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Abstract 

Objects are said to automatically “afford” various actions depending upon the motor 

repertoire of the actor. Such affordances play a part in how we prepare to handle or 

manipulate tools and other objects. Evidence obtained through fMRI, EEG and TMS 

has proven that this is the case but, as yet, the temporal evolution of affordances has 

not been fully investigated. The aim here was to further explore the timing of evoked 

motor activity using visual stimuli tailored to drive the motor system. Therefore, we 

presented three kinds of stimuli in stereoscopic depth; whole hand grasp objects 

which afforded a power-grip, pinch-grip objects which afforded a thumb and 

forefinger precision-grip and an empty desk, affording no action. In order to vary 

functional motor priming while keeping visual stimulation identical, participants 

adopted one of two postures, with either the dominant or non-dominant hand 

forward.  EEG data from 29 neurologically healthy subjects were analysed for the N1 

evoked potential, observed in visual discrimination tasks, and for the N2 ERP 

component, previously shown to correlate with affordances (Proverbio, A.M., Adorni, 

R., D’Aniello, G.E., 2011. 250 ms to code for action affordance during observation of 

manipulable objects. Neuropsychologia 49, 2711–2717). We observed a link 

between ERPs, previously considered to reflect motor priming, and the positioning of 

the dominant hand.  A significant interaction was detected in the left-hemisphere N2 

between the participants’ posture and the object category they viewed.  These 

results indicate strong affordance-related activity around 300ms after stimulus 

presentation, particularly when the dominant hand can easily reach an object. 
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1. Introduction 

The term affordance was first introduced by JJ Gibson in 1977 who suggested that 

just by viewing an object we perceive how to use it.  In recent years it has often been 

used to describe the idea that even when there is no intention to act, the intrinsic 

properties of an object will potentiate motor planning. This has prompted many 

studies investigating the existence of affordances (i.e. automatic priming of the motor 

system by viewed objects) in both human and non-human primates (e.g. Grezes et 

al. 2003; Murata et al. 1997; Rice et al. 2007; Tucker & Ellis 1998; Tucker & Ellis 

2001; Valyear et al. 2007). 

For example, Murata et al. (1997) took recordings from individual neurons in the 

ventral pre-motor area F5 of a macaque monkey. The animal was trained to observe 

physical objects and, on some trials only, was expected to pick up the object. 49 

neurons were found to be task-related. 25 of these were described as motor neurons 

and the other 24 as visuomotor neurons. All 49 discharged when the monkey picked 

up an object. Interestingly, though, the 24 visuomotor neurons also discharged when 

the animal viewed objects whether or not it was a ‘pick-up’ trial.  Some of these 

individual neurons also showed selectivity for a small set of similar objects by 

discharging at a higher rate when these objects were viewed. It was concluded that 

the visuomotor neurons were responding to the visual features of each object, 

reaffirming the theory that intrinsic visual properties potentiate motor planning.  

Corresponding work with humans has led to much discussion as to which brain 

regions are similarly activated during passive object viewing. Many human studies 

that require a motor response focus on conflict in motor planning (e.g. Grezes et al. 

2003; Tucker & Ellis 1998; Tucker & Ellis 2001; Valyear et al. 2007).  This has 

sometimes been combined with neuroimaging. For instance, in a functional magnetic 

resonance imaging (fMRI) congruency task, Grèzes et al. (2003) required 

participants to make a precision (i.e. forefinger and thumb pinch) grip when viewing 

any natural object and a power (i.e. whole-hand grasp) grip when viewing any man-

made object. Visual stimuli could be either congruent or incongruent for the required 

type of response.  For example, a grape (natural, hence instructing a pinch 

response) would be in line with a congruent response, because the response 

matched the motor priming properties of the object, while a cucumber would be 

incongruent in this respect.  Equally, for man-made objects (instructing a grasp 
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response), a hammer was congruent while a screw was incongruent. Grèzes’ group 

found that reaction times were greater for incongruent trials, presumably due to 

conflict between the action afforded by the object and the response required for the 

task. Correspondingly, fMRI activity in various brain regions also differed between 

the congruent and incongruent trials with most activation occurring in the left 

hemisphere. Areas correlating with the behavioural results were, in particular, the 

premotor cortex and also the inferior frontal sulcus, superior temporal sulcus, 

anterior parietal cortex and superior parietal lobe.  

Interestingly, significant fMRI activity has also been observed in the right hemisphere 

of healthy right-handed volunteers in another type of response task (Rice et al. 

2007). Here, graspable or non-graspable objects were shown orientated to either the 

left or to the right. After a brief mask stimulus the object was shown again, on some 

trials with the same orientation and on others with the opposite orientation. Subjects 

had to respond by pressing one button for same and another for different 

orientations. In this study fMRI activity was contrasted between repeated and flipped 

stimuli (using a form of fMRI adaptation) and revealed that the right lateral occipital-

parietal junction was selective for orientation but only for graspable objects.  

These and many similar findings (e.g. Goslin et al. 2012; Righi et al. 2014; Tucker & 

Ellis 1998; Tucker & Ellis 2001) suggest that affordances exist in humans.  However, 

although spatially informative, the temporal resolution of fMRI is less impressive due 

to the signal delay of the blood oxygen level-dependent (BOLD) response. Hence 

the exact timing of neuronal activity caused by affordance cannot be deduced from 

fMRI. Recently there have been several transcranial magnetic stimulation (TMS) 

experiments (Buccino et al. 2009; Cardellicchio et al. 2011; Makris et al. 2011; 

Makris et al. 2013) which have contributed to a better understanding of the temporal 

evolution of affordances.  For example, Buccino et al. (2009) stimulated left motor 

cortex, and showed greater motor evoked potentials (MEPs) 200 ms after the onset 

of objects with handles orientated towards the right than the left and, particularly, that 

these MEPs were larger for whole handles rather than damaged ones. Makris et al. 

(2011, 2013) presented objects affording either a precision or power grip, and found 

modulation in MEPs from the congruent hand muscle groups (consistent with the 

presence of an affordance) that began 150-300 ms after stimulus onset and died 

away at around  600 ms after stimulus onset. 
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Some recent electroencephalographic (EEG) studies have also sought to measure 

the timing of affordances by comparing responses to pictures of tools with non-tools 

(Proverbio et al. 2011; Proverbio 2012). Proverbio et al. (2011) found significantly 

greater anterior left hemispheric negativity for the N2 component of the event-related 

potential (ERP) while viewing tools compared to non-tools. The N2 is the second 

negative component after stimulus onset and has been associated with motor 

facilitation (Allami et al. 2014). Using 128 electrodes, Proverbio et al. computed the 

N2 from electrode sites AF3, AF4, AFP3h and AFP4h. Their time window was from 

210ms to 270ms after stimulus onset. A standardized weighted low-resolution 

electromagnetic tomography (swLORETA) inverse solution was computed to 

understand the source of this increased activity for tools. In response to tools it 

revealed more left than right hemispheric pre-motor activity (Brodmann Area 6), as 

well as unilateral (left hemisphere) activation of the somatosensory cortex 

(Brodmann Area 3). The swLORETA computation showed that these areas were not 

involved in response to other (non-tool) objects. Two other ERP components were 

also investigated. These were firstly the positive component with peaks usually 

between 300ms and 600ms after stimulus onset (P300) and secondly a later slow 

positive component generally appearing between 400ms and 750ms after stimulus 

onset (late positivity). A greater centroparietal P300 component for tools compared 

to non-tools was observed between 550ms and 600ms after stimulus onset, whilst a 

larger late positivity amplitude for non-tools (from anterior frontal and prefrontal 

electrodes) occurred between 750ms and 850ms after stimulus onset. These have 

been related to attention for a target stimulus amongst a set of non-targets (Frodl-

Bauch et al. 1999; Mugler et al. 2008; Nijboer et al. 2008) and controlled allocation of 

attention (Schienle et al. 2011; Schupp et al. 2000) respectively.  

The defining feature of an affordance is that it represents priming of the motor 

system (regardless of the ultimate requirement to act or not). We wished to confirm 

the existence in the EEG of a differential motoric response to objects that prime grip 

actions compared to scenes without such objects. In their studies, Proverbio et al. 

had two stimulus categories and used pictures of objects that afforded both manual 

and non-manual actions (e.g. a bicycle and stairs were included in the tool category). 

We instead confined our object stimuli to those relating to the hand and utilised 

images containing stereo depth cues, which are known to support accurate goal-
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directed visually guided reach-to-grasp actions (e.g. Melmoth & Grant 2006; 

Melmoth et al. 2007; Melmoth et al. 2009). A question arises as to whether the EEG 

components identified by Proverbio et al. provide markers of purely motoric brain 

activation. In a design that simply correlates brain activity with different categories of 

visual stimuli it is difficult to rule out a purely visual contribution to observed 

differences. Hence we sought to overcome the problems raised by a reliance on 

comparisons between visual stimuli in two ways. 

Firstly, in addition to the components identified by Proverbio et al. (2011) we also 

investigated purely visual discrimination as associated with the posterior N1 ERP 

component (Hopf et al. 2002; Mangun & Hillyard 1991; Thorpe et al. 1996; Vogel & 

Luck 2000). We used this component to search for any differences in the visual brain 

response evoked by our stimuli, hoping to rule out such effects.  

Secondly, because any contrast between object and non-object stimulus categories 

may introduce systematic visual differences above and beyond those that were 

intended, we sought an additional manipulation that should modulate the creation of 

an affordance within the motor system. To this end, we had participants adopt one of 

two postures. The first, a sitting posture with the dominant hand close to 3D objects, 

should promote the generation of an affordance, whereas the second, with body 

rotated to have the dominant hand far away from the screen, should lessen any 

affordance (at least within the dominant left hemisphere).  

In summary, here we ask whether viewing objects in 3D and manipulating the 

position of the dominant hand can provide compelling evidence of brain activity 

associated with affordances. We introduce a design in which any effects on ERPs 

from purely visual differences between objects can be ruled out. Our innovation is to 

provide identical visual stimulation in two posture conditions that vary the functional 

meaning of objects. We then identify interactions between posture and image 

category in the EEG, thereby revealing ERP components that index a fundamentally 

motoric priming effect.   
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2. Materials and Methods 

 

2.1. Participants 

Initially, 20 participants were recruited for this experiment, based on typical sample 

sizes for EEG experiments involving factorial designs with repeated measures. We 

were predicting interactions involving posture and image category. Following 

examination of these data, a bootstrap-based power analysis was used to determine 

a final sample size providing 80% power to detect any such interaction in the N2 (as 

that proved the most promising ERP component) based on the effect sizes present 

in the initial sample. As a consequence, a total of 29 participants were recruited to 

passively view 3D photographs of objects and of an empty desk (9 males, 20 

females; mean age 28.1 years, SD 5.53 years). All had normal or corrected-to-

normal vision with no history of neurological illness. All were right-handed as verified 

by the Edinburgh Handedness Inventory, adapted from Oldfield (1971). The study 

was approved by City University Ethics Committee and participants gave written 

consent.  

 

2.2. Stimuli 

Initially, 3D photographs were taken of 40 objects positioned on a desk in such a 

way that no left or right laterality could be ascertained, i.e. either photographs of 

objects without handles or photographs of objects with the handle positioned 

centrally. Viewpoint and light source remained constant across photos. To establish 

object categories for the experiment, 20 independent assessors rated the photos on 

whether they would use a pinch grip or whole hand grasp to hold the objects. The 

assessors used three categories; “always use this grip/grasp”, “mostly use this 

grip/grasp”, or “just more likely to use this grip/grasp”. A separate independent group 

of 10 people then rated the objects from 0 to 2 on how familiar they were, with 2 

being a very familiar object. A subset of pictures was then chosen which contained 

good exemplars of objects affording either a precision or power grip (i.e. consistently 

rated “always” for the relevant grip and predominantly rated 2 on the familiarity 

scale). For the subsequent experiment, these stimuli were used to construct three 

stimulus categories. The first category contained only a single stimulus (an empty 
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desk) while the other two showed objects located on the desk. Object categories 

consisted of one picture of each of five objects, which would normally be held in 

either a precision grip (pinch objects: tweezers, drawing pin, button, wedding ring, 

and paperclip) or a power grip (grasp objects: hairbrush, glass, mug without handle, 

liquid soap container and knife). 

 

2.3. Design and Procedure 

Participants were seated in an electrically shielded room, in front of a mounted 

stereoscope, approximately 45cm from a gamma-corrected CRT monitor refreshing 

at 109 Hz. Left-eye and right-eye images were displayed side by side, but presented 

only to their respective eyes via the mirror stereoscope (Stereo Aids, Australia). 

Initially, participants were allowed time to adjust the viewer so that they observed a 

single object in three dimensions. For this calibration, two objects, a ball and a 

sponge, were presented in alternation. These two objects became targets for a 

subsequent vigilance task.  

For the main experiment, on each trial, two fixation dots were shown on screen for 

1000ms (to maintain stereo fusion in the interval between pictures) followed by a 

colour photograph, also for 1000ms (see Figure 1A). The task was to passively view 

the pictures through a stereoscopic viewer, except that participants had to report the 

two target items (ball and sponge) whenever they appeared (with these trials 

excluded from the subsequent data analysis). In each block, there were 150 trials 

with photographs of the empty desk (‘no-object’ category) and 150 trials each from 

the two object categories (pinch objects and grasp objects) so that each individual 

object was viewed 30 times. For the vigilance task, the ball and sponge pictures 

were included in an additional 16 trials. Trials in each category and those of the 

vigilance task were presented in a randomised order.   

There were two viewing postures. For the right-hand forward posture the right hand 

rested close to the screen with the body rotated approximately 45° away from the 

screen towards the left. The head was maintained directly facing the screen. For the 

left-hand forward posture the left hand rested close to the screen with the body 

rotated approximately 45° away from the screen towards the right. Again, the head 

was maintained facing directly towards the screen (see Figure 1B). The order of the 
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first and second postures was counterbalanced across participants. For each 

posture a block lasted approximately 15 minutes and participants were offered a 

short break after 100, 200, 300 and 400 trials. 

                                                                                                     

 [INSERT FIGURE 1 SCHEMATIC OF METHODS HERE] 

 

2.4. EEG measurement and analysis 

A 64-channel electrode cap was fitted to the participant’s head with the ground 

electrode at position AFZ and the reference electrode at position FCZ. An additional 

vertical electro-oculogram electrode was placed below the left eye. Electrode 

impedance was kept below 20 k Ω and recorded at a sampling rate of 1000 Hz. 

Recording and pre-processing of the EEG data were performed with a BrainAmp DC 

amplifier and the BrainVision Recorder software (Brain Products, Herrsching, 

Germany).  

For the ERP analysis the data were band-pass filtered offline with high-pass 

frequency of 0.1Hz and a low-pass frequency of 35Hz and re-referenced to linked 

mastoids. Data were segmented into epochs of 1500ms, from 500ms prior to 

stimulus onset to 1000ms after stimulus presentation. The Gratton and Coles 

method (Gratton et al. 1983) was used for ocular correction, and baseline correction 

was applied using a window from 100ms to 0ms before the stimulus. Epochs were 

also excluded automatically if any values exceeded a threshold of ± 100µV, resulting 

in a rejection rate of ~10%.  Based on inspection of averaged data, peak event-

related potential (ERP) amplitudes for the posterior N1 component were computed at 

the PO3 and PO4 electrodes and the anterior component at the F1 and F2 

electrodes, both in the interval 100ms to 200ms after stimulus onset. Immediately 

after the clearly observable N1 ERPs the EEG traces varied considerably in the 

different stimuli categories and across participants. Consequently, for the anterior N2 

component at the F1 and F2 electrodes a peak-to-peak measurement was taken 

from the most positive preceding peak (P2) to the most negative following peak (N2). 

The P2 was calculated as the local peak between 160ms and 260ms after stimulus 

onset and the N2 was calculated as the local peak between 235ms and 360ms after 

stimulus onset. For each individual participant’s set of data an earlier P2 peak 
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corresponded with an earlier N2 peak and a later P2 peak corresponded with a later 

N2 peak. The aim was to standardize the measurement between categories by 

observing the amplitude between the peaks. 

Repeated measures 2x2x3 ANOVAs were carried out assessing differences in N1 

and N2 amplitudes with the following within-subject factors: posture (left and right-

hand forward), hemisphere (left and right) and the three stimulus categories (whole-

hand grasp objects, pinch-grip objects and no object). The Greenhouse-Geisser 

correction was used to correct for violations of sphericity. 

 

3. Results 

Our analyses focused on both the prominent N1 negative component, whose time-

course varies across the scalp from anterior to posterior, and the anterior N2, 

described by Proverbio et al. (2011) and previously inferred to reflect the presence or 

absence of an affordance. 

 

3.1. The N1 component 

We observed a distinct N1 component. At posterior sites, PO3 and PO4, (not shown) 

the posture by hemisphere by stimulus category (2x2x3) ANOVA revealed no 

difference between postures, nor between hemispheres, nor stimulus categories and 

there were no significant interactions.  In fact, F<1.0 for all effects involving stimulus 

categories.1  Mean microvolt stimulus category differences were: between whole-

hand grasp and pinch-grip 0.39µV (SD = 2.30), between whole-hand grasp and no 

object 0.14µV (SD = 2.51) and between pinch-grip and no object 0.53µV (SD = 

1.51). 

At anterior sites, namely electrodes F1 and F2, (see Figure 2, earlier greyed region) 

the posture by hemisphere by stimulus category (2x2x3) ANOVA revealed a main 

effect of hemisphere F (1, 28) = 9.023; p = .006, ηp² = .244 and a main effect of 

stimulus category F (2, 56) = 4.949; p = .020, ηp² = .150. T-tests showed no 

significant differences between whole hand grasp objects and pinch-grip objects, p = 

                                                           
1 Actual means, 1.16µV (SD = 3.88) for the whole-hand grasp object, 1.55µV (SD = 2.64) for the pinch-grip 

object and 1.01µV (SD = 2.38) for no object.     
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1.00, and no differences between grasp objects and the empty desk, p = .254. There 

was, however, a significant difference between pinch-grip objects and empty desk, p 

= .001. There was no main effect of posture. There was also a significant interaction 

between posture and hemisphere F (1, 28) = 7.032; p = .013, ηp² = .201; pairwise 

follow-ups showed significant differences between hemispheres only in the right-

hand forward posture, p = .001. All other interactions involving stimulus categories, 

were not significant: posture x hemisphere x stimulus category, p = .329; posture x 

stimulus category, p = .337; hemisphere x stimulus category, p = .234. 

 

 

3.2. The N2 component 

Turning to the N2 ERP component: As can be seen in Figure 2 (later greyed region), 

for posture 1 (i.e. right hand forward) there is an enhanced N2 in both object 

categories compared to the no-object category. This difference between categories 

is far less pronounced in posture 2, particularly in the left hemisphere. A posture by 

hemisphere by stimulus category (2x2x3) ANOVA showed significant main effects of 

hemisphere, F (1, 28) = 9.918; p = .004, ηp² = .262, and stimulus category, F (2, 56) 

= 24.091; p < .001, ηp² = .462. All t-tests between stimulus categories showed 

significance; p = .026 between whole-hand grasp objects and pinch-grip objects 

while p < .001 between each object category and the empty desk.  

Of particular interest for our design, the interaction between posture, hemisphere 

and stimulus category was marginally significant, F (2, 56) = 2.936; p = .081, ηp² = 

.095. However, we had a clear directional prediction regarding this interaction (that 

the posture by stimulus category interaction should be enhanced in the left 

hemisphere), which was supported by the pattern of means (see Figure 2). Although 

F tests are strictly speaking one-tailed, an ANOVA interaction can be considered a 

form of “multi-tailed” test, as no directionality of effect is specified (see Howell, 1997, 

pg. 154, for this argument in the context of another multi-tailed test, the χ2 test of 

association). With under half of all possible interaction data patterns conforming to 

our a priori expectation, we felt justified in using an alpha value of 0.1. Hence, we 

considered the interaction between posture, hemisphere and stimulus categories 

meaningful, and a further posture by stimulus category (2x3) ANOVA was conducted 

separately for each hemisphere in order to follow it up. 
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For both hemispheres the difference between stimulus categories was significant 

(right hemisphere, F (2, 56) = 24.229; p < .001, ηp² = .464; left hemisphere, F (2, 56) 

= 21.769; p < .001, ηp² = .437). For the right hemisphere (F2 electrode) the posture 

by stimulus category interaction was not significant; p = .285. Critically, for the left 

hemisphere (F1 electrode) there was a significant interaction between posture and 

stimulus category, F (2, 56) = 3.201; p = .048, ηp² = .103. The interaction reflected a 

greater modulation of the N2 by object condition for the right-hand forward posture 

than for the left-hand forward posture and pairwise follow-ups showed that both of 

the object categories differed from each other, p = .001 and both object categories 

differed from the no object category p < .001 in the right-hand forward posture. 

However in the left-hand forward posture there was less overall modulation by object 

category (driving the interaction effect in the posture by stimulus category ANOVA); 

while both object categories still differed from the no object category p < .001, there 

was no significant difference between the two types of object categories, p = .318. 

 

 

[INSERT FIGURE 2 ELECTRODE TRACES HERE] 

 

 

3.3. Other ERP components 

Proverbio et al. (2011) additionally observed a peak between 750ms and 850ms 

over prefrontal sites which they described as late positivity and which produced a 

significantly larger amplitude for non-tools compared to tools. In addition, the P300 

ERP over centro-partietal electrodes also produced significantly larger amplitudes for 

tools compared to non-tools. We also sought these effects. However, no discernible 

ERP was found near 800ms. For the P300 ERP, recordings from C1, C2, CP1 and 

CP2 electrodes were analysed as these corresponded most closely with the CCP1h, 

CCp2h electrodes used by Proverbio et al. (2011). Their P300 component was found 

between 550ms and 600ms, but observing our EEG data, the component was not 

clearly discernible, so we did not investigate further.  
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4. Discussion                       

This experiment sought to provide further ERP evidence regarding the timing of 

affordances, by manipulating participants’ posture in relation to the objects being 

viewed.  We presented participants with either whole-hand grasp or pinch-grip 

objects on a desk, or with an empty desk, and positioned their bodies so as to vary 

whether those objects could be reached easily with the dominant hand (while holding 

visual stimulation constant). We then recorded brain activity while they observed a 

random sequence of stimuli at a rate of 0.5 Hz. We also addressed the functional 

relevance of motor primes more generally in our experiment by providing stereo 

depth cues, and demonstrated a robust affordance-based brain response under 

these conditions (c.f. Makris et al., 2013). 

The resulting significant interaction between posture and stimulus category, found in 

the dominant left-hemisphere N2 ERP component of right-handed participants, 

demonstrates that the N2 reflects object affordances, which should be affected 

specifically by the participants’ position in relation to the stimuli. Indeed, the N2 

component even appeared to distinguish between the types of grasp or grip that 

would be appropriate for the particular object being presented (rather than simply 

distinguishing between graspable objects and empty desks). The affordance effect 

was present in the left-hand forward posture, but to a lesser extent as differences 

were found only between objects (of either type) and the empty desk. Although there 

was a significant effect for stimulus category in the right hemisphere, there was no 

significant interaction between posture and stimulus category like the one obtained in 

the left hemisphere. It might have been expected that in the right hemisphere the N2 

component would be significantly greater in the left hand forward posture. However, 

as our participants all had right hand dominance, these results substantiate our 

theory that it is the dominant hand positioned close to an object that enhances 

affordance effects. 

Our results complement and extend those of Proverbio et al. (2011) and Proverbio 

(2012) who investigated EEG markers for automatic object-action priming. In their 

work, pictures of objects affording action were contrasted with pictures that did not 

afford any actions, and effects were found in the N2 (and later), with a swLORETA 

analysis linking this effect to motor regions of the brain.  
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Our posture manipulation changed the functional relevance of objects without 

changing their visual properties, and thus our data strengthen their finding. If 

significant differences had simply been shown between the object conditions, it might 

be argued that the gross visual differences between a large, graspable object, a 

small, pinchable object and an empty desk, could account for the ERP differences 

without implying that functional, motor properties of objects were the primary cause. 

In addition to ruling out visual effects via the logic of our design, we also 

strengthened our inference of a motoric effect by observing the visual N1 ERP 

component between 100ms and 200ms after stimulus onset. Interestingly, for both 

postures, at the posterior PO3 and PO4 electrodes, the N1 ERP component had a 

very similar peak voltage at very similar latencies for all stimulus categories – whole 

hand grasp objects, pinch-grip objects and no object. Hence, in our data, there 

appears to be little detectable difference between stimulus-evoked visual activity in 

parietal-occipital regions between 100ms and 200ms after stimuli onset. However, 

anteriorly (at the F1 and F2 electrodes) this component did show differences in peak 

values between the stimulus categories. For both hemispheres, pinch-grip objects 

produced a significantly greater negative peak than the empty desk. The N1 peak 

produced by the whole-hand grasp objects was also larger (althought not 

significantly) than that produced by the empty desk (see Figure 2).  

These findings may be due to early motoric discrimination of picture content. 

Evidence from previous experiments suggests that the anterior N1 is produced by 

motor responses (Vogel & Luck 2000). In their study, a first experiment incorporated 

a button press response while the second asked participants to just keep a count of 

the number of stimuli presented. In the first experiment a large anterior N1 effect was 

observed. In the second, this effect was diminished. The researchers hypothesised 

that the anterior N1 ERP in the first experiment was due to an overlap of preparation 

for a motor response with the stimulus-elicited response. As a footnote in the article, 

Vogel and Luck confirmed completion of further experiments to control for motor-

related overlap. In one they instructed participants to respond at the same speed for 

simple and complex tasks and in the other the SOA was varied to reduce anticipated 

motor responses. In both of these the anterior N1 was eliminated but the posterior 

N1 remained. Thus prior research would suggest that while posterior N1 activity 

relates to purely visual properties, the anterior N1 is influenced by motor preparation. 
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It is therefore striking that in our experiment, we observed essentially no anterior N1 

for an empty desk, with this component emerging only when objects were viewed 

despite no requirement to actually respond to them. This is a very early ERP 

component and therefore it is possible that full affordance properties have yet to be 

completely processed. Indeed, there was a (non-significant) trend towards an 

interaction between stimulus category and posture even in the anterior N1. In our 

experiment the subsequent N2 component, particularly the significant left-

hemisphere interaction between posture and stimulus category, serves to confirm 

motoric involvement and, consequently, the presence of an affordance.  

Ours is the first EEG study to evidence affordances via changes in the functional 

relevance of graspable objects.  In a recent TMS study a computer generated 3D 

room was used (presented on a 2D display without stereo depth; Cardellicchio et al. 

2011) to vary whether stimuli could be reached or not. The stimuli consisted of either 

a mug with a handle (graspable object) or a cube (non-graspable object) on a table. 

TMS pulses were delivered to obtain responses from the first dorsal interosseous 

and the opponens pollicis hand muscles, both of which are activated when grasping 

a mug handle. The mug and the cube were shown separately in two conditions. 

Each was shown positioned within reachable space and also further away, in non-

reachable space. Electromyographic (EMG) recordings showed that when it was 

observed within reachable space, the mug produced significantly greater MEPs than 

when it was observed in non-reachable space. No such effect occurred with the cube 

stimulus. From this result, the authors suggested that the affording properties of an 

object are able to induce motor representations only when the object is appropriately 

positioned within the observer’s reach. 

In the current study, while each 3D object appeared in exactly the same spatial 

position, the posture of the observer was altered, effectively placing either the 

dominant (right) hand closer to the object (Posture 1) or the non-dominant (left) hand 

closer (Posture 2). Lateralized affordance bias from the objects themselves was 

eliminated as the objects were displayed with any handles presented centrally. Our 

results, showing a greater N2 ERP component for object stimuli compared to the 

empty desk, but particularly when the object could be manipulated with the dominant 

hand, corroborate and advance those of Cardellicchio et al. (2011). Although the 

objects were all effectively positioned within reachable space, the results relate 
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enhanced affordance properties particularly to the close proximity of the dominant 

hand. This early affordance effect also conforms with other studies showing greater 

MEP sizes around 200ms after stimulus onset when assessed via handle orientation 

(Buccino et al. 2009) and at 300ms after stimulus onset (but not later) when 

assessed via grip congruence (Makris et al. 2011; Makris et al. 2013). 

Our result is at odds with some previous findings, e.g. Wilf et al. (2013). This group 

sought to dissociate affordance effects and spatial effects (Simon 1969) and 

determine whether there was an interaction between them. Their stimuli were 

pictures of graspable and non-graspable objects projected to either the left or right 

side at around shoulder height. The sizes and spatial properties of the images were 

matched, e.g. an elephant and a mug were depicted as the same size and had 

similar outline shapes. The task was to make a lateralised response to determine if 

the objects contained metal, irrespective of whether they could be grasped, for 

example, a right-hand response for metal and a left hand for non-metal or vice versa. 

Wilf et al. analysed muscle activity and obtained both an effect of spatial 

compatibility (i.e. enhanced left-hand responses for objects on the left and vice 

versa) and an effect of affordance (i.e. enhanced responses for graspable objects). 

Importantly, there was no interaction between spatial compatibility and affordance, 

implying that the latter effect emerged for objects both near and far from the 

responding hand. However, it is worth noting that their manipulation of object 

position would still have left objects reachable with either hand in relative comfort.  

By contrast, our posture manipulation may have been more effective in modulating 

action tendencies for the dominant hand as it would have required considerably 

more effort if participants had been required to act with the more distant hand.  

 

Conclusion 

Passively observing manipulable objects from different postures modulates EEG 

activity in a manner consistent with the existence of automatic affordances within the 

motor system. Here we have shown that, across the three stimulus categories, the 

evoked ERP N2 component modulates differently between participants’ postures, i.e. 

depending upon whether the dominant or non-dominant hand was closer to the 

object. We have shown that this is not purely a visual effect, both through the logic of 
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our design and by our examination of the N1 component. Prior research has 

suggested that the anterior N1 component is enhanced by motor preparation. As 

only objects requiring a power or precision grip produced the N1 component at 

anterior sites and the empty desk did not, this result also provides suggestive new 

evidence for affordance. Hence we propose that affordances generated by 3D 

objects may become active within 300ms after stimulus onset, consistent with other 

evidence from EEG and TMS experiments. 
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Figure Legends 

 

Figure 1. Schematic of Experimental Methods. A.  Example trial from the EEG 

paradigm. Here a whole-hand grasp object is displayed (both in stereo, as 

presented, and as perceived through the stereoscopic viewer, with left and right 

images fused). B.  Schematic showing Posture 1 with right (dominant) hand closer to 

the screen and Posture 2 with left hand closer to the screen; in each case the head 

is maintained directly facing the screen. 

 

Figure 2.  Grand averaged F1 and F2 electrode traces for both Posture 1 (right hand 

forward) and Posture 2 (left hand forward). Shown in grey shaded areas are the N1 

component between 100ms and 200ms after stimuli onset and the N2 component 

between 235ms and 360ms after stimuli onset. ERPs are depicted by a broken black 

line for whole-hand grasp objects, a blue line for pinch-grip objects and an orange 

line for the empty desk (no object). Head maps show voltage across the scalp, with 

greatest negativity in blue, and relate to grasp objects in Posture 1. 
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