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Polyhedral Analysis using Parametric Objectives

Jacob M. Howe1 and Andy King2

1 School of Informatics, City University London, EC1V 0HB, UK
2 School of Computing, University of Kent, CT2 7NF, UK

Abstract. The abstract domain of polyhedra lies at the heart of many
program analysis techniques. However, its operations can be expensive,
precluding their application to polyhedra that involve many variables.
This paper describes a new approach to computing polyhedral domain
operations. The core of this approach is an algorithm to calculate variable
elimination (projection) based on parametric linear programming. The
algorithm enumerates only non-redundant inequalities of the projection
space, hence permits anytime approximation of the output.

1 Introduction

Polyhedra [10] form the basis of a wide range of tools for static analysis and
model checking. Their attraction is the expressivity of linear inequalities which
capture not only the range of values that a variable can assume, but also de-
pendencies between them. The drawback of polyhedra is the cost of the domain
operations – this has motivated much recent work investigating the tradeoff of
expressivity for efficiency. This paper introduces a new approach to polyhedral
domain operations that sidesteps many of the problems associated with current
approaches. At the heart of the work is a new approach to variable elimination
(projection, or existential quantifier elimination).

Many polyhedral libraries are based on the double description method (DDM)
[3, 5, 6, 24, 28, 35]. DDM maintains two representations: the constraint represen-
tation in which the polyhedron is described as the solutions of a system of linear
inequalities, and the frame representation in which the polyhedron is generated
from a finite set of points, rays and lines. The method has proved popular since
the constraint representation is convenient when computing the meet of two
polyhedra (intersection) and the frame representation is convenient when com-
puting join (the frame representation of the join of two polyhedra is merely the
union of their frame representations). The maintenance of the two representa-
tions requires an algorithm to convert between the two, and this is the core of
the method. The drawback of working with a double description is that main-
tenance algorithms are expensive. For example, to apply join to two polyhedra
in constraint representation they both have to be converted to the frame rep-
resentation, a potentially exponential operation [21]. The dominating cost of
maintaining the double description can be avoided by working solely with con-
straints and reformulating join in terms of variable elimination [32]. Variable
elimination can be performed with Fourier-Motzkin elimination [27], but the



technique needs to be applied together with techniques for avoiding the gener-
ation of redundant inequalities [12, 17, 22] or methods for removing them after
generation [23]. Even then, Fourier-Motzkin shares the problem with DDM that
an intermediate result can be exponentially larger than the input, in addition
to the problem of generation of redundant constraints that cannot always be
removed until variable elimination is completed.

The algorithms deployed for manipulating unrestricted polyhedra [3, 24, 35]
have barely changed since the inception of polyhedral analysis over 30 years ago
[10]. This paper presents a radically different approach to the computation of
projection and hence convex hull which can be reduced to projection [32]. The
approach is based on the constraint representation, admits anytime approxima-
tion and invites parallelisation. The approach has two key steps. The first step
describes the projection of the input constraint system as a bounded polyhedron
(polytope) in a dual space. The vertices in this dual description of the projection
correspond to non-redundant inequalities in the constraint representation of the
projection. The second step is to enumerate these vertices. This is achieved by
using parametric linear programming (PLP). The formulation of projection as
PLP implementing vertex enumeration of a dual description of the projection
space is not obvious, therefore this paper makes the following contributions:

– Lemma 3.2 of [19] builds on the projection lemma [36] to explain how projec-
tion can be reformulated as a vertex enumeration problem. Alas, this lemma
is not correct to the level of generality that is required and the starting point
of this paper is a reworking of this result.

– In a somewhat different way to [19] it is shown how PLP can be used to
enumerate the vertices of a polytope. When this polytope is a description of
the projection space, the output corresponds to irredundant inequalities of
the constraint description of the projection.

– Together this gives an algorithm that projects arbitrary (possibly unbounded)
polyhedra onto lower dimensions. (This fundamental algorithm may well find
application outside static analysis, for example in control theory [19, 29].)

– It is shown that this formulation enables inequalities in the projection space
to be enumerated one-by-one, without requiring any post-processing to re-
move redundant inequalities. A consequence of this is that projection is
naturally anytime – it can be stopped prematurely to yield a safe over-
approximation of the projection. This compares favourably with DDM which
is monolithic in the sense that the inequalities need to be completely con-
verted to a frame, and then the projected frame is completely converted to
the constraints representation before a single inequality in the projection
space is found. The force of the anytime property is that if the projection
is found to be excessively large, then the projection need only be computed
up to that point and no further whilst still yielding a useful result.

Given the novelty of the contributions to theory (and the length of their ex-
position) a description of the implementation is postponed to a later paper; to
the best of the authors’ knowledge the implementions techniques are themselves
novel and require space in their own right.



2 Background

2.1 Matrices and vectors

Let a = 〈a1, . . . , an〉 ∈ Rn denote a column vector which is an n × 1 matrix. If
a = 〈a1, . . . , an〉 then a :: a = 〈a, a1, . . . , an〉. The dot product of two column
vectors a, b ∈ Rn is defined a · b = aT b where AT denotes transpose of a
matrix A. For any matrix A, (A)j refers to the jth column of A and (A)J

refers to the submatrix of columns indexed by J . Likewise (A)j refers to the jth
row and (A)J refers to the submatrix of rows indexed by J . Similar notations
are used for vectors, though bracketing is omitted when the column and row
operator is clear. If A = {a1, . . . , an} ⊆ R and a1 < a2 < . . . < an then
(A)i = (a)i where a = 〈a1, . . . , an〉. The lexicographical ordering relation on
vectors is defined by 〈〉 � 〈〉 and (a :: a) � (b :: b) iff a ≤ b or (a = b and
a � b). If A = {a1, . . . ,am} ⊆ Rn then min(A) = ai such that ai � aj for all
1 ≤ j ≤ m. A vector (row) is lex-positive iff its first non-zero element is positive.

2.2 Basic and non-basic variables

The simplex algorithm [7, 34] is formulated in terms of pivoting operations on
bases. To introduce simplex consider maximising the cost function c · λ, where
c = 〈1, 1,−3,−3,−1,−1, 0〉, subject to the constraints Aλ = b where λ ≥ 0 and

A =
[
1 −1 1 −1 2 −2 0
2 2 2 2 8 8 2

]
b =

[
0
1

]
Let B = {1, 6} and N = {1, . . . , 7} \ B so that λB = 〈λ1, λ6〉 and λN =

〈λ2, . . . , λ5, λ7〉 and moreover

AB =
[
1 −2
2 8

]
AN =

[
−1 1 −1 2 0

2 2 2 8 2

]
Then Aλ = b can be expressed as ABλB+ANλN = b hence ABλB = b−ANλN .
Since the square matrix AB is nonsingular this is equivalent to

λB = A−1
B b−A−1

B ANλN (1)

This suggests putting λN = 0 to give

λB = A−1
B b =

1
12

[
8 2

−2 1

] [
0
1

]
=

1
12

[
2
1

]
Since λB ≥ 0 the point λ = 〈 1

6 , 0, 0, 0, 0, 1
12 , 0〉 satisfies both the equality con-

straints Aλ = b and inequalities λ ≥ 0, five of which are saturated by λ.
Geometrically, λ is a vertex of the polyhedron {λ ≥ 0 | Aλ = b} and for this
point c · λ = 1

12 . In fact a vertex is defined by any B for which AB is invertible
(though a vertex may be defined by different B). In this classical set up, B is
called the basis, N the co-basis and λB and λN are, respectively, the basic and



non-basic variables. Moreover, the objective function c ·λ too can be considered
to be a function of the non-basic variables λN . To see this, observe

c · λ = cB · λB + cN · λN = cB ·A−1
B b + (cT

N − cT
BA−1

B AN ) · λN (2)

The equalities of (1) and the objective given in (2) constitute the dictionary.

2.3 Pivoting

In the (revised) simplex method [11], a path is found between adjacent bases
that terminates with a basis that maximises the objective. Adjacent bases differ
by one index and pivoting is used to transition from one basis to another. In each
pivoting step, the basis B is updated with B′ = (B\{i})∪{j} where i ∈ B is the
index of a basic variable that leaves B and j ∈ N is the index for a non-basic
variable that enters B. The index j ∈ N is chosen so that the corresponding
element of cT

N − cT
BA−1

B AN is positive. This is achieved by solving yT AB = cT
B

since then yT = cT
BA−1

B hence cT
N − cT

BA−1
B AN = cT

N − yT AN . To illustrate for
B = {1, 6}, so that cB = 〈1,−1〉 and cN = 〈1,−3,−3,−1, 0〉. Then

yT = cT
BA−1

B =
1
12

[
1 −1

] [
8 2

−2 1

]
=

1
12

[
10 1

]
cT

N − yT AN =
[
1 −3 −3 −1 0

]
− 1

12

[
10 1

] [
−1 1 −1 2 0

2 2 2 8 2

]
= 1

6

[
2 −24 −22 −20 −1

]
The entering variable can only be λ2. To find a leaving variable for i = 2, let

d = A−1
B (A)2 =

1
12

[
8 2

−2 1

] [
−1

2

]
=

1
12

[
−4

4

]
Then the largest t ≥ 0 is found such that λB − td ≥ 0. This occurs when t = 1

4
and then λB−td = 〈 1

4 , 0〉. The second element of this vector is 0 hence the second
variable of B, namely λ6, leaves the basis. This gives the new basis B = {1, 2}
for which λB = 〈 1

4 , 1
4 〉 and c · λ = 1

2 which has increased as desired. Repeating
the process with B = {1, 2} gives cB = 〈1, 1〉, cN = 〈−3,−3,−1,−1, 0〉 and

yT =
1
12

[
6 3

]
cT

N − yT AN =
1
2

[
−8 −6 −8 −4 −1

]
Hence there is no variable to enter B and c · λ is maximal. Although revised
simplex is usually introduced with this pivoting rule, alternative rules may be
attractive in certain situations.

2.4 Avoiding cycling with lexicographic pivoting

Cycling, hence non-termination, can be resolved [2] by lexicographic pivot selec-
tion [7]. This pivoting rule is defined for a subset of the bases which are called



lex-positive; each vertex, including degenerate ones, has a unique lex-positive
basis. The graph of lex-positive bases is a subgraph of the basis graph yet still
covers all the vertices. In the rest of this paper the dictionary is embedded into
Aλ = b by extending it to the system C(µ :: λ) = (0 :: b) where

C =
[
1 −c
0 A

]
The rows and columns of C (and only this matrix) are indexed from 0 to preserve
the correspondance with Aλ = b. To illustrate, if B = {0, 1, 6} then

C =

1 −1 −1 3 3 1 1 0
0 1 −1 1 −1 2 −2 0
0 2 2 2 2 8 8 2

 CB =

1 −1 1
0 1 −2
0 2 8


A basis B is said to be lex-positive if each row (L)j is lex-positive where

j > 0 and L = [C−1
B (0 :: b) | C−1

B ]. For example, B is lex-positive since

C−1
B =

1
12

12 10 1
0 8 2
0 −2 1

 L =
1
12

1 12 10 1
2 0 8 2
1 0 −2 1


Lexicographic pivoting pivots whilst preserving the lex-positive basis prop-

erty. In each pivoting step, row zero r = (C−1
B C)0 is inspected to find an index

j ∈ N such that (r)j < 0. For

C−1
B C =

1
12

12 0 −20 48 28 40 0 2
0 12 −4 12 −4 32 0 4
0 0 4 0 4 4 12 2


this would give j = 2. Then i = lexminratio(B, j) > 0 is computed which pre-
scribes which i ∈ B should be replaced with j. The lexminratio operation is
defined

lexminratio(B, j) =
{

0 if S = ∅
(B)k+1 else if (L)k/(d)k = min(S)

where d = C−1
B (C)j and S = {(L)k/(d)k | 0 < k∧0 < (d)k}. Crucially if B is lex-

positive then so is B′ = (B \{i})∪{j}. Continuing with j = 2, d = 〈−20,−4, 4〉,
S = { 1

48 [1, 0,−2, 1]} and i = (B)2 = 6. Hence B′ = {0, 1, 2}. Observe that B′ is
lex-positive since

[C−1
B′ (0 :: b) | C−1

B′ ] =
1
4

2 4 0 2
1 0 2 1
1 0 −2 1


Then

C−1
B′ C =

1
4

4 0 0 16 16 20 20 4
0 4 0 4 0 12 4 2
0 0 4 0 4 4 12 2


and since all elements of row (C−1

B′ C)0 are positive, no new variable can enter
B′ and c · λ is maximal.



1: x + y + z≤ 2
2: x + y − z≤ 2
3: −3x− y + z≤−3
4: −3x− y − z≤−3
5: −x + y + 2z≤ 2
6: −x + y − 2z≤ 2
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1 + 4: −2x≤−1
1 + 6: y≤ 2
3 + 2: −2x≤−1
3 + 4: −3x− y≤−3
3 + 6: −4x≤−1
5 + 2: x + 3y≤ 6
5 + 4: −7x− y≤−4
5 + 6: −x + y≤ 2

Fig. 1. (a) Inequalities (b) Projection (graphically) (c) Projection (Fourier-Motzkin)

3 Worked Example

This section centres on a worked example that illustrates the steps involved in
setting up and applying the projection algorithm. The more formal aspects of
the algorithm are detailed in the next section. The example involves eliminating
the variable z from the following system of inequalities given in Fig 1(a). The
system of inequalities is sufficiently simple for Fourier-Motzkin elimination to
be applied. The projection is obtained by combining all the inequalities with a
positive coefficient for z with those that have a negative coefficient for z. The
resulting inequalities are given in Fig 1(c), where the left hand column indicates
how the inequalities of Fig 1(a) are combined.

The system contains many redundant inequalities as is illustrated in the
diagram given in Fig 1(b) – it can be seen that the projection is a cone that
can be described by just two inequalities, namely −3x− y ≤ −3 and x + y ≤ 2.
The challenge is to derive these constraints without generating the redundant
inequalities, a problem that is magnified when eliminating many variables.

3.1 Overview

The algorithm presented in this section proceeds in three separate steps, each of
which is detailed in its own section. Sect. 3.2 shows how to formulate the projec-
tion problem in a dual fashion so that any inequality entailed by the projection
corresponds to points in a cone. Sect. 3.3 shows how to compute a slice through
the cone yielding a polytope (a bounded polyhedra). The vertices of the poly-
tope then represent the non-redundant inequalities in the projection. Sect. 3.5
explains how to use PLP to enumerate the vertices of this polytope. By enumer-
ating each vertex exactly once, the inequalities are generated with no repetition
and no redundancy other than the enumeration of the trivial constraint 0 ≤ 1.

3.2 Describing the output inequalities as a cone

To represent the inequalities in the projection as a cone, a formulation of [19]
is adapted in which a set of points of the form 〈α1, α2, β〉 is used to represent



inequalities α1x + α2y ≤ β that are entailed by the system given in Fig 1(a).
The inequalities are augmented with the trivial constraint 0 ≤ 1. These points
are defined as solutions to the systems (3) and (4) below:α1

α2

β

 = ET λ ET =

1 1 −3 −3 −1 −1 0
1 1 −1 −1 1 1 0
2 2 −3 −3 2 2 1

 (3)

where λ = 〈λ1, . . . , λ7〉 ≥ 0 and

D =
[
1 −1 1 −1 2 −2 0

]
Dλ = [0] (4)

The matrix ET represents the x, y coefficients and constants of the input in-
equalities. The λ variables are interpreted as weightings that prescribe positive
linear combinations of the input inequalities that yield an entailed inequality.
The equation given in (4) stipulates that the sum of the z coefficients is zero, in
other words z is eliminated.

Let Λ = {λ ∈ R7 | Dλ = 0 ∧ λ ≥ 0} and ET Λ = {ET λ | λ ∈ Λ}. Observe
that if 〈α1, α2, β〉 ∈ ET Λ, that is, the point 〈α1, α2, β〉 satisfies (3) and (4), then
µ〈α1, α2, β〉 ∈ ET Λ for any µ ≥ 0 hence ET Λ constitutes a cone. Importantly
the final column of ET permits the constant β of an inequality to be relaxed: if
α1x + α2y ≤ β is entailed and β ≤ β′, then α1x + α2y ≤ β′ is also entailed.

3.3 Slicing the cone with a plane to obtain a polytope

In order to construct a polytope in the 〈α1, α2, β〉 space, a plane slicing through
the cone ET Λ is required. To find such a plane, consider the inequalities that
are entailed by the initial system given in Fig 1(a), again represented dually as
a set of points, denoted G. Any inequality α1x + α2y + α3z ≤ β entailed by
the inequalities of Fig 1(a) is represented by a point 〈α1, α2, α3, β〉 ∈ G where
G = {Rµ | µ ≥ 0} and

R =


1 1 −3 −3 −1 −1 0
1 1 −1 −1 1 1 0
1 −1 1 −1 2 −2 0
2 2 −3 −3 2 2 1


Each column of R gives the coefficients αi and the constant β of an inequality
of Fig 1(a), again augmented with the additional inequality 0 ≤ 1. G is a cone
incident to the origin where the columns of R are extremal rays of G (rays that
cannot be obtained as positive linear combinations of others).

A plane that slices ET Λ can be derived from one that slices G. Let aα1 +
bα2 + cα3 + dβ = 0 be a plane that supports the cone G at the origin, hence all
the rays of G are strictly above this plane. By setting µ = 〈1, . . . , 1〉 in G, the ray
{µ〈1, 1, 1, 2〉 | µ ≥ 0} gives the point 〈1, 1, 1, 2〉, similarly {µ〈1, 1,−1, 2〉 | µ ≥ 0}
gives 〈1, 1,−1, 2〉, etc. Values for a, b, c, d can be found by setting up a linear
program which asserts that each of these 7 points are strictly above the plane
by at least some quantity ε:



Maximise ε subject to ε≤ a + b + c + 2d −1 ≤ a ≤ 1
ε≤ a + b− c + 2d −1 ≤ b ≤ 1
ε≤−3a− b + c− 3d −1 ≤ c ≤ 1
ε≤−3a− b− c− 3d −1 ≤ d ≤ 1
ε≤−a + b + 2c + 2d 0 ≤ ε
ε≤−a + b− 2c + 2d ε ≤ d

The bounds −1 ≤ a, b, c, d ≤ 1 are included for normalisation since the plane
aα1 +bα2 +cα3 +dβ = 0 can also be described by µaα1 +µbα2 +µcα3 +µdβ = 0
where µ ≥ 0 is any positive multiplier. Solving the linear program gives a = −1,
b = 1

3 , c = 0, d = 2
3 and ε = 2

3 . The value of ε is discarded and the equation of
the plane that supports G is −3α1 + α2 + 0α3 + 2β = 0.

Next observe that ET Λ = {〈α1, α2, β〉 | 〈α1, α2, 0, β〉 ∈ G}. As a consequence,
a supporting plane for ET Λ can be found merely by removing the α3 component
(note that c = 0 is an oddity of this particular example). This gives −3α1 +
α2 + 2β = 0 which indeed supports ET Λ. Finally the constant for the plane
is adjusted so that it slices through ET Λ. Any positive value may be chosen,
here the plane is set to have constant 1, that is, −3α1 + α2 + 2β = 1. Since
〈α1, α2, β〉 = ET λ the equation of the plane induces a further constraint on λ:

1 = −3α1 + α2 + 2β = −3
[
1 1 −3 −3 −1 −1 0

]
λ+[

1 1 −1 −1 1 1 0
]
λ+

2
[
2 2 −3 −3 2 2 1

]
λ =

[
2 2 2 2 8 8 2

]
λ

Augmenting equation (4) the system Aλ = c is obtained where:

A =
[
1 −1 1 −1 2 −2 0
2 2 2 2 8 8 2

]
c =

[
0
1

]
(5)

Under this construction, the set Λ′ = {λ ∈ R7 | Aλ = c ∧ λ ≥ 0} is not a cone;
it is a polytope. ET Λ′ is a polytope as a consequence.

3.4 The vertices of the polytope as irredundant inequalities

For each non-redundant inequality α1x + α2y ≤ β in the projection there exists
a unique vertex 〈α1, α2, β〉 ∈ ET Λ′. Moreover, if 〈α1, α2, β〉 is a vertex of ET Λ′

there exists a vertex λ of Λ′ such that 〈α1, α2, β〉 = ET λ. However, the converse
does not hold. If λ is a vertex of Λ′ then ET λ is not necessarily a vertex of
ET Λ′. To illustrate, the following table gives the vertices λ of Λ′ for the system
given in (5) and 〈α1, α2, β〉 = ET λ:

λ1 λ2 λ3 λ4 λ5 λ6 λ7 α1 α2 β
1
4

1
4 0 0 0 0 0 1

2
1
2 1

1
4 0 0 1

4 0 0 0 − 1
2 0 − 1

4
1
6 0 0 0 0 1

12 0 1
12

1
4

1
2

0 1
4

1
4 0 0 0 0 − 1

2 0 − 1
4

0 0 1
4

1
4 0 0 0 − 3

2 −
1
2 −

3
2

λ1 λ2 λ3 λ4 λ5 λ6 λ7 α1 α2 β
0 0 1

6 0 0 1
12 0 − 7

12 −
1
12 −

1
3

0 1
6 0 0 1

12 0 0 1
12

1
4

1
2

0 0 0 1
6

1
12 0 0 − 7

12 −
1
12 −

1
3

0 0 0 0 1
16

1
16 0 − 1

8
1
8

1
4

0 0 0 0 0 0 1
2 0 0 1

2



First observe that ET 〈0, 0, 1
6 , 0, 0, 1

12 , 0〉= 〈− 7
12 ,− 1

12 ,− 1
3 〉= ET 〈0, 0, 0, 1

6 , 1
12 , 0, 0〉

and second that − 7
12x− 1

12y ≤ −1
3 is a redundant inequality. In fact, only rows

1 and 5 give non-redundant inequalities; row 10 gives the trivial inequality 0 ≤ 1
and the remaining rows give inequalities that are redundant. (Note that this
table is only given for the purposes of exposition and is not actually calculated
as part of the projection algorithm.)

3.5 Enumerating inequalities using PLP

To enumerate the vertices of the polytope defined in section 3.3, hence the ir-
redundant inequalities of the projection space, PLP is used. As the parameters
vary the basis representing the optimum changes – a subset of these bases corre-
spond to the vertices. Consider an objective function parameterised by variables
δ1 and δ2:

δ1α1 + δ2α2 = δ1(ET )1 · λ + δ2(ET )2 · λ = c · λ

where c = 〈δ1 + δ2, δ1 + δ2,−3δ1− δ2,−3δ1− δ2,−δ1 + δ2,−δ1 + δ2, 0〉. The range
of values taken by δ1 and δ2 can be constrained to −1 ≤ δ1, δ2 ≤ 1 without
changing the set of possible objectives. This leads to tableau:

C =
[
1 −c 0
0 Ab

]
=

1 (−δ1−δ2) (−δ1−δ2) (3δ1+δ2) (3δ1+δ2) (δ1−δ2) (δ1−δ2) 0 0
0 1 −1 1 −1 2 −2 0 0
0 2 2 2 2 8 8 2 1


An initial basis (hence vertex) is found by fixing δ1 and δ2 and optimising.

Here, δ1 = δ2 = 1, hence α1 + α2 is maximised, to give B = {0, 1, 2}. The pivots
involved in this optimisation lead to:

CB =

1 (−δ1 − δ2) (−δ1 − δ2)
0 1 −1
0 2 2

 C−1
B =

1
4

4 0 (2δ1 + 2δ2)
0 2 1
0 −2 1



T1 =C−1
B C =

1 0 0 (4δ1+2δ2) (4δ1+2δ2) (5δ1+3δ2) (5δ1+3δ2) (δ1+δ2) (2δ1+2δ2)
0 1 0 1 0 3 1 1

2
1
4

0 0 1 0 1 1 3 1
2

1
4


Observe that with δ1 = δ2 = 1 this tableau represents an optimum since (in

row T 0
1 ) the objective entry for each non-basic column is positive. However, de-

creasing the δ1 parameter to − 1
2 leads to the objective entries for columns 3 and

4 to be 0. Hence with the new parameters there are potential alternative bases
that correspond to points optimal with respect to the objective (optimal bases).
These possibilities are explored, that is, columns 3 and 4 are considered as can-
didates to enter the basis with objective − 1

2α1 +α2. Note that this treatment of
pivoting is slightly non-standard – when optimising with respect to an objective
a column is considered as a candidate to enter the basis when its objective entry
is strictly negative; here, it is optimal bases that are of interest and the condition
is that objective entries that are zero. In the example column 3 is selected as the



candidate to enter the basis, lexminratio(B, 3) = 1 so that column 1 leaves, with
the result that B is now {0, 2, 3}. Pivoting gives:

T2 =

1 (−4δ1 − 2δ2) 0 0 (4δ1 + 2δ2) (−7δ1 − 3δ2) (δ1 + δ2) −δ1 − δ1
2

0 1 0 1 0 3 1 1
2

1
4

0 0 1 0 1 1 3 1
2

1
4


Observe that with δ1 = − 1

2 and δ2 = 1 this still represents an optimum.
However, this tableau does not represent a vertex of the projection space. At
a vertex, the parameters should have sufficient freedom that a perturbation in
one parameter can be balanced by perturbations in the other parameters such
that the perturbed objective is still optimal. In T2, columns 1 and 4 can only be
non-negative with the current parameter values – any perturbation cannot be
balanced, leaving the objective non-optimal. Now column 4 enters the basis and
column 2 leaves. The basis is now {0, 3, 4} and pivoting gives:

T3 =

1(−4δ1−2δ2)(−4δ1−2δ2) 0 0(−11δ1−5δ2)(−11δ1−5δ2)(−3δ1−δ2)(− 3δ1
2 −

δ2
2 )

0 1 0 1 0 3 1 1
2

1
4

0 0 1 0 1 1 3 1
2

1
4


Observe that T3 is a vertex – the columns with value zero (columns 1 and 2)

can remain with non-negative entries when the values of δ1 or δ2 are perturbed.
Next observe that no further pivots are available with −1 ≤ δ1 < − 1

2 . Again,
with δ1 = − 1

2 fixed, there are no pivots available for any value −1 ≤ δ2 ≤ 1.
Returning to the original basis and tableau, and this time allowing the δ2

parameter to vary, it can be observed that an alternative basis may be optimal
when δ2 = −1, see column 7. When 7 enters the basis, 2 is chosen to leave the
basis, giving basis {0, 1, 7}. Pivoting gives:

T4 =

1 0 (−2δ1 − 2δ2) (4δ1 + 2δ2) 2δ1 (3δ1 + δ2) (−δ1 − 3δ2) 0 0
0 1 −1 1 −1 2 −2 0 0
0 0 2 0 2 2 6 1 1

2


Again this represents a vertex. A further sequence of pivots is explored,

with the basis becoming {0, 4, 7} when δ1 = 1
2 and δ2 = −1, then {0, 3, 4}

when δ1 = 1
3 , δ2 = −1. This leads again to the tableau T3. No further vertices

are generated, that is, the output is the three basis {0, 1, 2}, {0, 3, 4}, {0, 1, 7}
corresponding to the tableaux T1, T3 and T4. The constant columns for these
tableaux are: − 1

2
1
4
1
4

 −2
1
4
1
4

  0
1
4
0


The basis and the weighting of the basis elements indicates how inequalities

from the input are combined in order to give a non-redundant output inequality.
In the {0, 1, 2} basis the 1 and 2 inequalities are weighted equally giving x+y ≤
2, in the {0, 3, 4} basis the 3 and 4 inequalities are weighted equally giving
−3x− y ≤ −3 and in the {0, 7, 2} basis the 2 inequality is not weighted, giving
the 0 ≤ 1 trivial constraint. That is, the output is, up to the trivial constraint,
the non-redundant inequalities of the projection space.



4 Anytime Projection using Vertex Enumeration

This section explains how an anytime projection algorithm can be obtained
through vertex enumeration, where each vertex is in one-to-one correspondence
with an irredundant inequality in the projection (with the exception of a sin-
gle vacuous inequality that is a by-product of the construction). To concisely
formulate the projection problem consider the system Cx + Dy ≤ b where C
and D are matrices of coefficients of dimension m × d and m × d′, x and y
are d-ary and d′-ary vectors of (distinct) variables, and b is an m-ary vector of
constants. The construction starts with the well-known projection lemma [36].
The lemma states that points in the projection satisfy linear combinations of
the input inequalities:

Lemma 1. If P = {x :: y ∈ Rd+d′ | Cx + Dy ≤ b} is a polyhedron, and
Λ = {λ ∈ Rm | DT λ = 0 ∧ λ ≥ 0}, then the projection of P onto x is given by

πx(P ) = {x ∈ Rd | ∀λ ∈ Λ . λT Cx ≤ λT b}

The next step in the construction is, on the face of it, rather odd. Cx + Dy ≤ b
is augmented with the vacuous inequality 0 ≤ 1. Thus let C ′ be the m + 1 × d
matrix where C ′

m+1 = 0, D′ be the m + 1 × d matrix where D′
m+1 = 0, and

b′ = b :: 1 and :: denotes concatenation. To match against the previous section,
define E = [C ′ | b′]. The main result can now be stated:

Theorem 1. Suppose

P =
{

x :: y ∈ Rd+d′
|Cx + Dy ≤ b

}
Λ′ =

{
λ′ ∈ Rm+1

∣∣D′T λ′ = 0 ∧ λ′ ≥ 0
}

S =
{

α :: β ∈ Rd+1
∣∣∣ ∃λ′ ∈ Λ′ ∧ α = C ′T λ′ ∧ β = b′

T
λ′

}
and the plane S′ = {(α :: β) ∈ Rd+1 | αT c + β = 1} slices the cone S where
c ∈ Rd. Then the following representation of πx(P ) is irredundant

πx(P ) =
{
x ∈ Rd

∣∣αT x ≤ β ∧ α :: β ∈ vertex(S ∩ S′) ∧ α :: β 6= 0 :: 1
}

where vertex(S ∩ S′) denotes the vertices of S ∩ S′.

Proof.

– Let α :: β ∈ S and x ∈ πx(P ). Thus there exists λ′ = 〈λ1, . . . , λm+1〉 ∈ Λ′

such that α = C ′T λ′ and β = b′
T
λ′. Let λ = 〈λ1, . . . , λm〉. Since DT λ = 0

by lemma 1 it follows λT Cx ≤ λT b. But α = CT λ hence αT = λT C and
β = λT b + λm+1 where λm+1 ≥ 0. Thus αT x = λT Cx ≤ λT b ≤ β.

– Let α :: β ∈ vertex(S ∩ S′) such that α :: β 6= 0 :: 1. Suppose α :: β =
µ0+

∑`
i=1 µi(αi :: βi) for some α1 :: β1, . . . , α` :: β` ∈ S and µ0 ≥ 0, µ1 ≥ 0,

. . . , µ` ≥ 0. Observe 0 :: 1 ∈ S ∩ S′ and put α0 :: β0 = 0 :: 1. Thus α :: β =∑`
i=0 µi(αi :: βi). But 1 = (α :: β)T (c :: 1) =

∑`
i=0 µi(αi :: βi)T (c :: 1) =∑`

i=0 µi hence 1 =
∑`

i=0 µi. Since α :: β 6= 0 :: 1 there exists 1 ≤ i ≤ ` such
that α :: β = αi :: βi thus αT x ≤ β is irredundant. �



Note that the plane αT c + β = 1 used to define S′ does not compromise gen-
erality. Indeed if it where αT c + β.cn+1 = 1 for some cn+1 ∈ R then it would
follow that cn+1 > 0 since S′ cuts the ray 0 :: 1. Yet the translated plane
αT c + β.cn+1 = cn+1 also cuts the rays, hence the assumption αT c + β = 1.
The force of the theorem is that it shows how inequalities in the projection can
be found independently, one-by-one, except for the removal of the vacuous in-
equality. The sequel explains how vertex enumeration can be realised with PLP.

5 Vertex Enumeration using PLP

The algorithm to enumerate the vertices of the projection space using PLP is
presented across Algorithms 1, 2 and 3, that are described separately below.

5.1 Vertex enumeration

Algorithm 1 takes as its argument the tableau of form C as described in sec-
tion 3.5. The vector δ represents the parameters of the objective. Each parameter
δi assumes a value in range [−1, 1] though initially δ = 1.

The algorithm uses a worklist WL of tableau/parameter pairs to drive the
vertex enumeration. The output OP is a set of tableaux representing the ver-
tices. The first step on line 3 of Algorithm 1 finds the tableau with the initial
value of δ optimised. The main loop removes a pair from the worklist, then for
every parameter δi finds a tableau corresponding to an adjacent vertex and a
corresponding value for that parameter such that the vertex is optimal.

These values are returned from the calls to nextVertex on lines 11 and 15,
with first call searching for further vertices with the current parameters and the
second call invoked when line 11 does not give a new tableau. Note that in some
cases only δi changes its value and that null returns are possible for the tableau,
indicating that pivoting is not possible. If no new tableau is found then δi is
updated to -1 and this is added to the worklist (line 18). Otherwise, both the
worklist and the output are updated.

5.2 Next parameter

Algorithm 2 returns for parameter δi the highest value less than its current
value that induces a pivot. Again note that since it is optimal bases that are
of interest, pivots occur when objective entries become zero, rather than when
they are negative. Line 2 of the algorithm finds the set ∆′ of values (less than δi)
that the parameter can take in order that a non-basis objective entry can take
value 0. Here T 0

j (δ) evaluates the objective entry in column j with parameters
δ. If ∆′ is non-empty the largest value less than the current value is returned
(line 3). Otherwise the return is −1.



Algorithm 1 Vertex enumeration with PLP
1: function enumVertices(Tin)
2: WL = [], OP = [], δ = 1
3: T = maximise(Tin, δ)
4: WL.add(T, δ), OP.add(T )
5: while WL 6= [] do
6: (T, δ) = WL.remove()
7: for i = 1 to |δ| do
8: if δi 6= −1 then
9: T ′ = null
10: if ∃j ∈ (T.cobasis).T 0

j (δ) = 0 then
11: (T ′, δ′) = nextVertex(T, δ, i)
12: end if
13: if T ′ = null then
14: δ′′ = nextDelta(T, δ, i)
15: (T ′, δ′) = nextVertex(T, δ′′, i)
16: end if
17: if T ′ = null then
18: WL.add(T, δ′)
19: else
20: WL.add(T ′, δ′), OP.add(T ′)
21: end if
22: end if
23: end for
24: end while
25: return OP

5.3 Next vertex

Algorithm 3 defines a recursive function that returns a tableau/parameter pair
representing a vertex. That a tableau represents a vertex can be tested by solving
a linear program describing that at a vertex the parameters should have sufficient
freedom that a perturbation in one parameter can be balanced by perturbations
in the others so that a pivot is not induced. Recall the example in section 3.5.

The algorithm performs a lexicographic pivot step with a candidate entering
column at line 4. If the pivot leads to a basis that has already been generated,
the resulting tableau is null and the loop moves on to the next j column. This
avoids the cycling phenomena in which a vertex is visited repeatedly. Otherwise,
if the new tableau/parameter pair does not represent a vertex, then the function
calls itself, continuing its search for a vertex. The algorithm returns (null, δ) if
there are no pivots available.

The combined effect of the three algorithms is to systematically explore the
tableaux corresponding to optima with respect to the parameter space. By re-
turning those tableaux corresponding to vertices the inequalities of the projection
space can be found. In summary, projection is reduced to repeated pivoting.

Proposition 1. Algorithm 1 is complete, that is, if α :: β ∈ vertex(S ∩ S′),
α :: β is in its output.



Algorithm 2 Finding the next δ value
1: function nextDelta(T, δ, i)
2: ∆′ = {δ′i | ∃j ∈ (T.cobasis).T 0

j (δ[i 7→ δ′i]) = 0 ∧ δ′i < δi}
3: δ∗i = max(∆′ ∪ {−1})
4: return δ[i 7→ δ∗i ]

Algorithm 3 Finding the next vertex
1: function nextVertex(T, δ, i)
2: for j = 1 to |δ| do
3: if j ∈ T.cobasis ∧ T 0

j (δ) = 0 then
4: T ′ = T.pivot(j)
5: if T ′ 6= null then
6: if T ′.isVertex(δ) then
7: return (T ′, δ)
8: else
9: return nextVertex(T ′, δ, i)
10: end if
11: end if
12: end if
13: end for
14: return (null, δ)

Proof. (Outline) The algorithm is complete if it gives a series of pivots from the
initial tableau to a tableau representing any vertex of the output space. Consider
some vertex v, then there exists objective δv such that a tableau for v is optimal
with respect to δv. Now consider the initial tableau which is optimal with respect
to 1. With objective δv there must be a series of pivots from the initial tableau
to that for vertex v. The parameter values δ always suggest an entering column
for pivoting. To see this consider a tableau representing vertex v′ that is optimal
with respect to δ: for some i a decrease in δi will suggest a pivot to a tableau
that gives a higher value for δv than that for v′, hence this pivot must also be
selectable when optimising δv from v′. Therefore v is output by Algorithm 1. ut

6 Related work

This paper can be considered to be a response to the agenda promoted by the
weakly relational domains [14, 16, 25, 26, 33] which seek to curtail the expressive-
ness of the linear inequalities up front so as to recover tractability. These domains
are classically formulated in terms of a closure operation which computes the
planar shadows [1] of a higher-dimensional polyhedron defined over x1, . . . , xn;
one shadow for each xi, xj pair. Operations such as join are straightforward once
the shadows are known. This hints at the centrality of projection in the design
of a numeric domain, an idea that is taken to the limit in this paper. Other
ingenious ways of realising weakly relational domains include representing in-
equalities with unary coefficients as binary decision diagrams [8], using an array



of size n to compactly represent a system of two variable equality constraints
over n variables [13], and employing k-dimensional simplices as descriptions since
they can be represented as k + 1 linearly independent frame elements [31].

An interesting class of weakly relational domain are the template domains [30]
in which the inequalities conform to patterns given prior to analysis, say, ax2 +
bx3 + cx6 ≤ d. During analysis values for coefficients a, b and c (on the left) and
constants d (on the right) are inferred using linear programming. This domain
has recently been relaxed [9] so that the right-hand side can be generalised
to any parametric two-variable linear expression. The advance in this work is
that the domain operations can then be performed in an output sensitive way:
the computational effort is governed not only by the size of the input but the
output too, rather than that of any intermediate representation. Fractional linear
programming [4] is used to simulate the Jarvis march [18] and thereby project
a higher dimensional polyhedron onto a plane in an output sensitive fashion.

Further afield, finite-horizon optimal problems can be formulated as PLP
[19]. PLPs allow the control action to be pre-computed off-line for every possible
value of the parameter µ, simplifying an on-line implementation. In a study of
how to solve PLPs, the link between PLP and projection has been explored [19], a
connection that is hinted at in the seminal work on PLP [15]. Yet the foundation
result of [19], lemma 3.2, overlooks the need to relax constants and only addresses
the problem of the uniqueness of the representation of a vertex by making a
general position assumption. This assumption is unrealistic in program analysis
where polyhedra can be degenerate, hence the use of lexicographical pivoting in
this work. As a separate work, there has been interest in realising PLP using
reverse search [2, 20] though again making a general position assumption.

7 Conclusions

This paper has revisited the abstract domain of polyhedra, presenting a new
algorithm to calculate projection. Apart from one trivial inequality that can be
recognised syntactically the projection does not enumerate redundant inequali-
ties, hence does not incur expensive post-processing. Moreover, if there are an
excessively large number of inequalities in the projection then, since projection is
computed incrementally, one inequality at a time, the calculation can be aborted
prematurely yielding an over-approximation of the result without compromising
soundness. The new algorithm is based on pivoting which is known to have fast
implementations and even appears to be amenable to parallelisation. Since con-
vex hull can be calculated using meet and projection [32] the presented algorithm
can form the core of a polyhedra analysis.
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5. E. Burger. Über Homogene Lineare Ungleichungssysteme. Zeitschrift für Ange-
wandte Mathematik und Mechanik, 36:135–139, 1956.

6. N. V. Chernikova. Algorithm for Discovering the Set of All the Solutions of a Linear
Programming Problem. Computational Mathematics and Mathematical Physics,
8(6):1387–1395, 1968.
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