

City, University of London Institutional Repository

Citation: Pino, L. & Spanoudakis, G. (2012). Finding secure compositions of software

services: Towards a pattern based approach. 2012 5th International Conference on New
Technologies, Mobility and Security - Proceedings of NTMS 2012 Conference and
Workshops, 4, pp. 1-5. doi: 10.1109/ntms.2012.6208741

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1595/

Link to published version: https://doi.org/10.1109/ntms.2012.6208741

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Abstract—In service based systems, there is often a need to

replace services at runtime as they become either unavailable or
they no longer meet required quality or security properties. In
such cases, it is often necessary to build compositions of services
that can replace a problematic service because no single service
with a sufficient match to it can be located. In this paper, we
present an approach for building compositions of services that
can preserve required security properties. Our approach is based
on the use of secure composition patterns which are applied in
connection with basic discovery mechanisms to build secure
service compositions.

Index Terms — software service security, secure service
composition

I. INTRODUCTION
In service based systems (SBS) – i.e., systems that provide

their functionality by orchestrating external software services
outside their own control and ownership – there is often a need
to replace services which become unavailable or no longer
meet required quality (e.g., performance) or security
properties (e.g., confidentiality, availability, privacy) at
runtime. In such cases, sometimes it is not possible to find
single substitute services for the one which should be
replaced. A possible way for addressing such cases is to
attempt to build a composition of services that could replace
the problematic service.

A fundamental challenge associated with such cases is the
need to ensure that all security properties, which are required
from an SBS and have to do with the service to be replaced,
are taken into account whilst identifying suitable
compositions.

Addressing security properties in runtime service
composition has received little attention in the literature (e.g.,
[9][10]) and, to the best of our knowledge, existing work does
not provide a comprehensive solution to the problem. The
work we present in this paper is aimed at addressing this gap.

Our approach is based on patterns of service composition
that are known to preserve certain security properties and can
be applied at runtime in order to find secure service
compositions. These patterns specify abstract and parametric
specifications of service workflows, preconditions for their

Luca Pino is with City University London, Northampton Square, London
EC1V 0HB, UK (corresponding author; email: Luca.Pino.1@city.ac.uk).

George Spanoudakis is with City University London, Northampton Square,
London EC1V 0HB, UK (email: G.E.Spanoudakis@city.ac.uk).

This work was supported by the EU F7 grant Assert4SOA (grant 257351).

application and security implication rules. These rules express
formally proven logical implications between security
properties and, during the composition process, they are used
to infer the security properties which would need to be
satisfied by individual services in order to guarantee some
other security property required of the composition as a whole.
Once identified the security properties required of individual
services within a composition are fed into a discovery tool
which identifies candidate services that satisfy the properties.

The approach that we present in this paper extends a tool
that has been developed at City University to support the
discovery of services at runtime based on criteria referring to
the interface (i.e., inputs and outputs), behaviour and quality
properties of services [17]. This tool supports runtime
discovery in two modes: a reactive and a proactive mode. In
the reactive (or “pull”) mode, services are discovered only
when a need for them arises. In the proactive (or “push”)
mode, service discovery queries are provided to the tool for
each of the constituent services of an SBS. These queries are
executed in parallel with the operation of an SBS to identify
and maintain up-to-date sets of candidate services that could
be used to replace the constituent services of the SBS when
any of them fails. The push mode has been shown to improve
significantly the efficiency of the discovery process [17].
Service composition should also be applied in push mode as it
is computationally expensive and cannot be expected to
produce timely results if applied reactively.

The rest of this paper is structured as follows. In Sect. II we
present a scenario for service composition which we use in the
rest of the paper to exemplify our approach. In Sect. III, we
introduce the secure service composition patterns. In Sect. IV,
we describe the process of applying these patterns to generate
compositions that preserve security properties. Finally, in
Sect. V we overview related work and in Sect. VI we provide
some concluding remarks.

II. SCENARIO
To exemplify our approach, in the rest of the paper we use a

scenario where a composition of services needs to be built in
order to replace a service S acting as a broker for car hire
companies and providing quotes for hiring cars. S takes as
input the profile of a driver (i.e., a parameter of type Person)
and produces a personalized offer based on car hire companies
that are within a given distance of the driver’s address. A
security property regarding S is that the confidentiality of any
input information passed to it must be preserved as it contains

Finding Secure Compositions of Software
Services: Towards A Pattern Based Approach

Luca Pino and George Spanoudakis

personal driver information (i.e., his/her full name, day of
birth and address).

Our approach assumes that in an SBS using service S
designers must have specified a query QS that can be executed
to find a replacement of S if S becomes unavailable or
malfunctions at runtime. At runtime, if after executing QS
there is no single service matching QS’s conditions, a
composition that could replace S should be found. An example
of a composition in this case could involve two services:
CompanyLoc and BrowseOffer. In this composition,
CompanyLoc is a car hire company locator service taking as
input the address of person, who needs to hire the car, and
returns the closest car hire companies to that address.
BrowseOffer gets quotes for hiring cars from the located
companies and enables their browsing.

To preserve the confidentiality of driver data, in this
example, all the data that is passed to CompanyLoc as well as
any information that is derived from these data and would be
passed from CompanyLoc to BrowseOffer and/or stored by
any of these services should remain confidential.

III. SECURE COMPOSITION PATTERNS
Our approach uses secure composition patterns to drive the

process of constructing secure workflows of services. A secure
composition pattern specifies an abstract elementary workflow
of activities, that should be provided by individual services (or
further compositions of services), and the control and data
flows connecting these activities. An example of an
elementary workflow is the sequential workflow in which
services are composed in chains and invoked sequentially to
achieve the required functionality outcome [1][2].

In addition to the actual workflow, a secure composition
pattern specifies: (a) the overall security property(ies) that a
workflow can ensure subject to the security properties of the
services bound to the individual activities in it, (b) suitability
conditions that must be satisfied in order to apply the
workflow, and (c) dependencies between the inputs and
outputs of the different activities of the workflow (referred to
as IO dependencies in the following).

Two examples of secure composition patterns are shown in
Fig. 1. The first of these patterns is the Secure Sequence
Pattern (SSP). This pattern contains two abstract activities,
namely A and B, and control flows between them (shown as
solid arrowed lines) indicating that activity A should be
executed and completed before B. The pattern specifies also
data flows showing that the inputs of the service that the
pattern may be used to replace (IN) may be used only partially
by A (inA) and B (inB). The IO dependencies specified for SSP
indicate that the inputs passed to activity A should be a subset
of IN (inA ⊆ IN), the inputs to activity B should be a subset of
IN and the output of A (inB ⊆ IN+outA) and the output of the
final activity of the pattern (B) should be a superset of the
outputs that the pattern will replace (OUT ⊆ outB).

Security properties are represented as relations over patterns
or services and the data consumed, produced, or stored by
them (i.e., the input, output, and persistent internal data,

respectively). Our approach uses a built-in but extensible
ontology of relations of the form <relation>(
<service/pattern>, <data>) in order to express security
properties. The confidentiality of the inputs and outputs of the
sequential pattern is expressed, for example, by the relations
conf(self, IN) and conf(self,OUT), respectively.

SECURE SEQUENCE PATTERN

SECURITY PROPERTIES
Conf(self,IN), Conf(self, OUT)
IO DEPENDENCIES FOR A

input: inA ⊆ IN
IO DEPENDENCIES FOR B

input: inB ⊆ IN+outA
output: OUT ⊆ outB

SECURE BOOLEAN CHOICE
PATTERN

SUITABILITY CONDITIONS
∃ in’ ⊆ IN:

if (in’) then execute(A)
else execute(B)

SECURITY PROPERTIES
Conf(self,IN), Conf(self, OUT)
IO DEPENDENCIES FOR A

input: inA ⊆ IN
output: OUT ⊆ outA

IO DEPENDENCIES FOR B
input: inB ⊆ IN
output: OUT ⊆ outB

Fig. 1. Examples of secure composition patterns

The security properties of a secure composition pattern are
used in order to check the applicability of the pattern during
the service composition process. In particular, the patterns are
retrieved and applied during the search for a composition (see
Sect. IV) only if the security properties that they satisfy match
with the security properties specified in the discovery query of
the service that the composition is to replace. Following the
selection of a secure composition pattern, during the
application of the pattern, its IO dependencies are used as
querying conditions for discovering services that could match
the individual activities in the pattern.

The ability of a pattern to guarantee the security properties
included in its specification depends on the actions that the
activities of the pattern may perform on the data handled by
the pattern. To ensure the confidentiality of input data in the
sequential pattern, for example, it is necessary to ensure: (a)
the confidentiality of the data transmitted from A to B (i.e.,
outA), and (b) the confidentiality of the data stored by A (i.e.,
dA) if outA and dA may disclose information about inA (and
consequently IN) and A derives any of these data from inA. To
express such conditions regarding the preservation of security
properties, it is necessary to specify actions that pattern
activities or the individual services which instantiate them
perform on data. These actions are specified by the so called
security-related actions.

Table I lists the different types of actions that may affect
security. As shown in the table an activity/service may: project
a given set of data D over some of the properties of these data
(Project(D,D’)); select a subset of data D’ from D without
affecting their structure of the original data (Select(D,D’));
derive data D’ from a given set of data D in a way that

discloses information about a specific set of properties {P} of
D (Derive(D,D’,{P})): store or alter D data in a persistent store
(Store(D,L) and Alter(D,L)); and/or retrieve D data from a
persistent store (Retrieve(D,L))

TABLE I
SECURITY-RELATED ACTIONS ON DATA

Action Explanation
Project(D, D’) Subgraph(Type(D’),Type(D))
Select(D, D’) Extension(D’) ⊆ Extension(D)
Derive(D, D’, {P}) D’ is derived from D in a way disclosing info about

the set of properties {P} in the type of D
Store(D, L) Data D are kept in persistent store L
Retrieve(D, L) Data D are retrieved from persistent store L
Alter(D, L) Data D are altered in persistent store L

In some cases the actions performed on data are specified

for the individual activities at the pattern level. In the
sequential pattern of Fig. 1, for example, it is specified that
activities A and B store data (see Store(dA,S1) and Store
(dB,S2)). In other cases, however, the pattern itself might not
specify conditions about the actions that its abstract activities
may perform on data.

As discussed earlier, the ability of a pattern to guarantee
certain security properties depends on the actions that the
individual services, which will be bound to the activities of the
pattern, perform on the data and the security properties that
hold for these individual services. These dependencies are
expressed by security implication rules.

As an example, consider the confidentiality property. A
security implication rule should express that, if the data D,
used in an activity A as an input or an output, is derived from
another data D’, that was required to be confidential for some
action A’, and the derivation of D from D’ can disclose some
property of D’, then the confidentiality of D in A is required.

Security implication rules are specified as part of
composition patterns only if their validity is formally proven.
Proofs of security implication rules must have been
constructed offline prior to the publication of a secure
composition pattern and the use of the pattern in the service
discovery and composition process. This is necessary as any
attempt to construct proofs of rules at runtime, or equivalently,
derive dependencies between security properties of aggregate
workflows and individual workflow services from first
principles is computationally expensive and, thus, impractical
to do over and over again every time that the discovery
process tries to instantiate a specific part of a workflow.
Hence, we assume that the security implication rules have
been formally proven before becoming part of the
specification of a pattern and can therefore be safely used to
infer the security properties of individual services when the
pattern is applied. The process of constructing proofs of
security implication rules is beyond the scope of this paper but
interested readers may find examples of such proofs in [4].

To specify the security implication rules in patterns we use
Situation Calculus (SC) [5]. SC is a first order logic (FOL)
language introduced originally to model and reason about
dynamical domains. In particular, SC may be viewed as a
dialect of FOL, were the predicates that can have different
truth values are called fluents. Each fluent is evaluated against

a specific sequence of actions passed to them, called situation.
The specification of security implication rules assumes that

secure composition patterns and the information of the
instantiated services in the workflow are also expressed in
SC1. In particular, we use
• the fluent next(A,A’) to specify that an activity A is

followed by an activity A’ in the workflow of a pattern
• the fluent input(A,D) (output(A,D)) to specify that D is an

input (output) of activity A
• the security-related actions of services
• the fluent known(P, S) to specify that the security property

P is already known to be satisfied (certified) in situation S.
In this model the situations are the different traces of the

workflow, and currAct(A) is the valid fluent when the
reasoning step is on activity A. The reasoner walks through
the workflow and at each step it is possible to check which
security properties are required through the fluent
requires(P,S).

TABLE II
EXAMPLE OF SECURITY IMPLICATION RULES

PRECONDITION AXIOMS
poss(step(A),S)↔ currAct(A’,S) ∧ next(A,A’)

SUCCESSOR STATE
currAct(A,do(α,S))↔ α = step(A)
requires(conf(A,D),do(α,S))↔[α = step(A) ∧ (input(A,D) ∨ output(A,D))

∧ known(conf(A’,D’),S) ∧ derive(D’,D, ε) ∧ ε ≠ ∅ ∧ A’ ≠ A]
∨ [α ≠ step(A) ∧ requires(conf(A,D),S)]

Table II shows the specification in SC of the security

implication rule that we introduce informally above. The first
two rules are general rules that specify how the situation
evolves. The actual rule for the confidentiality property is the
third one, and it basically follows the explanation from before
(the only addition is the part after the disjunction and it is a
common solution to the frame problem in SC).

Whilst applying a security composition pattern, the
activities in the pattern should be instantiated based not only
in finding services that match with the IO dependencies of the
pattern but also with security conditions that may be
associated with the particular activity. The exact security
conditions required for each activity are inferred from: (a) the
security properties that the composition which is being built
by the pattern must satisfy, (b) the set of services that have
been already bound to activities of the pattern and the actions
that these services perform on data, and (c) the security
implication rules.

Security implication rules state which security properties
would be required of the individual activities within a pattern
in order to guarantee that a given security property of the
composition defined by the pattern as a whole will also hold.

The process of deriving the security properties that should
hold for the individual services that can be bound to a pattern
is discussed in Sect. IV below.

1 This assumption is not restrictive since a high level, even graphical

specification of patterns can be translated to the SC representation that we
use for specifying and reasoning with security implication rules.

IV. COMPOSITION PROCESS
The composition process focuses on building workflows

through the application of the secure composition patterns.
This process starts when no single replacement service has
been found for a service S that needs to be discovered for an
SBS and it is initially driven by the same discovery query (QS)
that has been specified by the SBS designers to drive the
single service discovery for S. More specifically, initially, the
security conditions are collected from QS and the secure
composition patterns that are known to guarantee security
properties satisfying these conditions are retrieved. If no such
pattern is found, then no replacement can be found for S.

For each of the retrieved patterns, the process tries to find
services that could be bound to each of the activities of the
pattern. The search for candidate services for each activity
may start from the initial or final activity of the pattern. Once
an appropriate service for this activity is found the pattern is
partially instantiated by binding the located service to the
activity and then searching for bindings to the activities that
are neighbors of the one of the instantiated activities. If more
than one candidate services are found for the current activity, a
different instantiation of the pattern is created by binding each
of these services to the current activity and the composition
process continues by considering each of these alternative
instantiations.

The security conditions required of the candidate services
for an activity during the search are determined after finding
the candidate services based on all the conditions of QS except
those related to security. This is because security conditions
may also depend on the actions that the services that will be
bound to an activity perform, as we discussed in Sect. III.

In the case of SSP, for example, if the confidentiality of the
inputs IN to the workflow that will be created by the pattern is
required, and a candidate service S for the activity A in the
workflow is known to derive its output data (outA) from the
inputs passed to it (inA) in a way that discloses information
about these data (i.e., it is known that S performs the action
Derive(inS,outS,{Type(inS)}), then two separate security
properties will be required of S: (i) the confidentiality of its
input data (conf(S,inS)) and (ii) the confidentiality of output
data (conf(S,outS)). The second condition would not, however,
be required if S did not derive its outputs from its inputs or the
derivation of its outputs did not disclose any information about
inS. Note that in this example, without regard to security
conditions, to be a valid candidate service for A, S would have
to store some data dS to an internal data store LS. Thus, if dS
was also known to be derived from the inputs of S (i.e., it was
known that S performs the actions Derive(inS,dS,{Type(inS)})
and Store(dS,LS) then the confidentiality of the persistent data
of S, i.e. (conf(S,D)), would also be required for S to be a valid
candidate for A.

During the composition process, the exact security
conditions to be checked for a candidate service of an activity
are derived from the IO dependencies of the activity and the
actions that the service performs, using the security
implication rules of the pattern being applied. The check of
whether the service complies with the security properties

required from it is based on security certificates, created by
some independent authority and published in a service registry
[16]. Such certificates also confirm the actions that a service
performs on data.

As an example of the application of this process consider
the example introduced in Sect. II and the generation of a
composition to replace the car hire quotation service S. A
pattern that can guarantee the confidentiality of the driver
profile that will be given as input to this composition is the
SSP pattern. The query to instantiate the first activity in SSP
will then just require a service whose input is a subset of the
input provided to S or, equivalently, a service with an input
data type which is a supertype of the input data type of S.

Suppose that the discovery for the first activity of SSP
returns the service CompanyLoc. The activity A of SSP is then
instantiated with this service (see Fig. 3(a)), if CompanyLoc
complies with the security conditions derived for it from the
pattern. In particular the initial security condition for S was
that Person should be confidential. Thus, the security
implication rules will infer that the confidentiality for
CompanyLoc’s input Address is also required, as the latter is a
projection of Person. Furthermore, since the output of
CompanyLoc, namely BranchInfo, is derived from the driver’s
Address data and can potentially reveal information about the
Area part of the address, BranchInfo will also be required to
be confidential. This inference would be made by the rule of
Table II, assuming that the action Derive(Address,
BranchInfo, {Area}) is specified in a certificate within the
description of CompanyLoc.

Subsequently, the query for the second activity of SSP (B)
is built. The IO dependencies of SSP require that the input of
B is a subset of Person+BranchInfo. The security properties
required for the replacement of S and the security implication
rules would then require that Person and BranchInfo must be
confidential.

Suppose that a service called BrowseOffer, requiring just
BranchID from BranchInfo, is located. The security
implication rules can then infer that BranchID should be
confidential (as a projection of BranchInfo). As shown in Fig.
3(b), the prices that BrowseOffer outputs and stores in a
persistent store don’t need to be confidential since as indicated
by the certificate of BrowseOffer, prices are derived from
BranchID but don’t disclose any information about it.

 If the search for a service for a specific activity in a

Fig. 3. Example of progressive pattern instantiation. Data marked with (*)
must be confidential according to security implication rules.

partially instantiated pattern fails, the composition process
attempts to apply some composition pattern recursively in
order to find a composition of services that could be bound to
the activity of concern. This recursion may generate complex
workflows as indicated in Fig. 4.

Fig. 4. Recursive application of composition patterns.

V. RELATED WORK
Research dealing with security in service composition has

focused on the verification of the security of existing
compositions through model checking [6][7][8]. Our focus,
however, is different since we are looking into applying
composition patterns that are proven to guarantee security
properties as part of a runtime service discovery and
composition process.

A work that is more related to ours is [9], where planning
techniques are used to compose workflows that are compliant
with some lattice-based access control models (e.g. multi-level
secure systems). The focus of [9] is how to find efficient
algorithms for sequential workflow planning whilst our
approach is more general w.r.t both the types of workflows
and the security properties that it covers.

In [10] the authors describe an approach to security
conscious web service composition through matching security
constraints required for service provision and constraints
declared by service providers. The security constraints in this
approach are specified in SAML [11]. In [10], secure service
compositions are generated based upon some pre-defined
domain specific business workflows, whilst our approach
allows the generation of arbitrary workflows.

Other works on automatic service composition (e.g.
[2][12][13][14]) allow the expression of security properties in
discovery queries, usually as non-functional properties. These
approaches focus on specific types of security properties and
check them only against single services in compositions,
without addressing the overall security of a composition.

Aniketos project [15] also uses secure composition patterns
(i.e. sets of rules) and checks them against existing
composition plans. Aniketos patterns describe service
configurations leading to either secure or insecure situations,
and are used after the composition process, to check if a
required security policy applies. In our work the security
check is performed during the composition process driving it.

Finally, our secure service composition patterns are similar
to the workflow patterns in [3] as they specify elementary
workflows that can be used to generate service compositions.
However, our patterns include additional applicability and
security properties.

VI. CONCLUSION
In this paper, we have presented an approach supporting the

identification of secure service compositions, as part of
runtime service discovery. Our approach is based on secure
composition patterns. These patterns specify abstract service
workflows, and the security properties that they are known to
preserve if their constituent services have certain security
properties. The logical connections between service and
composition level security properties are expressed by security
implication rules and the reasoning for deriving the former
properties from the latter is based on modeling patterns,
properties and security implication rules in Situation Calculus.

Our work builds upon an existing runtime service discovery
framework [17] and extends it with secure service
composition capabilities.

Currently, we are investigating the use of standardized
languages, notably SAML, for expressing security properties
and the development of an ontology to express properties at
several granularity levels and dependencies between them.

REFERENCES
[1] A. Zisman, K. Mahbub and G. Spanoudakis, “A service discovery

framework based on linear composition,” in Proc. IEEE Int. Service
Computing Conference (SCC 2007), pp.536-543, 2007

[2] F. Lécué, E. Silva and L. F. Pires, “A framework for dynamic web
services composition,” in Proc. 2nd ECOWS Work. on Emerging Web
Services Technology (WEWST07), 2007.

[3] W. M. P. Van Der Aalst et al., “Workflow patterns,” Distrib. Parallel
Databases 12(1): 5-51, 2003.

[4] ASSERT4SOA Project, “D5.1– Formal models and model
composition,” 2011.

[5] J. McCarthy and P. Hayes, “Some philosophical problems from the
standpoint of artificial intelligence,” in B. Meltzer and D. Michie,
editors, Machine Intelligence, 4:463–502, 1969.

[6] M. Deubler, J. Grünbauer, J. Jürjens and G. Wimmel, “Sound
development of secure service-based systems,” in Proc. of the 2nd Int.
Conf. on Service oriented computing (ICSOC '04), pp. 115-124, 2004.

[7] Jing Dong, Tu Peng and Yajing Zhao, “Automated verification of
security pattern compositions,” Inf. Softw. Techn. 52(3):274- 295, 2010.

[8] M. Bartoletti, P. Degano and G. L. Ferrari, “Enforcing secure service
composition,” 18th Work. on Computer Security Foundations, 2005.

[9] M. Lelarge, Z. Liu and A. Riabov, “Automatic composition of secure
workflows,” in Proc. of ATC'2006, 2006.

[10] B. Carminati, et al., “Security conscious web service composition,” in
Proc. of the Int. Conf. on Web Services (ICWS), 2006.

[11] OASIS. SAML 1.0 Specification Set [Online]. Available:
http://saml.xml.org/saml-specifications, 2002.

[12] Keita Fujii and Tatsuya Suda, “Semantics-based dynamic web service
composition,” IEEE Journal on Selected Areas in Communications,
23(12): 2361- 2372, Dec. 2005.

[13] B. Medjahed, A. Bouguettaya and A. K. Elmagarmid, “Composing web
services on the semantic web,” The VLDB Journal,12(4):333-351, 2003.

[14] M. C. Jaeger, G. Rojec-Goldmann and G. Muhl, “QoS aggregation for
web service composition using workflow patterns,” in Proc. of the 8th
Int. Conf. on Enterprise Distributed Object Computing, 2004.

[15] Aniketos Consortium, “D3.1 – Design-time support techniques for
secure composition and adaptation,” [Online]. Available:
http://www.aniketos.eu/, 2011.

[16] M. Bezzi, A. Sabetta, Spanoudakis G. “An architecture for certification-
aware service discovery, ” 1st Int. Work. on Securing Services on the
Cloud, 2011

[17] A. Zisman, G. Spanoudakis, J. Dooley. “A framework for dynamic
service discovery”, In Proc. of 23rd Int. ACM/IEEE Conf. on Automated
Software Engineering, 2008

