same number of offspring, so fitness is
given proportional to the number of grandchildren. Given that every individual has
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one mother and one father, if generation sizes remain constant it is easy to show that
the fitness of an individual with strategy p is given by

E [p;δm] =
p
m
+

1− p
1−m

(27)

so that in the notation of equation (26) we have

f1(m) =
1
m
, f2(m) =

1
1−m

. (28)

The unique ESS of this game is m = 1/2, i.e. an equal sex ratio. The sex ratio
game is in fact effectively just a special case of the following foraging problem (with
N = 2 and r1 = r2).

Consider a population of animals foraging on N food patches, with resources
ri > 0 per unit time for i = 1, . . . ,N, equally shared by all individuals on the patch
(Parker, 1978).

The game has N pure strategies for this game, each corresponding to foraging on
a given patch, and a mixed strategy x = (xi) means to forage at patch i with prob-
ability xi. The payoff to an individual using strategy x = (xi) against a population
playing y = (yi) is

E [x;δy] =


∞, if xi > 0 for some i such that yi = 0,

N

∑
i;xi>0

xi
ri

yi
otherwise.

(29)

It is clear from (29) that any ESS p must have pi > 0 for all i= 1, . . . ,N. Thus any
potential problems with infinite payoffs do not need to be considered. In particular
Theorem 3 holds despite the discontinuities in the fitness functions, since they are
continuous in the vicinity of any potential ESS.

The unique ESS p = (pi) is given by pi = ri/∑
N
i=1 ri. This solution can alterna-

tively be written as
pi

p j
=

ri

r j
. (30)

This is called Parker’s matching principle.
We can show this as follows. It is clear that E [q;δp] = E [p;δp] for all q. More-

over, since this game satisfies polymorphic monomorphic equivalence (21) then

E [x;(1−u)δy +uδz] = E [x;δ(1−u)y+uz] (31)

and so
hp,q,u = E [p;(1−u)δp +uδq]−E [q;(1−u)δp +uδq] = (32)

N

∑
i=1

(pi−qi)
ri

pi +u(qi− pi)
= (33)
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N

∑
i=1

pi−qi

pi
ri

(
1−u

qi− pi

pi
+ . . .

)
. (34)

This implies that
∂

∂u

∣∣∣
u=0

hp,q,u =
N

∑
i=1

ri

(
pi−qi

pi

)2

> 0. (35)

So from Theorem 3, p is an ESS.

2.3 Nonlinearity due to non-constant interaction rates

Another way for nonlinear games to occur is where the strategies employed by the
players affect the frequency of their interactions. The pairwise interactions may be
simple, but if the strategy affects the interaction rate, then the overall payoff function
can be complicated.

The simplest non-trivial scenario is a two player contest with two pure strategies
S1 and S2, with payoffs given by the usual payoff matrix(

a b
c d

)
, (36)

but where the three types of interaction happen with probabilities not proportional
to their frequencies.

Assume that each pair of S1 individuals meet at rate r11, each pair of S1 and S2
individuals meet at rate r12 and each pair of S2 individuals meet at rate r22 (see
Taylor and Nowak, 2006). This yields the following nonlinear payoff function

E [S1;pT] = ar11 p1+br12 p2
r11 p1+r12 p2

, (37)

E [S2;pT] = cr12 p1+dr22 p2
r12 p1+r22 p2

. (38)

This reduces to the standard payoffs for a matrix game for the case r11 = r12 = r22.
In the standard game with uniform interaction rates, if a < c and b > d there is a

mixed ESS, and this is also true for non-uniform interaction rates, although the ESS
proportions change. If a > c and b < d then there are two ESSs in the uniform case,
and this is also true for non-uniform interactions, although we note that the location
of the unstable equilibrium between the pure strategies changes.

Otherwise for the uniform case there is a unique ESS. For non-uniform interac-
tion rates, there is always a single pure ESS, but sometimes there is a mixed ESS
too. For c > a > d > b, and setting r12 = 1, this occurs if

r11r22 >

(√
(a−b)(c−d)+

√
(a− c)(b−d)

d−a

)2

. (39)
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The Prisoner’s Dilemma is an example where c > a > d > b. Setting r11 = r22 = r
and letting r→ ∞ the proportion of cooperators in the mixture tends to 1 and the
basin of attraction of the proportion of cooperators p in the replicator dynamics in-
creases, tends to p∈ (0,1]. Thus in extreme cases, the eventual outcome of the game
can be effectively the opposite to that implied by the game with uniform interaction
rates.

2.4 Nonlinearity in the strategy of the focal player

Here we consider a third case, involving games where the strategy of an individual
is described by a single number (or a vector) that does not represent the probability
of playing a given pure strategy, but rather represents a unique behaviour such as
the intensity of a signal. We note that this is also the scenario generally considered
in Adaptive Dynamics (see e.g. Metz et al, 1992; Metz, 2008), though in practice
stronger assumptions are generally made than we use here.

Consider the following game-theoretical model of tree growth Koch et al (2004);
Kokko (2007). We assume that a tree has to grow large enough in order to get sun-
light and not get overshadowed by neighbours; yet the more the tree grows the more
of its energy has to be devoted to “standing” rather than photosynthesis.

Let h ∈ [0,1] be the normalized height of the tree, so that 1 is the maximum
possible height of a tree. In Kokko (2007), the fitness of a tree of height h in a forest
where all other trees are of height H was given by

E [h;δH ] = (1−h3) ·
(
1+ exp(H−h)

)−1
, (40)

where f (h) = 1−h3 represents the proportion of leaf tissue of a tree of height h and
g(h−H) =

(
1+ exp(H−h)

)−1 represents the advantage or disadvantage of being
taller/ shorter than neighbouring trees.

What are the ESSs for the tree, i.e. the evolutionarily stable heights? Differenti-
ating (40) with respect to h obtains the unique maximum for h, i.e. the best response
to a given H in the population. Any ESS must be a best response to itself, and so
setting h = H after the above differentiation yields

1
4
(
−6H2 +(1−H3)

)
= 0. (41)

Equation (41) has only one root in (0,1) and the crossing of the x axis happens with
negative derivative, so that the root is the unique ESS.
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3 Multi-player games

In the previous sections we have considered games with two individuals only, or
games played against “the population”. We shall now consider situations with con-
tests involving groups of individuals which are of size three or larger, selected ran-
domly from a large population. We shall only consider multi-player matrix games
(Broom et al, 1997) here. Note that another important example of a multi-player
game is the multi-player war of attrition (Haigh and Cannings, 1989). For an exten-
sive review of multiplayer evolutionary games, see Gokhale and Traulsen (2014).

3.1 Introduction to multi-player matrix games

Consider an infinite population, from which groups of m players are selected at
random to play a game. The expected payoff to an individual is obtained by simply
averaging over the rewards for all possible cases, weighted by their probabilities, as
for matrix games.

In general where the ordering of individuals matter, extending the bimatrix game
case to m players, the payoff to each individual in position k is governed by an m-
dimensional payoff matrix. However, as in matrix games, as opposed to bimatrix
games, we assume that there is no significance to the ordering of the players. Thus
an individual’s payoff depends only upon its strategy and the combination of its op-
ponents’ strategies. We will call such games symmetric, and we have the following
symmetry conditions:

ai1...im = ai1σ(i2)...σ(im) (42)

for any permutation σ of the indices i2, . . . , im. For the three player case, these are
simply

apqr = aprq, for all p,q,r = 1,2, . . . ,n. (43)

The payoff to an individual playing p in a contest with individuals playing
p1,p2, . . . ,pm−1 respectively is written as E[p;p1,p2, . . . ,pm−1]. As the ordering is
irrelevant, for convenience when some strategies are identical we use a power nota-
tion, for example E[p;p1,p2,p3

m−3].
The payoffs function is given as follows

E[p;p1,p2, . . . ,pm−1] =
n

∑
i=1

pi

n

∑
i1=1
· · ·

n

∑
im−1=1

aii1i2...i(m−1)

k−1

∏
j=1

p j,i j , (44)

where p j = (p j,1, p j,2, . . . , p j,n).
We note that, as pointed out by Gokhale and Traulsen (2010), as long as groups

are selected from the population completely at random, as is usually assumed, then
symmetric and non-symmetric games will have identical payoff functions. For ex-
ample in the case of 3-player games, every individual is equally likely to occupy any
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of the ordered positions. In particular the term ai jk has identical weighting to aik j in
the payoff to an i-player, so that the sum of these two can be replaced by twice their
average.

A multi-player matrix is super-symmetric if

ai1...im = aσ(i1)...σ(im) (45)

for any permutation σ of the indices i1, . . . , im.
For example, for super-symmetric three-player three strategy games, there are ten

distinct payoffs. Without loss of generality we can define the three payoffs a111 =
a222 = a333 = 0, and this leaves seven distinct payoffs to consider a112,a113,a221,a223,
a331,a332 and a123. Broom et al (1997) considers the replicator dynamics for such
games in detail, including every case where the last seven payoffs above take values
of either 1 or -1. We will only discuss the simpler two strategy games here.

3.2 ESSs in multi-player matrix games

A strategy p in an m-player game is called evolutionarily stable against a strategy
q if there is an εq ∈ (0,1] such that for all ε ∈ (0,εq]

E [p;(1− ε)δp + εδq]> E [q;(1− ε)δp + εδq], (46)

where

E [x;(1− ε)δy + εδz] =
m−1

∑
l=0

(
m−1

l

)
(1− ε)l

ε
m−1−lE[x;yl ,zm−1−l ]. (47)

p is an ESS for the game if for every q 6= p, there is εq > 0 such that (46) is
satisfied for all ε ∈ (0,εq] (Broom et al, 1997).

Similarly as in inequalities (10) and (11), we have the following:

Theorem 6. For an m-player matrix game, the mixed strategy p is evolutionarily
stable against q if and only if there is a j ∈ {0,1, . . . ,m−1} such that

E[p;pm−1− j,q j]> E[q;pm−1− j,q j], (48)

E[p;pm−1−i,qi] = E[q;pm−1− j,qi] for all i < j. (49)

For a proof see Broom et al (1997) or Bukowski and Miȩkisz (2004).
A strategy p is an ESS at level J if, for every q 6= p, the conditions (48-49) of

Theorem 6 are satisfied for some j ≤ J and there is at least one q 6= p for which the
conditions are met for j = J precisely.

If p is an ESS, then by Theorem 6, for all q,

E[p;pm−1]≥ E[q;pm−1]. (50)
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The payoffs are linear on the left so that

E[p;pm−1] = E[q;pm−1], for all q with S(q)⊆ S(p). (51)

We note that in the generic case, any pure ESS is of level 0. A mixed ESS cannot be
of level 0, but in the generic case, any mixed ESS must be of level 1.

Analogues of the strong restrictions on possible combinations of ESSs for ma-
trix games do not hold for multi-player games. In particular, the Bishop-Cannings
Theorem fails already for m = 3. For m > 3, there can be more than one ESS with
the same support as we shall see in Section 3.3. On the other hand, we still have the
following for m = 3.

Theorem 7. It is not possible to have two ESSs with the same support in a three
player matrix game.

For a proof, see Broom et al (1997) or Broom and Rychtář (2013).

3.3 Two-strategy multi-player games

We shall now consider games with only two pure strategies. The possible situations
for a given individual are thus all combinations of that individual playing pure strat-
egy i= 1,2 against m−1 players, j of which play strategy S1 (and the other m−1− j
play strategy S2), for any 0≤ j ≤ m−1. We shall denote these payoffs by αi j.

We consider an individual playing strategy x in a population playing y. A group
of m−1 opponents is chosen and each one of them chooses to play strategy S1 with
probability y1 ( and so strategy S2 with probability y2 = 1− y1). We obtain

E [x;δy] =
m−1

∑
l=0

(
m−1

l

)
yl

1ym−1−l
2 E[x;Sl

1Sm−1−l
2 ], (52)

where

E[x;Sl
1,S

m−1−l
2 ] =

2

∑
i=1

xiαil . (53)

Note that it does not matter whether the population is polymorphic or monomor-
phic and playing the mean strategy; thus multi-player matrix games have the
polymorphic-monomorphic equivalence property.

Recalling that the payoffs of the m-player two strategy matrix game are αil for
i = 1,2 and l = 0,1, . . . ,m−1, we define βl = α1l −α2l and consider the incentive
function

h(p) = E [S1;δ(p,1−p)]−E [S2;δ(p,1−p)] (54)

= ∑
m−1
l=0

(m−1
l

)
βl pl(1− p)m−l−1. (55)
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The function h quantifies the benefits of using strategy S1 over strategy S2 in a
population where all other players use strategy p = (p,1− p). Note that h is differ-
entiable, and that the replicator dynamics now becomes

dq
dt

= q(1−q)h(q). (56)

Theorem 8. In a generic two strategy m-player matrix game

1. pure strategy S1 is an ESS (level 0) if and only if βm−1 > 0,
2. pure strategy S2 is an ESS (level 0) if and only if β0 < 0,
3. an internal strategy p = (p,1− p) is an ESS, if and only if

1. h(p) = 0, and
2. h′(p)< 0.

It is shown in Broom et al (1997) that the possible sets of ESSs are the following:

1. 0 pure ESSs, and l internal ESSs with l ≤ bm
2 c;

2. 1 pure ESS, and l internal ESSs with l ≤ bm
2 −1c;

3. 2 pure ESSs, and l internal ESSs with l ≤ bm
2 −2c.

0 0 01 1 1

Fig. 2 The incentive function and ESSs in multiplayer games. The full dots show equilibrium
points and the arrows show the direction of the evolution under the replicator dynamics.

There can be more than one ESS with the same support in a 4-player game as
shown in the example below.

Consider an example with the following payoffs (Bukowski and Miȩkisz, 2004):
with α11 = α22 = − 13

96 ,α13 = α20 = − 3
32 and α10 = α12 = α21 = α23 = 0. Thus

β0 = 3/32,β1 =−13/96,β2 = 13/96,β3 =−3/32 giving

h(p) =− 3
32

p3 +
13
32

p2(1− p)− 13
32

p(1− p)2 +
3

32
(1− p)3 = (57)

−
(

p− 1
4

)(
p− 1

2

)(
p− 3

4

)
. (58)

Using the ESS conditions from Theorem 8, we see that the game has two internal
ESSs at p = (1/4,3/4) and p = (3/4,1/4), and no pure ESSs.



18 Mark Broom and Jan Rychtář

4 Discussion

In this paper we have considered two main recent developments in the theory of evo-
lutionary games. In particular the extension from linear matrix games to nonlinear
games, and from two player to multiplayer games.

Nonlinearity within evolutionary games is introduced in its most natural way
by considering games played against the population as a whole, so-called playing
the field games. These can be generally expressed in the form of equation 26. They
often result from situations where individuals do not interact directly, but where their
behaviours have a direct effect on the environment, which then affects the payoffs of
individuals. Thus in foraging models, the value of food patches depends directly on
the intensity of their use by foragers within the population, as we saw from (Parker,
1978). More recent and realistic models of this phenomenon are given in Cressman
et al (2004); Křivan et al (2008) for example.

Even when games are pairwise, linearity only occurs because opponents are cho-
sen at random, with equal probability. If some opponents are more likely than oth-
ers and this is in any way related to the strategy of those involved, either through
individuals directly being more likely to interact with those choosing a particular
strategy or because evolution has led to different strategy distributions in differ-
ent geographical locations, then nonlinearity will result, as we saw in Taylor and
Nowak (2006). An example of this phenomenon occurs in food-stealing games, see
e.g. Broom et al (2004, 2008).

The above games are linear in the strategy of the focal player, as its strategy
is a probabilistic weighting of distinct choices. When its strategy is a single trait
chosen from a continuum, such as the height of a tree as in Koch et al (2004); Kokko
(2007), then there is nonlinearity in the focal player strategy too. Another example
is the sperm allocation games of Parker et al (1997); Ball and Parker (2007). We
also note that this idea is central to the related concept of adaptive dynamics, where
populations evolve by successive small mutations, see Kisdi and Meszéna (1993);
Geritz et al (1998).

Multiplayer games have been, and continue to be, common in Economics, for
instance see Kim (1996),Wooders et al (2006), Ganzfried and Sandholm (2009).
However until recently they have been less common in evolutionary games. An
extension of the classical idea of well-mixed populations of pairwise games to con-
sider such populations with multiplayer games was first introduced with the work
of Palm (1984) and followed by Haigh and Cannings (1989); Broom et al (1997);
Bukowski and Miȩkisz (2004). More recently Hauert et al (2006), Gokhale and
Traulsen (2010), Han et al (2012), Gokhale and Traulsen (2014) have developed the
theory further.

As for nonlinear games above, multiplayer games can occur from non-independent
pairwise games, for example within the formation of dominance hierarchies, where
the results of a contest directly dictate who an individual will face next (if anybody).
This was the focus of the games from Broom et al (2000a,b).

Evolutionary game theory has also been extended to finite populations, based
upon the original Moran process Moran (1962) where different concepts are needed
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to deal with the stochastics effects which are not present in infinite populations,
and where the single most important concept is that of the fixation probability of a
rare mutant (equivalent to a small fraction of mutants within an infinite population,
whose establishment within a population is either certain or impossible), impor-
tant examples include Fogel et al (1998); Nowak et al (2004); Taylor et al (2004);
Traulsen et al (2005); Nowak (2006). Within this general theory, there have also
been developments based upon multiplayer games, and these are well-reviewed in
Gokhale and Traulsen (2014).

Interesting new work on multiplayer games in each of the above areas continues
to appear. For example the theory of adaptive dynamics is continually expanding,
and the nonlinearity that appeared in the food stealing games of Broom et al (2008),
which was due to the effect of time constraints, os being considered more widely,
for instance in Cressman et al (2014). The work on finite populations including
its multiplayer variants continues to be developed. In particular the modelling of
structured populations from evolutionary graph theory Lieberman et al (2005) has
been extended to incorporate multiplayer games Broom and Rychtář (2012). This
area is at the relatively early stages of development, and there are many possibilities
for further research.
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