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ABSTRACT 

 
Do we use one cerebral hemisphere or both to process positive and negative 
emotions? Is it more physiologically economical for the brain to initiate responses to 
both types of primary affect from a unilateral locus, or does our readiness to react to 
emotional stimuli depend on the differential contribution of each hemisphere based 
on the approach or avoidance behaviours positive and negative affect elicit? This 
thesis is concerned with these questions that have so far remained unanswered 
even though they form a key part of emotional perception research. The behavioural 
literature has provided evidence for both unilaterally (right hemisphere) and 
bilaterally derived responses to different types of emotional stimuli, with the 
directionality of response patterns changing depending on stimulus type and task 
demands. The neuroimaging literature has addressed whether there is a functional 
need for the lateralised processing of basic emotional stimuli by mapping subcortical 
and cortical emotional attention networks, specific to different variants of only 
negative affect (i.e. fear, sadness). How this subcortically originating lateralisation 
manifests into observable behaviour however still remains to be established. This 
research therefore posits that hemispheric lateralisation may be a modulated 
process, and aims to explore how this modulation guides the directionality of our 
behavioural responses to primary affect. The thesis introduces a novel methodology 
that provides the first evidence of the modulation of emotional lateralisation by 
establishing a behavioural paradigm that can effectively investigate hemispheric 
lateralisation through measures of response efficiency. The thesis further 
investigates whether subcortically originating lateralisation may be inferred through 
its resulting behavioural response, by examining visual field asymmetries in 
responses to positive and negative affect through nasally and temporally viewed 
stimuli. Additionally, the thesis considers the modulating properties of contextual 
emotion-enhancing features of facial expressions such as direct vs. averted gaze 
and the presence of looming sounds on behavioural responses to negative affect, 
and also investigates whether individual variability in anxiety levels translates into 
lateralised responses to affect. Findings from the present thesis suggest that 
lateralisation is not a sustained, static phenomenon, but in fact a dynamic, 
modulated process that depends on subtle stimulus-contextual elements to 
subsequently translate into observable response.  
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1     CHAPTER 1: GENERAL INTRODUCTION 

 

1.1. THEORETICAL BACKGROUND & OVERVIEW 

 
 
  In 1884, William James submitted a paper to the then-philosophical journal Mind 

asking why one would run when faced with a wild bear; do we run because we’re 

afraid of what will happen if we don’t, or are we afraid because we’re running? The 

present thesis poses a similar question: to clarify what happens during the stages 

from stimulus to feeling, and identify the processes that modulate and facilitate this 

timeline of events that come in between. What is it that dictates and guides the way 

in which we perceive and respond to the most basic and evolutionarily ingrained of 

emotions?  The way in which we perceive our environment and function within it is 

for the most part dictated by our ability to correctly identify, as well as to efficiently 

respond to emotional information.  

   Efficiency in the way we cognitively process affect is essential to our survival; 

accurate detection and classification of environmental emotional stimuli enables us 

to detect and respond to potential threat as well as regulating our behaviour and 

enabling our social interactions. Emotional perception has been extensively 

researched in the cognitive, social and developmental psychological neuroscience 

domains since the late 19th Century with no sign of decreasing in momentum as 

methodological techniques advance. Emotional perception research has not 

however been without theoretical, conceptual, and methodological issues; across 

studies, the reporting of conflicting evidence for elements of emotional processing 

spanning their definition, classification and categorisation, and how emotions are 

processed and responded to from perception to resulting observable behaviour, has 

become somewhat of a trademark of emotion research. This chapter will introduce 

the underlying theoretical issues informing emotional perception research, present 

the evidence so far, and outline the theoretical framework forming the rationale on 

which the present thesis is based.  
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1.2 DEFINITIONS OF AFFECT AND LATERALITY 

 

   Perhaps one of the most controversial topics in the field of emotion research has 

been that of a suggested differential hemispheric contribution, or lateralisation, 

specific to the nature of emotional information processed. A large body of evidence 

supports the hypothesis of a valence-specific lateralisation (e.g. Reuter-Lorenz, 

Kinsbourne, & Moscovitch, 1990; Reuter-Lorenz, Oonk, Barnes, & Hughes, 1995; 

Reuter-Lorenz, & Davidson, 1981; Ahern & Schwartz, 1979; Ross, 1977), which has 

however been at the forefront of considerable debate as an equally large body of 

evidence has conversely suggested that all aspects of emotional processing may be 

attributed solely to right hemisphere specialisation (e.g. Borod & Caron, 1980; Borod 

et al., 1998; Devinsky, 2000; Dimberg & Petterson, 2000; Ladavas, Umiltà, & Ricci-

Bitti, 1980; Tucker, 1981).  

   The valence hypothesis suggests that each of the two hemispheres becomes 

preferentially engaged depending on the phenomenological nature of emotional 

environmental stimuli we are exposed to (Ross, Homan, & Buck, 1994; Schwartz, 

Ahern, & Brown, 1979). Emotions that are perceived to be negative or threatening 

are suggested to be preferentially processed by the right hemisphere, while the left 

hemisphere engages with the processing of positive emotional stimuli (Ross et al., 

1994). The alternative, right hemisphere dominance hypothesis suggests that all 

emotional information regardless of valence is unilaterally processed by the right 

hemisphere; the underlying rationale in favour of unilateral hemispheric emotional 

processing suggests that if a function does not need to be represented bilaterally in 

the morphology of the human body (i.e. such as having a left and right arm and leg), 

then it is more evolutionarily economical to group all neural connections for said 

function close together (Rolls, 1990, 2005).  

   The theoretical foundations of this debate might be perhaps better understood 

through historical attempts at defining, categorising and classifying the concept of 

emotions. In the 19th century, William James conceptualised emotions as being 

physiological changes occurring in the self following exposure to an arousing 

stimulus (LeDoux, 2000). James’s definition suggested that the term ‘emotion’ 

represents a timeline of perceptual and action events, starting from the exposure to 

an arousing stimulus (usually threatening), and resulting in the emotional subjective 

experience itself – in other words, the feeling (LeDoux, 2012).  
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   One resulting categorisation of emotions is based on the assumption that they are 

individual subjective states concerned with maintaining the life of an organism, and 

as such are comprised of a number of attributes relating to instinctual, innate 

behaviours (Damasio et al., 2000). Individual emotional states are thence 

categorised into primary-basic, secondary-social, and background emotions 

according to their phenomenology. Specifically, primary emotions (i.e. fear, anger, 

sadness, surprise, disgust, happiness) are shared by numerous animal species and 

are grounded in ontologically ancient instinctual behaviours closely connected with 

ensuring survival. Secondary (a.k.a. social) emotions (i.e. guilt, pride, empathy, 

embarrassment, jealousy) are grounded in experience of social interactions, by 

implying the presence of a social audience and do not share the same direct link to 

survival as primary emotions. Lastly, background emotions (i.e. wellbeing, malaise, 

calmness, tension) are connected to organisms’ current individual physiological 

states and might act as mediators, modulators, or inhibitors of behaviour (Damasio 

et al., 2000; LeDoux, 2000).  

   The dichotomisation of emotions into positive and negative is predominantly 

concerned with primary/basic affect, and links its strong instinct-based attributes to 

both a basis on an organism’s homeostatic regulation (Damasio et al., 2000), and on 

the prompting of cognitive plans for action (Rolls, 1990, 2005). In behaviouristic 

terms, positive and negative emotions relate to whether the environmental stimuli 

causing them are perceived as possible rewards or possible punishers (Rolls, 2005), 

with rewards comprising anything that an organism that will act towards obtaining 

(approach), and punishers being anything that an organism will act to avoid 

(avoidance).  

   The grouping of emotions into primary, secondary, background as well as into 

positive/negative has also been established on the identification of 

neuroanatomically discrete emotional systems, thought to be specific to different 

types of basic affect - a type of localised, emotional map comprising subcortical 

structures in the limbic system and midline messencephalic structures (Panksepp, 

2004, 2005; Panksepp & Zellner, 2004). This map includes a dopamine-facilitated 

appetitive motivation seeking system, located in the ventral tegmental area and 

nucleus accumbens, and thought to promote learning, exploratory searching as well 

as facilitating goal-directed activities; a fear system which mediates flight and 

general anxious feelings and connects the amygdala, the bed nucleus of the stria 
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terminalis, and the periaqueductal grey of the mesencephalon; a rage system which 

courses parallel to the fear system’s circuitry from the medial amygdala to the 

periaqueductal grey and facilitates aggressive acts and feelings; a system 

associated with separation-distress and panic reactions connecting the 

periaqueductal grey matter with more rostral brain areas that triggers separation-

distress feelings and mediates panic reactions; regions associated with erotic desire 

in basal forebrain and hypothalamic structures connecting them down to the 

periaqueductal grey and which are associated mainly with erotic feelings; a care 

system which facilitates maternal/paternal nurturing feelings; and lastly a play 

system which is associated with youthful rough-and-tumble play and laughter, which 

is primarily relevant to positive affect (Panksepp, 2004, 2005).   

   Specifically relevant to the positive/negative emotion grouping are bottom-up and 

top-down perceptual processing networks (Derryberry & Tucker, 1992). For example, 

when considering top-down hierarchical cognitive organisation combined with 

Panksepp’s more instinctual emotion-mapping system, one observes some overlap. 

Specifically, descending neuronal connections allow the cortex to regulate emotional 

functions of the limbic system and brainstem, while also controlling finer peripheral 

responses (Derryberry & Tucker, 1992). This system includes several circuits of low-

level effectors which process and regulate the endocrine, autonomic and motor 

systems, and its projections contribute to specific elements of emotional expressions 

(i.e. vocalisations, gestures), as well as to the coordination of eye movements and 

postures involved in approach-avoidance behaviours (Derryberry & Tucker, 1992; 

Harrison, 2015). The bottom-up organisational system encompasses connections 

from the limbic system and brainstem to the cortex, with four ascending and 

neurochemically-distinct systems relevant to emotional processing: noradrenergic 

projections stemming from the locus coeruleus, serotonergic projections from the 

dorsal and medial raphe nuclei, dopaminergic projections from the ventral tegmental 

area, and cholinergic projections from the nucleus basalis (de Gelder, van Honk, & 

Tamietto, 2011; Derryberry & Tucker, 1992; Harrison, 2015; Pessoa & Adolphs, 

2010).  

    Given the discrete anatomical and functional systems relating to positive and 

negative types of primary affect, lateralisation research has attempted to link the 

contralateral physiology of the human visual and musculoskeletal systems to the 

preferential engagement of either left or right hemispheric engagement, based on the 
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nature of an emotional stimulus (positive vs. negative). However, thus far 

lateralisation of emotional physiology and its expression in behaviour remains 

uncertain. The following sections will outline reasons for the continuing uncertainty 

by considering the evidence for a functional need for lateralisation, and by 

addressing current research.  

 

1.3 REVIEW OF EVIDENCE FOR THE LATERALISATION OF PRIMARY AFFECT  

 

1.3.1 BEHAVIOURAL LATERALISATION LITERATURE 

 
    Up to now, a number of studies have examined the lateralised versus right-

hemisphere dominant processing of primary affect, with conflicting evidence reported 

in the literature. For example, some behavioural studies report on the overall right-

hemisphere processing for positive and negative, visual and auditory emotional 

stimuli (e.g. Borod & Caron, 1980; Borod et al., 1998; Borod, Koff, & White, 1983; 

Campbell et al., 1990; Hugdahl, Iversen, & Johnsen, 1993; Ladavas et al., 1980; Ley 

& Bryden, 1979; McLaren & Bryson, 1987; Safer, 1981), while other reports suggest 

emotion-specific right-biased lateralisation which is less prominent for positive affect 

(e.g. Dimond, Farrington, & Johnson, 1976; Ehrlichman & Halpern, 1988; Ley & 

Bryden, 1979; Sackeim, Gur, & Saucy, 1978; Sackeim & Gur, 1978). Other work 

reports negative emotion-specific laterality effects, with no converse lateralisation for 

positive emotions (Best, Womer, & Queen, 1994; Bryden, Free, Gagné, & Groff, 

1991; Mandal et al., 1999), while several research reports suggest that positive 

emotions are preferentially processed by the left hemisphere, while negative affect is 

processed by the right hemisphere, as inferred by visual field asymmetries during 

visual presentation of emotional stimuli such as faces and words (Lane et al., 1997; 

Moretti, Charlton, & Taylor, 1996; Reuter-Lorenz et al., 1990; Reuter-Lorenz, & 

Davidson, 1981; Schwartz et al., 1979; Van Strien & Valstar, 2004; Van Strien & Van 

Beek, 2000) (see Table 1 on the following pages for a summary of a selection of 

behavioural studies emotional laterality). 
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Table 1. Summary table outlining task details and findings from a selection of behavioural lateralisation 
studies that have informed the rationale of the present thesis.
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1.3.2 NEUROIMAGING LATERALISATION LITERATURE 

 

More recently, there has been a nearly complete shift of research interest from the 

behavioural to the neurological domains. This body of work has produced more 

consistent support for the lateralised processing of basic affect, by observing 

activation patterns of specific subcortical structures in the basal ganglia and limbic 

system, which are also known to activate during states of vigilance and alertness. 

Much of what we know in terms of lateralised subcortical activation patterns in the 

processing of affect comes from studies on the perception of negative emotional 

stimuli. For example, neuroimaging studies investigating subcortical activation during 

emotional perception and response have produced a large body of evidence for fear-

specific unilateral activation of specific subcortical structures that are part of the 

subcortical vigilance/alarm activation network through the amygdala. For example, 

structures such as the superior colliculus (e.g. Cesarei & Codispoti, 2015; 

Ellenbogen & Schwartzman, 2009; Vuilleumier, Armony, Driver, & Dolan, 2003), 

amygdala (e.g. Adolphs, Russell, & Tranel, 1999; Pessoa & Adolphs, 2010; Pessoa, 

2010; van der Zwaag, Da Costa, Zürcher, Adams, & Hadjikhani, 2012), substantia 

innominata (e.g. Mesulam, 1998; Viinikainen et al., 2010; Whalen et al., 1998), and 

nucleus accumbens (e.g. Carretié et al., 2009; Duncan & Barrett, 2007; Haegelen, 

Rouaud, Darnault, & Morandi, 2009; Richter-Levin & Akirav, 2003) have been 

identified as structures mediating the speeded processing of self-relevant, 

biologically significant, fearful in valence, information. Specifically, this thesis defines 

self-relevant, or biologically significant emotional stimuli as any stimuli that the 

organism may perceive as having a direct consequence and impact on their 

wellbeing. For instance, the nearby sound of a lion’s roar may signify the impending 

arrival of an aggressor, thus prompting a person to flee.  

   Fearful stimuli have been predominantly used in the neuroimaging literature as the 

main representation of what constitutes negative affect, with a substantially smaller 

amount of research utilising angry or sad stimuli. For example, in fear-conditioning 

studies of the subcortical processing of auditory affect, reports from amygdalar lesion 

studies have shown both the complete disappearance of fear-specific responses in 

cases of bilateral lesions (Armony & LeDoux, 2010), or the significant decrease in 
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fear responses in cases of unilateral partial lesions (Baker & Kim, 2004).The primary 

emotion of anger has primarily been examined in relation to its effects on other 

higher-order cognitive functions such as working memory (e.g. Jackson, Linden, & 

Raymond, 2014; Thomas, Jackson, & Raymond, 2014) and in further relation to 

personality or mood disorders like anxiety and depression (e.g. Bradley, Mogg, 

Millar, & White, 1995; Eysenck, Derakshan, Santos, & Calvo, 2007; Mogg, Garner, & 

Bradley, 2007), and schizophrenia (e.g. Linden et al., 2010; Wolf et al., 2011). It 

remains unknown as to whether biologically significant angry stimuli would exhibit 

similar lateralised subcortical activation to that reported during processing of fearful 

stimuli, as no studies have so far directly compared subcortical engagement 

between these two types of negative affect during emotional perception. The thesis 

will address the neuroimaging emotional perception literature in detail in chapters 3 

and 4, where it is directly relevant to the rationale of the experiments presented 

therein.  

 

1.3.3 PRELIMINARY CONCLUSIONS ON LATERALISATION 

 

   One possibility for the lack of research interest in examining laterality effects 

specific to angry stimuli might be the lack of consensus regarding the definitional 

distinction between positive/negative affect and approach/avoidance affect and 

resulting behaviour (Wager, Phan, Liberzon, & Taylor, 2003). The two 

categorisations have since been used interchangeably in emotion research (i.e. in 

early behavioural studies on lateralisation positive affect has been conceptualised as 

approach, and negative as avoidance) (Davidson, Jackson, & Kalin, 2000). The 

conceptualisation that the positive/negative dichotomy might be equated to the 

approach/avoidance distinction however can be somewhat problematic; why is it that 

only positive affect should result in approach behaviours? One might argue that 

negative affect – especially if directly relevant to the organism by signalling the 

presence of potential threat or danger – might instigate fight behavioural reactions in 

the fight or flight dilemma by acting as a potent localiser for the location of threat. 

Fight reactions to anger could therefore also be interpreted as approach behaviours, 

as one would seek to engage the potential threat instead of always seeking to avoid 

it.  
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   While studies in the neuroimaging literature on laterality report subliminally 

perceived negative affect as being preferentially processed (e.g. Liddell et al., 2005), 

behavioural accounts of emotional face perception report biased processing of 

positive affect in visual search (e.g.Calvo & Beltrán, 2014; Calvo & Nummenmaa, 

2007) and masked emotion tasks (Juth, Lundqvist, Karlsson, & Ohman, 2005; 

Leppänen & Hietanen, 2004). An underlying conclusion at this point might be that 

differential whole-hemisphere engagement that is thought to depend on either the 

positive/negative valence of stimuli, or on the approach/avoidance reactions which 

emotional information might inform, might be a somewhat crude generalisation. 

Instead, it is specific cortical regions or subcortical structures and areas within them 

that have been shown to display distinctly unilateral activation depending on the 

nature of the emotional stimulus perceived or being responded to (Wager et al., 

2003).  

   Given the close, biologically significant relationship between primary affect and 

reflexive reactions, it is not surprising that a considerable proportion of lateralisation 

research focuses on the so-called threat advantage – the suggested preattentive 

processing of threatening emotional information (Horstmann, 2007; Horstmann & 

Bauland, 2006). Again, mostly fearful stimuli (e.g. fearful facial expressions) tend to 

be predominantly used when considering the possibility of processing threatening 

environmental information before they pass the awareness threshold. For example, 

support for the threat advantage assumption has been provided from studies using 

chimeric (i.e. facial expression stimulus which is created by presenting different 

stimuli, either all-fearful and all-neutral, or all-fearful and all-happy, to the right and 

left visual field simultaneously) and schematic facial expressions of fearful affect 

(e.g. Horstmann & Bauland, 2006; Horstmann, 2007; Rafal, Henik, & Smith, 1991), 

and negatively-valenced words and scenes (e.g. Fox, 2013; Koster, Crombez, 

Damme, & Verschuere, 2004; Yiend, 2010).  

 

1.3.4 MIGHT LATERALITY PATTERNS BE DEPENDENT ON METHODOLOGY? 

 

   In behavioural research on lateralisation, a large number of studies have 

investigated the potential of preferential engagement of either the left or right 

hemisphere through a number of behavioural indices (i.e. button-press response 
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times, saccades latency and direction, physiological measures of arousal, signal 

detection sensitivity indices/d’prime). A range of experimental paradigms have also 

been applied that utilise a variety of primarily visual and spatial attention tasks with 

equally varied stimulus types, with subsequent results reported differing in the 

directionality of lateralised observable responses. Application of such methodological 

variations could have potentially resulted in the resulting variation in patterns of 

lateralisation. For example, some studies using valenced facial expressions have 

opted to utilising chimeric stimuli (e.g. Jansari, Tranel, & Adolphs, 2000; Lang, 

Greenwald, Bradley, & Hamm, 1993), while some opt for photographic facial 

expression stimuli (e.g. Bradley et al., 1995; Mogg et al., 2007).  

   Similarly, behavioural lateralisation studies in the visual domain use a multitude of 

stimulus presentation types. For example, facial expression stimuli have been 

presented either in an upright (e.g. Horstmann, 2007; Moretti, Charlton, & Taylor, 

1996; Reuter-Lorenz, & Davidson, 1981), inverted (e.g. Calvo & Beltrán, 2014; Calvo 

& Castillo, 2001), or a combination of both layouts (e.g. Horstmann, 2007; Jansari et 

al., 2000). Gaze direction in negative facial expressions of affect also tends to direct 

the lateralisation pattern of responses, although in this case laterality appears to 

depend on the approach/avoidance dichotomy as opposed to a distinction purely 

based on valence. For example, participants responding to happy facial expressions 

with gaze directed at them often exhibit motivation to approach behaviours (Adams & 

Kleck, 2003a; Davidson, Jackson, & Kalin, 2000). Conversely, a distinctly negative 

affect such as anger with eyes directed to the observer might also be expected to 

elicit similar motivation to approach behaviours, possibly as a means of intending to 

engage with the threat (fight instead of flight) (Adams et al., 2003b). The link 

between approach/avoidance behaviours and laterality is founded on earlier reports 

of approach/avoidance behaviours suggested as being products of the lateralised 

engagement of the right and left hemispheres during visual cognitive activities 

concerning personal and extrapersonal space respectively (Heilman, Chatterjee, & 

Doty, 1995). In this report, the authors observed right hemisphere activation in visual 

cognitive activities concerning the space away from the observer’s body (avoidance), 

and left hemisphere activation during visual cognitive activities concerning the space 

near the observer’s body (approach). 

     Additionally, stimulus onset-offset latencies and participant response time 

allowances greatly differ across behavioural paradigms. For example, typically visual 
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search and forced-choice detection tasks allow valenced stimuli to be displayed up 

until participants provide a response (e.g. Moretti et al., 1996; Reuter-Lorenz et al., 

1995; Reuter-Lorenz, & Davidson, 1981), thus resulting in 1 to 3 seconds long 

response times. Importantly however, reflex-like responses to valenced stimuli (or 

emotion linked to approach behaviours) are more likely to occur following rapid 

stimulus display times, as rapid attentional engagement is initiated after 50-100ms-

long stimulus display times, with displays of 300ms and longer resulting in full, 

higher-order attentional engagement (Posner, Rafal, Choate, & Vaughan, 1985). The 

sheer multitude of emotionally charged environmental stimuli that we are exposed to 

on a daily basis necessitates the rapid engagement of attentional vigilance, and 

requires a type of filtering mechanism that can efficiently and accurately distinguish 

between self-relevant and self-irrelevant information. Facial expressions that convey 

emotional nuances are possibly amongst the most attentionally significant stimuli we 

are exposed to, not simply due to their automatic recognisability, but also due to the 

strong self-preservation relevant signals they might carry. For example, when 

observing an emotional face, one is able to identify a friend or a foe, while 

automatically initiating plans for appropriate action. When investigating the 

perceptual processing properties of primary emotion, facial expressions of affect lend 

themselves as being ecologically valid and biologically significant stimuli that could 

possibly also apply to other, non human-specific stimuli of affect such as spiders or 

snakes. An underlying conclusion, relevant to all different methodologies that have 

been used in explorations of lateralised processing of primary affect seems to be that 

the lack of consensus in laterality patterns could be due to inconsistency between 

methodologies. 

 

1.4 IS THERE A FUNCTIONAL NEED FOR LATERALISATION? 

 

   The earliest evidence for lateralised hemispheric contribution comes from clinical 

studies on abnormal emotional behavioural manifestations resulting from specific 

psychiatric conditions. In a study of epileptic patients who suffered unilateral lesions, 

Flor-Henry observed that left-sided lesions resulted in catastrophic emotional 

reactions (i.e. tears and dysphoria), while right-sided lesions resulted in emotional 

unawareness and indifference that manifested as a lack of concern and hypomania 
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(Flor-Henry, 1983).  In another example, in an investigation of pathological laughing 

and crying symptoms in patients with nuclear brainstem lesions, Gainotti and 

colleagues observed that pathological crying symptomatically occurred in patients 

with left lateralised lesions, while pathological laughing occurred in patients with right 

lateralised lesions (Gainotti, Antonucci, Marra, & Paolucci, 2001). Examples from the 

neuroimaging and neurophysiological literature have also provided support for a 

differentially distributed, lateralised hemispheric contribution, which is recruited 

accordingly depending on the nature of the emotion perceived. In the non-psychiatric 

neuroscience literature, early work in laterality and speech production by Rossi and 

Rosadini concluded that the two hemispheres incur opposite influences in the tone of 

emotional speech production, as observed in participants having undergone 

unilateral hemispheric sedation with sodium amobarbital; the authors noted that the 

right hemisphere was recruited during organisation of speech expressions of positive 

affect, while the left hemisphere was recruited during negative emotional speech 

expression (Rossi & Rosadini, 1967). Further reasoning suggesting a functional 

need for lateralisation based on the type of emotional stimulus perceived comes from 

emotional attention research. Specifically, attentional networks in the human brain 

are fine-tuned to ensuring survival by quickly and correctly identifying relevant 

information from our environment and filtering secondary, unnecessary stimuli. 

Depending on the biological relevance of a valenced stimulus, we are able to engage 

in appropriate action. This reasoning may be derived by linking evidence from the 

literature on the asymmetrical attentional processing of the space near or far from 

the body, to the suggested lateralised differential hemispheric engagement for 

positively and negatively valenced stimuli if one was to assume that positive vs. 

negative valence might manifest into approach vs. avoidance behaviours. Left/right 

asymmetries have been linked to attention being directed to near/far interpersonal 

space; for example, Heilman and colleagues reported that the left hemisphere was 

preferentially engaged during visual cognitive activities concerning the space close 

to the body, thus drawing attention close to the personal space. Heilman and 

colleagues also reported the right hemisphere was preferentially engaged during 

visual cognitive activities concerning extrapersonal space, therefore drawing 

attention away from the body (Heilman et al., 1995). It is therefore a possibility that if 

a valenced stimulus is suggesting actual threat to survival, the most efficient 

musculoskeletal response will be executed after engaging left-lateralised cerebral 
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networks linked to action-readiness. Conversely, if a positively valenced stimulus is 

perceived, right-lateralised hemispheric engagement will allow for action to 

approach.  

1.4.1 MIGHT EMOTIONAL FACIAL EXPRESSIONS ENHANCE THE FUNCTIONAL NEED 

FOR LATERALITY? 

 

   Faces are heavily loaded stimuli regardless of valence; when observing a face, 

one is able to identify a multitude of socially-relevant cues which are key to human 

interaction such as for example identity, gender and attractiveness (Morris, Ohman, 

& Dolan, 1999; Vuilleumier, 2005a). In this light, any face – be that emotionally 

expressive or not – carries some element of biological significance and relevance, 

which could in theory mean that all faces irrespective of an emotionally-charged 

expression could be fast-tracked through the filters of selective attention. However, 

in the neuroimaging literature, some basic emotions – particularly those pertaining to 

threat or danger – have repeatedly been reported as preferentially processed as 

attention is biased towards them (e.g. Ledoux, 2000; Morris et al., 1999; Vuilleumier, 

2005a, 2005b), with a similar processing preference for threat also displayed in 

behavioural studies of emotional processing (Horstmann, 2007; Horstmann & 

Bauland, 2006). Contrarily, a number of behavioural accounts of emotional face 

perception report biased and preferential processing of positive affect in visual 

search and backward masked emotion tasks (e.g.Calvo & Beltrán, 2014; Calvo & 

Nummenmaa, 2007; Juth, Lundqvist, Karlsson, & Ohman, 2005; Leppänen & 

Hietanen, 2004). Therefore, it may be the case that the two broad categories of basic 

emotional expressions (positive and negative) – such that do not require more 

complex, higher order cognitive disambiguation – impose a stronger bias on 

attention than non-emotive faces and may also therefore be sped through attentional 

filters. It may also be the case, that when two opposing types of emotional facial 

expressions (positive vs. negative) are presented, a form of attentional competition 

for their speeded processing takes place, the outcome of which depends on the type 

of experimental task employed; for example, in cases of backwards masking (i.e. 

Leppänen & Hietanen, 2004) positive affect commands attention, whereas in cases 

of simpler emotional stimulus detection (i.e. Horstmann & Bauland, 2006) negative 

faces grab attention.  
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 The sheer multitude of emotionally charged environmental stimuli that we constantly 

encounter requires a sophisticated filtering mechanism that distinguishes between 

self-relevant and self-irrelevant information. Based on the outcome of this filtering, 

the most suitable type of response is selected and initiated, which in turn aids in 

managing the high attentional demands involved in deciphering, classifying and 

responding to a stimulus (Compton, 2003; Haxby, Hoffman, & Gobbini, 2000). 

Similarly, the detection, categorisation, and processing of facial expressions carrying 

an emotional load is a process which makes equally strong and biologically-relevant 

attentional demands (Palermo & Rhodes, 2007), suggested as being a product of a 

complex dynamic network of structures; namely, the amygdala, anterior insula, 

brainstem, hypothalamus, and orbital and somatosensory cortices (Dailey, Cottrell, 

Padgett, & Adolphs, 2002). The suggestion of increased biological relevance and 

hence speeded attentional processing of emotive faces has been confirmed primarily 

through studies comparing behavioural responses to basic facial affect to those 

resulting from exposure to phobic stimuli. Specifically, some facial expressions are 

thought to be processed in a similar way to other highly biologically-relevant stimuli 

such as spiders or snakes (Palermo & Rhodes, 2007).  

  What is it however about faces that makes them as effective as phobic stimuli in 

grabbing attention? The answer may lie in specific physiognomic elements of 

emotional expressions, which are suggested to be processed independently to 

others. For example, facial features which are dynamic and changeable and 

therefore can signal subtle changes in emotional expression have been suggested to 

be processed differently to other, invariant facial expression features ( Adams & 

Kleck, 2003; Haxby et al., 2000; Palermo & Rhodes, 2007). Specifically, once 

through the initial encoding stage, dynamic elements of a facial expression such as 

eyebrows, mouth movement/shape and eye gaze, are processed independently of 

elements which for instance can aid in determining identity (Demaree, Everhart, 

Youngstrom, & Harrison, 2005; Haxby et al., 2000). While processing of the dynamic 

elements of an expression is facilitated by the superior temporal sulcus (Palermo & 

Rhodes, 2007), processing of elements establishing identity are processed through 

the lateral fusiform gyrus, via the fusiform face area, and through to anterior temporal 

regions (Adolphs, 2002; Haxby et al., 2000). Arguably, basic emotional facial 

expressions are effective, attention-grabbing stimuli that may be equally survival-

relevant to the observer as a direct aggressor such as a snake. Given their strong 
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biological significance the attentional networks mediating our behavioural responses 

to facial expressions should be the same bottom-up subcortical emotion processing 

networks that are not only fine-tuned in correctly detecting and establishing 

relevance of the stimuli, but also are asymmetrically distributed in midline 

messencephalic structures. The following section will provide an overview of this 

asymmetrical attention network distribution, so as to draw parallels with the 

hypothesised lateralisation of the resulting behavioural response. 

1.4.2 MIGHT DISTRIBUTION ASYMMETRIES OF CORTICAL ATTENTION RESULT IN 

LATERALISED RESPONSES?  

 

   The overall asymmetrical distribution of cortical attentional networks has been 

consistently reported in both neuroimaging/neurophysiological and behavioural 

literatures. For example, Facoetti and colleagues, found evidence for asymmetrical 

attentional control when comparing dyslexics to control participants using a covert 

attentional orienting task (Facoetti, Turatto, Lorusso, & Mascetti, 2001). Use of a 

covert attentional orientation task allows the attention to shift from one target to the 

next without implicating eye movements such as those elicited when participants are 

asked to overtly orient their attention to a target stimulus. As a general rule, covert 

attention tasks present a cue, followed by a target stimulus. The target may appear 

either in a valid location (i.e. location previously cued), or an invalid location (i.e. 

uncued location). This type of task hypothesises that response times will be quicker 

in valid as opposed to invalid trials. By using such a covert attentional orienting task, 

and even though the authors reported the presence of attentional orienting in both 

visual fields for both dyslexic and control participants, they also observed significant 

differences in response latency in invalid cueing conditions, where dyslexic 

participant responses were slower than controls for the left visual field as opposed to 

the right (Facoetti et al., 2001). In another study on the control of visuospatial 

attention, Spencer and Banich found competing biases from the two hemispheres in 

the directionality of participants’ attention in a bilateral presentation adaptation of the 

flankers task (Spencer & Banich, 2005). In earlier work by Levine and colleagues, 

differential hemispheric dominance was observed in a series of perceptual tasks 

(1987). Specifically, Levine et al reported that during bilateral stimulus presentation 

in three target location identification tasks using word, face and pictures of chairs as 
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stimuli, participants showed a left hemisphere advantage for words and a right 

hemisphere advantage for faces; pictures of chairs did not produce a lateralised 

effect (Levine, Banich, & Kim, 1987).     

   Hemispheric asymmetries have also often been reported in studies of spatial 

attention. Reuter-Lorenz and colleagues had previously reported on the 

asymmetrical distribution of spatial attention; they found that the spatial distribution 

of attention is biased in the direction contralateral to the more activated hemisphere, 

with the rightward bias of the left hemisphere being stronger overall (Reuter-Lorenz 

et al., 1990). Conversely, in an fMRI study investigating the distribution of the 

network for spatial attention, Gitelman and colleagues used a spatial attention task 

that required an equal shift of attention to both left and right visual field, and reported 

that the significant majority of participants showed right-lateralised hemispheric 

dominance (Gitelman et al., 1999).  

    There is evidence to suggest that attention networks are asymmetrically 

represented across the two hemispheres, in terms of both cortical and subcortical 

areas and structures. Although often reported as separate, distinct concepts, 

attention and primary emotional perception are intrinsically linked. For example, the 

two-step emotional perception model suggested by Haxby and colleagues (Haxby et 

al., 2000) highlights that the processing of emotional stimuli is functionally connected 

to subcortical attention networks. This model suggests two cognitive stages involved 

when perceiving primary affect: encoding/evaluation, and interpretation. During 

encoding, the self-relevance of emotional information is evaluated by filtering out 

self-irrelevant information; functionally, this is mediated by an attention/vigilance 

network well-established in the literature involving structures such as the medial 

geniculate nucleus, superior colliculus, pulvinar and amygdala (Vuilleumier & Driver, 

2007; Vuilleumier, 2005). In the interpretation stage self-relevant emotional stimuli 

having been preferentially processed over other less relevant information are passed 

through to selective attention (Adams & Kleck, 2003; Compton, 2003) through a 

collaboration of both top-down and bottom-up processes (Compton, 2003; Palermo 

& Rhodes, 2002; 2007). One example for the asymmetrical cortical distribution of 

attention reports the lateralised engagement of the right and left hemispheres during 

visual cognitive activities concerning personal and extrapersonal space respectively 

(Heilman et al., 1995). Specifically, the authors observed right hemisphere activation 

in visual cognitive activities concerning extrapersonal space (i.e. space away from 
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the body), and left hemisphere activation during visual cognitive activities concerning 

personal space (i.e. near the body). In terms of asymmetrical subcortical activation 

depending on the nature of affective stimuli, there are numerous studies in the 

neuroimaging literature reporting left lateralisation of the attentional alarm/vigilance 

network involving the brainstem, amygdala, pulvinar and superior colliculus and 

ending in projections to somatosensory cortex, occurring during perception and 

processing of masked negative (typically fearful) stimuli (e.g. de Gelder et al., 2011; 

Liddell et al., 2005; Tamietto & de Gelder, 2010; Vuilleumier & Driver, 2007).  

    A proportion of the literature on hemispheric emotional laterality, or on a 

hemispheric preference to specific emotions (e.g. Carver, 2004; Eder, Hommel, & De 

Houwer, 2007; Fox, Russo, & Dutton, 2002) has been based on subjective emotional 

experience data. Hemispheric asymmetries however are not restricted to the 

subjective, physiological experiencing of emotions; they also extend to emotional 

perception (Jansari et al., 2000; Reuter-Lorenz, & Davidson, 1981). Using a bilateral 

presentation paradigm where a neutral facial expression was paired with an 

ambiguous but visible expression of one of the six primary emotions (happiness, 

surprise, disgust, fear, or sadness), and by not employing any time constraints on 

stimulus display time, Jansari and colleagues were able to detect valence-dependent 

laterality effects, and to further report on an overall increase of accuracy during 

bilateral stimulus presentation of two emotional facial expressions (Jansari et al., 

2000).  

In earlier studies looking at the behavioural response to valenced stimuli, paradigms 

by Reuter-Lorenz and Davidson, and Moretti and colleagues used bilateral 

presentations of emotional and neutral facial expressions of affect and reported 

preferential engagement of the left hemisphere for positive facial expressions and 

preferential engagement of the right hemisphere for negative facial expressions 

(Moretti, Charlton, & Taylor, 1996; Reuter-Lorenz, & Davidson, 1981). Based on the 

above-suggested link between cortical asymmetrical distribution of attention and the 

resulting laterality of behavioural responses, particularly when resulting from 

valenced stimuli, the following section discusses further links to physiological 

contralaterality.  
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1.4.2 MIGHT THE ASYMMETRIC DISTRIBUTION OF CORTICAL EMOTIONAL 

ATTENTION RELATE TO PHYSIOLOGICAL CONTRALATERALITY? 

 

   The asymmetrical distribution of basic attentional emotional processing might be 

related to the contralateral anatomy of the human visual, visceral and muscular-

skeletal systems, when considered as a product of visual field dominance and the 

subsequent lateralised attentional bias depending on the type of emotion observed. 

In the human anatomy, the physiological perception and action networks such as 

vision, conjugate lateral saccades, and face muscles involved in the production of 

facial expressions and reflexive bodily reactions are contralaterally intertwined. In the 

vision literature, evidence suggests that parts of the visual periphery are processed 

asymmetrically by the human eye, in terms of both resolution, and visual hyperacuity 

(Fahle, 1987). The human visual system is contralaterally represented in the body’s 

morphology (Figure 1), whereby visual input from the left and right visual field passes 

through to its contralateral primary visual cortical areas (Felten & Shetty, 2011). This 

asymmetry is also evident in lateral eye movements, whereby voluntary saccades 

originating from the frontal eye fields cause a strong, rapid deviation of the eyes to 

the contralateral side that is often accompanied by movement of the head and trunk 

(Merckelbach, de Jong, & Muris, 1990).  
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Figure 1. Diagram displaying the contralateral distribution of the human visual system (Figure adapted 
from Felten & Shetty, 2011).  

 
  Projections from the frontal eye fields travel downwards towards the pontine centre 

for lateral gaze, from where impulses subsequently ascend through the medial 

longitudinal fasciculus to cranial nerve nuclei responsible for ocular movement. The 

route of these impulses is nearly fully decussated, with the frontal eye fields of one 

hemisphere supplying the contralateral ocular nuclei, resulting in contralateral eye 

movements (Merckelbach et al., 1990).  The importance of the medial longitudinal 

tract involved in the production of conjugate (i.e. combined) lateral eye movements is 

evidenced by its presence in all vertebrates, as well as it being the first tract to 

myelinate in humans (Willer, 1977); this implies that it is closely linked to reflex 

reactions when experiencing environmental emotion-inducing stimuli (Willer, 1977). 

Similarly, face musculature is contralaterally represented in the human body, which 

might explain evidence for emotion-specific laterality effects in studies of posed facial 

expressions reported in the literature (e.g. Yecker et al., 1999). Specifically, when 

investigating posed facial expressions in right-handed participants, Yecker and 
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colleagues reported that negative posed facial expressions were more intensely 

represented in the left hemiface, and positive expressions more intensely 

represented in the right hemiface (1999).   

    One observation from the overview of the laterality literature in this section is that 

lateralisation might address a specific functional need; lateralised activation specific 

to positive and negative emotions mediated respectively by right/left ocular and 

musculoskeletal symmetrical cross-laterality needs to occur so that we may be able 

to respond to basic emotional stimuli that tap into instinctual reflexes as efficiently as 

possible. Although Rolls had previously argued that a lateralised organisation may 

not be evolutionarily economical (2002), and although the contralateral nature of 

basic emotional perception might not be as elegant as the overall interhemispheric 

communication required for more complex, higher-order cognitive functions (and 

possibly the processing of secondary/social affect), it does serve the specific – albeit 

somewhat crude – purpose of maintaining survival by ensuring the most efficient 

behavioural response is selected and executed.  

 

1.5 SUMMARY AND THESIS OUTLINE  

 

To summarise, emotional lateralisation is evidently a complex automatic 

process that has historically proven difficult to disentangle. So far, behavioural 

findings towards directionality of lateralisation appear to be closely linked to the type 

of methodology, task and stimulus used. Usage of this wide range of methods has 

resulted in the lack of consensus as to whether lateralisation occurs for all types of 

basic affect, and difficulties establishing whether some basic affect (i.e. negative) is 

better suited to engaging and maintaining attention than others. Reports from the 

neuroimaging literature consistently point towards the lateralised engagement of 

subcortical structures in the processing of specific types of basic affect. Whilst 

differential engagement of subcortical structures and activation routes has been well 

reported, it still remains to be established how this subcortical lateralisation which is 

thought to tap into an attentional activation network of increased vigilance might 

translate into observable behaviour.  

The main body of evidence from lateralisation research can be interpreted to 

suggest that elements such as impact of methodology and stimulus parameters, and 
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impact of participant parameters and individual variability (i.e. personality traits such 

as anxiety, and psychiatric conditions such as depression or schizophrenia) have 

had a significant effect on the directionality of behavioural lateralisation patterns 

reported. Up to date however, there has been little interest in establishing the key 

factors modulating behavioural lateralisation through using consistent and 

comparable methodologies. The current thesis addresses this gap by first developing 

a behavioural paradigm to establish the behavioural manifestation of emotion-

specific lateralised processing, then examining whether subcortical lateralisation can 

be effectively measured in terms of observable behaviour, and finally by adapting 

this paradigm to incorporate both stimulus valence-enhancing factors, as well as 

participants’ personality traits which have been suggested to modulate this process.  
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2     CHAPTER 2: MODULATION OF LATERALISED RESPONSES TO 

PRIMARY AFFECT 

 

2.1 INTRODUCTION 

 

   Chapter 1 introduced the core theoretical assumptions that furnish the rationale for 

the present thesis. To summarise, the thesis investigates the existence and 

directionality of lateralised emotional processing as defined according to the valence 

hypothesis (Ahern & Schwartz, 1979). The valence hypothesis suggests that positive 

stimuli are thought to preferentially engage the left hemisphere and negative stimuli 

the right hemisphere (Ahern & Schwartz, 1979). Given the contralateral nature of the 

visual system (Harter, Aine, & Schroeder, 1982), the directionality of cerebral 

processing suggests that positive stimuli displayed on the right visual field (RVF) are 

being preferentially processed by the left hemisphere, while negative stimuli on the 

left visual field (LVF) are preferentially processed by the right hemisphere (Reuter-

Lorenz, Kinsbourne, & Moscovitch, 1990; Reuter-Lorenz, and Davidson, 1981). As 

discussed in chapter 1, studies on emotional lateralisation have consistently resulted 

in conflicting directionality patterns of laterality and have historically shown poor 

replicability. Behavioural research on emotional laterality in particular, has seen a 

wide range of methodologies utilised as well as different types of behavioural data 

collected, with particular preference for paradigms using participants’ subjective 

emotion categorisation of facial expression stimuli (e.g. Eder, Hommel, & De Houwer, 

2007; Fox, Russo, & Dutton, 2002), or alternatively participants’ self-reports on 

emotional state (e.g. Carver, 2004). Variation in experimental methodologies has 

resulted in a lack of replicability and generalisable findings. As a result, chapter 1 

highlighted the need for a generalisable, concrete and reliable behavioural method 

investigating emotional lateralisation, which could subsequently be used as a basis 

for further adaptation to include additional factors that have previously been 

suggested to influence or modulate lateralisation of affect.  

    To this end, the present chapter aims to lay the groundwork for such a behavioural 

methodology, by introducing a paradigm that effectively measures lateralised 

responses towards angry and happy facial expressions of affect. Instead of utilising 
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tasks that require engagement of higher order and potentially competing cognitive 

functions such as self-report of emotion (e.g. Carver, 2004) or facial expression 

emotion categorisation (e.g. Eder, Hommel, & De Houwer, 2007; Fox, Russo, & 

Dutton, 2002), the experiment developed here utilised a basic target location 

identification task with target location unpredictable per trial, where the nature of the 

target emotion stimulus was irrelevant to participant responses. As such, this 

experiment sought to test the assumption that resulting lateralised participant 

responses are modulated by the nature of the emotion observed.  

  

 

2.1.2. IMPACT OF METHODOLOGY ON THE INTERPRETATION OF 

LATERALISED PROCESSING OF AFFECT 

 

      The impact of paradigm design on research accounts of affect-dependent 

lateralised processing has often been reported as an issue in terms of the validity of 

response patterns reported (Jansari et al., 2000; Schepman, Rodway, & Geddes, 

2012). The following section will address two design elements that might play a 

pivotal role in terms of which directionality the resulting lateralised behaviour pattern 

is reported as taking. Specifically, the sections below suggest that the lateralised 

direction of findings is reliant on the type of emotional stimulus used, often within the 

same broad category of negative or positive, and on the type of experimental task 

employed.  

 

2.1.2.1 THE PROBLEM WITH NEGATIVE AFFECT 

 

   A considerable proportion of the lateralisation literature has consistently used fearful 

emotional stimuli as the main representative emotion of the ‘negative’ spectrum (e.g. 

Adams et al., 2012; Liddell et al., 2005; Morris, Ohman, & Dolan, 1999; Yang, Zald, & 

Blake, 2007). Another equally large part of the lateralisation literature regards 

sadness as the core representation of negative valence (e.g. Du & Martinez, 2013; 

Reker et al., 2010; Reuter-Lorenz, and Davidson, 1981; Voyer, Bowes, & Soraggi, 

2009). Angry emotional stimuli on the other hand – be those schematic, chimeric, or 

realistic/photographic – have typically been used in visual search paradigms, in order 

to establish whether negative affect is processed preattentively (Horstmann, 2007; 



 38 

Horstmann & Bauland, 2006), without placing emphasis on whether or not responses 

to anger are also derived from distinctly lateralised hemispheric engagement. 

Horstmann et al’s suggestion of a preattentive processing specific to 

angry/threatening stimuli leads to new, testable hypotheses. Specifically, how might (if 

at all) this preattentive processing for threat relate to suggestions of a right-lateralised 

preference for negative affect?  

   Although angry facial expressions are frequently used stimuli in studies examining a 

suggested overall preferential cognitive engagement with threatening stimuli (e.g. 

Horstmann & Bauland, 2006; Marinetti, Mesquita, Yik, Cragwall, & Gallagher, 2012), 

they have also played an important role in investigations of the effect and implications 

of cognitively-loaded emotive stimuli on working memory (Jackson, Wolf, Johnston, 

Raymond, & Linden, 2008; Jackson, Linden, & Raymond, 2014), short-term memory 

(Jackson et al., 2008; Subramanian, Hindle, Jackson, & Linden, 2010), anxiety and/or 

depression (Byrne & Eysenck, 1995; Eysenck & Calvo, 1992; Eysenck et al., 2007; 

Mogg & Bradley, 1999), and schizophrenia (Wolf et al., 2011). Based on this broad 

range of applications for angry facial expressions, their lack of usage in lateralisation 

studies directly against an opposite affect such as happiness is surprising.   

   Instead, the most commonly used facial expressions to depict negative affect 

remain those of fear. Perhaps the strongest reason encouraging their preferential use 

in lateralisation studies in particular could be linked to the establishing of a distinctly 

lateralised subcortical activation network including superior colliculus, pulvinar and 

amygdala, which has been found to be particularly sensitive to fearful emotional 

stimuli (Morris et al., 1999; Vuilleumier et al., 2003). With regards to the valence of the 

facial expression itself, fear lends itself to hypotheses of carrying contextual 

information relating to the imminent presence of threat towards the observer; as such, 

fearful facial expressions can be seen to act as triggers for a fight or flight response. It 

is likely that there is a specific functional need requiring a lateralised subcortical 

activation pathway which is triggered as a response to fear, and which is closely 

linked to a state of vigilance or action readiness for the individual. On perception of a 

fear-laden stimulus, the organism needs to act (or react) efficiently and effectively. By 

deciphering the nature of the stimulus observed via the subcortical pathway short-cut, 

the person perceiving the potential threat is able to be goal-directed and action-ready; 

in other words, they can fight or flee (Corbetta & Shulman, 2002). In conjunction with 

this subcortical vigilance short-route, Corbetta and Shulman posit a right-lateralised 
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cortical attentional system via the temporoparietal and inferior frontal cortex which is 

highly sensitive to detecting salient and relevant environmental information, especially 

when it is unexpected to the observer (2002); subsequently, this system also assists 

the selection of an appropriate response towards it.  

   One design-related caveat in studies reporting a fear-sensitive subcortical vigilance 

route is that fearful faces are rarely directly compared against other emotions in terms 

of whether responses to other affect (such as anger, happiness or sadness) also stem 

from the activation of equally sensitive, lateralised subcortical networks. This caveat 

stretches to behavioural studies of laterality where at present comparisons across two 

opposite types of basic affect (such as anger against happiness) as direct measures 

of laterality in basic emotional processing are few. Interestingly, a comprehensive 

review of the interaction between emotional face perception and attention by Palermo 

& Rhodes, (2007), debunks the suggestion of fearful faces as being registered earlier 

than other types of basic emotional facial expression. The authors suggest that other 

primary emotions, such as anger, happiness or sadness, also show a propensity for 

being registered and recognised with very similar response latencies to those found 

for fear - albeit from activation pathways derived from different connection networks 

between subcortical structures – with the main difference being wide variation in the 

resulting range of response latencies to emotional faces (Palermo & Rhodes, 2007). 

The authors also highlight that there have been very few studies that have looked at 

direct comparisons between fearful and other emotional facial expressions that have 

found any response advantage that was specific to fear.  

   In contrast to fearful faces, sad facial expressions, although fitting within the general 

negative emotional description, are not thought of being connected to a situation in 

which the observer needs to respond quickly and efficiently. Although a negative 

emotion by social definition norms, the physiological state of sadness does not 

necessitate an organism to respond quickly and efficiently as it would when in a state 

of fear. Nonetheless, sadness is an equally commonly used negative stimulus as fear, 

predominantly in studies exploring the valence hypothesis through visual search 

paradigms (e.g. Killgore & Yurgelun-Todd, 2007). Sad facial expressions are however 

rarely used in investigations on the preattentive processing of negative affect, 

possibly due to the lack of a direct link between stimulus and response specifically 

similar to that relating to threat. Furthermore, sad stimuli are rarely compared directly 

to negative emotions other than fear. Usually, sad faces have been used in studies 
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looking at interactions between personality traits and/or mood disorders (e.g. anxiety, 

depression) and the propensity to successfully recognise and distinguish sadness as 

a state (e.g. Bradley, Mogg, & Millar, 2000; Mogg & Bradley, 1999; Moretti et al., 

1996). Albeit linked to group differences based on personality traits (i.e. high, medium 

and low anxiety groups), studies from this scope of the literature consistently report 

differential attentional biases specific to negative (in this case sad) facial expressions. 

Considering the usage of angry stimuli in studies on the preattentive processing of 

threat (e.g. Horstmann et al 2006; 2007), it is puzzling that the emotions constituting 

negative affect in other emotional perception research domains remain fear and 

sadness. Particularly in investigations of laterality, where the side of the body more 

equipped to instigate efficient behavioural responses to a potential aggressor would 

be recruited, anger would make a valid candidate. In an attempt to explore further the 

potential benefits of anger as a key type of negative affect in behavioural research, 

the following section will address response pattern differences in relation to different 

types of affect, based on the type of experimental task employed. 

 

2.1.2.2 MIGHT RESPONSES TO AFFECT BE TASK-DEPENDENT? 

   The type of paradigm used in studies of laterality could be seen as guiding both 

type and pattern of responses collected. For example, behavioural studies looking 

into the way we recognise and respond to emotional stimuli commonly use free visual 

search paradigms, with some studies using upright stimuli (natural or chimeric), some 

inverted, and some a combination of both (e.g. Calvo & Nummenmaa, 2008; Jansari 

et al., 2000; Reuter-Lorenz, and Davidson, 1981). Such studies do not apply any form 

of timing restrictions on participant responses, nor do they provide any feedback on 

individual trial or testing block performance, therefore rendering the disentanglement 

of cognitive-perceptual timeline for emotional stimuli problematic. For example, as 

basic affect (negative affect in particular) has been found as being efficiently 

processed either under or very near to the threshold of awareness (e.g. Horstmann & 

Bauland, 2006; Horstmann, 2007), the lack of participant response time restrictions 

might allow for slower, higher-order processing of emotional stimuli and therefore not 

reflect near-automatic, reflex-like responses. Perhaps that is why studies using angry 

expressions report findings of overall preferential cognitive engagement following 

exposure to threatening stimuli (e.g. Horstmann & Bauland, 2006; Marinetti et al., 
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2012). Responses other than reflex-like reactions might not give an accurate 

representation of activation of a subcortically driven alarm system and its 

manifestation in behaviour.  

   Regardless of a lack of methodological control and consistency, studies from this 

portion of the literature do generally agree on a laterality effect translated from a 

visual field preference depending on the nature of the emotion the stimulus displayed 

carries. For example, evidence so far points to a lateralised cerebral preference for 

one type of emotion over another at both a subcortical/perceptual level, as well as at 

an observable behaviour level (Moretti et al., 1996; Reuter-Lorenz et al., 1990; 

Reuter-Lorenz, and Davidson, 1981). In order to fully establish whether the 

directionality of lateralisation is dependent on the nature of the emotion observed (e.g. 

in accordance with the valence hypothesis whereby positive emotions lateralise to the 

left hemisphere, and negative emotions lateralise to the right hemisphere), there 

needs to be a methodologically-controlled behavioural paradigm that utilises a clear 

definitional distinction between positive and negative affect, and implements response 

latency allowance restrictions. Through this methodology, the near-threshold 

behavioural effects specific to positive and negative affect might be better examined.   

   It is a possibility that different types of primary emotion are not necessarily 

perceived, recognised and responded to at the same speed. For example, it seems 

that certain types of negative affect in particular – i.e. sadness – are processed 

quicker when observed by individuals who have a propensity to 

melancholic/depressive affect (B. Bradley et al., 2000). Furthermore, in behavioural 

studies in particular, it is positive stimuli that most commonly yield quicker and more 

accurate responses, although consistent exploration of why a happy advantage might 

exist has not insofar been undertaken (Jansari et al., 2000). In addition to this, stimuli 

of choice in emotional perception research vary from realistic photographs (Blagrove 

& Watson, 2014) to schematic/chimeric/inverted faces (Calvo & Nummenmaa, 2008; 

Cooper, Rowe, & Penton-Voak, 2008; Eger, Jedynak, Iwaki, & Skrandies, 2003; 

Tomalski, Johnson, & Csibra, 2009), and also to masked/phobic stimuli (i.e. IAAPS) 

(Liddell et al., 2005; Morris et al., 1999; Reker et al., 2010; Paul J Whalen & Kleck, 

2008), all of which point to different emotional perception sensitivities. The impact of 

methodology on interpretations of laterality is therefore evident. A possible suggestion 

which might address methodological limitations would be to impose strict time 

limitations for participant responses so as to isolate reflexive reactions, while utilising 



 42 

two definitionally opposite emotions (i.e. angry vs. happy) in a task which requires 

participants to indirectly respond to emotional stimuli instead of requiring them to 

direct their full attention towards them which might involve longer processing times 

and higher cognitive processes.   

 

  2.1.3 HOW MIGHT EMOTIONAL LATERALISATION TRANSLATE INTO 

APPROACH/AVOIDANCE BEHAVIOURS? 

    

      Chapter 1 outlined evidence for the neuroanatomical basis of both experience and 

perception of basic affect by addressing the question of whether there is a functional 

need for differential hemispheric engagement relative to the nature of the emotion 

both being perceived and responded to. The present chapter will now consider the 

observable behaviour resulting from the respective differential contribution of each 

hemisphere, in an attempt to translate function into measurable response.   

 The neuroimaging literature has highlighted a number of areas of interest activated 

from the processing of basic affect. Identification of these areas has in turn allowed 

for the outlining of distinctly lateralised subcortical networks which are fine-tuned in 

responding to positive or negative emotional stimuli (e.g. Wager, Tor, Phan, Luan, 

Liberzon & Taylor, 2003). Lateralisation at a subcortical level based on the nature of 

the emotion observed is a widely reported phenomenon, albeit with methodologies 

remaining limited to using specific basic emotions from the negative spectrum – for 

example, fear and sadness. On the behavioural findings spectrum however, there is 

little consensus on how these distinct, lateralised neuronal activation networks might 

manifest into equally lateralised observable behaviours. A widely accepted hypothesis 

links the nature of the emotion observed to approach and avoidance behaviours; this 

assumption posits that emotions which fall on the negative spectrum resemble 

avoidance behaviours when being responded to, with positive emotions resembling 

approach behaviours (Casasanto & Chrysikou, 2011; Eder et al., 2007; Farb, 

Chapman, & Anderson, 2013; Grèzes, Adenis, Pouga, & Armony, 2012). With this 

linkage in mind, the connection between emotional stimulus and observable, 

measurable response would therefore be relatively straightforward to decipher. For 

example, rapid activation of the oculomotor system following exposure to a highly 

biologically relevant stimulus (such as a spider), would translate in speeded and 
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highly accurate reactions to avoid danger (Palermo & Rhodes, 2007). It may therefore 

be the case, that our need to approach or avoid distinctly positive or distinctly 

negative affective stimuli requires the recruitment of left or right lateralised 

hemispheric contribution, so as to initiate an appropriate musculoskeletal response.   
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2.1.4. SUMMARY  

 

   Investigations on the suggested lateralised pattern of responses to positive and 

negative affect point towards lateralised subcortical activation routes that are known 

to increase vigilance and aid detection and response to basic emotional stimuli. On 

the behavioural studies front however, there is uncertainty concerning whether 

lateralised subcortical activation translates into an equally lateralised observable 

response based on the nature of an emotional stimulus.  

   Experiment 2.1 described in the following sections of the present chapter addresses 

the need for a behavioural paradigm that tests the valence hypothesis by utilising 

manual response latency and accuracy responses between angry and happy facial 

expressions, with expression salience varying from highly ambiguous to highly 

unambiguous. The experiment uses a bilateral stimulus presentation forced-choice 

task, and was designed to combine elements of previous key behavioural 

investigations from the lateralisation literature (e.g. Moretti, Charlton, & Taylor, 1996; 

Reuter-Lorenz, and Davidson, 1981) which have been adapted to account for core 

methodological caveats (i.e. ecological validity of stimuli used, as well as stimulus 

onset-offset and allowance of overly long participant response latencies). The 

experimental design also utilises anger (instead of fear/sadness) as a representative 

negative affect based on suggestions from the literature of anger’s triggering of quick 

and efficient responses by being preattentively processed through a subcortical 

activation network specific to detecting and responding to threat (Horstmann & 

Bauland, 2006). In the following section of this chapter, Experiment 2.1 is preceded 

by a pilot procedure (Stimulus Selection Pilot), whereby the original stimulus set 

identified for use throughout the studies outlined in the present thesis (Ekman & 

Friesen, 1976; Calder, Young, Rowland & Perrett, 1997) was examined for its 

suitability. This pilot procedure is focused in ensuring that the facial expression stimuli 

to be used in the experiments proper did not present with any extraneous, attention-

grabbing features, thus rendering them prone to participant response bias.  

  Furthermore, the present chapter sees the development of a paradigm (Exp. 2.1) 

that focuses purely on the observable, near-reflexive behavioural response to basic 

emotion rather than considering the higher-order, more complex cognitive processes 

involved in its perception. Based on the valence hypothesis whereby the right 

hemisphere is expected to show preferential engagement during processing of 
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negative affect, with the left hemisphere more engaged during processing of positive 

affect (Schwartz et al., 1979), angry facial expressions are expected to elicit quicker 

and more accurate responses when displayed on the left visual field, with happy faces 

eliciting quicker and more accurate responses when shown on the right visual field. 

 

 

2 PILOT PROTOCOL FOR STIMULUS SELECTION  

 

2.2.1 STIMULUS SELECTION METHODOLOGY 

 

2.2.1.1 OVERVIEW 

 

A pilot experimental protocol was designed as a means of identifying the set of facial 

expression stimuli to be subsequently used in the experiment proper (Exp. 2.2). The 

pilot protocol consisted of two parts; (a) a stimulus selection computerised procedure 

mirroring the experimental procedure to be followed by experiments in this thesis, 

and (b) an image manipulation procedure, whereby the stimulus set identified 

suitable for use in the experiments presented in this thesis was further modified to 

control for further potential stimulus confounds such as face dimensions, luminance, 

and salience. In the following sections of the present chapter both parts of the pilot 

protocol are reported by beginning with the computer-based, stimulus selection 

procedure, and moving on to the additional image manipulation conducted on the 

filtered stimulus set. The rationale behind designing this protocol was based on 

ensuring that the stimulus set did not include facial expression images that were 

particularly distinctive, unique, or attention grabbing, which might potentially 

generate stimulus confounds and lead to participant response bias which may 

obscure any effects of emotion-dependent lateralisation. 

  The preliminary stimulus set was identified as that of Calder et al’s (1997) adapted 

version of Ekman and Friesen’s (1976) set of facial expressions greyscale 

photographs. This set included facial expression photographs for each of the primary 

emotions (happy, sad, fearful, angry), posed by ten posers. Some of the posers 

included in the original Ekman and Friesen set (1976) have distinctive 

physiognomies in terms of facial shape, size and facial features (i.e. teeth, eyebrow 

shape, head shape), which may render them more memorable than the facial 
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expressions of other posers also included in the set, especially when presented in a 

behavioural task where participants need to provide a response within strict time 

limits. The potential risk of response bias that may result from the inclusion of easily 

distinguishable photographs in the stimulus set is that it may lead to an obscuring of 

any emotionality effects, as the more immediately recognised poser-specific facial 

features may take attentional precedence in recognition and perception. Therefore, 

in an attempt to select the photographs that are least likely to lead to a potential 

recognisability response bias, pilot experiment 2.1 utilised response times and 

accuracy judgments (proportion correct), which were subsequently linearised so as 

to maximise between-conditions differences across participants. Emotion-dependent 

laterality hypotheses would not be examined at this pilot stage, as any emotionality 

influences may be either obscured, or skewed due to potential confounds of 

including all ten posers in the stimulus set. Additionally, although it could be argued 

that potential trends of emotional lateralisation resulting from the pilot data may 

emerge from response rate and accuracy scores elicited during the pilot procedure, it 

was decided that these would most likely not be valid indicators of emotion-specific 

lateralisation as they would ultimately be susceptible to stimulus confounds. The 

following sections will outline each step of the pilot process, beginning with 

participants and apparatus utilised in the computer-based stimulus selection 

procedure, and followed by a detailed exposition of the image processing, stimulus 

presentation, protocol procedure and findings.   

 

2.2.1.2 STIMULUS SELECTION PROTOCOL PARTICIPANTS 

 

   Sixty-four neurologically healthy right-handed (9 males) 2nd Year Undergraduate 

Psychology student volunteers took part in the pilot experiment. Participation was 

voluntary, and participants were recruited during a Research Methods in Psychology 

practical lab session. 

2.2.1.3 STIMULUS SELECTION PROTOCOL APPARATUS 

 

   As the original stimulus set consisting of all ten posers would be utilised at this 

stage, no hypotheses on emotion-dependent laterality would be examined. To this 

end, there was no need to test participants individually. For the stimulus selection 
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process therefore, the testing setup consisted of a University computer laboratory 

classroom, with identical desktop computer equipment per seat. The computer 

equipment consisted of DELL Optiplex 780 PCs, connected to 17-inch LCD monitors 

with 58Hz refresh rate. Responses were provided by pressing the left and right arrow 

keys on a standard QWERTY computer keyboard, and stimuli were displayed at a 

24.4o visual angle. 

 

2.2.1.4 STIMULUS IMAGE PROCESSING & PRESENTATION 

 

   Angry and happy emotional expression stimuli were borrowed from Calder, Young, 

Rowland, and Perrett (1997), who had designed a modification on the original Ekman 

& Friesen set of facial expression images (Ekman & Friesen, 1976). In this 

modification, Calder et al (1997) applied a computer-based morphing procedure on 

the original ten posers from the Ekman and Friesen set, by positioning anatomical 

landmarks on each poser’s neutral photograph with corresponding points to its 

emotional counterpart.  

   Faces were then morphed into one of six emotional salience intensities (with ‘0’ 

being neutral, ‘4’ being the original emotional image, and ‘5’ being exaggerated) by 

scaling them with respect to the vectors defined by these landmarks (Fig. 2.1). The 

present thesis applies the usage of these salience morphs across all experiments, as 

a means of identifying the point at which an emotional expression becomes 

recognisable accurately, depending on the experimental parameters under 

investigation in each experiment. Participant accuracy judgements will subsequently 

be used in calculating thresholds for accurately recognising each type of affect 

(angry/happy). In the present study, in order to eliminate each poser’s easily 

identifiable peripheral features which were not necessary in identifying the emotion 

displayed, a further modification on the Calder et al set was applied, whereby 

photograph dimensions were equated across the set by the application of an oval-

shaped window (Fig. 2.2). This windowing method allowed for poser-specific 

peripheral features such as the hairline and face-width to be equated so that each 

stimulus photograph was of the same dimensions and shape. To this end, each face 

was scaled along horizontal and vertical dimensions to the point where facial features 
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fit within the oval window, with eyes aligned with the middle-horizontal guideline and 

mouth aligned with the bottom-horizontal guideline.  

 

 

 

Figure 2.1. Angry stimuli from one Ekman & Friesen poser, displayed on grey background as used in the 
task. From left to right, expression salience starts from completely neutral (intensity 0) and morphs 
gradually from highly ambiguous (intensity 1) up to a highly exaggerated expression (intensity 5). 

 
 
 
 
 
 
 

 

Figure 2.2. Example of stimulus before and after windowing; the far-left picture shows the original 
photograph whereby poser-specific elements (such as the poser’s hairline) could render the photograph 
easily identifiable. The middle graphic displays the oval-shaped window used to superimpose on the original 
photograph so as to eliminate poser-specific identifiable features. Aside from the window, the graphic also 
displays two horizontal and one vertical guides used to align features from each face so as to equate 
positioning of eyes and mouth across stimuli.  The far-right graphic shows the final version of the 
photograph, post-windowing. 
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In order to ensure that there were no significant brightness and luminance differences 

between photographs overall (Fig.2.7a) as well as between the different emotional 

expressions (angry and happy) (Fig. 2.7b), faces were examined in terms of average 

image greyscale intensity as a function of emotion intensity (1-5 intensity levels) for all 

ten angry and all ten happy faces. For this purpose, average image pixel intensity was 

used as a measure of luminance. On the whole, there were no consistent differences 

between emotions; additionally, for faces of maximum emotional intensity there was 

no significant difference between happy and angry emotions [t(9)=.05, p<0.96].  

 

Figure 2.7. Graph ‘a.’ shows the average image intensity (y-axis) as a function of emotion intensity (x-axis) for 

all ten angry vs. happy faces. Here, image intensities across the photograph set varied within each image from 

0 to 255, and mean image intensity of each poser’s neutral photograph was subtracted from each poser. 

Overall, even though there are small differences between posers and emotions, no consistent differences 

between angry and happy emotional faces are observed. Graph ‘b.’ shows the result of subtracting angry image 

intensity from happy for each poser respectively, as a function of expression salience intensity; here, there are 

no consistent positive or negative deviations. On the whole, although there are small differences in image 

intensity (average luminance) between emotions, these differences are non-significant and inconsistent.   

 

 Each trial displayed a bilateral presentation of a neutral (intensity 0) and emotional 

(intensity 1 through to 5) facial expression pair (see Figure 2.3 for examples). Each 

individual pairing of neutral/emotional photograph always contained photographs 

from the same poser. 
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Figure 2.3. Two example stimulus pairs where the target photograph is shown on the right visual field on 
the top image, and on the left visual field on the bottom image. This example shows an emotional 
photograph of happy valence shown in salience intensity 2, and one of angry valence shown in salience 
intensity 4. The ‘neutral’, ‘int 2’ and ‘int 4’ tags are displayed here for information purposes only and were 
not shown in the actual experiment.  

 

 Dimensions (3cm x 10cm) and lateral positioning of stimulus pairs remained 

constant across trials, whereby the target photograph’s location was unpredictable 

from trial to trial. Each individual photograph was positioned at a distance of 10cm 

from nasion to central fixation point (see Figure 2.4 for an example). Both left visual 

field and right visual field stimuli regardless of emotionality were always equidistant 

from the central fixation point. The pairing of neutral to emotional photograph on 
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each trial was randomly assigned through E-Prime (E-Prime v2.0, Psychology 

Software Tools, Pittsburgh MA). 

 

 

Figure 2.4. Stimulus positioning in a typical trial. Graphic displays one neutral (left photograph) and one 
emotional (right photograph) expression from the same poser. Dimensions noted on the graphic refer to 
those used in the actual experiment, which were displayed on a 19-inch monitor.  
 

2.2.1.4 STIMULUS SELECTION PROTOCOL 

 

The computer-based experimental procedure designed to select the posers from the 

original Ekman & Friesen (1976) set to be utilised in the experiment proper utilised a 

2x2 repeated-measures factorial design with emotion, visual field location, and 

intensity of facial expression as factors. The factors of emotion (angry/happy) and 

visual field location (left/right) had two levels each. It was decided that for the 

computer-based stimulus selection process, only photographs of the highest, more 

exaggerated emotion salience (intensity 5) would be utilised from each of the ten 

posers, as the emotionally exaggerated images would render participants more 

susceptible to possible response bias. As a result, there were 20 possible 

combinations of expression salience (intensity), emotion, and location, the order of 

which was randomised across participants. Two sets of dependent measures were 

collected; reaction times (ms), and accuracy scores (% correct scores).  

2.2.1.5 STIMULUS SELECTION PROTOCOL PROCEDURE 

 

   All participants were tested concurrently in a large computer laboratory classroom. 

Volunteers were briefed as to the purpose of the task and gave verbal consent prior to 
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commencing the experiment. Each computer was pre-loaded with the experimental 

paradigm, and computer monitors were set to the experiment information display so 

that all paradigm runs were able to commence simultaneously. The paradigm utilised 

a speeded, forced-choice facial expression discrimination task (see Figure 2.5) and 

measures of response time (RT) and accuracy (percent correct) were collected. The 

object of the task was for participants to identify the location of the screen on which 

the emotional face was presented in each trial (left or right), and participants were 

briefed to make this judgment regardless of the nature of the emotion observed 

(angry or happy), or how salient the emotion was. Participants were also informed 

that after each stimulus offset they would have a time limit within which they could 

provide their response.  

 

     Figure 2.5. The graphic displays the sequence of events in a typical trial, and in order of appearance. 
Each trial starts with the fixation display that prompts participants to hit SPACE to receive the stimuli. Upon 
key press, a randomly selected pair of neutral and emotional stimuli appears, with target location 
unpredictable from trial to trial. Stimuli remain visible for 50ms, after which participants can give responses 
up until 1300ms post stimulus offset. Once a response is given, a feedback display is presented for 250ms. 
After this time lapses, the fixation display appears once again, prompting participants to start the next trial.  
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Photos from all ten original Ekman & Friesen posers (1976), with ten neutral, ten 

angry (intensity 5) and ten happy faces (intensity 5) were included, yielding a total of 

30 unique photographs. In each trial, the neutral photograph from each of the ten 

posers was paired to one happy or one angry photograph from the same poser. The 

procedure included six blocks of 40 trials each (total number of trials was 240), and 

incorporated four conditions accounting for all combinations of emotion (angry/happy) 

and visual field location (left/right). Each of the ten poser’s emotional photograph 

appeared twice within each block, with their corresponding neutral photograph 

appearing a total of 4 times. The randomising of visual field location, emotion, and 

salience intensity across trials rendered target location unpredictable; poser identity 

within each trial was always the same.  

   Each trial commenced with the presentation of a fixation point; participants were 

briefed to press the keyboard SPACE bar when ready. Upon key-press, two stimuli 

(one neutral and one of high emotional expression salience – intensity 5) were 

displayed bilaterally on the screen for 50ms. As participants were asked to solely 

identify the visual field location of the emotional face (left or right) – regardless of 

whether stimuli displayed a positive or negative emotion, the stimulus onset-offset 

latency of 50ms was decided based on the a priori assumption of it being close to the 

awareness threshold (cf. Petersen & Posner, 2012; Posner et al., 1985). The 

expectation was that responses collected would be spontaneous, reflexive reactions 

to the presence of emotionally valenced stimuli that originate from individuals’ 

inherent attentional bias towards valenced information.  

On each trial, the pairing between emotion and target visual field location was 

randomly selected. On stimulus offset, participants were required to respond as 

quickly as possible within a time-window of maximum 1300ms. Post-response, a 

feedback screen was displayed whereby a green circle indicates a correct response 

and a red ‘x’ indicates a false one, with a third feedback option of a question mark (‘?’) 

if the participant responded outside the time window, or did not provide with a 

response at all. The feedback display remained on the screen for 250ms, after which 

the fixation point display reappeared, prompting the participant to begin the next trial. 

The total timing of a typical trial, from stimulus onset to feedback display offset lasted 

1600ms.  
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   The stimulus presentation software (E-Prime v2.0) recorded reaction times (ms) and 

accuracy scores (% correct scores) per trial. Mean reaction time and mean accuracy 

scores were calculated from the raw data for each unique poser and per condition. 

For reaction times, only data from correctly responded-to trials were used in the 

analysis, and reaction times less or more than 2 standard deviations from the mean 

were excluded. The accuracy data were then linearized using the Logit Transform 

equation:  

 𝑙𝑜𝑔𝑖𝑡 (𝑝) = 𝑙𝑜𝑔10 (
𝑝

1−𝑝
)  

(Fig 2.5). Linearization of the data was only conducted for use in the stimulus 

selection experimental procedure, in order to maximise differences between 

conditions and across posers, so as to facilitate selection of stimuli. The mean logit 

accuracy data showed significant differences between conditions and across posers 

[t(9)=-2.4, p=.03], suggesting that accuracy of performance was affected by the poser 

displayed. Following this, RT data were log-transformed, and mean reaction time 

averages per condition and poser were calculated (Fig 2.6). The RT data showed 

significant differences between conditions and across posers [t(9)=3.7, p=.005], 

suggesting that speed of response resulted varied depending on the poser selected.  

 

 

Fig 2.5. The line graph plots log accuracy score distributions for each condition across all 10 posers (x-axis 
denotes poser ID initials for each poser). From left to right, the first four posers (MO, PF, CC, PE) display 
either inconsistent (MO CC, PE), or chance accuracy judgements </= 50%.  
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Fig 2.6. The line graph plots log reaction time distributions plotted for each condition across all 10 posers 
(x-axis denotes poser ID initials from each poser). From left to right, the first four posers (MO, PF, CC, PE) 
display greatest within-subjects response inconsistency in terms of reaction time distribution. 
 

Upon inspection of responses between conditions and across posers, four posers 

(poser IDs: MO, PF, CC, PE) consistently displayed large standard error RT 

distribution variations in comparison to the remaining six posers from the set (poser 

IDs: SW, WF, EM, NR, JJ, MF), and were subsequently excluded from the 

experimental stimulus set.  

  Finally, to examine whether participants showed any overall habituation effects to 

the emotional faces, a comparison of early and late experimental blocks was run. To 

this end, response times per condition were averaged across test blocks 1 to 3 to 

represent mean response for the early part of the pilot, and mean response times 

across test blocks 4 to 6 was averaged to correspond to the late part of the pilot. 

Comparison between early and late blocks showed a marginally-significant difference 

between test block and mean response time performance [t(63)=-2.4, p=.04]. Given 

that the significance value of this comparison is marginal, a further measure of 

habituation was applied. Specifically, the difference in response latency between 

averaged early and averaged late blocks denoted by ‘Δ’ was calculated by subtracting 

the two averages [(mean early = 460.05) – (mean late = 460.57)]. A positive Δ would 

signify sensitisation to the procedure, whereas a negative Δ would signify habituation, 

as performance decreases across the duration of the experiment (cf. Stoeckel, Esser, 

Gamer, Baschel, & von Leupoldt, 2015). The pilot data yielded a Δ of -0.49, indicating 

a weak habituation trend across blocks. Given that the stimulus set was not filtered at 
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this stage, and weak possibility of habituation to the stimuli over time, the decision to 

maintain 5 testing blocks preceded by one practice block of equal duration was made 

for application to the experiment proper.  
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2 EXPERIMENT 2.2 

 

2.2.2 METHODS 

 

 

2.2.2.1 SUBJECTS 

 

   Twenty neurologically healthy adults (all Undergraduate students, Department of 

Psychology, City University London) participated in this experiment (5 males; mean 

age: 22.6; SD: 2.7). Participants were recruited through an online advertisement on 

the University’s Psychology Department online participation tool (SONA). Poor quality 

data from five other participants were excluded due to improbable reaction times 

(<300ms) and a high percentage of chance accuracy judgments (<=50% correct) on 

more than half of experimental trials. The response latency cut-off point was set to 

300ms, based on the averaged participant response time data from the stimulus 

selection pilot (see section 2.2.1.5, p.52). All participants were right-handed with 

normal or corrected-to-normal vision, and had given written consent prior to testing.  

 

2.2.2.2 APPARATUS 

 

   Laboratory setup consisted of a darkened and soundproofed room, with a fixed-

height table and adjustable-height chair.  The paradigm was run on a DELL Optiplex 

780 PC connected to a 19-inch LCD monitor (85Hz refresh rate). Subjects provided 

responses by pressing the left and right arrow keys on a standard QWERTY 

computer keyboard. To maintain viewing distance across subjects, a height-

adjustable chin-rest was fixed on the table and set at a 60cm distance from the 

monitor, with participants viewing stimuli at a 24.4o visual angle. 

2.2.2.3 STIMULI 

 

Photographs from the pilot-excluded 4 posers (poser IDs: MO, PF, CC, PE) were 

utilised in the paradigm’s practice block, during which E-Prime was set to not log 

participant responses. Photographs from the remaining 6 posers (poser IDs: SW, WF, 

EM, NR, JJ, MF) were used in the experimental blocks. In the experimental trials 60 

five-intensity greyscale emotional faces (30 happy and 30 angry) ranging in 

expression intensity from 1 to 5 were used, as well as each poser’s corresponding 
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neutral photograph (6 neutral photographs in total). The practice block included a total 

of 40 (20 happy and 20 angry) greyscale emotional faces ranging in expression 

intensity from 1 to 5 from the four excluded posers, alongside their corresponding 

neutral photographs (4 neutral photographs). All stimuli were greyscale photographs, 

and were displayed against the same mid-grey background throughout the 

experiment.  

2.2.2.4 DESIGN 

 

   The experiment utilised a 2x2x5 repeated-measures factorial design with emotion, 

visual field location, and intensity of facial expression as factors. The factors of 

emotion (angry/happy) and visual field location (left/right) had two levels each. 

Intensity of expression was manipulated using a six-level expression salience scale, 

whereby Intensity 0 corresponded to neutral expressions and intensities 1-5 

corresponded to the range between highly ambiguous (intensity 1) and highly 

exaggerated (intensity 5) expression. There were 20 possible combinations of 

expression salience (intensity), emotion, and location, the distribution of which was 

randomised across participants. Two sets of dependent measures were collected; 

reaction times (ms), and accuracy scores (% correct scores).  

2.2.2.5 PROCEDURE 

 

   The paradigm utilised was the same as described in the 2.0 Pilot (see Figure 2.5). 

Participants were tested individually with each testing session lasting approximately 

45 minutes depending on length of breaks taken between each block. Each 

participant was asked to first complete a practice block of 160 trials, where stimuli 

shown consisted of photographs from the 4 excluded posers. In the practice block, 

each emotional photograph appeared twice, with the total number of trials accounting 

for the two visual field locations (left/right), two emotions (angry/happy), and five 

expression intensities (1-5). Once the practice block was completed, participants 

proceeded to complete five testing blocks. The total number of trials per testing block 

was 240, accounting for each emotional photograph appearing twice within the block, 

as well as the two visual field locations, two emotions and five expression intensities. 

The randomising of visual field location, emotion, and salience intensity across trials 

rendered target location unpredictable; poser identity within each trial was always the 

same. Data from a total of 1200 trials from the five testing blocks were collected.  
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   Each trial commenced with the presentation of a fixation point; participants were 

briefed to press the keyboard SPACE bar when ready. Upon key-press, two stimuli 

(one neutral and one emotional) were displayed bilaterally on the screen for 50ms. On 

each trial, the pairing between expression intensity, emotion and target visual field 

location was randomly selected. On stimulus offset, participants were required to 

respond as quickly as possible within a time-window of maximum 1300ms. Post-

response, a feedback screen was displayed whereby a green circle indicates a 

correct response and a red ‘x’ indicates a false one, with a third feedback option of a 

question mark (‘?’) if the participant responded outside the time window, or did not 

provide with a response at all. The feedback display remained on the screen for 

250ms, after which the fixation point display reappeared, prompting the participant to 

begin the next trial. The total timing of a typical trial, from stimulus onset to feedback 

display offset lasted 1600ms.   

2.2.2.6 DATA PREPARATION AND ANALYSIS 

   

   Each participant’s mean reaction time (ms) and accuracy score (% correct) were 

calculated per condition. Data preparation was conducted using the E-Prime v.2.0 

analysis software E-Data Aid and E-Merge (Psychology Software Tools, Pittsburgh 

MA). For reaction time measures, only data from correctly responded-to trials were 

included in calculating means per condition, and reaction times less or more than 2 

standard deviations from the mean were excluded.  

   For accuracy scores, logistic functions were fitted as a function of stimulus intensity 

to calculate the identification threshold per facial expression salience across 

emotions. Threshold estimates were calculated by identifying the point at which 

performance is halfway up the psychometric function, set at approximately 75% 

correct. This ‘standard’ accuracy performance was then read off from the function. 

Psychometric function fitting was conducted using the PSIGNIFIT Toolbox for Matlab 

(v.R2013).  

   In the following results section, all analyses including factors with more than 2 levels 

that violated the assumption of sphericity have been Greenhouse-Geisser – 

corrected. All error bars in the results section represent within-subjects error, 

calculated using the Cousineau correction (Cousineau, 2005). The Cousineau 

correction represents as participant i’s score in the  condition 
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. Subsequently, the normalised observations can be 

defined in terms of the following: 

 

 

Based on this correction, the resulting variances and size of confidence intervals do 

not include between-subjects variance (Cousineau, 2005; Morey, 2008).   
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2.2.2 RESULTS 

 

 

2.2.2.1 REACTION TIME  

 

   A repeated-measures ANOVA was conducted with emotion (angry/happy), visual 

field location (left/right) and intensity (1-5 expression salience) as within-subjects 

factors, for the dependent measure of mean reaction times. The analysis produced a 

significant main effect of emotion [F(1,19)= 21.1, p < .001, partial η2 .53], with happy 

faces yielding an overall quicker mean reaction time (mean = 516.87, SE = 11.34) 

than angry (mean = 530.49, SE = 10.46). A main effect of expression salience was 

also found [F(4,76)=56.2, p<.001, partial η2= .74], with Bonferonni-corrected multiple 

comparisons revealing significant differences in reaction times in paired intensities 1 

through to 4, but with non-significant reaction time differences intensity pair 4 and 5.  

 

  A significant 3-way interaction between emotion, visual field location, and expression 

salience was also found [F(4,76)=2.59, p=.043, partial η2=.12] (Fig 2.8 on following 

page). Post-hoc comparison analyses revealed a significant interaction between 

emotion and visual field location for intensity 3 [F(1,19) = 6.48, p=.02], where happy 

faces shown on the right visual field produced quicker reaction times (mean= 496.03) 

than when shown on the left visual field (mean=507.5), and angry faces shown on the 

left visual field produced quicker reaction times (mean=510.38) than when shown on 

the right visual field (mean=524.6) (Fig 2.9 on following page). There were no further 

significant interactions for the remaining intensities.  
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Fig 2.8. The line graph shows response times per condition as a function of emotional expression intensity. 
Error bars per condition represent Cousineau-corrected (Cousineau, 2005), +/-1 within-subjects error. 
Across conditions, responses become quicker as the expression intensity is gradually disambiguated from 1 
(highly ambiguous) to 5 (exaggerated). Responses to happy faces regardless of visual field location are 
quicker overall; reaction times however differ within each emotion separately, depending on the visual field 
location of the target face as a function of expression salience.  

 

 

Figure 2-9. Line graph displaying mean reaction times (ms) for Angry (blue) and Happy (green) stimuli 
across the Left and Right visual fields, for expression salience intensity 3, which was the resulting interaction 
from post-hoc analyses on the 3-way interaction between emotion, VF location and intensity. For expression 
intensity 3, happy faces are responded to quicker when presented on the right visual field, and angry faces 
are responded to quicker when presented on the left visual field.   
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2.2.2.2 ACCURACY 

 

   A repeated-measures ANOVA was conducted with the within-subjects factors of 

emotion, visual field location and expression intensity for the dependent measure of 

mean % correct scores. Accuracy analysis resulted in a significant main effect of 

Emotion [F(1,19)=19.8, p<.001, partial η2  =.5], with higher accuracy achieved for 

happy stimuli (mean = .82, Std Error = .014), than for angry stimuli (mean = .78, Std 

Error = .014). A further significant main effect for expression salience (Intensity) was 

revealed [F(4,76)=331.9 p<.001, partial η2 =.95], with Bonferonni-corrected multiple 

pairwise comparisons showing significant differences in accuracy scores across all 

expression intensities. 

   A significant 2-way interaction between emotion and expression salience 

[F(4,76)=2.51, p=.04, partial η2=.2] was found; post-hoc paired samples t-tests 

showed that there were significant accuracy score differences between emotions for 

intensity 2 [t=-4.03, df=39, p<.001], intensity 3 [t=-.4.14, df=39, p<.001], intensity 4 [t=-

.29, df=39, p=.006], and intensity 5 [t=-2.73, df=39, p=.009] (Fig. 2.10 on following 

page). Paired samples t-test for intensity 1 showed non-significant accuracy score 

differences depending on emotion (p=. 31). 

   A further significant 2-way interaction between visual field location and expression 

salience was also observed showing an overall left visual field advantage across 

conditions [F(4,76)=3.9, p=.006, partial η2=.2]; post-hoc paired samples t-tests 

revealed significant accuracy scores differences for the two visual field locations only 

for intensity 1 [t=-.23, df=19, p=.032] (Fig. 2.10). Paired samples t-tests for accuracy 

score differences depending on visual field location were non-significant for intensity 2 

(p=.5), intensity 3 (p=.8), intensity 4 (p=.6), and intensity 5 (p=.6) (Fig. 2.11). 
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Figure 2.10. The line graph shows accuracy scores per condition as a function of emotional expression 
intensity. Each of the colour-coded lines represents one of four conditions of type of emotion and visual field 
location. Error bars per condition represent Cousineau-corrected, +/-1 within-subjects error. Across 
conditions, responses become more accurate as the expression intensity is gradually disambiguated from 1 
(highly ambiguous) to 5 (exaggerated). Accuracy score significant differences in terms of type of emotion 
(angry/happy) regardless of visual field location are observed in intensities 2 through to 5; significant 
differences in terms of visual field location regardless of emotion are only observed for intensity 1.  

 

 

   The accuracy analysis revealed a further, significant 2-way interaction between 

emotion and visual field location [F(1,19) = 8.06, p=.01, η2=.298]. This interaction 

revealed a visual field location accuracy difference only for happy stimuli, which 

elicited higher accuracy when displayed on the right visual field (mean = .84, Std Error 

= .016) as opposed to the left visual field (mean = .80, Std Error = .014) (see Figure 

2.11 on following page). There was no accuracy difference for the angry stimuli when 

displayed on the left visual field (mean=.78, Std Error= .017) and when displayed on 

the right visual field (mean=.77, Std Error= .016). There were no significant 3-way 

interactions for the accuracy data.  
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Figure 2.11. Interaction plot displaying mean % correct scores for angry (blue line) and happy (green line) 
stimuli, plotted across the left and right visual fields respectively. It is evident that the overall interaction is 
driven by happy stimuli only, which displayed higher accuracy when shown on the right visual field as 
opposed to the left. Angry faces showed a negligible difference in accuracy based on visual field location.  

 

 

 

 

2.2.2.3 THRESHOLD ANALYSIS 

 

   A repeated measures ANOVA with emotion (angry/happy) and visual field location 

(left/right) was calculated for the threshold data. A significant interaction between 

emotion and visual field was observed [F(1, 19)= 5.17, p=.03], whereby calculated 

threshold estimates per emotion showed that happy faces were recognised more 

accurately when shown in the right visual field, and happy faces were recognised 

more accurately when shown in the left visual field. On the whole however, happy 

faces required a lower intensity threshold than that needed for angry faces so as to be 

recognised accurately (Fig. 2.12). 
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Figure 2.12. Graph a. displays the mapping of 95% CI against the required intensity (salience) per condition, 
which is then re-plotted as Intensity by Visual Field with separate error bars representing angry and happy 
faces on Graph b.  
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2.2.3 SUMMARY 

 

 

      Experiment 2.1 shows evidence for a lateralised pattern in observable behaviour 

towards angry and happy facial expressions, which regarding response latency only 

appears when stimuli are halfway between ambiguous and exaggerated. For 

accuracy, it is only happy stimuli that elicit a lateralised response, subsequently 

creating an interaction between the nature of the emotion observed (angry vs. happy) 

and visual field location (left vs. right). The data also show that happy faces are in 

general more easily identifiable as emotional than angry, by requiring a lower 

expression salience intensity to produce high-accuracy responses. This happy face 

advantage is further intensified by the visual field location of the stimuli; happy faces 

displayed on the right visual field tolerate a more ambiguous salience intensity than 

when on the left visual field for accurate recognisability. Additionally, results from the 

threshold calculations are particularly convincing (happy faces were recognised more 

accurately when shown at the right visual field, and happy faces were recognised 

more accurately when shown at the left visual field), as they are not dependent on 

specific intensities or non-linearities of the measurement scales compressing data at 

floor and ceiling. This psychophysical measure of perceptual sensitivity further 

complements the RT and accuracy results. 
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2.3 DISCUSSION 

 

 

   This chapter addressed the need for a core behavioural paradigm that can 

effectively investigate whether there is differential hemispheric contribution to two 

distinct facial expressions of basic affect (anger and happiness), by measuring the 

behaviours that these emotions relate to. Response time and accuracy measures 

were collected through a forced-choice, location-identification behavioural task with 

target location unpredictable in each trial. Contrary to the types of behavioural task 

commonly used in emotional lateralisation research, the present paradigm did not 

require participants’ subjective emotion-categorisation (e.g. Eder et al., 2007; Fox et 

al., 2002), or direct type of emotion identification judgments (e.g. Reuter-Lorenz et al., 

1990), and also did not use competing, cognitively loaded tasks (e.g. Carver, 2004). 

The design of the present paradigm was instead motivated by the lack of consistently 

replicable findings for either the valence or the right-hemisphere hypotheses in an 

attempt to address the conflicting conclusions found in emotional perception research. 

As participants were asked to solely identify the visual field location of the emotional 

face (left or right) – regardless of whether stimuli displayed a positive or negative 

emotion, and given the use of a stimulus duration timing close to the awareness 

threshold, responses collected can be viewed as spontaneous, reflexive reactions to 

the presence of emotionally-loaded stimuli that originate from individuals’ inherent 

attentional bias towards valenced information.    

   In summary of the findings, two main outcomes resulted from data analysis; first, a 

lateralised response pattern was observed for measures collected, showing an angry 

face advantage for response latency and a markedly less pronounced accuracy effect 

of responses when displayed on the left visual field (i.e. right hemisphere), and a 

happy face advantage for speed and accuracy when displayed on the right visual field 

(i.e. left hemisphere). In terms of response latency, this lateralised pattern was only 

significant for salience intensity 3 and diminished when stimuli became explicitly 

angry or happy (intensities 4 & 5). In terms of accuracy, happy faces showed specific 

advantageous processing for accurate recognition when displayed on the right visual 

field while angry stimuli produced negligible differences. Second, there was an overall 
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happy-face advantage for both reaction time and accuracy data, and across salience 

intensities and visual field locations.  

   The laterality pattern shown only for expression salience intensity 3 for response 

latency in the present chapter could also be interpreted in terms of potential 

differences in perceiving threat from a socially relevant stimulus as opposed to a 

biologically relevant one. Specifically, the expression intensity where an interaction 

between visual field location and type of emotion was found is neither fully ambiguous 

nor highly explicit. Stimuli at this intensity are suprathreshold for correct 

recognisability and for both types of affect (see Figure 2-4). The stimulus duration 

time used (50ms) in experiment 2.1 could therefore accentuate effects of earlier 

instead of later cognitive processes, which could potentially eradicate initial, reflexive 

response effects. 

   The first outcome of a distinctly lateralised response pattern with an angry face 

advantage for response efficiency (albeit for accuracy the effect was less pronounced 

than for response latency) when displayed on the right visual field, and higher 

response efficiency for happy faces when displayed on the left visual field, lends 

support to the hypothesis of lateralised responses to primary affect at a behavioural 

level based on their nature (positive or negative) (Adolphs, 2002; Jansari et al., 2000; 

Killgore & Yurgelun-Todd, 2007; Reuter-Lorenz, and Davidson, 1981; Wedding & 

Stalans, 1985). Furthermore, the data show that this lateralised behaviour occurs 

under very specific, contextual, stimulus-related circumstances; this could suggest 

that behavioural lateralisation is not a constant phenomenon, but instead its presence 

might fluctuate and depend the presence of additional emotion-enhancing factors (i.e. 

salience of expression, stimulus duration, nature of the emotion observed). For 

example, in order for participants to display a clearly lateralised behavioural response, 

stimuli of positive valence need to be at a specific level of intensity, combined with 

presentation on the right visual field. As soon as such conditions are violated, positive 

stimuli tend to dominate the behavioural response. Nonetheless, this might still be an 

artefact of floor/ceiling compression; the complementary threshold results are 

however not subject to this potential artefact. The second finding of an overall happy 

face advantage could be interpreted from the impact of perceived social intent on 

attentional engagement; aside from the possibility of a stimulus confound (e.g. 

attention-grabbing effects of teeth), one possible explanation could be that when 

viewed for extremely short durations (i.e. 50ms), happy facial expressions potentially 
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carry an underlying ambiguity regarding their relevance or significance to the 

organism.  

2.3.1 EMOTIONAL MODULATION OF BEHAVIOURAL LATERALISATION  

 

   The response latency data provide some support for early, behavioural accounts of 

differential hemispheric contribution towards positive and negative affect (e.g. Moretti 

et al., 1996; Reuter-Lorenz, Kinsbourne, & Moscovitch, 1990; Reuter-Lorenz, and 

Davidson, 1981; Root, Wong, & Kinsbourne, 2006). However, behavioural 

lateralisation research has not as of yet provided a clear, replicable conclusion as to 

whether or not the distinct, emotion-specific lateralisation existing at a subcortical 

level (e.g. Badzakova-Trajkov, Häberling, Roberts, & Corballis, 2010; Campbell, 

1982; Mitchell, Elliott, Barry, Cruttenden, & Woodruff, 2003; Schepman et al., 2012; 

Wager et al., 2003) might translate into observable behaviour. According to the 

chapter’s predictions based on the valence hypothesis (Ahern & Schwartz, 1979), 

happy faces should result in best response efficiency (quicker and higher in accuracy 

responses) when on the right visual field (left hemisphere lateralised), with angry 

faces eliciting best response efficiency when on the left visual field (right hemisphere 

lateralised). The results of Exp. 2.2 showed that this lateralisation pattern occurs 

when stimuli for both emotions are past the detection threshold.  

In the present results, the lateralised pattern specific to response latency appears to 

be dependent on an interaction between visual field location of the stimuli and the 

expression intensity of the emotion displayed. One interpretation might be that subtle 

changes in salience intensity appear to modulate the lateralised pattern observed – 

the more disambiguated the emotion becomes, the less likely it is that differential 

hemispheric contribution will be engaged due to observing a happy or an angry facial 

expression.  It could be that it is a number of perceptual and contextual elements that 

are responsible for the high level of disparity across findings from the behavioural 

literature. Based on findings from Experiment 2.1, it is evident that the main element 

guiding participants’ responses by acting as a type of attentional cue is the nature of 

the emotion displayed in combination with the clarity of the emotional expression. The 

following sections offer an interpretation of the level of influence of emotion and 

salience, by suggesting that the response pattern per emotion is a product of a 

distinct and specifically modulated process.  
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2.3.1.1. EMOTION-SPECIFIC MODULATION 

  The overall happy-face advantage reported here is not necessarily an altogether 

surprising result; the quicker and more accurate response to positive affect has often 

been mentioned in behavioural lateralisation research, yet its implications on how 

emotion might be cognitively lateralised have historically been left uninterpreted 

(Jansari et al., 2000). For example, happy faces produced quicker and more accurate 

responses in visual search tasks compared to angry and fearful faces (Juth et al., 

2005). A similar happy face advantage has also been observed when using 

schematic faces as opposed to realistic photographs in an attempt to control for 

subtle differences in the physiology of the face across angry, happy and fearful 

emotions that could potentially skew responses (Leppänen & Hietanen, 2004).  

   The happy face advantage found in the present experiment might be interpreted 

based on hypotheses of the ambiguity of the social intent that happy facial 

expressions could be interpreted as threatening; it may be that our inability to instantly 

recognise and interpret the intentions of an unfamiliar happy face triggers similar 

approach/avoidance reactions elicited following exposure to openly threatening stimuli 

(Bindemann, Burton, & Langton, 2008; Bindemann, Burton, Hooge, Jenkins, & de 

Haan, 2005). For example, there have been some reports of happy facial expressions 

as being perceived in a similar way to that if they carried a threatening contextual 

association; reports of this effect however have so far been limited to happy facial 

expression stimuli where eye gaze has been manipulated to appear averted (e.g. 

Bindemann et al., 2005; 2008). For the present findings, it could be that a similar 

perceptual bias occurs; the near-detection threshold stimulus display time of 50ms, 

paired with the simultaneous bilateral presentation of both neutral and happy stimuli 

could be falsely perceived as carrying a similar propensity for ambiguity of social 

intent to that of a happy face with averted gaze as seen in Bindermann et al’s work 

(2005; 2008). It could be the case that very brief displays of happy faces of varying 

salience are perceived as equally ambiguous (or potentially threatening) as those of 

happy faces with averted gaze (Bindemann et al., 2008). However, it could also be 

argued that if happy faces were perceived as equally threatening, they would evoke a 

similar pattern of results to those for angry faces.   

    The combination of short presentation times with inter-stimulus competition (neutral 

vs happy), could have acted as a potent attention-grabbing cue within participants’ 

short time-window for providing a response, as stimulus competition might create a 



 72 

fine balance between hemifields that amplifies early effects of differential salience 

between them. It is therefore possible that this ambiguity of social intent of a happy 

facial expression has manifested here as a result of overall short stimulus display 

time. The added manipulation of facial expression salience in the present study 

further accentuated the overall preferential processing of happy faces.  

  One possibility could be that each separate type of emotion – be that positive or 

negative – draws from different, emotion-specific identification and recognition 

attentional systems, which in turn yield differing patterns of response that may occur 

at distinct, separate latencies; this is an assumption which has been extensively 

researched in both the human and animal neuroimaging literature but only for 

negative emotions such as fear, anger, and sadness (e.g. Adams, Gordon, Baird, 

Ambady, & Kleck, 2003; Adolphs, Russell, & Tranel, 1999; Bishop, Duncan, & 

Lawrence, 2004; Hoffman, Gothard, Schmid, & Logothetis, 2007; Kuraoka & 

Nakamura, 2007; Liddell et al., 2005; Straube, Langohr, Schmidt, Mentzel, & Miltner, 

2010). For example, in an fMRI study by Adams et al (2003) the authors investigated 

assumptions of increased amygdala sensitivity following presentation of fearful and 

angry facial expressions that were either gazing directly, or away from the participant. 

The authors reported heightened left amygdala sensitivity following displays of angry 

faces gazing directly to the observer, and fearful faces gazing away from the 

observer.  Behaviourally, what might appear as happy face advantage, might instead 

be a product of a different activation network with distinct timing and processing 

cognitive demands, that results in a timescale of recognition and response events 

other than the one observed for another basic emotion – in this case anger. 

  The valence hypothesis (Ahern & Schwartz, 1979) suggests angry stimuli are 

processed more efficiently when present on the left visual field (i.e. right hemisphere). 

Data from the present experiment do show this pattern, but under specific contextual 

circumstances, i.e. when stimuli are past the detection threshold (even more so for 

response latency, whereby the lateralised pattern is observed only at intensity 3), and 

when data from intensity 1 conditions are filtered out. Furthermore, current findings for 

angry facial expressions go against the consistently reported preferential processing 

of threat (e.g. Horstmann & Bauland, 2006). Specifically, data from the present 

experiment point towards a bias for happy facial expressions, with happy faces taking 

over participants’ attention and engagement in addition to them requiring a less 

salient expression intensity for successful recognisability. When looked at in 
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comparison to data for the happy stimuli, Experiment 2.1 data for angry faces did not 

suggest the presence of an anger superiority effect (Horstmann, 2007; Horstmann & 

Bauland, 2006), whereby angry stimuli tend grab attention instead of other facial 

expression stimuli, resulting in quicker responses. In isolating responses to angry 

affect, their resulting pattern of responses appears to be modulated based on what 

additional stimulus-specific contextual information is present at a given trial. For 

example, expression salience appears to determine the pattern of response for anger, 

as angry faces need to be more salient than happy in order to be correctly perceived 

as emotional.  

   According to the threat advantage hypothesis (Horstmann & Bauland, 2006) – i.e. 

more efficient responses for angry faces over any other form of basic affect – one 

would expect that in the present experiment, participants would show an overall bias 

towards angry stimuli, which would in turn be even more accentuated if the angry 

faces were presented on the left visual field (i.e. right hemisphere). In the present 

experiment, this pattern has only been found for intensity 3 and only for the reaction 

time data; the accuracy data show a marginal difference between angry faces when 

on the left or right visual field. Therefore, the picture for angry facial expressions 

seems to be focused primarily on the speed of response. This might mean that the 

effectiveness of anger as an attentional cue only manifests as a speeded response by 

maintaining accuracy constant, if the angry facial expression is correctly identified. In 

contrast to happy faces, anger appears lacking in eliciting efficient responses; this is 

perhaps best interpreted in terms of response patterns for different types of emotion 

occurring at different times and magnitudes (e.g. Adams et al., 2003).  

   Relating back to the approach/avoidance perspective, such speeded responses 

could be the resulting behaviour of engagement of a somatosensory response system 

of vigilance, closely linked to action readiness; in consequence, individuals are more 

likely to respond quickly to stimuli possibly pertaining to threat, without necessarily 

cognitively processing whether the threat is of direct relevance to them or not. The 

fact that a lateralised pattern was observed for anger only in terms of response 

latency could therefore be rationalised in terms of avoidance behaviours.  

   A final, possible explanation for the lack of a robust, overall threat/anger superiority 

effect (i.e. quicker and more accurate responses) in the present data could be that the 

processing advantage for anger seems to emerge in specific experimental paradigms 

(i.e. face-in-the-crowd) when competing against many neutral distractors compared to 
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when a single happy face appears within a number of neutrals (i.e. Juth et al., 2005; 

Maratos, 2011; Yiend, 2010). Additionally, this behavioural manifestation of this threat 

advantage tends to emerge when specific types of stimuli are used (i.e. schematic vs. 

photographic). For example, in a study by Juth and colleagues, the authors examined 

response latency towards angry, happy, and fearful photographs of facial expressions 

over three experiments, all of which employed a visual search paradigm (face-in-the-

crowd). In the first of these experiments participants were tasked with correctly 

identifying the target emotional stimulus amongst a crowd of neutral distractors; the 

authors observed that happy faces elicited quicker and more accurate responses 

compared to the angry or fearful targets. This effect was also replicated when using 

inverted as opposed to upright emotional faces in the same visual search/face in the 

crowd paradigm (2nd experiment). However, in their 3rd study which utilised schematic 

emotional face targets instead of photographic stimuli, the authors noted that the 

angry stimuli elicited quicker and more accurate responses (Juth et al., 2005). In face 

in the crowd type paradigms, participants are tasked with choosing the odd one out 

target; conversely in experiment 2.1 the target is always present while participants are 

tasked to make a decision on its location (left vs. right). Threat superiority might 

therefore result from the engagement of earlier, cruder attentional mechanisms, fine-

tuned in detecting the overall presence of danger; these mechanisms may potentially 

be engaged prior to the emotional stimulus having to undergo any further, higher-

order attentional processing. In the present experiment, participants were forced to 

make a location-based decision, which may have meant that further attentional 

processing and interpretation of the visual scene was necessary. Given that in Expt. 

2.2 each trial presented two faces with one always being the target (regardless of 

type of affect), and without any attentional cue pre-empting target location, it could be 

the case that the more robust behavioural effect of a happy advantage was prevalent 

across participant responses.  

 

2.3.2 CONCLUSION 
 

 Experiment 2.1 was developed to elicit the direct measurement of lateralised 

responses to basic affect. In order to control for methodological limitations met in the 

behavioural literature (discussed in chapter 1), the present experiment tightened 
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methodological control by imposing short participant response time cut-offs, equating 

across stimuli for luminance and feature distinctiveness, and by utilising a forced-

choice, bilateral presentation target location identification paradigm. In agreement 

with predictions, experiment 2.1 showed evidence for hemispheric lateralisation, with 

the laterality pattern more pronounced for happy stimuli. This chapter has considered 

possible interpretations that might account for the overall positive affect advantage, 

which goes against recent hypotheses of negative affect superiority. In doing so, the 

importance of the relationship between attention and emotional perception was 

identified, which led to the rationalisation and development of the following chapter.  
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3 CHAPTER 3: NASAL-TEMPORAL ASYMMETRIES IN 

SUPRATHRESHOLD FACIAL EXPRESSIONS OF PRIMARY AFFECT 

 

3.1 INTRODUCTION 

 

   In chapter 2, a behavioural paradigm was introduced to investigate the differential 

hemispheric contribution to the perception of facial expressions of primary affect. 

This was achieved by examining two main types of behaviour that lateralised 

hemispheric contribution may be associated with; participant response times and 

accuracy scores. Firstly, findings from chapter 2 confirmed predictions of an 

asymmetric hemispheric contribution in emotional responses, and highlighted that 

aside from the nature of the emotion observed (positive vs negative), lateralisation 

appears to be modulated by the salience of facial expression. Secondly, chapter 2 

results showed that the directionality of lateralised behaviour varies depending on 

the type of response measure being investigated. For example, when looking at 

response latency, emotional stimuli need to be half-way between ambiguous and 

salient for differential hemispheric contribution to be effectively observed. For 

accuracy however, hemispheric preferential engagement for positive or negative 

emotions appears to be modulated by the interaction between the emotional valence 

of a stimulus (angry/happy), and its visual field location (left/right).  

   Having established that the paradigm introduced in chapter 2 provides a 

behavioural methodology which is sensitive to modulating factors for highlighting 

emotion-dependent preferential hemispheric engagement, the present chapter aims 

to investigate whether emotion-specific, subcortically driven hemispheric 

asymmetries might be indirectly examined via solely behavioural means. We used 

eye patching, which has been established as effective in investigating effects of 

monocular viewing on perceptual tasks (Roth, Lora, & Heilman, 2002). Following 

Zackon et al’s recommendation for behaviourally distinguishing between subcortical 

and cortical contributions in visual attention tasks (Zackon, Casson, Stelmach, 

Faubert, & Racette, 1997), the present chapter adapts the behavioural methodology 

developed in chapter 2 so as to indirectly detect asymmetrical subcortical 

contributions to emotion detection through monocular viewing. Specifically, Zackon 
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et al explored the properties of monocular viewing as a determinant of asymmetrical 

distribution of attention; they reported on a subcortical attentional advantage 

observed during oculomotor tasks under monocular viewing conditions, but not in 

perceptual tasks (Zackon et al., 1997) – they implemented the monocular viewing 

condition by patching either the left or right eye; eye-patching allowed for stimulation 

of subcortical as opposed to cortical retinotectal pathway (Fig. 3.1).  

 

 

Figure 3.1. Graphic illustrates the cortical (A) and subcortical (B) retinotectal pathways through 
projections from nasal and temporal hemiretinae (figure borrowed from Zackon et al., 1997).  

 

 

Based on their findings, the authors suggested that since retinotectal projections 

primarily arise from the nasal retina, and therefore appear in the temporal hemifield 

to the unobstructed eye, the asymmetric distribution of subcortical attention is to be 

expected, along with an overall bias towards the temporal hemifield (as a temporal 

hemifield advantage is a well-replicated effect in oculomotor dominance tasks i.e. 

Zackon et al, 1997; Katz & Crowley, 2002) (Fig. 3.2). 
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Figure 3.2. Graphic illustrates the pathway from the nasal and temporal hemiretinae through to lateral geniculate 
nucleus and into the primary visual cortex in binocular vision. Red shaded blocks represent ipsilateral and purple shaded 
blocks represent contralateral areas (figure borrowed from Katz & Crowley, 2002).   

 

 To introduce the rationale of the present chapter’s methodology, the following 

sections will consider the evidence for lateralised behaviour resulting from attending 

to emotional facial expressions by addressing subcortical attentional asymmetries in 

relation to primary affect. As a conclusion, the potential for utilising nasotemporal 

asymmetries as an index of subcortical, asymmetrically distributed attention during 

emotional face perception will be explored.  

3.1.1. ASYMMETRIC DISTRIBUTION OF SUBCORTICAL LOCI OF ACTIVITY IN 

EMOTIONAL ATTENTION   

 

   Emotion-relevant research on subcortically originating hemispheric asymmetries of 

attention has historically been almost exclusively linked to the non-conscious 

perception of emotional stimuli. For example, Liddell and colleagues reported on a 

left-lateralised bottom-up alarm attentional activation system which follows the 

brainstem- amygdala-somatosensory/temporal cortical route that showed increased 

BOLD activity during perception of subliminally-displayed fearful stimuli (Liddell et al., 

2005). Specifically, the authors’ regions of interest analysis showed significant left-

lateralised activation in the amygdala, pulvinar, superior colliculus, locus coeruleus 

and anterior cingulate, while whole brain analysis showed further left-lateralised 

activation in the insula and postcentral gyrus of the somatosensory cortex, as well as 
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in the superior and middle temporal gyri and inferior and middle temporal gyri (Liddell 

et al., 2005).   

   In Tamietto and de Gelder’s paper on the neural bases of non-conscious 

perception of affect, the authors summarise both well-established as well as newly 

identified subcortical structures that have been linked with the perception and 

processing of unconsciously perceived affect (Tamietto & de Gelder, 2010). The 

authors identify two coexisting networks of subcortical structures that are involved in 

nonconscious affect perception; while one network is responsible for the visual 

encoding of affective stimuli, the other is concerned with any other function 

necessary to process the stimuli outside of vision. Structures linked to the visual 

encoding network are perhaps more prominently reported in the neuroimaging 

literature on emotion perception, and their role in emotional stimulus disambiguation 

and organisation of response has been robustly identified. Structures such as the 

superior colliculus (e.g. Cesarei & Codispoti, 2015; Ellenbogen & Schwartzman, 

2009; Vuilleumier, Armony, Driver, & Dolan, 2003), amygdala (e.g. Adolphs, Russell, 

& Tranel, 1999; Pessoa & Adolphs, 2010; Pessoa, 2010; van der Zwaag, Da Costa, 

Zürcher, Adams, & Hadjikhani, 2012), substantia innominata (e.g. Mesulam, 1998; 

Viinikainen et al., 2010; Whalen et al., 1998), and nucleus accumbens (e.g. Carretié 

et al., 2009; Duncan & Barrett, 2007; Haegelen, Rouaud, Darnault, & Morandi, 2009; 

Richter-Levin & Akirav, 2003) have all been studied in extensive detail as to their role 

in emotional perception. On the other hand, the role and involvement of structures 

more recently identified as being involved in processing nonconscious affective 

stimuli has not been fully established. This lesser known network includes the locus 

coeruleus, periaqueductal grey, nucleus basalis of Meynert, the hypothalamus and 

the hippocampus (Tamietto & de Gelder, 2010).  

   As the important role of these subcortical structures in the perception and 

processing of primary affect has become clearer through the use of neuroimaging 

methodologies, studies have also tried to address the question of overall laterality at 

a subcortical level based on the nature of the emotion observed (positive/negative). 

As a result, a large body of work into the lateralised activation of subcortical attention 

networks has been published (for an overview see chapter 1). However, the isolated 

consideration of specific brain structures does not readily allow for generalisation in 

terms of overall brain region functionality; whether or not specific structure activation 

can be observed across a range of emotional perception tasks instead of a specific 
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type of task has not yet been fully clarified (Phan, Wager, Taylor, & Liberzon, 2002; 

Wager et al., 2003). Additionally, whether or not a number of behavioural indices (i.e. 

button-press, saccades etc.) are all equally successful in reflecting lateralisation is 

also under some debate (Wager et al., 2003). Therefore, the identification of right or 

left lateralised, subcortically originating emotional networks is rather difficult through 

usage of behavioural indices. Although an overall mapping of left and right cerebral 

preferential engagement to particular types of affect (right hemisphere/negative 

affect and left hemisphere/positive affect) has been attempted since the late 70s 

(e.g.Natale, Gur, & Gur, 1983; Reuter-Lorenz, & Davidson, 1981; Sackeim & Gur, 

1978; Strauss & Moscovitch, 1981), more recently a proportion of neuroimaging 

studies have attempted the identification of overall subcortically-originating networks 

that are specific to each type of primary affect. One example from the literature that 

attempted to provide an overall account of primary affect-dependent laterality based 

on neuroimaging data is that by Wager and colleagues in the early 2000s, who 

conducted a meta-analysis of 65 studies on subcortical emotion lateralisation (Wager 

et al., 2003). The authors utilised two dichotomisations of affect: positive/negative 

and approach/avoidance (for a discussion of these conceptualisations see Chapter 

1), and divided the brain into 11 regions of interest to include subcortical structures 

from the lateral, medial, temporal and posterior cortices, including structures such as 

the brainstem, amygdala, and hippocampus alongside other commonly reported 

subcortical structures involved in the processing of basic affect. To investigate 

laterality, the authors conducted binomial tests on peak activation counts between 

the two hemispheres that compared the right and left peaks against equivocal 

activation across the two hemispheres, and observed lateralised activations for 

specialised brain regions often described in behavioural studies of laterality (Lane et 

al., 1997; Reuter-Lorenz, Kinsbourne, & Moscovitch, 1990; Reuter-Lorenz, & 

Davidson, 1981), as opposed to whole cerebral hemisphere lateralisation (Wager et 

al., 2003).  

   What remains to be clarified, is how emotion-specific lateralised subcortical regions 

manifest into observable behaviour. As of yet, there has been no clear way of 

behaviourally investigating emotional subcortical laterality, perhaps for the obvious 

reason that subcortical activation cannot be directly inferred through behavioural 

means. However, there is a possibility of using behavioural measures as an indirect 

index, not only of subcortical activation resulting from different types of affect, but 
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also of whether or not this activation is lateralised depending on the nature of an 

emotional stimulus. The following sections will first introduce nasotemporal visual 

field asymmetries as a possible index of asymmetrical subcortical distribution, and 

will discuss the novel suggestion of using these visual hemifield asymmetries as an 

indirect measure of investigating lateralised subcortical emotional activation based 

on the type of primary affect.     

 

3.1.2 NASAL-TEMPORAL ASYMMETRIES AS AN INDEX OF SUBCORTICAL 

DISTRIBUTION OF ATTENTION 

 

  Studies on nasotemporal hemifield asymmetries and their usage as indirect 

behavioural measures of subcortical attentional activity gained in popularity roughly 

30 years ago. In the vision literature, the investigation of subcortical attentional 

distribution through observing the competing influences of nasal and temporal 

asymmetries has so far successfully been accomplished in perceptual and spatial 

attention tasks. A core example from early work in this field is by Fahle (1987), who 

proposed that the nasal and temporal parts of visual field periphery are processed by 

the eye asymmetrically, with both resolution and visual hyperacuity being superior in 

the temporal hemifield (Fahle, 1987). The inference of nasotemporal asymmetries 

through behavioural means may be best understood when first considering the 

pathway from the nasal and temporal hemiretinae to the visual cortex under 

binocular viewing conditions (Fig. 3.3). When describing this pathway, Katz and 

Crowley report that upon crossing the optic chiasm, both temporal and nasal 

hemiretinae inputs pass through the LGN where they separate into nasal and 

temporal retina-specific layers before being sent onto layer 4 of the primary visual 

cortex (Katz & Crowley, 2002). When in the primary visual cortex, the eye-specific 

separation is maintained, as nasal and temporal inputs terminate in different areas; 

the continuation of this separation into the primary visual cortex can be seen as 

signalling both ocular and nasotemporal dominance (Katz & Crowley, 2002).  
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Figure 3.3. Graphic displays the inverted inputs from the lens to the nasal and temporal hemiretinae; the 
nasal retina receives input from the temporal hemifield, and conversely the temporal retina receives input 
from the nasal hemifield (Katz & Crowley, 2002).   
 

 

The expectation of an overall temporal hemifield dominance is based on earlier 

evidence reported by Rafal and colleagues, whereby participants tested under 

monocular viewing conditions implemented through eye-patching were asked to 

respond to peripherally-displayed stimuli by either directing their saccades towards 

them, or by providing response times by manually pressing a response button (Rafal 

et al., 1991). Rafal et al (1991) found that for both saccade and reaction time 

responses, an overall temporal hemifield advantage surfaced. The evidence further 

supported their observation when compared to earlier data from patients with 

occipital and midbrain lesions, who also displayed an overall temporal hemifield 

dominance, thus strengthening the pivotal role the retinotectal pathway plays in 

controlling and distributing visual behaviour (Rafal et al., 1991).  

   In another example Zackon and colleagues (1999) hypothesised that the 

asymmetrical distribution of visual attention might be determined through monocular 

viewing conditions in a temporal order judgment task that utilised stimuli of variable 

onset asynchrony (Zackon, Casson, Zafar, Stelmach, & Racette, 1999). Over three 

experiments (no cue, exogenous cue, and endogenous cue) conducted under both 

binocular and monocular viewing conditions, the authors observed an effect for 

subcortical processing only in the monocularly viewed exogenous cue condition, 

while the no cue and endogenous cue conditions showed no differences. Zackon 

and colleagues therefore concluded that when attention is directed voluntarily, 
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attentional asymmetries are diminished and cortical processing takes over, with 

temporal order perception being modulated by presenting an exogenous cue to the 

temporal hemifield during monocular viewing (Zackon et al., 1999). Similarly, Roth 

and colleagues, by investigating the effects of monocular viewing conditions during 

perceptual tasks in individuals with spatial neglect, suggested that through the 

patching of one eye, the subcortical loci interacting with cortical attentional systems 

may be activated (Roth et al., 2002). Roth and colleagues reported that in patients 

with unilateral spatial neglect, they observed an overall attentional improvement to 

the neglected space once the eye ipsilateral to their injury was patched; the authors 

conclude that through eye patching, one can increase the activation of attentional 

systems which are contralateral to the viewing eye, by biasing the competition in 

favour of the left hemifield (Roth et al., 2002).  

   This section highlighted that in the anatomy of the nasal and temporal pathways 

from the hemiretinae, there exist a number of known asymmetries that have 

subsequently been linked to resulting asymmetries in behaviour (Jóhannesson, 

Asgeirsson, & Kristjánsson, 2012). Although the use of observable asymmetries 

between the temporal and nasal hemifields has been effective in general attentional 

tasks as mentioned above, their effectiveness has not as of yet been investigated in 

relation to emotional attention. The present chapter has considered evidence that 

suggest the successful inference of subcortical activation through solely behavioural 

means (i.e. saccades, manual button presses etc.), and aims to investigate the 

linkage between nasal-temporal asymmetries and emotional attention (as opposed 

to visual attention and perception) which has so far been left largely unexplored.  

 

3.1.2.1. MIGHT NASAL-TEMPORAL ASYMMETRIES ACT AS AN INDEX OF 

SUBCORTICAL ASYMMETRICAL DISTRIBUTION OF EMOTIONAL ATTENTION? 

  

   A relatively small proportion of the literature has investigated the existence of 

nasal-temporal asymmetries in responding to face stimuli. For example, Simion and 

colleagues examined whether newborns show preferential orienting towards face 

stimuli by comparing saccade orientation towards face-like and non face-like 

schematic representations (Simion, Valenza, Umiltà, & Dalla Barba, 1998). Infant 

visual behaviour is thought to be rooted primarily in subcortical structures – as from a 

developmental perspective the visual cortex has not yet reached full functioning 
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maturity – and subsequently any visual behaviour asymmetries could be assumed to 

result from subcortical activation (Simion et al., 1998). Indeed, Simion et al’s findings 

confirm hypotheses of infant orienting preference towards face-like stimuli; 

furthermore, infants showed more efficient performance if face-like stimuli were 

presented in the temporal hemifield rather than the nasal, therefore adding support 

to the suggestion of an overall temporal hemifield superiority (1998). More recent 

work by Tomalski and colleagues also examined the suggested nasotemporally-

lateralised processing for face stimuli (Tomalski et al., 2009). The authors tested the 

assumption of the subcortical visual route acting as a mediator for the rapid 

orientation towards faces in the visual periphery. Using schematic face stimuli, the 

authors observed nasal-temporal asymmetries in participants’ responses, whereby 

saccades to the temporal hemifield of each eye were quicker than to the nasal; 

although response times were also collected, they did not show any response 

latency effects (Tomalski et al., 2009).  

   The literature on emotional perception suggests the speeded processing of non-

consciously perceived negative affect, which is fast-tracked through attentional 

filters. Based on the enhanced biological significance emotionally-loaded stimuli 

have for the individual (e.g. Tamietto & de Gelder, 2010), emotional faces should 

display a similar distribution of nasal-temporal asymmetries found when using face 

or face-like stimuli. Work using non-consciously perceived negatively valenced 

stimuli has been found to trigger the bottom-up network from the brainstem through 

to the amygdala and cortex (Liddell et al., 2005; Tamietto & de Gelder, 2008; 2010). 

Surprisingly however, and despite the high biological relevance of emotional faces 

as stimuli that could be assumed to instigate advantageous perceptual processing, 

the existence of nasal-temporal asymmetries in our responses to these stimuli has 

not insofar been examined.  

 

3.1.2.2. HOW MIGHT THE LINK BETWEEN NASAL-TEMPORAL ASYMMETRIES AND 

THE RETINOTECTAL PATHWAY INFLUENCE ASYMMETRY?  

 

   Aside from questions on the appropriateness of manual response efficiency 

measures in establishing whether nasal-temporal asymmetries would be produced 

following displays of emotional face stimuli, the literature has also been concerned 
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with investigations on whether the network between nasal-temporal asymmetries 

through the retinotectal pathway and the superior colliculus influences asymmetry. 

For example, Bompas et al (2008) observed that using s-cone stimuli could 

effectively induce nasal-temporal asymmetries for saccadic responses; in addition, 

the authors’ manipulation of stimulus luminance appeared to further enhance this 

effect. It is possible that direct projection to the superior colliculus is not a necessity 

for the presence of nasal-temporal asymmetries, which in turn implies the 

involvement of other nasal-temporal asymmetry sources (Bompas, Sterling, Rafal, & 

Sumner, 2008). Specifically, in the Bompas et al study, the behavioural nasal-

temporal asymmetries observed similar to those found in attentional (e.g. Posner, 

Rafal, Choate, & Vaughan, 1985), and face perception studies (e.g. De Gelder & 

Stekelenburg, 2005), should not be viewed as being the exclusive product of the 

retinotectal pathway, as in the Bompas et al study the s-cone stimuli used did not 

produce a larger effect than luminance (Bompas et al., 2008).  

   The vision literature has documented the presence of anatomical asymmetries 

between nasal and temporal hemiretinae and function. Anatomical asymmetries 

have been identified and linked to cognitive function in connection to saccade 

selection and attention (Jóhannesson et al., 2012), Vernier acuity (Fahle, 1987), and 

in projections from the hemiretinae to the superior colliculus (Sylvester et al., 2007). 

Although predictions on the existence of nasal-temporal asymmetries could be 

logically based on the existence of structural asymmetries in retinal projections to the 

midbrain, as well as on the existence of attentional asymmetries across the 

hemifields, findings from this field of research have not proven conclusive. For 

example, when attempting to identify the presence of asymmetries across a number 

of saccadic tasks by looking at landing point accuracy and saccadic latency, 

Jóhannesson and colleagues reported that while the saccadic latency measure 

identified no asymmetries, the landing point accuracy showed very moderate 

asymmetric activation (Jóhannesson et al., 2012). Jóhannesson et al highlight that 

superior colliculus mediated responses (in this case in the form of choice saccades) 

might be less pronounced than originaly hypothesised, as they are influenced by 

areas that receive direct input from the lateral geniculate nucleus (Jóhannesson et 

al., 2012). In terms of visual anatomy, the limited number of primary retinal 

projections direct to the superior colliculus has been established for some time now. 

For example, Perry and Cowey suggested that only 10% or less of retinal ganglion 
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cells have primary projections to the superior colliculus (Perry & Cowey, 1984). More 

recently, Sato and Schall suggested that the connection between saccades and 

attention might not be as straightforward as originally thought, as in their study one 

third of FEF neurons displayed non-correlated responses between saccades and 

selective attention (T. R. Sato & Schall, 2003). This might offer an explanation as to 

why nasal-temporal asymmetries either come across as subtle effects, or not at all. 

Similar to the majority of studies in this field, the entirety of the discussion on the 

exclusivity of the link between the retinotectal pathway and nasotemporal 

asymmetries relies on studies utilising saccadic responses. In terms of manual motor 

responses the same question is as of yet completely unexplored.  

3.1.2 SUMMARY  

 

   To summarise, the literature so far suggests interplay between emotion and 

attention. However, this is a complex and highly dynamic process that is as yet to be 

fully disambiguated. Given the prioritising nature of attentional mechanisms that are 

fine-tuned for filtering environmental information so that stimuli that are biologically 

significant (such as emotional faces) to the organism can be prioritised and 

responded to efficiently, an equally efficient and developmentally mature subcortical 

network might be expected to be at play. The neuroimaging and neurophysiological 

literatures have so far investigated in great detail the role of different subcortical 

structures in recognising, perceiving, and attending to emotions. The behavioural 

literature has in turn successfully used asymmetries in visual attention and behaviour 

through the means of nasal-temporal hemifield asymmetries as an index of 

subcortical activation. However, there is an evident gap in the literature in terms of 

using nasal-temporal asymmetries as an indicator of subcortically led attention to 

emotional stimuli, and specifically to facial expressions of affect.  

   The following experiment addresses this gap by adapting the behavioural 

paradigm introduced in chapter 2 so as to utilise nasal-temporal asymmetries as a 

mediator of lateralised behaviour towards positive and negative facial expressions of 

affect. The following experiment also addresses another gap in the literature; insofar, 

only non-consciously perceived, negative affect has been utilised in relation to 

subcortical attentional activation. The present chapter addresses this gap by utilising 

visible, and of varying expression salience emotional facial expressions in an attempt 
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to highlight the modulating properties of visible and therefore consciously perceived 

emotion on nasal-temporal asymmetries. Based on the conclusions from the present 

chapter’s introduction, the following experiment therefore tested the assumption of a 

nasal-temporal differential hemifield contribution in responding to emotional faces 

instead of neutral, which is expected to be further enhanced if the valence of the 

emotional face is negative, and furthermore if the emotional face is present in the 

temporal hemifield. This prediction also follows on from experiment 2.1, chapter 2 

hypotheses of overall visual field asymmetry as being dependent on the nature of the 

emotional stimulus observed.  
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3 EXPERIMENT 3.1 
 

3.2.1. METHODS 

 

 

3.2.1.1. SUBJECTS 

 

   Twenty-four neurologically healthy adults (Undergraduate students, Department of 

Psychology, City University London) took part in this study (7 males; mean age: 

24.8; SD: 2.1). Participants were recruited through an online advertisement on the 

University’s Psychology Department online participation tool (SONA). Poor quality 

data from three other participants were excluded due to improbable reaction times 

(<300ms). All participants were right-handed with normal or corrected-to-normal 

vision. Handedness was used as an index of eye dominance, based on an 

established strong statistical association between handedness and eye dominance 

(McManus, Porac, Bryden, & Boucher, 1999). All participants had given written 

consent prior to testing. 

3.2.1.2 APPARATUS 

 

  Laboratory setup and apparatus was the same as described in Experiment 2.1, 

Chapter 2. In addition, a concave-shaped black canvas eye-patch with adjustable 

elastic strap was also used. 

3.2.1.3. STIMULI 

 

   Stimuli and stimulus display dimensions, layout, and lateral positioning in the 

display were the same as those used in Experiment 2.1, chapter 2. In terms of poser 

selection, the same 4 posers used in the practice trials in Experiment 2.1 were also 

used in the practice trials for the present study. Similarly, photographs from the 6 

posers used in experiment 2.1 were also used in the testing blocks for the present 

study (see Figure 2.8, chapter 2). 

3.2.1.4. DESIGN 

 

   The experiment utilised a 2x2x2x5 repeated-measures factorial design, with 

temporal vs nasal hemifield, emotion, visual field location, and intensity of facial 
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expression as within-subjects factors (Table 3.1). The within-subjects factors of 

hemifield (nasal/temporal), emotion (angry/happy), and visual field location (left/right) 

all had two levels, while expression salience (intensities 1-5) had five. There were 40 

conditions of possible combinations between hemifield, emotion, visual field location, 

and expression salience per testing session, with conditions randomised across 

participants. Manual (button press) reaction times (ms) and accuracy scores (% 

correct scores) were the two dependent measures collected.  

 

Target Location/Visual 

field 

Patched Eye Activated Hemifield 

LVF Left Nasal hemifield 

RVF Left Temporal hemifield 

LVF Right Temporal hemifield 

RVF Right Nasal hemifield 

Table 3.1. Table maps each possible combination between right and left visual field location of the target 

stimuli (emotional expressions) and patched eye, with its equivalent stimulated hemifield.  

   

3.2.1.5. PROCEDURE 

 

   Testing took place in a darkened, soundproofed laboratory room. The speeded, 

forced-choice facial expression discrimination task introduced in Experiment 2.1, 

chapter 2 was used in the present study with the collected measures being response 

time and accuracy (see chapter 2, figure 2.10). To briefly recap, participants viewed 

bilateral presentations for 50ms each of one emotional and one neutral facial 

expression of angry or happy affect, and were required to press the right or left 

keyboard arrow keys depending on which side they saw the emotional face on. The 

task rendered target location unpredictable across trials, and the target emotional 

faces varied in expression intensity from 1(ambiguous) to 5(exaggerated).   

   The additional factor of nasal/temporal hemifield was manipulated by alternating 

between patching the left or right eye to manipulate the nasal/temporal hemifield 

presentation of stimuli. When the right eye was patched, target stimuli presented on 

the right visual field were nasal, and when presented on the left visual field were 

temporal. The opposite pattern occurred when the left eye was patched (e.g. target 

on the LVF was nasal and target on the RVF was temporal). This resulted in 5 

testing blocks viewed monocularly with one eye patched, and 5 testing blocks 
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viewed monocularly with the other eye patched (total of 10 testing blocks completed 

per participant). Participants were tested individually, and a typical testing session 

lasted approximately 90 minutes depending on length of break time taken between 

testing blocks. When starting the testing session, participants were asked to first 

complete a practice block of 160 trials, in which stimuli were viewed binocularly. On 

successful completion of the practice block, participants wore the eye patch on either 

the left or right eye, and proceeded to complete 5 testing blocks viewed monocularly. 

After completing the first 5 testing blocks, the alternate eye was patched and 

participants completed a further 5 testing blocks, again viewed monocularly. The 

order of eye patching was counterbalanced across participants with 12 participants 

starting the experimental trials with the right eye patched first, and 12 participants 

starting with the left eye patched first. Each testing block consisted of 240 trials. 

Overall, data were collected from a total of 2400 trials with 10 testing blocks 

completed per participant. There were no changes to fixation and feedback display 

timings, stimulus onset-offset or response time window implemented (see Figure 

2.10, chapter 2).  

 

 

3.2.1.6. DATA PREPARATION AND ANALYSIS 

 

  Each participant’s mean RT (ms) and accuracy score (% correct score) were 

calculated per experimental condition. Calculations were conducted using E-Data 

Aid and E-Merge, part of the E-Prime v2.0 software package (Psychology Software 

Tools, Pittsburgh, MA). Raw reaction time data were filtered to exclude values from 

incorrectly-responded to trials, and were further filtered as to exclude reaction times 

less or more than 2 standard deviations from the mean. For accuracy scores, mean 

accuracy performance was calculated for each participant per condition. In the 

following results section, all analyses involving factors with more than 2 levels 

violating the sphericity assumption have been Greenhouse-Geisser – corrected, and 

all error bars represent within-subjects error, calculated using the Cousineau 

correction (Cousineau, 2005; Morey, 2008).  
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 3.2.2 RESULTS 

 

3.2.2.1 REACTION TIME 

  A repeated-measures ANOVA was conducted with hemifield (nasal/temporal), 

emotion (angry/happy), visual field location (left/right) and intensity (1-5) as within-

subjects factors on the reaction time data. The analysis resulted in a significant main 

effect of emotion [F(1,20)=8.7, p=.008, partial η2=.3], with quicker responses for 

happy faces (mean=510.2, SE=12.14) than angry faces (mean=518.7, SE=12.6). A 

main effect of expression intensity was also found [F(4,80)=48.6, p<.001, partial 

η2=.7]. No further significant main effects were found.  

 

   A marginally significant interaction between nasal/temporal hemifield and emotion 

(angry/happy) was found in the reaction time data [F(1,20)=3.7, p=.07, partial η2 =.3]. 

Unpacking the interaction showed no differences for angry faces viewed in the nasal 

(mean =518, SE=14.5) or temporal (mean = 514, SE=14.8) hemifields. However, for 

happy stimuli viewed on the temporal hemifield reaction times were quicker (mean = 

506, SE=11), than when viewed on the nasal hemifield (mean=519, SE=12) (Figure 

3.4 on following page).  
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Figure 3.4. Interaction plot displaying mean reaction time (ms) scores for angry (blue line) and happy (green 
line) emotional face stimuli when plotted across the nasal and temporal hemifields respectively. Happy 
stimuli when viewed on the temporal hemifield were responded to quicker than when on the nasal hemifield. 
No such difference was observed for the angry faces.   

 

 

 

3.2.2.2. ACCURACY 

  A repeated-measures ANOVA with the within-subjects factors of hemifield 

(nasal/temporal), emotion (angry/happy), visual field location (left/right) and 

expression intensity (1-5) was conducted for the dependent measure of mean % 

correct scores. The analysis resulted in a significant main effect of emotion [F 

(1,20)=7.61, p=.012, partial η2=.3] with happy faces scoring higher accuracy 

(mean=.80, SE=.023) than angry faces (mean=.76, SE=.024). Accuracy analysis 

also showed a significant main effect of expression intensity [F(4/80)=217.73, 

p<.001, partial η2= .91]. The factors of hemifield [F(1,20)=6.4, p=.43, partial η2 =.3], 

and visual field [F(1,20)=1.2, p=.21, partial η2 =.05] were found to be non-significant. 
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   The analysis also produced a significant interaction between emotion 

(angry/happy) and intensity [F(4,80)=6.09, p<.001, partial η2=.23]. Post-hoc paired-

samples t-tests revealed that the interaction resulted from significant differences 

between the angry and happy stimuli for intensity 2 [t=-2.5, df=20, p=.02], intensity 3 

[t=-3.52, df=20, p=.002], intensity 4 [t=-3.73, df=20, p=.001], and intensity 5 [t=-2.36, 

df=20, p=.03] (Fig 3.5 on following page). There was no significant difference 

between angry and happy stimuli for intensity 1 (p=.3) were responses were at 

chance level (approx. 50-55%) (Figure 3.6). 

 

 

 

Figure 3.5. Line graph representing accuracy scores for each emotion (angry/happy) as a function of 
expression intensity. Error bars represent Cousineau-corrected, +/-1 within-subjects error. No difference is 
shown between emotions for intensity 1, and for this expression intensity accuracy scores for both emotions 
is just above chance. From intensity 2 through to intensity 5, happy faces show consistently higher, 
significantly different accuracy scores than angry faces, with intensity 3 producing the largest difference in 
accuracy scores between the two emotions.   

 

   No significant interactions were found between the factors of emotion and hemifield 

[F(1,20)=.4, p=.53, partial η2 =.01], visual field and hemifield [F(1,20)=.02, p=.9, 

partial η2 =.001], or between emotion and visual field [F(1,20)=.07, p=.7, partial η2 

=.004]. Similarly, the three-way interaction between hemifield, emotion, and visual 

field location was non-significant [F(1,20)=1.5, p.23, partial η2 =.07]. 
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3.2.2.3. THRESHOLD ANALYSIS 

 

A repeated measures ANOVA with emotion (angry/happy) and visual field location 

(left/right) was calculated for the threshold accuracy data. A significant interaction 

between emotion and visual field was observed [F(1, 20)= 7.23, p=.02]. Similarly to 

the detection thresholds per emotion found in Exp.2.2, chapter 2, happy faces were 

recognised more accurately overall as opposed to angry. This difference was even 

more prominent when the happy faces were displayed on the RVF (Fig. 3.6). 

 
Figure 3.6. Graph displays detection thresholds for the happy and angry faces utilised in the present      
study, when displayed on the LVF and RVF. Error bars represent +-1 SE of the mean.  
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3.2.3 SUMMARY  

  The results point towards a trend for a temporal hemifield advantage but only for 

happy stimuli. However, this trend was only marginal and solely observed in the 

manual response time data. Contrary to predictions, both reaction time and accuracy 

data did not result in lateralised patterns of behaviour as dependent on type of 

emotion (angry vs happy), hemifield (nasal vs temporal), or visual field location (left 

vs right). Findings from experiment 3.1 add support to the overall preferential 

response towards happy stimuli, initially observed in experiment 2.1. Happy stimuli - 

regardless of nasal or temporal hemifield, or left or right visual field presentation, 

were consistently responded to quicker and more accurately than angry stimuli.  

   The reaction time data  - aside from a marginally significant interaction between 

nasal-temporal hemifield and emotion - showed no significant interactions of visual 

field location and intensity for the two emotional facial expressions. Unpacking of the 

marginal interaction confirmed predictions of quicker responses to temporal hemifield 

only for happy facial expressions. Angry faces produced a negligible difference 

across nasal and temporal hemifields. Potentially, a larger sample would strengthen 

interaction significance, as the current effect size observed is somewhat modest 

(partial η2=.3). The reaction data also produced an effect of emotion, where happy 

facial expression stimuli resulted in decreased response latency than angry, 

regardless of visual field location or nasal/temporal hemifield. The data also showed 

a significant effect of expression salience (intensity), with significant differences 

resulting from paired comparisons of the majority of intensity pairs (intensities 1 

through to 4), but not for the comparison between the two high-salience intensities (4 

and 5).  

   The same significant effects of type of emotion and intensity were also observed in 

the accuracy data, with happy facial expression stimuli resulting in higher accuracy 

responses than angry, while paired comparisons between all intensity pairs resulting 

in significant differences. In addition, the accuracy data revealed a significant 

interaction between type of emotion (angry vs. happy) and expression salience 

(intensities 1 through to 5). Unpacking of the interaction confirmed an anticipated 

ceiling effect: just above chance level accuracy resulted from the most ambiguous 

expression intensity (intensity 1), showing no difference between the two emotions, 
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and a gradual increase of performance as the expression salience disambiguates 

with high accuracy performance reaching a plateau for the highly salient intensities 

(4 and 5). Across comparisons of intensities 2 to 5, a significant difference between 

the two emotions is maintained, with happy faces scoring higher accuracy than 

angry.    

 

3.3 DISCUSSION  

 

   Experiment 3.1 predicted that subcortically driven attentional asymmetries, 

previously reported in the literature as resulting from using subliminal or masked 

emotional stimuli would manifest as nasal-temporal hemifield preferences when 

using suprathreshold facial expressions of positive and negative affect. A further 

prediction considered that such asymmetries would be modulated by the nature of 

the emotion observed (positive-happy vs negative-angry). The present experiment 

utilised participant manual reaction times and accuracy scores as a response mode 

that might represent an accurate reflection of oculomotor behaviour. Contrary to 

predictions, data from experiment 3.1 did not establish the presence of robust nasal-

temporal asymmetries, apart from in the form of a marginally non-significant 

interaction between emotion and nasal/temporal hemifield for reaction times. In this 

interaction trend for manual reaction times, temporally viewed happy faces were 

responded to quicker than nasal. The assumption of such asymmetries being a 

product of the nature of the emotion observed (positive vs. negative) was partially 

confirmed, with temporally viewed happy faces producing marginally quicker 

response times. 

    Data from both manual response times and accuracy scores added support to a 

happy-face advantage also observed in experiment 2.1, chapter 2. Additionally, in 

the present experiment, and while factors of expression salience and visual field 

location did not significantly influence response latency, accuracy was influenced by 

an interaction between emotion observed and expression salience, with the largest 

differences between emotions occurring at intensity 3. The following discussion will 

consider possible reasons for the lack of robust nasal-temporal asymmetries in this 

case.   
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  3.3.1 MIGHT THE PRESENCE OF NASAL-TEMPORAL ASYMMETRIES BE 

METHODOLOGY-DEPENDENT? 

 

3.3.1.1 RESPONSE TYPE 

    Manual, button-press responses do not feature heavily in the vision literature for 

nasal-temporal asymmetries. Although these responses form sometimes part of a 

number of response types collected, nasal-temporal asymmetries are mostly 

reported in relation to participant choice saccades or covert orientation to stimuli. 

Interestingly, the bulk of this research uses data from infant participants instead of 

adults. For example, Simion et al identified newborns’ tendency to preferentially 

orient to face-like over non face-like stimuli through nasal-temporal asymmetry 

manipulation (Simion et al., 1998), while Mulckhuyse and Theeuwes showed 

evidence of preferential saccadic responses towards temporal hemifield presented 

and validly cued targets (Mulckhuyse & Theeuwes, 2010).  

   A possible reason why this might be the case could be that different response 

types might play a modulating role in the presence or absence of identifiable, 

subcortically originating asymmetries in behaviour (Sylvester, Shulman, Jack, & 

Corbetta, 2007; Sylvester, Josephs, Driver, & Rees, 2007). Saccades and covert 

orientation to stimuli could be responses that might be better suited in establishing 

the presence of nasal-temporal asymmetries as they might represent the immediate 

and reflex-like activation of oculomotor behaviour. This might explain why although 

there is mounting evidence for temporal hemifield superiority in infants, this effect is 

not as commonly reported in adults, as infants are more subject to reflex-like 

oculomotor responses compared to adults (Sylvester et al., 2007).  

   A more direct example of the differences between manual responses and 

saccades in their sensitivity towards nasal-temporal asymmetries can be seen in 

Tomalski et al’s work, who by using face-like schematic stimuli, found increased 

saccadic response latency for temporal hemifield presentations but did not observe 

the same effect when looking at manual response times (Tomalski et al., 2009). The 

possibility exists that manual response latency is not a sensitive enough measure to 

successfully establish subcortically originating hemifield asymmetries, while 

saccades might be a more direct reflection of oculomotor activity and response. 

Conversely, manual response times perhaps might be a more accurate reflection of 

sensitivity to more crude hemispheric asymmetries in response to stimulus 
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contextual elements such as type of an emotion or the ambiguity of a facial 

expression, which might explain why under monocular viewing conditions any effect 

of nasotemporally lateralised behaviour is diminished. A possible reason may be that 

whereas some types (i.e. manual responses) of behavioural response might be well-

established for indicating overall, asymmetrical distribution of cortical attention by 

observing hemispheric preferential engagement as dependent on valence (i.e. 

Reuter-Lorenz & Davidson, 1981; Moretti et al, 1996), other forms of behavioural 

responses (i.e. saccades) are more effective in engaging subcortically originating 

asymmetries depending on the nature of the emotion observed (Tomalski et al, 

1999). Specifically, subcortical attentional engagement as a response to primary 

emotional stimuli has been shown to occur very early on (i.e. Palermo & Rhodes, 

2007). Tasking participants to shift their gaze towards the emotional target therefore, 

would more closely resemble an automatic, reflex-like movement that is very quickly 

elicited. However, when the extra requirement of movement is added by asking 

participants to press a button, response latency would be expected to decrease due 

to the additional cognitive processing involved in planning for and executing the 

movement to respond.  The fact that the bulk of research in nasal-temporal 

asymmetries utilises saccadic responses or covert orientation and does not take into 

account manual responses makes the comparison across different types of 

responses within the same context problematic. However, although saccades are 

often the response of choice, the directness of their relationship to subcortical 

attention has not been fully established. For example, in early work by Posner and 

Cohen, a distinct dissociation between asymmetries in saccadic responses and the 

lack of asymmetries in temporal order judgement tasks was observed, suggesting 

that choice saccades might be influenced by a pathway separate to that supporting 

attention (Posner & Cohen, 1980; 1984). It is possible therefore, that the 

appropriateness of saccades as measures of subcortically-originating attentional 

networks – regardless of what type of stimulus they are activated as a response to - 

is not fully straightforward. Although manual and saccadic responses have shown 

some overall differences in reference to different types of stimuli in the vision and 

attention literatures (i.e. Bompas & Sumner, 2008), these differences have not been 

investigated in relation to successful identification of nasal-temporal asymmetries. 

Bompas and Sumner compared the efficiency of saccades and manual responses 

towards S-cone and luminance stimuli (Bompas & Sumner, 2008). In an experiment 



 99 

tasking participants with identifying a target’s visual field location, Bompas and 

Sumner found response latency differences only for S-cone stimuli for both 

measures, with saccadic responses showing a more pronounced bias than manual 

responses (Bompas & Sumner, 2008). Importantly, in this example both response 

types displayed the predicted differences towards the two competing stimuli, with the 

differences being however, of differing magnitudes. If manual response times are 

sensitive enough to distinguish extremely subtle differentiations between stimuli in 

temporal order judgement tasks (Bompas & Sumner, 2008), then they should be 

able to establish differences between nasally and temporally presented, biologically 

relevant stimuli. Evidently, in the present chapter’s results, manual responses are not 

sensitive to this, perhaps because they are based on a separate symmetrical 

system, unlike saccades.  

 

3.3.1.2 PARADIGM TYPE 

   The influence of type of paradigm used on resulting behavioural patterns – 

especially concerning effects of laterality – has been discussed in chapter 1. 

Manipulations of type of stimuli used, stimulus onset-offset timing, type of emotion 

used (positive vs negative or fear vs sadness vs anger), and type of stimulus used 

(schematic vs photographic, colour vs greyscale) are some of the factors which have 

contributed to inconclusive findings concerning lateralised, preferential processing of 

emotional stimuli. Similar inconclusive findings concerning nasotemporal 

asymmetries might perhaps be attributed to the same suite of methodological 

influences. There are some examples from the literature suggesting that deviation 

from attentional cueing paradigms or distractor effect tasks might significantly impact 

the resulting presence or absence of behavioural nasal-temporal asymmetries. For 

example, Bompas and colleagues, comment on the lack of replicable nasal-temporal 

asymmetry findings when different paradigms to the ones commonly reported have 

been used (Bompas et al., 2008). Bompas et al report that nasal-temporal 

asymmetries might originate from differences in processing times instead of levels of 

activity in a study investigating both manual and saccadic response times to S-cone 

stimuli and luminance signals (Bompas et al., 2008). In their discussion, the authors 

suggest that as they observed differences in response latencies between the two 
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types of response times collected, this might be attributed to differences in the time 

taken from processing stimuli to making a decision to respond.   

   It might also be the case that the number of conditions in the present chapter’s 

experiment eradicated any lateralised effects. Specifically, as in the present 

experiment the number of conditions was double to those in the original paradigm 

(Exp. 2.2) to account for nasal/temporal hemifields, overall lateralised behavioural 

patterns that are present short-term post the detection threshold, they diminish once 

participants habituate to the stimuli. It seems that although in experiment 3.1 the 

valence of the faces had an observable effect on participant responses displayed as 

an overall happy face advantage, this effect was modulated by nasal-temporal 

hemifield presentation.  

3.3.2 MIGHT NASAL-TEMPORAL ASYMMETRIES BE SENSITIVE TO FACES 

OVERALL, BUT NOT TO DIFFERENT TYPES OF FACIAL AFFECT? 

 

   The present chapter aimed to address an additional notable gap in the literature on 

nasal-temporal asymmetries which relates to visible, consciously perceived facial 

expressions of affect. Although work has been done on establishing the subcortical – 

and often lateralised (depending on type of stimulus used) – networks responsible 

for recognising and responding to emotional cues (e.g. Tamietto & de Gelder, 2010), 

attempts at translating subcortical asymmetrical activation into visual behaviour 

through manipulation of nasal-temporal hemifield asymmetries in conjunction with 

valence are not reported in the literature (Reuter-Lorenz et al., 1995). The present 

chapter discussed that emotion-aside, there is evidence to suggest that face-like 

stimuli are included in the stimulus category which should theoretically elicit such 

asymmetries. For example, in a comparative study between prosopagnosics and 

control participants, de Gelder and colleagues identified nasal-temporal asymmetries 

specific to the processing of faces in the control group, but not in participants with 

prosopagnosia (De Gelder & Stekelenburg, 2005).   

    In earlier work, Farroni et al investigated whether newborns show particular 

orienting preference towards positive, neutral, or negative affect; despite the 

mounting evidence for an overall threat attentional advantage which is suggested as 

being mitigated by a subcortical alarm system through the amygdala, the authors 

observed that newborns showed preferential orientation to happy faces (Farroni, 

Menon, Rigato, & Johnson, 2007). It would be logical therefore to assume that nasal-
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temporal asymmetries could occur from emotional faces, which could stretch to 

these asymmetries being modulated by the nature of the emotion observed. A happy 

face advantage was found for both response time and accuracy data in the present 

experiment, yet this was not concretely attached to overall, clear nasal or temporal 

hemifield preferences. If taking into account the marginal interaction between 

nasal/temporal hemifield and emotion observed for the response time data in the 

present experiment, a modest conclusion for the modulating power of positive facial 

expression stimuli could be reached. Nonetheless, emotion as an additional 

contextual factor to face stimuli did not appear to elicit distinctly asymmetrical 

responses. Interestingly, although robust nasal-temporal asymmetries have been 

observed in response to face-like stimuli (e.g.Tomalski et al., 2009), these were not 

confidently reproduced in the present study which included the additional factor of 

valence. It could be that when emotional faces are concerned, the attentional 

processing required – although bearing many similarities to that of subcortically-

originating processing that produces nasal-temporal asymmetries – is distinct and 

independent.  

   The introduction of a monocular viewing condition in experiment 3.1 eradicated 

previously established lateralised response patterns from experiment 2.1; although in 

experiment 2.1 happy faces were also responded to quicker overall across 

conditions, specific facial expression intensities produced distinctly lateralised 

responses for both types of affect. A possible reason for this could be that although 

when viewed binocularly emotional faces elicit distinctly lateralised responses at a 

point where stimuli are half way between salient and ambiguous, when viewed 

monocularly participant responses fully switch to an overall happy-face advantage 

which is not influenced by the visual field location of the stimuli, or by their nasal-

temporal hemifield presentation. It might be the case that differences in ocular 

dominance have caused variance when patching different eyes, therefore hiding 

subtle effects. 

 

  3.3.3 CONCLUSION 

 
   The present chapter sought to establish the novel prediction of eliciting nasal-

temporal asymmetries when viewing bilateral presentations of facial expressions of 

visible emotion (happy and angry). In order to behaviourally establish such 
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asymmetries that have previously been suggested to arise form asymmetrical 

subcortical distribution of attention, participants viewed bilateral presentations of face 

stimuli (emotional paired with neutral) under monocular viewing conditions. To the 

author’s knowledge, no attempt of eliciting such asymmetries in relation to visible 

emotional faces has previously been made. Both manual response times and 

accuracy scores were collected, and while a modest trend of nasotemporal 

asymmetries was observed only for happy stimuli in manual responses, accuracy 

scores supported a happy-face advantage which was not modulated by visual field 

location or intensity of facial expression salience. This chapter has considered a 

number of possibilities, both methodological and theoretical that might account for 

the lack of robust nasotemporal asymmetries when attending and responding to 

emotional faces. It appears that such asymmetries might only be elicited under 

specific methodological circumstances and predominantly for saccadic responses 

instead of manual reactions.  
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4 CHAPTER 4: AUDITORY THREAT AND GAZE DIRECTION 

MODULATE LATERALISED RESPONSES TO AFFECT  

 
 
 

4.1 GENERAL INTRODUCTION 

 
   So far, the present thesis has presented results for an emotion detection paradigm 

that can effectively investigate lateralised processing of primary affect through 

behavioural measures of response efficiency. Chapter 2 set the scene for the 

behavioural methodology, and chapter 3 explored the possibility of nasal temporal 

asymmetries in visual emotion perception as being indicative of subcortically 

originating, emotion specific lateralisation. The present chapter will now seek to 

examine how the valence-enhancing properties of sounds and gaze direction might 

further modulate differential hemispheric contribution in the processing of facial 

expressions of primary affect.  

  Auditory stimuli have been frequently used in studies of emotional perception and 

its resulting behaviour. Our ability to detect and localise sounds – especially if these 

sounds carry or elicit emotional meaning– is crucial for our survival, as it allows us to 

identify the presence or the impending arrival of potential danger. The biological 

relevance and increased attentional urgency that sounds represent in the individual 

has been explored in studies of sensory processing (Lang & Bradley, 2010; LeDoux, 

2012), with some research focusing on the specific effects sounds might have on 

emotional attention, perception, and processing. For example, negative emotions 

have been found to directly influence early, low-level auditory processing in 

responding to speech (Wang, Nicol, Skoe, Sams, & Kraus, 2009), and emotional 

sounds have been found to significantly bias attention (Bröckelmann et al., 2011). 

More recently, the influence of biologically-relevant sounds in overall visual 

perception has been broadly established (Sutherland, Thut, & Romei, 2014), without 

however specifically examining the link between biased early auditory processing 

and the visual attentional processing of emotion. Instead, research on the interplay 

between emotion and attention has remained in its majority within the vision 

literature. The present chapter will therefore seek to investigate how and to what 

extent the increased biological significance of an audiovisual emotional stimulus will 
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manifest into lateralised biases towards visual stimuli, as indicated by measures of 

response efficiency.  

   Gaze direction of a facial expression is another ecologically significant stimulus 

feature shown to modulate emotional attention. For example, facial expressions with 

direct gaze to the observer have been found to grab and hold attention to the face, 

whereas averted gaze of the poser to either the left or right visual hemifield can 

direct and shift the observer’s attention, acting as a strong attentional cue and 

biasing responses when visual targets appear on the hemifield congruent to the 

direction of gaze (i.e. faster target detection when on the left visual field following 

stimulus with left gaze direction) (Bindemann et al., 2008, 2005; Spence & Driver, 

1997).  

   In addition, similarly to emotional sound localisation, effects of gaze direction on 

behaviour when paired with negative facial expressions have also been interpreted 

as signifying the location of potential threat. The threat localisation abilities of gaze 

have been reported in both the human (e.g. Adams, Gordon, Baird, Ambady, & 

Kleck, 2003; George, Driver, & Dolan, 2001; Hadjikhani, Hoge, Snyder, & de Gelder, 

2008) and animal literature (e.g. Hoffman, Gothard, Schmid, & Logothetis, 2007), 

confirming the biological importance of gaze as a signal of threat location. For 

example, Adams and colleagues (2003) suggested that in fearful and angry stimuli, 

gaze direction alerts an observer as to the location of potential threat, on the 

assumption that angry faces signal threat that is directly facing the observer, and 

fearful faces imply threat existing in the surrounding environment of the observer. 

The authors therefore hypothesised that angry faces paired with direct gaze and 

fearful faces paired with averted gaze would be recognised more efficiently than 

angry faces looking away, and fearful faces looking toward the observer ( Adams, 

Gordon, Baird, Ambady, & Kleck, 2003). Indeed, the authors found that fearful stimuli 

where the direction of gaze was averted, produced a near-automatic processing of 

fearful faces with averted gaze,(Adams, Gordon, Baird, Ambady, & Kleck, 2003) as 

exposure to such stimuli has been suggested to preferentially stimulate the short-

route attentional network to the amygdala, activated in the presence of potential 

danger (Adams, Gordon, Baird, Ambady, & Kleck, 2003; Adams & Kleck, 2003; 

Haxby, Hoffman, & Gobbini, 2000). Adams and colleagues however did not find a 

similar activation pattern for angry faces with direct gaze (Adams et al., 2003). 
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   Seeing facial expressions signifying fear (or anger) that are completely isolated 

from any additional contextual information outside of direction of gaze is however 

exceedingly rare, and is not representative of natural occurrences in our 

environment. Resulting interpretations from research utilising gaze manipulation on 

facial expressions therefore ultimately lack in their consideration of the biological 

value that localisation of threat has on observable behaviour; a biological value that 

might perhaps be better understood by examining threatening stimuli that effect both 

visual and auditory modalities. So far, the differential effects of gaze direction when 

combined with other, equally biologically salient threat localising factors on how we 

process and respond to facial affect have not yet been examined. The present 

chapter will therefore attempt to increase the ecological validity of gaze-manipulated 

facial expression stimuli, by attaching additional valence-enhancing properties (e.g. 

auditory threat) and examining their effects on behaviour.  

  The present chapter reports on two studies designed to investigate the valence-

enhancing effects of sounds on lateralised processing of affect on the first instance, 

and secondly on the cumulative valence-enhancing effect sound and gaze direction 

might have on lateralisation. Specifically, Section 1 reviews the literature on 

valenced sounds and their resulting effect on behaviour and Experiment 4.1 

addresses the modulating properties on behaviour of positive and negative facial 

expressions of affect of varying salience, when paired with a looming or receding 

sound. Section 2 reviews the evidence on the influence gaze direction has been 

found to have on the perception of negative emotions, with Experiment 4.2 designed 

to investigate the implications of the cumulative effect gaze direction and sound may 

have on lateralisation, by manipulating gaze direction of fearful and angry facial 

expressions in addition to presence/absence of auditory threat (looming vs receding 

sounds).   

  

SECTION 1  

4.1.1 MODULATING EFFECTS OF SOUND ON EMOTIONAL ATTENTION AND 

BEHAVIOUR 

 

   Identification and localisation of sound sources is a skill crucial to our survival. 

Biologically salient sounds in particular convey a direct and immediate need for 
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accurate identification, attentional prioritisation, and selection of an appropriate 

response, as they might signify the presence of threat within our environment. 

Auditory emotion-inducing signals such as the sound of a predator approaching, 

have special relevance to the self; the threat imminence they signal necessitates 

their speeded decoding, encoding, and accurate interpretation (Sutherland et al., 

2014). The particular effects of valenced sounds on behaviour have been thoroughly 

investigated, particularly through psychopharmacological animal models looking at 

the effects of inhibiting subcortical networks through the inferior colliculus that are 

relevant to the production of defensive behaviour (e.g. Nobre, Sandner, & Brandão, 

2003). In one such example from the animal literature, the startle reflex of rats 

responding to a sudden noise was examined in terms of changes in auditory evoked 

potentials (ARPs) and subsequent changes in behavioural responses (‘freeze’ vs. 

startle response) (Nobre et al., 2003). In this study, behavioural effects and ARPs 

were compared between times when the rats received microinjections of a 

pharmacological inhibitor to the inferior colliculus that surprisingly caused reduction 

of GABA levels (given the inhibitory role of GABA), and times when the rats were 

administered apomorphine which causes overall arousal (Nobre et al., 2003). The 

authors noted that during pharmacological inhibition of the inferior colliculus, the rats 

displayed increased ‘freezing’ behaviour to sudden sound stimuli; administration of 

apomorphine on the other hand showed no effect on rats’ freeze/startle behaviour 

(Nobre et al., 2003).  

   Aside from playing an important role in observable behaviour, emotional sounds 

are highly salient stimuli that have been suggested to be preferentially processed 

and prioritised for selective attention. The selective prioritisation of environmental 

information that pass on to attention is a highly complex and competitive process, 

which requires low-level rapid identification and categorisation of stimuli in terms of 

their direct relevance to the organism (Compton, 2003). The rapid onset of emotional 

modulation of audition reported in the literature, suggests a prioritisation of valenced 

sounds through the fast-route to the amygdala (i.e.Bröckelmann et al., 2011; Wang 

et al., 2009) that had previously been predominantly linked to visual stimuli. The 

speeded reaction to sound stimuli that are inherently valenced, or have acquired 

valence (i.e. through conditioning) has been extensively reported (e.g. Armony & 

LeDoux, 2010; Bröckelmann et al., 2011; LeDoux, Sakaguchi, & Reis, 1984; Wang 

et al., 2009). For example, using variations of the classical conditioning paradigm 
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whereby a neutral stimulus gradually acquires valence after its continued, reinforced 

pairing with an additional aversive stimulus, an animal fear conditioning study paired 

neutral sounds (tones) to negative stimuli (mild electric shocks) and found evidence 

of rapid, startle-like behavioural reactions (LeDoux, Sakaguchi, & Reis, 1984). Apart 

from resulting in startle-like rapid behaviours, auditory stimuli that have acquired an 

emotional load by being combined to emotive visual stimuli have been found to be 

processed earlier than other, non-valenced auditory stimuli. For example, in an EEG 

investigation of listeners’ physiological responses to non-valenced auditory speech 

stimuli, Wang and colleagues found that the viewing of negative pictures (e.g. IAPS) 

resulted in particularly early ERPs (20ms), with these effects remaining evident up to 

129ms post-stimulus offset (Wang et al., 2009). A more recent MEG study was 

conducted to investigate the influences of valenced tones on attention during early 

auditory processing (Bröckelmann et al., 2011). In this example, the authors 

hypothesised that valenced auditory conditioning would result in the rapid 

engagement of auditory attention; the authors observed that auditory target stimulus 

processing occurred as early as 20-50ms post negatively-valenced conditioning, and 

between 100-130ms following positively-valenced conditioning (Bröckelmann et al., 

2011). Taken together, the above examples illustrate the rapid hold on attention that 

auditory stimuli paired with valenced visual stimuli seem to have. This audiovisual 

combination seemingly results in more efficient, approach/avoid type behaviours. 

   Although processing of emotional stimuli is reported as being relatively equally 

distributed across sensory modalities (Compton, 2003), auditory emotional stimuli in 

particular may be especially important in the speeded and accurate categorisation of 

a stimulus as biologically-relevant or not, and in having an enhancing effect on visual 

acuity (e.g. Mitchell, Elliott, Barry, Cruttenden, & Woodruff, 2003; Noulhiane, Mella, 

Samson, Ragot, & Pouthas, 2007). For example, emotionally valenced negative 

sounds (i.e. looming/approaching) have been shown to significantly increase 

excitability of the visual cortex within a very short timescale post-stimulus (i.e. 80ms), 

thus suggesting potential enhancement of the preattentive properties of the 

combination of auditory and visual stimuli (Romei et al., 2009). The effect of sound 

on different aspects of attention has produced some interesting results that highlight 

the extent of auditory modulation on how we attend to and perceive our environment. 

For example, emotional sounds have been shown to affect temporal judgements, 

rendering participants prone to the illusion of valenced sounds lasting longer in 
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comparison to neutral sounds (Noulhiane et al., 2007). Earlier work had shown how 

emotional prosody influences the way we respond to speech (Mitchell et al., 2003) 

and how listening to different types of music while making judgements on the 

valence of a visual stimulus results in distinctly lateralised cortical activation with 

positive emotional attributions lateralised to left temporal regions and negative ones 

lateralised to right temporal regions, reflecting biased attention (Altenmüller, 

Schürmann, Lim, & Parlitz, 2002). Additionally, sound source location has also been 

shown to modulate lateralised effects in visual spatial attention. For example, Leo 

and colleagues compared the effects of looming and receding sounds in an 

orientation discrimination task (clockwise vs. counter-clockwise) using Gabor 

patches as visual targets (Leo, Romei, Freeman, Ladavas, & Driver, 2011). The 

Gabor patches appeared in either the left or right visual hemifield, with the 

looming/receding sounds being administered either congruently (i.e. left hemifield 

sound and left visual field target), or incongruently (i.e. left hemifield sound with right 

visual field target). The authors found that when hemifield-congruent trials were 

paired with looming sound stimuli, visual orientation sensitivity was increased, 

without, however, the converse effect shown for hemifield incongruent conditions. 

The effect of looming sounds was also significantly stronger than that of receding 

sounds, therefore suggesting that looming sounds increase participants’ visual 

orientation sensitivity (Leo et al., 2011). The attention-grabbing properties that 

valenced sounds have been shown to have (Leo et al., 2011), even at a preattentive 

level, is consistent with the involvement of the subcortically-originating pathway 

through superior colliculus, pulvinar and amygdala that has been found to show 

increased activation during processing of valenced information in the visual 

domain.To draw parallels between the visual and auditory sensory modalities in the 

processing of valenced information, the following section will outline the subcortical 

pathway involved in the processing of auditory affect.  

  

4.1.1.1 SUBCORTICAL LOCI OF ACTIVITY IN THE PROCESSING OF AUDITORY 

EMOTION 

   The establishing of the subcortical pathway involved in processing auditory 

emotion has been based predominantly on studies from the fear-conditioning 

literature. For example, studies have shown evidence for either the complete 

disappearance of fear-specific responses to auditory stimuli in cases of bilateral 
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amygdala lesions (Armony & LeDoux, 2010), or the significant decrease in fear 

responses in cases of left-lateralised partial amygdala lesions (Baker & Kim, 2004). 

When an emotional auditory stimulus is delivered, this information passes through 

the cochlear receptors and follows through the brainstem, auditory thalamus, and 

medial geniculate body route. At that point, the emotional information attached to the 

sound is passed to the amygdala through direct projections from the medial 

geniculate body (‘fast route’) (LeDoux, 2000). A second, slower route (‘slow route’), 

which also transmits emotional information through to the amygdala, also exists 

projecting from the medial geniculate body to the auditory cortex, after which the 

information is sent to the amygdala (Armony & LeDoux, 2010; LeDoux, 2000) (Figure 

4.1).  

 

Figure 4.1 Schematic illustrating the two routes auditory emotional stimuli pass through before reaching the 
amygdala. After being received by the cochlear receptors, the information either travels directly from the 
medial geniculate body (grey oval) to the amygdala (red oval) (‘fast route’), or pass through the slower 
route via the auditory cortex and additional cortical areas (blue route) before reaching the amygdala (‘slow 
route’). Both routes then result in fear responses from the organism (i.e. elevation of stress hormones, reflex 
reactions etc.) (Figure from Armony & LeDoux, 2010).  

  

Investigations on whether specific types of valenced sounds are more effective in 

activating the fast route to the amygdala are ongoing. The question of whether 

different types of valenced sounds (naturalistic vs. artificial) might show an equally 

effective activation of the fast-route to the amygdala, thus resulting in increased 

response efficiency has been the subject of much recent research. The following 

section will address this question, and suggest that looming vs. receding sounds 
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may represent an equally ecologically valid stimulus type to naturalistic threatening 

sounds in investigations of the influences of audiovisual threat on attention and 

response efficiency.   

     

4.1.1.2 LOOMING SOUNDS AS ECOLOGICALLY-VALID EMOTIONAL STIMULI 

   Research in emotional attention has focused predominantly in the visual domain 

(see Ch. 3 for a discussion). Although previous sections in this chapter highlight 

recent work investigating emotional attention in audition (e.g.Altenmüller et al., 2002; 

Bröckelmann et al., 2011; Leo et al., 2011; Leonard & Cummins, 2011; Mitchell et 

al., 2003; Noulhiane et al., 2007; Wang et al., 2009), the range of studies using 

naturalistic emotionally valenced sounds (or sounds which induce an emotional 

physiological response in the organism) in attentional tasks is limited in comparison. 

The neuroimaging literature on auditory affect (e.g.Bradley et al., 2007) offers some 

explanation for this limitation, by suggesting that the highly dynamic nature of 

ecologically-valid affective sounds (such as crying) causes wide fluctuations of 

neurophysiological signals, thus making their processing slower than that of a visual 

stimulus of equal valence, even though overall the processing of visual stimuli is 

generally slower than that of auditory stimuli. Therefore, the necessary rapid 

identification of an auditory stimulus as emotional may be lengthier than that of a 

visual emotional stimulus, as the disambiguation of the emotional intent of a visual 

stimulus is near-instantaneous (Bradley et al., 2007). Work by Bröckelmann and 

colleagues (2011) supports the suggestion of rapid processing of valenced auditory 

stimuli; by utilising valenced tones instead of naturalistic auditory stimuli through 

associative learning, the authors reported evidence for the recruitment of selective 

attention subcortical networks, as well as evidence supporting the early modulation 

of auditory processing (Bröckelmann et al., 2011).  

   Similarly, Romei and colleagues had previously identified structured looming 

sounds as particularly attention-engaging at a very early processing stage, prior to 

the discrimination threshold for perception (Romei et al., 2009). Specifically, the 

authors combined occipital lobe TMS measures (human and primate subjects) with 

psychophysics measures (human subjects) for measuring changes in low-level 

excitability of the visual cortex and changes in perception, and observed that 

structured looming sounds elicited higher visual cortex excitability when compared 
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with controls (white noise) and with other sound stimuli (receding sounds). By 

examining the temporal progression of this effect, the authors established that the 

changes in visual cortex excitability observed in comparisons of looming vs. other 

sound stimuli became evident for sounds of a short duration (80ms), which were 

significantly lower than the detection threshold (Romei et al., 2009). As an auditory 

stimulus, a looming sound is defined by rapidly increasing intensity (in dB), which is 

thought to simulate the approaching of a threatening sound source (Bach, Furl, 

Barnes, & Dolan, 2015; Neuhoff, 2001). Looming sounds have been shown to 

significantly influence excitability of low-level visual cortex (Romei et al., 2009). Both 

humans and primates have been found to display heightened responsiveness to 

looming sounds (Bach et al., 2015; Leo et al., 2011; Romei et al., 2009), as the 

dynamic temporal profile of such sounds might be indicative of the sound source fast 

approaching towards the listener (Neuhoff, 2001). The superiority of looming sound 

signals over other emotional auditory stimuli has recently been conceptualised into 

hypotheses of a looming bias, where the auditory perceptual system is inherently 

biased and fine tuned to detect an implied approaching threat (Gagnon, Geuss, & 

Stefanucci, 2013). Comparatively to other artificial sounds, such as white noise or 

static sound signals, looming sounds have displayed a specific attentional 

advantage, which additionally influences visual attention, acuity, and perception (Leo 

et al., 2011; Romei et al., 2009). For example, looming sounds have been shown to 

influence the way subjects perceive the physical properties of a static visual 

stimulus; looming sounds paired with static visual stimuli resulted in the visual stimuli 

being perceived as larger and brighter – an effect which diminished when visual 

stimuli were paired with receding or static sounds (Sutherland et al., 2014). Similarly, 

looming sounds have been shown to influence in-depth orientation perception of 

point-light walker stimuli presented in frontal/back projections, whereby looming 

sounds biased visual stimuli in appearing more looming (i.e. looming sounds caused 

ambiguous walkers to appear to be walking towards the observer) (Schouten, Troje, 

Vroomen, & Verfaillie, 2011).  

   Given the early-onset influence of looming sounds on visual attention and 

perception (e.g. Bröckelmann et al., 2011; Romei et al., 2009; Sutherland et al., 

2014), and the overall visual attentional benefits looming sounds have been shown 

to elicit (e.g. Leo et al., 2011) there is surprisingly little research on the potential 

influences of such sounds on an already emotionally valenced visual stimulus. The 
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present chapter therefore, will utilise looming (versus receding) sounds combined 

with two types of facial expressions of affect (angry versus happy), to investigate 

whether the combined effect of the two stimuli’s increased attentional demands 

manifests as a lateralised response. It may be the case, that the underlying threat 

looming sounds may convey when paired with a negative facial expression will result 

in best response efficiency, particularly when the face is presented on the left visual 

field. This combination of threatening sound and image with the visual field location 

should therefore benefit a quicker and more efficient hold on attention than when 

auditory or visual stimuli are presented stripped of the attentional benefits 

audiovisual (and therefore more realistic) stimuli would allow.  

   Auditory threat in the form of looming sounds is a highly effective, emotionally 

salient stimulus that has been shown to elicit lateralised approach/avoidance 

responses. Given the benefits that looming sounds have been reported as having on 

visual attention and perception, it is somewhat surprising to find a lack of research 

combining this ecologically-valid stimulus to another equally ecologically significant 

stimulus; facial expressions of affect. When paired with an emotional facial 

expression, auditory threat might be expected to modulate behaviour even further, 

enhancing it in different patterns depending on the type of facial emotion observed 

(i.e. angry vs happy). Specifically, based on the valence hypothesis of emotional 

perception (see ch.1 for a definition), negative (angry) facial expressions displayed 

on the left visual field might produce quicker and more accurate responses when 

paired with auditory threat (looming sound), than when they appear on the right 

visual field. Conversely, positive facial expressions paired with looming sounds and 

displayed on the right visual field would elicit quicker and more accurate responses 

than when displayed on the left visual field.  

 

4 EXPERIMENT 4.1 

 

OVERVIEW 

 
  This experiment was designed to test the suggested threat localisation benefits that 

looming sounds combined with visual target stimuli are thought to elicit. The present 

experiment hypothesises that when looming sounds are paired with negative facial 
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expressions that are displayed on the left visual field, behavioural responses will be 

quicker and with higher accuracy. Conversely, quicker and more accurate responses 

will be elicited when looming sounds are paired with happy facial expressions that 

are presented on the right visual field. 

4.2.1. METHODS 

4.2.1.1. SUBJECTS    

 

   Twenty-three neurologically healthy adults (Undergraduate students, Department 

of Psychology, City University London) took part in this study (4 males; mean age: 

22.3, SD: 2.1). Participants were recruited through online advertisements on the 

University’s online experiment participation tool (SONA). Poor quality data from a 

further two participants were omitted from analyses due to improbable reaction times 

(<300ms). All participants were right-handed with normal or corrected to normal 

vision and had given written consent prior to testing.  

 

4.2.1.2 APPARATUS 

 

    Laboratory setup and apparatus was the same as described in Experiment 2.1, 

Chapter 2. In addition, for the binaural administration of the auditory stimuli used in 

the present experiment, stereophonic headphones were used (Technics, model RP-

F350).   

 

4.2.1.3. STIMULI 

  4.2.1.3.1 VISUAL TARGET STIMULI 

   Visual stimuli and stimulus display dimensions, layout and lateral positioning within 

the display were the same as those used in Experiment 2.1, Chapter 2.  

4.2.1.3.2 AUDITORY STIMULI 

   Two sounds, one looming and one receding, were used as auditory stimuli in the 

present study. Both auditory stimuli were 400Hz structural waveforms of 100ms 

duration each, sampled at 44kHz, with the looming stimulus rising in intensity, 

following an exponential amplitude profile from 55 to 75dB, and with the receding 

stimulus being of opposite temporal pattern with decreasing intensity from 75 to 

55dB (cf. Leo, Romei, Freeman, Ladavas, & Driver, 2011; Romei, Murray, Cappe, & 
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Thut, 2009). Auditory stimuli were administered with equal amplitude for left and right 

ear.  

 

4.2.1.4. DESIGN 

   Experiment 4.1 employed a 2x2x2x5 repeated measures factorial design, with 

sound (looming/receding), emotion (angry/happy), visual field location (left/right) and 

facial expression salience (1 to 5) as within-subject factors. The factors of sound, 

emotion, and visual field location all had two levels, while intensity had five. There 

were a total of 40 experimental conditions, accounting for all combinations across 

factors, with conditions presented in a randomised order per participant. Manual 

button press reaction times (ms) and accuracy scores (% correct) were the two 

dependent measures collected.  

  

4.2.1.5. PROCEDURE 

   Testing took place in a darkened, soundproofed laboratory room and each 

participant was tested individually. Experiment 4.1 utilised a forced-choice visual 

target location identification task whereby participants viewed bilateral pairings of two 

photographic stimuli (one neutral and one emotional) simultaneously to receiving one 

of two auditory stimuli (looming or receding) through headphones. In each trial, 

participants were tasked with making a visual target location judgement based on 

which visual field the emotional photograph was presented in; auditory stimuli did not 

require a response. It is important to note at this stage, that for the looming and 

receding sound effect to be achieved, the length of the soundwave was set to 100ms 

with the visual stimulus display time increased from 50ms (in the previous 

experiments) to 100ms to match. According to Posner et al (1985), the threshold 

range for rapid attentional engagement – such as that expected to be at play when 

exposed to self-relevant emotional information – is from 50 to 100ms. Based on this 

established range, the expectation was that as the extended onset-offset of the 

visual stimulus remains within the rapid attentional engagement range, no differential 

effects of stimulus duration would be observed.  

   The paradigm rendered target location unpredictable from one trial to the next. 

Participants were required to respond using the left or right arrow keyboard keys 
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depending on whether the emotional face was presented in the left visual field (left 

arrow key), or right visual field (right arrow key).  

  A typical testing session lasted roughly 50 minutes, depending on length of breaks 

taken between blocks. Each testing session commenced with a practice block of 160 

trials with no data collected. Upon completion of the practice block, each participant 

then continued to complete 5 testing blocks, each consisting of 240 trials. A total of 

1200 trials were collected per testing session. 

    In a typical trial, a fixation point appeared at the centre of the display. Stimulus 

onset was initiated when participants pressed the SPACE key on the keyboard. 

Upon keypress, participants viewed a random pair of one emotional (of varying 

expression salience intensity from 1 to 5) and one neutral (intensity 0) greyscale 

photograph, while simultaneously hearing a looming or receding auditory stimulus. 

The pairing between auditory and visual stimuli was randomised in the paradigm. 

Stimuli were visible and audible for 100ms, immediately after which participants were 

required to provide a response up until 1300ms post stimulus offset. If participant 

responses were within this 1300ms time-window, participants would receive 

feedback (green circle if correct, red ‘x’ if incorrect). If participants failed to provide a 

response within the 1300ms, a blue question mark symbol appeared. Feedback or 

question mark symbol remained on the screen for 250ms, after which the fixation 

point reappeared signalling the start of the next trial (Figure 4.1) 
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Figure 4.2. Graphic illustrates the progression of a typical trial. 

 

 

4.2.1.6. DATA PREPARATION AND ANALYSIS 

 

  Raw reaction time data were filtered to exclude values from incorrectly responded 

to trials, as well as reaction times less or more than 2 standard deviations from the 

mean. Mean reaction times (ms) and mean accuracy scores (% correct) were 

calculated per experimental condition, per participant. Calculations were run using E-

Data Aid software (E-Prime, Psychology Software Tools, Pittsburgh, MA). In the 

following results section values reported from variables with more than 2 levels that 

violated the sphericity assumption have been Greenhouse-Geisser corrected. All 

error bars reported represent within-subjects error, calculated using the Cousineau 

correction (see Exp.2.1, Chapter 2) (Cousineau, 2005; Morey, 2008).  

  

4.3.1 RESULTS 

 

4.3.1.1 REACTION TIME 

    A repeated-measures ANOVA was conducted using sound (looming/receding), 

emotion (angry/happy), visual field location (left/right) and expression salience 
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intensity (1-5) as within-subjects factors on the reaction time data. The analysis 

produced a significant main effect of emotion [F(1,22)=34.5, p=.001, partial η2=.6], 

where happy faces were responded to quicker (mean=495, SE=15) than angry 

(mean=506, SE=16). A further significant main effect of sound was also found 

[F(1,22)=15.2, p=.001, partial η2=.4], with the receding sound resulting in quicker 

responses (mean=488, SE=15.3) than the looming sound (mean=511, SE=16). A 

final significant main effect for expression salience intensity was observed 

[F(4,88)=66, p=.001, partial η2=.8]. 

 

   A significant interaction was found between visual field (left/right) and expression 

salience intensity (1-5) [F(4, 88)=5.2, p=.001, partial η2=.2] (Figure 4.2), whereby left 

visual field stimuli produced quicker responses overall, with the largest difference 

observed between left and right visual field presentations for intensity 1 stimuli. 

Intensity 1 stimuli on the left visual field produced quicker responses than stimuli on 

the right visual field. Post-hoc paired samples t-tests confirmed that the interaction 

resulted from significant differences between left and right visual field presentations 

only for intensity 1 stimuli [t=-3.1, df=22, p=.005], whereby when shown on the left 

visual field were responded to quicker (mean=532, SE=19.3) than when on the right 

visual field (mean=554, SE=19). Comparisons between the remaining intensities in 

terms of visual field presentation did not reveal any further significant differences. 
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Figure 4.3. Line graph depicts left (blue line) and right (green line) visual field faces plotted as a function of 
expression salience intensity.  

 

Conversely to Ch.2, no significant interaction between emotion and visual field 

location was observed in the reaction time data [F(1,22)=.67, p=.5] (Fig. 4.4). 
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Figure 4.4. Line graph depicts angry (blue line) and happy (green line) faces plotted as a function of visual 
field presentation (LVF vs RVF).  

 

 

A significant 3-way interaction between emotion (angry/happy), sound 

(looming/receding) and expression salience intensity (1-5) was also found 

[F(4,88)=3.2, p=.02, partial η2=.2] where there seems to be a reversal of the emotion 

effect at low intensity for looming sounds, though the conditions are not significantly 

different (Figures 4.3, 4.4a&b). In unpacking the interaction, emotional faces paired 

with receding sounds were quicker overall across intensities (quicker still for happy 

faces). For looming sounds, happy faces produced quicker response times across 

intensities, with angry faces being slower overall (Fig. 4.5). Bonferonni-corrected 

(new p value = .002) post-hoc paired samples t-tests revealed significant differences 

between receding and looming sounds for angry faces in intensities 3, 4 and 5, as 

well as for intensities 4 and 5 for happy faces (Table 4.2). Differences were also 

observed between emotions (angry vs. happy) for looming sound stimuli only, across 
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intensities 3, 4, and 5 (Table 4.2). There were no further significant interactions for 

the reaction time data. 

 

 

Intensity 

 

Stimulus 

 

Mean 

 

SE 

 

t 

 

df 

 

Sig. 

1 AngryLoom 

AngryRecede 

553 

536 

18.4 

21.6 

1.5 22 .2 

2 AngryLoom 

AngryRecede 

534 

514 

16.9 

16.3 

2.3 22 .02 

3 AngryLoom 

AngryRecede 

512 

486 

16.5 

17.3 

3.4 22 .002* 

4 AngryLoom 

AngryRecede 

497 

473 

15.7 

13.3 

4.4 22 .000* 

5 AngryLoom 

AngryRecede 

486 

464 

14.7 

12.7 

3.8 22 .001* 

1 HappyLoom 

HappyRecede 

563 

520 

18.2 

22.2 

2.4 22 .02 

2 HappyLoom 

HappyRecede 

525 

502 

17 

16.1 

2.8 22 .009 

3 HappyLoom 

HappyRecede 

488 

472 

16 

14.2 

2.6 22 .01 

4 HappyLoom 

HappyRecede 

480 

461 

15.3 

13.3 

3.6 22 .001* 

5 HappyLoom 

HappyRecede 

476 

456 

14 

13 

3.5 22 .002* 

1 AngryLoom 

HappyLoom 

553 

563 

18.4 

18.2 

-1.1 22 .3 

2 AngryLoom 

HappyLoom 

534 

525 

17 

17 

1.2 22 .2 

3 AngryLoom 

HappyLoom 

512 

488 

16.5 

15.5 

4.8 22 .000* 

4 AngryLoom 

HappyLoom 

497 

480 

16 

15.3 

4.5 22 .000* 

5 AngryLoom 

HappyLoom 

486 

474 

15 

14 

2.4 22 .02* 

1 AngryRecede 

HappyRecede 

536 

520 

22 

22.2 

2.1 22 .04 

2 AngryRecede 

HappyRecede 

514 

502 

16.3 

16 

2.3 22 .03 

3 AngryRecede 

HappyRecede 

486 

472 

17.3 

14.2 

2.6 22 .01 

4 AngryRecede 473 13.3 2.7 22 .01 



 121 

HappyRecede 461 13.4 

5 AngryRecede 

HappyRecede 

464 

456 

13 

13 

2.7 22 .01 

Table 4.3 Table lists Bonferonni-corrected (new p value = .002) multiple pairwise comparisons across the five 

intensity levels and compared both within the same emotion in terms of looming or receding auditory stimuli, 

as well as within the same sound across angry and happy visual stimuli. Stimuli highlighted in red depict 

quickest responses within a comparison while greyed-out rows represent non-significant comparisons. 

Significant comparisons are denoted by *. 

 

 

 

 

 

Figure 4.5. Line graph depicts reaction times per emotion/sound condition, plotted as a function of 
expression salience intensity. Error bars represent Cousineau-corrected +-1 within-subjects error. 

 

4.3.1.2 ACCURACY 

   A repeated-measures ANOVA with the within-subjects factors of sound 

(looming/receding), emotion (angry/happy), visual field location (left/right), and 

expression salience intensity (1-5) was conducted for the dependent measure of % 

correct scores. The analysis produced a significant main effect of emotion 

[F(1,22)=35, p=.001, partial η2=.6], with happy faces scoring higher accuracy 

(mean=.80, SE=.01) than angry (mean=.76, SE=.01). A further significant main effect 

of expression salience was found [F(4,88)=586, p=.001, partial η2=.9]. A final 

significant main effect was found for visual field location [F(1,22)=5, p=.03, partial 



 122 

η2=.2], where left visual field-presented stimuli produced higher accuracy (mean=.80, 

SE=.01) than right visual field-presented stimuli (mean=75, SE=.01).  

 

 

   The accuracy data analysis also produced a significant interaction between 

emotion (angry/happy) and visual field location (left/right) [F(1,22)=5.2, p=.03, partial 

η2=.2.] (Figure 4.4). Post-hoc paired samples t-tests revealed significant differences 

between angry and happy stimuli for the left visual field [t=-2.75, df=22, p=.01] and 

right visual field [t=-8.8, df=22, p=.001] respectively. Additionally, although for angry 

stimuli there were significant differences between left and right visual field 

presentation [t=2.5. df=22, p=.02], where angry faces on the left visual field scored 

higher accuracy (mean=.80, SE=.02) than when on the right visual field (mean=.73, 

SE=.07), no such differences were found for happy stimuli (p=.08).  

 

 

Figure 4.5 Line graph shows mean accuracy scores for angry (blue line) and happy (green line) stimuli 
respectively in terms of left and right visual field target location.  
 

A further significant interaction between emotion (angry/happy) and expression 

salience intensity was also found [F(4, 88)=2.6, p=.04, partial η2=.2] (Figure 4.6), 

with happy faces eliciting overall higher accuracy across intensities 2-5 than angry 
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faces. Post-hoc paired samples t-tests revealed significant differences between 

angry and happy stimuli for intensity 2 [t=-5.6, df=22, p=.001], intensity 3 [t=-4.3, 

df=22, p=.001], intensity 4 [t=-4.2, df=22, p=.001], and intensity 5 [t=-3.3, df=22, 

p=.003]. There were no significant differences between angry and happy stimuli for 

intensity 1 (p=.4) where performance was at chance level.  

 

 

 

 

 

Figure 4.6 Line graph displays differences between accuracy scores for angry (blue line) and happy (red line) 
stimuli respectively, plotted as a function of expression salience intensity. Error bars represent Cousineau-
corrected +-1 within-subjects error. 
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4.3.1.3 THRESHOLD ANALYSIS 

 

A repeated-measures ANOVA with emotion (angry/happy) and visual field location 

(left/right) was calculated for the threshold accuracy data. For these data, there was 

no significant difference between VF locations for thresholds of angry and happy 

faces [F(1,22)=.3, p=.6], with both angry and happy faces being accurately 

recognised at  highly ambiguous intensities (approx. between 1.5 and 2) (Fig. 4.7) 

 

 
Figure 4.7 Graph displays recognition thresholds for angry (blue) and happy (red) faces respectively, 
depending on presentation on the Left or Right visual field.  
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4.3.1 EXPERIMENT 4.1 SUMMARY  

   Findings from experiment 4.1 confirmed predictions of sound playing a modulating 

role on responses to primary affect, albeit not in the direction hypothesised, and only 

for response times. Specifically, for the reaction time data it was the receding sound 

that caused quickest response times for both happy and angry facial expressions, 

with happy faces paired with a receding sound being responded to even quicker. 

This however, could be the result of the two additive main effects; the main feature of 

this interaction is that looming sounds appear to selectively speed angry face 

responses in the intensity 1 condition, thus violating simple additivity of the factors. 

When looking at the effects between looming and receding sounds, both angry and 

happy faces were responded to quicker when paired with receding sounds. A further 

interaction between visual field and expression salience revealed a right visual field 

response time bias for stimuli regardless of type of emotion or sound, but only for the 

lowest in salience expression (intensity 1).  

  The accuracy data did not provide evidence for modulation based on the presence 

of a looming or receding sound. For accuracy, the visual field location was shown to 

guide participant responses, with an overall, left visual field bias observed for both 

angry and happy faces. This interaction between emotion and visual field replicates 

isolated effects from previous experiments in the present thesis, if one discounts the 

overall leftward bias. Specifically, higher accuracy towards angry faces was found 

when on the left visual field as opposed to the right; for happy faces, the difference 

between visual field locations was non-significant. On the whole however, the 

present data do not replicate the laterality trends reported in chapter 2. One 

possibility may be that enhanced emotive load that the auditory stimuli add to the 

facial expressions overtake what may have originally been a happy-face advantage, 

as that observed in chapter 2. In the case of emotional stimuli tapping into additional 

modalities to that of vision (i.e. Expt. 4.1), accurate identification of the target may fall 

back to a visual field bias relative to the handedness of participants; specifically, with 

right-handed subjects, the contralaterally corresponding left visual field may present 

a stronger response bias specific to identifying the correct target location.  
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SECTION 2 

4.1.2 MODULATING EFFECTS OF GAZE DIRECTION ON EMOTIONAL 

ATTENTION 

 

   In the visual domain, gaze direction is a highly-salient facial expression feature that 

is known to influence attentional engagement, and to modulate emotional face 

perception (George et al., 2001; Hadjikhani et al., 2008). The direction of gaze on a 

face has been suggested to be the first step in social interactions, as it signifies 

where the attentional resources of the observer should be directed to (N. George et 

al., 2001); the preliminary role gaze direction has on our social interactions has been 

examined in both human (e.g.George et al., 2001) and primate (e.g. Mineka, 

Davidson, Cook, & Keir, 1984) populations. For example, an fMRI study comparing 

direct vs. averted gaze in terms of their influencing properties on face perception 

found that neutral face stimuli with direct gaze elicited higher activity in the ventral 

occipitotemporal cortices of the fusiform gyrus that correlated highly with amygdala 

activation, a functional correlation known to be involved in emotional perception and 

stimulus salience (N. George et al., 2001). Conversely, the authors observed that 

neutral faces with gaze averted from the observer elicited an activity correlation 

between the fusiform gyrus and intraparietal sulcus, which has been associated with 

attentional shifting to the periphery (N. George et al., 2001). In another fMRI study 

examining the influence of gaze direction on emotional attention, Hadjikhani and 

colleagues compared the effects of manipulated gaze direction on attention, only for 

fearful facial expression stimuli (Hadjikhani et al., 2008). The authors hypothesised 

that the direction of gaze on a negatively valenced facial expression (i.e. fear) would 

act as a signal of threat in the environment, or as a cue to evoke empathy-related 

feelings in the observer; fearful faces with averted gaze may be suggestive of 

peripheral, environmental threat, whereas fearful faces with direct gaze may be 

evoking the observer’s empathy as the fearful face is experiencing something 

negative. Indeed, the authors found increased BOLD activity for fearful faces with 

averted gaze (vs. direct) in areas responsible for processing gaze (i.e. superior 

temporal sulcus and intraparietal sulcus), rapid stimulus detection (i.e. left 

amygdala), face identification areas (i.e. fusiform gyrus, inferior temporal sulcus), 
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fear processing areas (i.e. left amygdala, hypothalamus, pallidum), and in motor 

preparation areas (premotor and motor cortices, superior temporal lobule) 

(Hadjikhani et al., 2008).  

   Specifically for negative affect such as fear and anger, gaze direction carries 

important threat localisation information for the self, which is crucial for deciding on 

the most appropriate response. Negative facial expressions are generally ambiguous 

stimuli, as it is not always clear whether they are communicating an experienced 

threat (therefore provoking empathy-related reactions to the observer), or whether 

they are signalling threat (therefore provoking the observer to act to avoid the implied 

threat) (Adams et al., 2012; Hadjikhani et al., 2008). For example, an angry face with 

gaze facing directly ahead, and toward the observer renders the location of the 

threat non-ambiguous (i.e. it is the angry facial expression that presents with the 

threat) (Adams et al., 2012). Conversely, an angry face with eyes gazing away does 

not present with the same direct threat to the observer. Manipulation of gaze 

direction on a fearful face however changes the directionality and attribution of the 

location of threat; a fearful face with eyes gazing directly ahead at the observer might 

signal that the threat is the observers themself. Fearful faces with gaze directed 

away from the observer however, signify that threat is present within the 

environment, in the location where the fearful face’s gaze is directed (Adams et al., 

2012). This section addressed the assumption of the modulating role of direction of 

gaze on stimuli on emotional attention; the following section will now consider 

whether the modulating effect of gaze manifests differently depending on the nature 

of the emotion of valenced stimuli.  

4.1.2.1 MIGHT THE MODULATING EFFECT OF GAZE DIRECTION DIFFER 

DEPENDING ON TYPE OF EMOTION? 

   The linkage between gaze direction-manipulated facial expressions of affect and 

behavioural response has been broadly interpreted through the approach/avoidance 

behaviour hypothesis. For example, observers encountering happy facial 

expressions with gaze directed towards them exhibit motivation to approach 

behaviours (Adams & Kleck, 2003a; Davidson, Jackson, & Kalin, 2000). However, 

the pattern of behavioural responses to negative affect (i.e. anger) with eyes directed 

to the observer is not as clear. For example, evidence suggesting action-readiness 

of the observer during processing of negative facial expressions with direct gaze 

could be conceptualised as either preparation to avoid a threat (i.e. flee) (e.g. 
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Hadjikhani et al., 2008), or could be interpreted as preparing the observer to engage 

with the threat (i.e. fight), by eliciting similar motivation to approach behaviours to 

those primarily observed for positive expressions with direct gaze (Adams et al., 

2003b). For example, when comparing responses to angry and happy facial 

expressions with direct gaze, behavioural responses to both angry and happy stimuli 

tend to be quicker and more accurate relative to those for fearful or sad facial 

expressions, suggesting an overall action readiness to approach and engage with 

the stimulus (Adams & Kleck, 2003a); whether or not the resulting engagement will 

be a positive (familial, social in the case of happy stimuli), or a negative one 

(aggressive, confrontational in the case of angry stimuli) is irrelevant at this early 

processing stage. 

   The majority of studies in gaze direction of facial expressions focus on negative 

affect (i.e. fear and anger) with considerably less research conducted on the effects 

of gaze direction on positive affect. The overall lack of research interest in the 

interaction between positive affect and gaze direction has been interpreted in terms 

of possible methodological reasons. For example, in the behavioural literature, the 

majority of tasks investigating valence-specific behavioural differences commonly 

use emotion categorisation, or subjective interpretation of emotion tasks (e.g. 

Leppänen & Hietanen, 2004; Wedding & Stalans, 1985). Specifically, when happy 

faces were compared to negative ones (sad/disgusted) in terms of accuracy and 

recognition speed, a happy face response latency advantage was observed, which 

was maintained even when subtle, low-level physical differences between positive 

and negative facial expressions were controlled through utilising schematic facial 

expression stimuli; this response advantage was also not susceptible to stimulus 

artefacts rising from specific features in the happy face stimuli (i.e. upturned mouth 

line) (Leppänen & Hietanen, 2004). Although in general happy faces are recognised 

as emotional quicker and more accurately in comparison to negative affect, evidence 

suggests that the advantage for happy facial expressions observed particularly in 

studies utilising photographs of real posed expressions of affect may be the result of 

more low-level facial physical differences that a happy face might display, which 

might make it more distinctive than neutral or negative faces. For example, when 

comparing the ability to categorise emotions in blended facial expression stimuli of 

sad or angry and neutral faces to that between positive (happy) and neutral faces, 

inability to accurately categorise valence between negative and neutral expressions 
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tends to be more frequent to that between positive and neutral (Johnston, Katsikitis, 

& Carr, 2001). On the other hand, negative facial expressions are thought to be more 

difficult to pose for on demand, therefore suggesting that negative facial expression 

stimuli may be more heterogeneous amongst posers than those for positive facial 

expressions (Calvo & Lundqvist, 2008; Juth et al., 2005; Ohman, 1999). It may be 

the case that the comparison between a happy and a neutral face makes far less 

attentional demands than a comparison between a negative and a neutral emotional 

face when participants are required to detect emotion quickly; recognising a happy 

facial expression quickly and accurately requires the observer to focus on fewer 

facial features that deviate from a neutral expression (i.e. upturned mouth line) than 

recognition of a negative face that may require attending to changes in more facial 

features (i.e. eyebrows, mouth line, teeth) (Adolphs, 2002; Johnston et al., 2001). 

Before any manipulation of gaze direction has therefore taken place, happy faces 

are already more likely to elicit quicker and more accurate responses than negative, 

as the remaining physical manipulation required to portray a smile is comparatively 

less than that needed to portray an angry expression (Fabre-Thorpe, Delorme, 

Marlot, & Thorpe, 2001), therefore resulting in more homogenous sets of 

positive/happy facial expression stimuli, compared to those portraying angry 

expressions.  

   The conceptualisation of angry affect as a form of approach behaviour in studies 

examining the attentional effects of the direction of gaze has been investigated in 

terms of their resulting behaviours. Conversely to the response pattern observed for 

direct gaze happy and angry faces, fearful and sad facial expressions result in 

quicker and more accurate responses when gaze is averted from the observer 

(Adams & Kleck, 2003a). For example, Adams and Kleck (2003a) tested this 

hypothesis in two behavioural experiments, where participants were shown facial 

expressions of anger and fear (study 1) and joy and sadness (study 2) which were 

either blended (study 1 only) (i.e. the authors used a morphing algorithm for blending 

anger and fear expressions in equal levels), or pure expressions (study 1 & study 2) 

(i.e. only anger, and only fear). The authors manipulated gaze direction to either 

averted (left vs. right hemifield), or directed to the observer. The facial expression 

stimuli were presented centrally on the display, and remained on screen until 

participants provided with a response in terms of whether the displayed face was 

angry or fearful (study 1), or happy/sad (study 2). The authors also compared the 
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number of emotion categorisations for the blended expressions utilised in study 1, 

and found that although participants labelled stimuli as fearful or angry for a roughly 

equal amount of occurrences when stimuli had direct gaze, categorisation of stimuli 

as fearful was significantly higher than that of anger when stimuli displayed averted 

gaze. Response latency findings from the two studies confirmed that correct 

categorisation of emotion resulted from an interaction between direction of gaze and 

emotion displayed, whereby both angry and happy faces with a direct gaze were 

responded to more quickly, and fearful and sad faces with averted gaze were 

responded to more quickly (Adams & Kleck, 2003a). A subsequent attempt to 

replicate Adams and Kleck’s gaze direction and emotion interactions by Bindermann 

et al however failed to reproduce the same patterns of behavioural responses 

(Bindemann et al., 2008). Specifically, two experiments reported by Bindermann et 

al, which were designed to replicate Adams and Kleck’s emotion and gaze direction 

interactions resulting from pure emotional facial expressions did not find significant 

differences between angry and fearful, or happy and sad faces as dependent on 

gaze direction. Bindermann and colleagues suggested that the lack of replication of 

the gaze-direction and emotion interactions reported by Adams and Kleck (2003a) 

might be a result of potential stimulus confounds (i.e. artificial vs naturalistic eye 

gaze manipulation); instead of utilising Adams and Kleck’s stimulus set of pure facial 

expressions where gaze direction was digitally manipulated, Bindermann et al 

created their own stimulus set were posers displayed natural gaze direction 

variations (Bindemann et al., 2008). The non-replication of the emotion-specific 

interactions with direction of gaze might also be attributed to the use of experimental 

paradigms that allowed stimuli to remain visible until participants provided with a 

response, in addition to requiring participants to provide an emotion categorisation 

response (i.e. angry vs. fearful) (Bindemann et al., 2008, 2005). Both the lack of a 

response time cut-off, and the task requirement to categorise facial expressions in 

terms of the emotion displayed may have lead to higher-load cognitive demands, 

and the subsequent recruitment of more complex attentional networks than those 

employed in speeded detection/reaction tasks (Petersen & Posner, 2012; Posner et 

al., 1985; Posner & Rothbart, 2007).  

   Allowance for participant-led stimulus onset-offset times might also offer insight for 

the lack of replication. In the neuroimaging literature, the network of activated areas 

in response to fearful-averted gaze faces has been established as being the same 
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as when responding to general threat (i.e. amygdala, hypothalamus) (Adams et al., 

2012; Hadjikhani et al., 2008; van der Zwaag, Da Costa, Zürcher, Adams, & 

Hadjikhani, 2012). In addition, amygdala responses to fearful gaze-averted faces 

have been shown to significantly differ depending on stimulus presentation time. For 

example, rapid (300ms) stimulus duration times have resulted in increased amygdala 

activation when gaze-averted fearful faces are displayed (Hadjikhani et al., 2008), 

while when stimulus presentation time is increased to 2000ms, it is fearful gaze-

direct faces that elicit heightened amygdala activation (Adams et al., 2003b). In both 

Adams and Kleck (2003a) and Bindermann et al’s (2008) work, stimuli were 

displayed until participants provided a response; lack of speeded responses might 

therefore have lead to lengthier attentional engagement from participants, whereby 

any rapid attentional engagement specific to threat might be lost.  

   Finally, the inclusion of sad facial expressions in studies of gaze manipulation on 

emotion (Adams & Kleck, 2003a; Bindemann et al., 2008) might further complicate 

resulting response patterns. Sadness – although a socially relevant, basic emotional 

stimulus – is difficult to interpret via the approach/avoidance behavioural distinction 

thought to be the core mediator of any effect gaze direction has on perceiving facial 

expressions of affect. Differences in gaze direction of sad stimuli cannot be 

perceived as aiding in the localisation of rapid, biologically-relevant and immediate 

threat in the same way that angry or fearful faces might. Specifically, gaze-

manipulated sad facial expressions might not be expected to elicit similar approach 

motivation behaviours to those observed with happy/direct gaze faces. Although a 

sad/direct gaze face might relate to higher-order, lengthier in disambiguation and 

processing time, and complex emotional states in the observer such as empathy 

(e.g. Kosonogov, Titova, & Vorobyeva, 2015), it may not tap into the same low-level, 

rapid-onset attentional engagement a happy face might (N’Diaye, Sander, & 

Vuilleumier, 2009). Taken together, the above findings seem to suggest that each 

type of primary facial affect, when paired with manipulated gaze (averted vs. direct), 

will elicit highly efficient and almost reflex-like behavioural responses that can reflect 

either to action to avoid, or action to approach.    
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4.1.3 REFLEX VERSUS REFLECT: RESPONSE PATTERN DIFFERENCES 

DEPEND ON DURATION OF GAZE-MANIPULATED FACIAL AFFECT 

 

   Reflexive responses to negative affect (or any variation of an emotion eliciting 

action readiness) are more likely to occur following rapid stimulus display times. This 

is because initial engagement of attention has been found to commence after 50-

100ms-long stimulus display times, with displays of 300ms and longer resulting in 

higher-order attentional engagement (Posner et al., 1985). Additionally, when gaze-

manipulated facial expression stimuli are presented peripherally (i.e. either on left or 

right visual field of a display) instead of centrally, the same early-onset attentional 

mechanisms have been suggested to be engaged in their processing (Sato, 

Yoshikawa, Kochiyama, & Matsumura, 2004). Similar rapid engagement of attention 

has also been reported in tasks utilising rapid alternations between neutral and 

emotional facial expressions (N’Diaye et al., 2009).  

   A possible explanation for this comes from the neuroimaging literature, through 

suggestions that methodological parameters such as rapid display time have been 

suggested to facilitate processing through the magnocellular pathway by prioritising 

visual input through it (Adams et al., 2012). The same pathway has been suggested 

to be involved in reflex-like orientation to potential threat (Adams et al., 2012; 

Vuilleumier, 2005). Recent work by Adams and colleagues has focused on 

presentation speed as the potential source of behavioural pattern in response to 

gaze averted versus gaze direct facial expressions of fear (Adams et al., 2012). The 

authors compared short (300ms) and long (1s) stimulus display times during passive 

viewing of fearful, gaze direction-manipulated stimuli, and observed a complete 

shifting of the amygdalar activation pattern depending on gaze direction. Specifically, 

in the shorter display times, subjects perceived fearful faces with averted gaze as 

threatening where increased activation was right-lateralised within the amygdala, 

whereas when longer presentation times were employed fearful gaze-direct faces 

were perceived as conveying threat, whereby left-lateralised amygdalar activation 

was observed (Adams et al., 2012). It could therefore be the case, that in order to 

observe reflex responses elicited as a direct result of the attentional recruitment in 

localising potential threat, one must enlist highly speeded stimulus exposure times. 

Once exposure times go beyond the 100ms threshold for preattentive properties to 

be elicited (Posner et al., 1985; Posner & Rothbart, 2007), stimuli pass on to 
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lengthier attentional mechanisms that are not representative of fight or flight 

reactions.  

   To summarise, this section has discussed evidence from the behavioural and 

neuroimaging literatures on the influence of gaze direction has on our ability to 

quickly and accurately respond to angry and fearful stimuli. Direction of gaze within a 

facial expression is a powerful manipulation, which has been shown to modulate 

behavioural patterns of response. When paired with an inherently negative emotion 

(i.e. anger or fear), gaze direction guides our ability to localise a potential source of 

impending threat, much like the localisation abilities observed when listening to 

looming/approaching sounds. Based on this finding and given the additional 

lateralised attentional benefits the valence hypothesis posits, one could predict a 

pattern of responses whereby angry faces paired with direct gaze and fearful faces 

paired with averted gaze will elicit best response efficiency when displayed on the 

left visual field.  

   Specifically, motivated by the lack of research emphasis in utilising highly salient, 

ecologically-valid audiovisual stimuli as modulating factors for how we process and 

respond to emotion, Experiment 4.2 address hypotheses of gaze direction 

modulation of responses to negative emotion (angry/fearful), predicted to be further 

modulated by presence of auditory threat (looming/receding) and visual field 

location.  

 

4 EXPERIMENT 4.2 

 

 

OVERVIEW 

 
  This experiment was designed to examine the threat localisation benefits gaze 

direction has been suggested to have on negative (angry and fearful) facial 

expressions of affect, when the valence of a visual target is further enhanced by the 

presence of auditory threat (looming sounds). Further, the present experiment will 

also attempt to confirm whether visual field location of negative stimuli will further 

enhance response efficiency, based on the valence hypothesis of emotional 

lateralisation. Therefore, this study hypothesises that left visual field presentations of 
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angry faces paired with looming sounds when gaze of the face is direct to the 

observer, and fearful faces with looming sounds when gaze is averted from the 

observer, will produce higher response efficiency.  

 

4.2.2 METHODS 

 

 

4.2.2.1 SUBJECTS   

  

   Twenty-five right-handed neurologically healthy adults (undergraduate students, 

Department of Psychology, City University London) took part in this experiment (6 

males; mean age: 21.1, SD=2.1). As no participants produced improbable response 

times (<300ms) or chance accuracy judgements on the majority of trials, no 

participants were excluded from analysis. Participants were recruited through an 

advertisement on the University’s online experiment participation tool (SONA).  

 

4.2.2.2. APPARATUS 

 

   Laboratory setup and apparatus was the same as described in experiment 4.1 in 

the present chapter.  

 

4.2.2.3. STIMULI 

  4.2.2.3.1 VISUAL TARGET STIMULI 

   Experiment 4.2 utilised photographs of angry and fearful facial expressions of 

varying salience (intensities 1-5), where gaze was manipulated into looking left, 

ahead, and right. Image processing for manipulating gaze direction was conducted in 

MATLAB, where all original photograph pupils and sclera were replaced with artificial 

pupils and sclera, matched for luminance and size. Specifically, for each of the 6 

posers whose photographs were selected for inclusion in the present thesis (see 

Chapter 2 for stimulus selection procedure), control points were defined on the 

edges of each eye in the highest salience photographs (intensity 5). Corresponding 

control points were then calculated on the same eye in the same poser’s neutral 

expression photograph (intensity 0), which were used to create a polygon mask to be 

applied on the eye (Figure 4.8).  
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Figure 4.8 Example of eye masking procedure in preparation for manipulating gaze direction. After 
calculating control points around the edge of the eye in the emotional picture of one poser (bottom right 
square), a corresponding polygon-shaped mask was applied on the same poser’s neutral photograph 
(bottom left square).  
 

   The eye masking procedure was applied to each expression salience intensity 

separately, by interpolating the control points positions between those defined for 

emotional and neutral photographs. Based on Calder et al’s original interpolation 

gradations for manipulating expression intensity, the same steps from 0.25 to 1.25 

were applied for interpolating control points between emotional and neutral pictures 

(Calder et al., 1997). The resulting polygon masks were subsequently used to cover 

the poser’s pupil and sclera per intensity, by replacing them with an artificial image of 
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a dark ellipse on a light grey background which was then shifted towards the left or 

right (Figure 4.9).  

 

 

 

Figure 4.9  Example ellipse on a stimulus photograph. The ellipse could be moved between a number of set 
points to achieve gaze direction manipulation.  

 

   Natural appearance of artificial gaze was achieved by adjusting four parameters 

within the context of the overall image. Specifically, pupil size was set at 14 pixels, 

sclera brightness was set to 0.85 (where 1 is white), gaze was offset horizontally by 

8 pixels, and a low-pass filter based on a two-dimensional Gaussian kernel with a 5 

pixel standard deviation was applied on each image to match it for blurriness relative 

to the rest of the image (Figure 4.10). 
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Figure 4.10 Example full set of image intensities and gaze directions from one poser. Each of the five 
intensities is shown as a separate column, while rows represent the three different gaze directions with gaze 
ahead on the top, gaze left in the middle, and gaze right in the bottom row.  

 

   The gaze manipulation procedure resulted in 15 discrete images for each of the 

two emotions (angry/fearful) per poser, which accounted for the three gaze directions 

and five levels of expression intensity. The total number of emotional expression 

images used was 90, accounting for each of the 6 posers selected for inclusion in 

the paradigm (total of 180 images for both emotions). As in experiment 4.1, visual 

stimuli appeared on the screen for 100ms (cf. Posner et al, 1985). 

 

4.2.2.3.2 AUDITORY STIMULI 

The looming and receding 100ms-long sounds used in experiment 4.1 were also 

utilised in the present paradigm, and were administered binaurally to participants via 

stereophonic headphones.  
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4.2.2.4. DESIGN 

 The experiment utilised a 3x2x2x2x5 repeated-measures factorial design, with gaze 

direction, sound, emotion, visual field, and facial expression intensity as within-

subjects factors. Sound (looming/receding), emotion (anger/fear), and visual field 

(left/right) all had two levels, gaze (leftward/ahead/rightward) had three, and intensity 

had five (intensities 1-5). The within-subjects factors resulted in a total of 120 possible 

combinations between gaze direction, sound, emotion, visual field location and 

expression salience with conditions randomised across participants (total number of 

trials across testing blocks was 2400). Manual (button press) reaction times (ms) and 

accuracy scores (% correct) were the two dependent measures collected.   

 

4.2.2.5. PROCEDURE 

   The testing procedure from experiment 4.1 was also applied to the present study. 

Each participant was tested individually, and was tasked with making a forced-choice 

judgement on the visual field location of the emotional face regardless of type of 

sound, gaze direction, or type of emotional expression (fearful vs. angry). Target 

location was unpredictable across trials, and participants provided responses via the 

right and left arrow keyboard keys, whilst the SPACE key was used to initiate 

stimulus delivery. In the present paradigm, both neutral and emotional photographs 

were always of the same gaze direction at any given trial (e.g. rightward gaze neutral 

paired with rightward gaze emotional).  

 

4.2.2.6. DATA PREPARATION AND ANALYSIS 

   Raw reaction time data were filtered to exclude values from incorrectly responded-to 

trials in addition to reaction times less or more than 2 standard deviations from the 

mean. Mean response time (ms) and accuracy scores (% correct) were calculated per 

condition, per participant using E-Data Aid (E-Prime software suite, Psychology 

Software Tools, Pittsburgh, MA).  
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4.2.2.2 RESULTS 

4.2.2.2.1 REACTION TIME 

   A repeated-measures ANOVA was conducted with gaze direction 

(leftward/ahead/rightward), sound (looming/receding), emotion (fearful/angry), visual 

field location (left/right) and expression salience intensity (1-5) as within-subject 

factors on the reaction time data. The analysis produced a significant main effect of 

sound [F(1,24)=38.5, p=.001, partial η2=.7], where receding sounds resulted in 

quicker response times (mean=478, SE=24) than looming sounds (mean=495, 

SE=24). A further significant main effect of gaze direction was produced [F(1.8, 

45)=2.9, p=.05, partial η2=.1], where gaze ahead stimuli were responded to quicker 

(mean=485, SE=24) than leftward gaze (mean=490, SE=23.1) and rightward gaze 

(mean=487, SE=24), although gaze direction did not interact with any of the 

remaining factors (Fig. 4.11). The analysis also revealed a significant main effect of 

emotion [F(1,24)=13.2, p=.001, partial η2=.4], with angry faces producing quicker 

response times (mean=480, SE=23) than fearful (mean=492, SE=23). A final 

significant main effect of expression salience intensity was also found [F(1.7, 

41)=5.8, p=.009, partial η2=.2]. 

 

 

 
 
Figure 4.11 Bar chart depicts mean RT per gaze direction (ahead, right, left). 
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   A marginally-significant interaction between sound (looming/receding) and emotion 

(fearful/angry) was produced [F(1,24)=4.4, p=.05, partial η2=.2] (Figure 4.12), 

whereby faces paired with receding sounds produced the quickest response times, 

which were quicker still for angry faces. Post-hoc paired samples t-tests revealed 

significant differences within the same emotion in terms of looming or receding 

sounds for both angry [t=3.01, df=24, p=.006] and fearful [t=4.5, df=24, p=.001], with 

angry faces paired with the receding sound achieving quicker response times 

(mean=488, SE=20.5) than when paired with the looming sound (mean=497, 

SE=20.9). Similarly, fearful faces paired with the receding sound were responded to 

quicker (mean=492, SE=22) than when paired with the looming sound (mean=507, 

SE=22). Post-hoc analysis also revealed differences between angry and fearful 

stimuli when paired with the looming sound [t=-3.51, df=24, p=.002], whereby angry 

faces with looming sound were responded to quicker (mean=495, SE=21) than 

fearful faces paired with looming sound (mean=508, SE=21.6). However, no 

differences were found between angry and fearful stimuli when both were paired with 

the receding sound (p=.2).  
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Figure 4.12 Line graph depicts mean reaction times for angry (blue line) and fearful (green line) stimuli 
plotted in terms of looming or receding audio stimulus pairing.  
 

 

 
   A further significant interaction between emotion (fearful/angry) and visual field 

location (left/right) was observed [F(1,24)=4.4, p=.04, partial η2=.2] (Figure 4.13), 

whereby right visual field presentations of target stimuli were responded to quicker, 

which were quicker still for angry stimuli. Post-hoc paired samples t-tests revealed 

significant differences between angry and fearful faces when both were displayed on 

the left visual field [t=-5.53, df=24, p=.001], with angry faces resulting in quicker 

response times (mean=477, SE=20.2) than fearful faces (mean=500, SE=21.1). 

Similarly, significant differences were found when comparing angry and fearful faces 

when both were displayed on the right visual field [t=-3.1, df=24, p=.005], whereby 

angry faces were again responded to quicker (mean=489, SE=21) than fearful 

(mean=500, SE=22). No differences were observed when comparing angry faces in 

terms of left and right visual field presentations (p=.2), and similarly for fearful faces 

(p=.94). 
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Figure 4.13 Line graph depicts mean reaction times for angry (blue line) and fearful (green line) stimuli 
plotted in terms of left visual field (LVF) and right visual field (RVF) visual target stimulus presentation. 
 

 

  

4.2.2.2.2 ACCURACY 

   A repeated-measures ANOVA with the within-subjects factors of gaze direction 

(leftward/ahead/rightward), sound (looming/receding), emotion (fearful/angry), visual 

field location (left/right), and expression intensity (1-5) was conducted for the 

dependent measure of mean % correct scores. The analysis produced a significant 

main effect of emotion [F(1,24)=52, p=.001, partial η2=.7], with angry faces resulting in 

higher accuracy scores (mean=.75, SE=.03) than fearful faces (mean=.66, SE=.02). A 

further significant main effect of expression intensity was found [F(2,39)=72, p=.001, 

partial η2=.7].  

 

  A significant interaction between emotion (angry/fearful) and expression intensity 

(1-5) was also found [F(4, 81)=11, p=.001, partial η2=.3] (Figure 4.14), whereby 

angry stimuli achieved overall higher accuracy across intensities. Post-hoc paired 

samples t-tests revealed significant differences between angry and fearful faces for 
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all expression intensities, with angry faces scoring higher accuracy at all intensities 

overall (Table 4.5). 

 

 

Intensity 

 

Stimulus 

 

Mean 

 

SE 

 

t 

 

df 

 

Sig. 

1 Angry 

Fearful 

.61 

.47 

.02 

.045 

7.05 24 .000* 

2 Angry 

Fearful 

.71 

.6 

.11 

.09 

6.8 24 .000* 

3 Angry 

Fearful 

.78 

.70 

.15 

.11 

4.04 24 .000* 

4 Angry 

Fearful 

.82 

.76 

.16 

.14 

4.2 24 .000* 

5 Angry 

Fearful 

.84 

.8 

.15 

.16 

4.3 24 .000* 

Table 4.5 Table lists comparisons between angry and fearful stimuli across all 5 expression intensities. 

Significant differences were found at each intensity (denoted by *).  

 

 

 

 

 

 
 
Figure 4.14 Line graph depicts mean accuracy scores for angry (blue line) and fearful (red line) faces 
respectively, plotted as a function of expression intensity. Error bars represent Cousineau-corrected +-1 
within-subjects error.   
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   The analysis also produced a significant interaction between sound 

(looming/receding), gaze direction (leftward/ahead/rightward) and emotion 

(fearful/angry) [F(2,45)=5.14, p=.01, partial η2=.2] (Figure 4.15),showing that looming 

sounds benefit left angry faces and right fearful faces, while receding sounds have 

the opposite effect. 

When angry faces were paired with the receding sound, rightward gaze also showed 

higher accuracy similar to gaze-ahead faces. Fearful stimuli on the other hand 

displayed lower accuracy overall, with no significant accuracy advantage for averted 

gaze stimuli, aside from when paired with receding sounds. Unpacking of the 

interaction with post-hoc paired samples t-tests comparing gaze direction and 

emotion pairs per sound, revealed significant differences between looming angry and 

looming fearful stimuli for gaze ahead [t=7.06, df=24, p=.001], gaze right [t=6.5, 

df=24, p=.002] and gaze left [t=8.3, df=24, p=.001], with best accuracy for angry 

faces with direct gaze (mean=.77, SE=.022) as opposed to fearful (mean=.66, 

SE=.02), followed by angry faces with gaze-right (mean=.75, SE=.029) as opposed 

to fearful (mean=.67, SE=.02), and finally by angry faces with gaze-left (mean=.74, 

SE=.026) as opposed to fearful (mean=.65, SE=.10). Similarly, significant 

differences were found between receding angry and receding fearful stimuli for gaze 

ahead [t=3.7, df=24, p=.001], gaze right [t=6.5, df=24, p=.001] and gaze left [t=5.7, 

df=24, p=.001], whereby best accuracy was achieved by angry faces with gaze-right 

(mean=.77, SE=.02) as opposed to fearful (mean=.65, SE=.02), followed by angry 

faces with gaze-ahead (mean=.75, SE=0.2) as opposed to fearful (mean=.66, 

SE=.02), and finally angry faces with gaze-left (mean=.74, SE=.02) as opposed to 

fearful (mean=.66, SE=.02). However, when comparing across sounds but within 

gaze and emotion, no significant differences were observed. Specifically, no 

differences were found between looming angry and receding angry gaze ahead 

faces (p=.13), gaze right (p=.25) or gaze left (p=.2). Additionally, no differences were 

found between looming fearful and receding fearful gaze ahead faces (p=.64), gaze 

right (p=.7), and gaze left (p=.06).  
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Figure 4.15 Plots display mean accuracy scores for gaze ahead (blue), gaze left (green) and gaze right 
(beige) to angry (x-axis 1) and fearful (x-axis 2) faces, plotted by Looming (left graph) and Receding (right 
graph) sounds separately.  
 
 
 

   No further significant interactions were found for the accuracy data.  

 

4.2.3 EXPERIMENT 4.2 SUMMARY  

   Results from experiment 4.2 provided evidence that confirmed predictions of the 

modulating properties of additional, contextual factors such as auditory threat and 

gaze on response efficiency. For manual response times, a similar effect of sound to 

that observed in experiment 4.1 was found, whereby receding sounds were overall 

preferentially responded to. However, this was contrary to the predicted directionality 

of a sound effect, originally hypothesizing looming sounds as increasing response 

efficiency. Gaze was also found to play a modulating role for response times, 

whereby gaze-ahead stimuli consistently resulted in quicker response times than 

leftward or rightward gazing faces, regardless of emotion or additional auditory 

threat. In terms of emotion-based modulation, angry faces were overall responded to 

quicker than fearful. Hypotheses on the interplay between added threat-enhancing 

contextual factors and emotional facial expressions as indicative of distinctly 
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lateralised responses were also confirmed but only for angry faces, whereby angry 

faces on the right visual field elicited the quickest responses. 

   Accuracy analysis confirmed the angry face advantage observed in the response 

time data, with angry faces achieving overall more accurate responses than fearful; 

this effect was maintained across all expression intensity levels. Further support for 

the influencing role of gaze and sound onto response accuracy was also observed, 

as looming sounds appeared to confer an advantage for angry faces with ahead or 

leftward gaze compared to rightward gaze, and the reverse advantage for fearful 

faces with rightward gaze compared to leftward or gaze ahead. Receding sounds 

resulted in the opposite pattern, conferring an advantage for angry faces with 

rightward gaze, and for fearful faces with leftward or gaze ahead.   

    

 

4.3 GENERAL DISCUSSION  

 

  Findings from the two tasks in the present chapter are the first to demonstrate 

distinct patterns in the modulation of behavioural responses to primary affect, when 

the valence of a facial expression is combined with two ecologically valid and 

biologically significant valence-enhancing factors; auditory threat and gaze direction. 

Across two methodologically comparable tasks, the modulatory effects of auditory 

threat were examined first independently of, and secondly in conjunction to, gaze 

direction in terms of their influence on response efficiency. 

   Albeit contrary to the original directionality of the present chapter’s predictions that 

were based on the literature on auditory threat, receding sounds (instead of looming) 

were shown to significantly influence response latency overall in the sound-only 

experiment. Additionally, the visual field location of the target stimuli produced a right 

visual field bias in terms of response speed for both types of affect; for participants’ 

accuracy however, a left visual field bias was observed but only for negative affect 

(angry), which was unaffected by the presence of a looming or receding sound.  

    The same receding sound response speed advantage was observed when the 

gaze-direction manipulation was introduced in the second experiment that only 

utilised negative facial expressions (angry vs. fearful). In this study, gaze influenced 

the speed of responses, whereby stimuli with direct gaze consistently resulted in 

quicker response times than leftward or rightward gazing faces. In terms of emotion-
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based modulation, angry faces were overall responded to quicker overall than 

fearful. Gaze for fearful faces appeared to be depended on sound; this offers some 

support for the hypothesis that angry faces should benefit more from looming sounds 

combined with direct gaze, and fearful from averted gaze; receding sounds have the 

opposite effect as if they suck attention away from the self, and towards the 

surrounding environment. It appears as though the implied motion that receding 

sounds may carry drives attention away from the visual stimulus, in an attempt to 

localise where the potential threat may be. In this case, the averted gaze may be 

considered a visual cue (looking right vs. looking left) towards the site of an 

aggressor that is causing the stimulus fear. The right visual field bias for response 

speed found in Exp. 4.1 was replicated in Exp. 4.2 but only for angry faces, whereas 

fearful faces showed a sizeable looming advantage for rightwards gaze vs 

left/ahead. 

   Taken together, these results provide new evidence for the modulatory role that 

auditory threat and gaze direction may play on the behavioural responses to facial 

expressions of emotion. The following sections will first discuss the novel finding of 

receding sounds benefiting response efficiency from a methodological perspective, 

and will then focus on the combined modulatory benefits of receding sounds and 

gaze direction on response efficiency to anger.   

 

4.3.1 METHODOLOGICAL CONSIDERATIONS 

  

   Best response efficiency was consistently observed for receding sounds, 

conversely to hypotheses favouring looming sounds. Evidence from the literature 

would suggest that looming sounds – aside from being ecologically valid stimuli due 

to their inherent ability to localise threat (e.g. Bach et al., 2015; Romei et al., 2009)– 

should facilitate a looming bias in participant responses (e.g. Neuhoff, 2001). 

However, present findings exhibit a different bias, present in both the sound-only 

study (negative vs. positive affect), and in the study combining auditory threat with 

direction of gaze (negative affect only). A preliminary interpretation might attribute 

this finding to a potential stimulus artefact. The two auditory stimuli were constructed 

from the same sound wave, with the only changing factor being dB intensity; to 

create the looming sounds intensity was rapidly increased and for the receding 
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sound intensity was rapidly decreased. Subsequently, due to the rapid decrease in 

sound intensity utilised to create the effect of a receding sound, a click or crashing-

like sound effect was audible as a result. Research utilising the looming/receding 

manipulation combined with neutral visual stimuli recommends the addition of a 

10ms stimulus onset rapid ramp-up prior to administering the auditory stimulus in an 

attempt to diminish the click-like sound effect caused by reversing the temporal 

profile of the looming sound so as to sound as receding (Leo et al., 2011). This could 

be incorporated in future work examining the effects of looming and receding sounds 

on emotional visual stimuli. On the other hand, it could be that the sudden click-like 

crashing sound effect in the receding sound used may have created a stronger 

alerting effect than the looming sound stimulus used. The resulting receding sound 

advantage observed in both studies therefore could be the product of an increase in 

vigilance, regardless of the presence of click-like sound effects. In the sound-only 

experiment (4.1), the presence of receding sounds enhanced the overall bias to 

happy faces, which was further accentuated by a right visual field bias for response 

accuracy. Therefore, receding sounds in this case could be seen as having played 

an alerting role that strengthens the right visual field lateralisation of response 

efficiency to happy stimuli. In the second experiment (4.2), when the valence 

comparison was only focused on negative affect (angry vs. fearful), receding sounds 

specifically benefited response efficiency to angry faces which again were lateralised 

to the right visual field, and were further enhanced by the presence of direct gaze. If 

angry and happy affect is interpreted as states that may elicit action-readiness (or 

even approach) behaviours, then receding sounds in this case appear to significantly 

facilitate preparation to act, by acting as vigilance enhancers. A final possibility 

however may also be that the strong effect receding sounds were seen to have on 

response efficiency is in fact a real phenomenon; it could be that the receding sound 

is perceived as signalling safety to the observer, as the auditory threat it may carry is 

perceived as moving away from the subject’s location. This could be therefore seen 

as a response equivalent to the robust happy-face advantage observed in chapters 2 

and 3; in this light, receding sounds could be perceived as ‘safe’, and therefore 

interpreted as positively valenced when processed through rapid attentional filters. 

Such an interpretation may potentially mean that across chapters 2 to 4, a strong 

positivity bias is observed, across the visual and auditory modalities.   
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4.3.2 ALERTING SOUNDS AND DIRECT GAZE MODULATE LATERALISATION 

OF RESPONSES TO POTENTIAL THREAT 

 

  An overall attentional advantage for threatening stimuli (be those visual or auditory) 

has been observed in a variety of cognitive domains. For example, a threat-

advantage for angry and fearful faces has been observed in numerous visual 

perception tasks (Bushman & Anderson, 2001; Duncan & Barrett, 2007; Horstmann, 

2007; Horstmann & Bauland, 2006), while a threat-advantage has also been found in 

visual perception studies using words or scenes (e.g. Fox, Russo, & Dutton, 2002; 

Koster, Crombez, Damme, & Verschuere, 2004; Yiend, 2010) and in studies of 

working memory (e.g. Jackson, Linden, & Raymond, 2014; Thomas, Jackson, & 

Raymond, 2014). Similarly, in studies of auditory perception, looming sounds 

consistently bias responses to neutral target stimuli (e.g Altenmüller et al., 2002; 

Mitchell et al., 2003; Noulhiane et al., 2007; Sutherland et al., 2014). Both 

experiments in the present chapter provided evidence for lateralised responses that 

are specific to anger. In the sound-only study (exp4.1) increased accuracy was 

observed for left visual field angry faces. In the gaze-direction and sound study 

(exp4.2), angry faces on the right visual field were responded to quicker, while fearful 

face response times were equivocal across visual field locations, regardless of face-

gaze. Angry facial expressions, regardless of presence of additional emotion-

enhancing contextual information, have resulted in evidence for the preferential 

engagement of the right hemisphere (therefore left visual field advantage, given the 

contralateral nature of the visual system) (Reuter-Lorenz, Kinsbourne, & Moscovitch, 

1990; Reuter-Lorenz, & Davidson, 1981).  

 Given that in the present Chapter auditory stimuli were attached to an additional 

emotional load of varying intensity (angry/happy facial expressions), a possibility 

might be that receding sounds created an effect of a missed threat. Although the 

literature provides with examples of looming sounds biasing visual perception and 

acuity for neutral visual stimuli such as flashes (e.g. Grèzes, Adenis, Pouga, & 

Armony, 2012), point-light walkers (e.g. Schouten et al., 2011), and Gabor-patches 

(e.g. Leo et al., 2011), the presence of valenced visual stimuli where expression 

salience is gradated may require more complex processing, due to the potential 

additional perceptual demands necessary for their disambiguation. For example, 

facial expressions presented within the rapid attention threshold window (50-100ms 
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as ctd. in Posner et al, 1985) may result in increased alertness, as the observer 

would not have had sufficient time to disambiguate the valenced stimulus. Resulting 

responses therefore appear to be hastened, and are perhaps more representative of 

a rushed startle reflex. Conversely, looming sounds paired with emotional 

expressions usually signal danger that has not yet arrived, thus allowing the 

observer more time to firstly localise the source of threat, for which looming sounds 

are particularly helpful, and secondly prepare for action. This remains a preliminary 

interpretation however, as to the author’s knowledge there is presently no other work 

utilising the looming/receding manipulation combined with the gradated valence of 

facial expressions.  

   Hastened responses for receding/emotional stimuli were found for both happy and 

angry faces, with happy faces being quicker overall. The happy advantage is in line 

with a number of cases from the literature where happy faces are consistently 

recognised, identified as emotional, and responded to quicker than any other type of 

primary affect, possibly due to the smaller number of facial feature changes that 

observers would need to attend to, that are present in happy facial expressions (i.e. 

upturned mouth lines) compared to feature changes required to depict negative 

facial expressions (i.e. frowning of eyebrows, showing of teeth etc.)  (e.g.Fabre-

Thorpe et al., 2001; Johnston et al., 2001). Focusing on the effects observed in the 

negative facial expressions used (anger/fear) might be more informative however. In 

the study examining the combined effects of gaze direction and auditory threat, the 

effect the receding sound had on angry faces was less pronounced to that for fearful 

faces, shown as quicker responses for fearful faces with receding sounds as 

opposed to angry. It could therefore be the case that a small looming advantage 

does in fact exist for anger, which is superimposed on the more general advantage 

from the receding sound.   

   When combining looming and receding sounds with manipulated gaze direction 

and two different negative facial expressions, receding sounds once again elicit 

hastened responses, which are quicker still for faces with direct gaze. This gaze 

effect which in the literature has usually been found to elicit quicker responses when 

specifically paired with angry facial expressions (Adams et al., 2003; Adams & Kleck, 

2003; Marsh, Adams, & Kleck, 2005) now appears to not be influenced by the nature 

of observed emotion, but instead is influenced by the possibly stronger bias and 

increased vigilance induced by receding sounds. Specifically for anger, evidence 
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from Exp. 4.2 in the present chapter show that the combination of angry faces with 

direct gaze only enhances participants’ accuracy when paired with receding sounds, 

with a similar benefit for fearful faces paired with averted gaze (Fig. 4.14 & 4.15). 

Perhaps the increase in vigilance caused by the receding sound helps disambiguate 

the significance of threat posed by a negatively valenced visual stimulus in a more 

direct way than gaze direction alone might in the absence of any auditory cues. 

Further research examining the effect of gaze direction in the context of a 

methodologically-controlled, speeded response task utilising stimuli of varying 

salience but without the inclusion of auditory threat would be needed however, to 

confirm hypotheses of a gaze direction effect that is specific to different types of 

valenced stimuli.  

    

  4.3.3 CONCLUSION 

  

   The present chapter has introduced novel evidence for the way in which facial 

expressions of affect combined with additional valence-enhancing factors interact in 

terms of observable behaviour. This Chapter suggests that so far, investigations on 

the role that auditory threat and gaze direction have on perception may have been 

limited either in terms of task demands (i.e. reflective versus reflex/startle responses, 

usage of neutral visual stimuli), or in terms of consideration of how threat naturally 

occurs in our environment (audiovisual information versus solely audio or solely 

visual). The findings presented here have provided new evidence for the influence 

auditory threat and gaze direction may have on the behavioural responses to facial 

expressions of emotion, that manifest as rushed, startled responses. These findings 

lead to new, testable hypotheses on how the interplay between gaze and startling 

sounds may affect rapid and accurate detection of emotional visual stimuli.  

  



 152 

5 CHAPTER 5: INDIVIDUAL VARIABILITY IN ANXIETY MODULATES 

LATERALISED RESPONSES TO AFFECT  
 
 
 

5.1 INTRODUCTION 

 
   The present thesis has examined lateralised behavioural patterns resulting from 

rapid engagement of emotional attention, and their dependence on specific 

perceptual and contextual emotional attention-manipulating factors, such as 

monocular viewing conditions (nasotemporal hemifield asymmetries), presence of 

auditory threat (looming vs. receding sound), and gaze direction (direct vs. averted 

gaze) of emotional facial expressions. Evidence from experiments in the present 

thesis so far suggest that lateralised behavioural responses to the detection of facial 

expressions of basic affect resemble rapid, reflexive reactions. This suggestion 

contributes to our understanding of the lack of consistent replication of patterns of 

lateralisation found in the behavioural literature (see Ch.1 for a discussion). Usually, 

behavioural investigations of emotional perception have measured participants’ 

subjective categorisation, labelling and interpretation of emotional stimuli (e.g. 

Carver, 2004; Eder, Hommel, & De Houwer, 2007; Fox, Russo, & Dutton, 2002), 

which in their majority point to right-hemisphere unilateral engagement (Rolls, 1990), 

instead of preferentially engaging the right or left hemisphere depending on the 

nature of the emotional stimulus observed (Reuter-Lorenz, & Davidson, 1981). 

However, by utilising a speeded target location identification task that can elicit rapid, 

reflexive responses, experiments in the present thesis have established a dynamic 

lateralisation pattern that has been found to be prone to modulation by contextual 

elements incorporated in the presentation of stimuli.  

   One additional potentially modulating factor that might influence lateralisation of 

response efficiency is that of individual differences, and more specifically variability 

in terms of individual anxiety levels. Until now, research on individual variation and 

emotional perception has predominantly focused on either clinical or high 

comorbidity sub-clinical populations by investigating the underpinning biology of 

disordered behaviour and perception (i.e. schizophrenia, alexithymia, depression, 

bipolar disorder) (e.g. Bediou et al., 2007; Berthoz et al., 2002; Graham & Labar, 
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2012; Gray, 2001; Helzer, Connor-Smith, & Reed, 2009; Liotti et al., 2000; Reker et 

al., 2010), or has utilised secondary, social emotions (see Ch. 1 for a definition) and 

personality variables (i.e. empathy, extroversion, introversion etc.) (e.g. Canli et al., 

2001; Duncan & Barrett, 2007; Gruzelier & Phelan, 1991; Kosonogov, Titova, & 

Vorobyeva, 2015; Singer et al., 2004) that reflect higher-order, complex cognitive 

functions. However, very little work has been conducted in investigating the 

relationship between non-clinical behaviour (i.e. high-anxiety individuals) and the 

ability to efficiently detect basic emotion by looking at how this relationship might 

translate into observable behaviour. Across the few examples from the literature that 

have investigated individual variation based on personality traits and basic emotional 

perception, the methodologies applied typically utilise median split participant 

groupings, that potentially fail to partial out individual micro-differences that might 

have otherwise influenced the pattern of findings, and often task participants with the 

passive viewing of valenced stimuli therefore not considering resulting effects on 

behaviour, or with the subjective classification of affect which does not optimally 

engage pre-attentive processes (e.g. Grèzes, Adenis, Pouga, & Armony, 2012; 

Pouga, Berthoz, De Gelder, & Grèzes, 2010). Individual variability that is often 

dismissed as noise in the data might –in the case of rapid, early-onset emotional 

perception – be of key importance in our understanding of human behaviour and 

responses to emotional stimuli at a very basic, ontologically old level. Furthermore, 

the link between detection and response to primary affect, and the suggested rapid 

attentional engagement initiated by facial expressions of primary affect may be more 

readily detectable when looking at personality traits that stem from a similar increase 

in arousal, vigilance, and startle responses such as anxiety. The final experimental 

chapter in the present thesis will therefore focus on the effects of individual anxiety 

variability on response efficiency, as a modulating factor in the complex, dynamic 

process of behavioural lateralisation resulting from rapid exposure to facial 

expressions of primary affect. In the following sections, the present chapter will first 

review the literature reporting on the influence of individual variability on emotional 

perception overall, and will also consider the neurological correlates of emotion-

driven individual variability. The chapter will then review the evidence for the 

influence of anxiety on the way we perceive and respond to emotional stimuli, and 

will finally consider how individual anxiety variability may manifest in lateralised 

behaviour.  
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5.1.1 INDIVIDUAL VARIABILITY AND EMOTIONAL PERCEPTION 

    

    Historically, both neuroimaging and behavioural bodies of research on emotional 

perception have produced inconsistent results regarding neuronal activation and 

behavioural response patterns during the processing of basic affect. A number of 

explanatory arguments have been brought forward in an attempt to account for the 

divergence in findings. Specific to the neuroimaging emotional perception literature 

for example, one argument suggests that it is the difference in spatial and temporal 

resolution between different neuroimaging techniques (e.g. fMRI, PET etc.) in 

addition to differences between each technique’s sensitivity that might account for 

the lack of consistent reporting of the same activation networks during emotional 

perception (Eugène et al., 2003; Schneider & Kastner, 2005). Another argument 

addresses the somewhat heterogeneous participant populations recruited for 

experimental studies; for example, there are a number of studies highlighting gender 

differences in emotional perception as the primary cause for result pattern 

discrepancies (e.g. George, Ketter, Parekh, Herscovitch, & Post, 1996; Lane et al., 

1997; Wager, Tor, Phan, Luan, Liberzon, & Taylor, 2003), although there is some 

reservation as to whether gender differences are enough to fully justify the 

divergence between results, as there have been a number of gender differences 

studies using similar methodology and same-sex samples but have still resulted in 

different patterns of results (Eugène et al., 2003). A final suggested argument is that 

of the difference between artificially inducing the emotion under investigation to 

participants (i.e. via the watching of valenced films or photographs) and that of 

inducing a subjective, actual experiencing of the emotion to participants. Either task 

requirement can prove to be somewhat problematic; for example, studies where 

participants were asked to experience an emotion usually require participants to 

think back to an autobiographical event of the same valence (i.e. think back to a 

happy occasion so as to elicit happy affect during testing) (e.g. Damasio et al., 2000; 

Liotti et al., 2000) had been suggested to tap into a slightly different emotional 

neurological substrate to that reported in studies using artificial evocation of an 

emotion through film excerpts or photographs (Reiman et al., 1997). Such big 

methodological differences offer an explanation for the discrepancies in findings. 

Nonetheless, this is where individual differentiation in personality traits might play a 

key role; given that individual differences in neuronal activation when perceiving 
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affect have been consistently reported in a number of neuroimaging studies (e.g. 

Canli et al., 2001; Canli, Desmond, Zhao, Glover, & Gabrieli, 1998; Canli, Sivers, 

Whitfield, Gotlib, & Gabrieli, 2002), it might be the case that individual variation can 

be considered as an additional modulatory factor responsible for the inconsistencies 

in emotional perception and response findings.  

   Perception and behaviour vary across individuals. Aside from being adaptive to the 

type and self-relevance of environmental stimulation experienced, to a great extent 

they are also shaped by our own unique individual personality characteristics. One’s 

decision to fight or flee in the presence of danger, the detection speed and accuracy 

of emotional information, the ability to manage impulses, and the regulating and 

control of emotional reactions can be influenced by a number of personality traits 

(i.e. extroversion, introversion); at the point where these traits surpass the level 

where they do not severely impact day-to-day social interaction, perception can 

become distorted, and behaviour can become disordered. The relationship 

particularly between emotion regulation and symptomatology has been well 

documented in the clinical diagnostic literature. For example, symptoms such as 

inappropriate affect, avoidance, and lack of emotion regulation have been found to 

be prevalent in individuals with emotional deregulation resulting from generalised 

anxiety disorder or depression (Cole, Michel, & Teti, 1994).  

   Aside from clinically diagnosed cases of personality and mood disorders however, 

it is possible that sub-clinical behaviour can still be susceptible to variability, 

depending on the prevalence of certain personality traits. Although individual 

variation is usually filtered out (through averaging) from analyses as it is thought to 

constitute noise in the data, more recently a small proportion of research has utilised 

individual differences data to study the underlying basis of basic cognitive functions 

such as perception (e.g. Gaser & Schlaug, 2003; Maguire et al., 2000; Sluming et al., 

2002; Whitford et al., 2011), motor control (e.g. Johansen-Berg, Della-Maggiore, 

Behrens, Smith, & Paus, 2007; van Gaal, Scholte, Lamme, Fahrenfort, & 

Ridderinkhof, 2011), and decision making (e.g. Forstmann et al., 2008; Ivanoff, 

Branning, & Marois, 2008). The influence of individual differences in the behaviour of 

atypical individuals has been investigated in a variety of perceptual and behavioural 

domains. For example, research from the behavioural neuroscience literature has 

suggested that personality traits might predict differential hemispheric engagement in 

the visual domain, which translates as enhanced performance depending on visual 
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field presentation of stimuli (Heller, 1993; Levy, 1983). The assumption that 

individual personality differences are closely associated with visual field asymmetries 

is not new. For example, research investigating stable personality characteristics and 

cognitive performance has provided evidence showing distinct cerebral engagement 

asymmetries as dependent on personality, whereby increased cognitive performance 

from the left visual field correlated with participant extraversion and optimism, while 

increased performance from the right visual field correlated with participant 

introversion and pessimism (Heller, 1993). Levy and colleagues provided evidence 

for participants with pessimistic personality traits showing better performance in the 

right visual field, while participants with optimistic personality traits elicited better 

performance in the left visual field (Levy, 1983). In the EEG literature, asymmetries 

based on individual personality differences have also been reported in terms of 

lateralised activity and emotion regulation. For example, Jackson and colleagues 

reported results from a study tasking participants to view valenced and neutral 

stimuli where startle probes were presented after each visual stimulus presentation. 

The authors found that participants who showed increased left-lateralised anterior 

activation, also displayed increased startle magnitude following the display of 

negative stimuli (Jackson et al., 2003). Altogether, the above cited work points to the 

importance individual variability in personality traits has not only on emotional 

perception, but potentially as a modulating factor in the lateralisation of observable 

responses. The following section will therefore focus on the neurological basis of 

individual variability during the processing of affect, as a segue to drawing parallels 

between anxiety and responses to emotional stimuli.  

5.1.1.1 NEURAL UNDERPINNINGS OF INDIVIDUAL DIFFERENCES IN EMOTIONAL 

ATTENTION 

 

   Individual differences have been investigated in studies looking to identify sensory 

discrimination thresholds (Andrews, Halpern, & Purves, 1997), as well as in 

measurements of structural differences in early-onset sensory processing pathways 

(i.e. lateral geniculate nucleus and primary visual cortex) (Westlye, Grydeland, 

Walhovd, & Fjell, 2011). Findings from such investigations point to a 

neuroanatomical link between individual variability, and differences in size of 

subcortical structures, grey matter volume, and magnitude of cortical activation 

during basic sensory processing (Kanai & Rees, 2011). Studies focusing on grey-
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matter volume individual differences utilise MRI techniques such as voxel-based 

morphometry (VBM) to correlate grey matter volume differences to differences in 

perception (e.g. Forstmann et al., 2008; van Gaal et al., 2011). This methodology is 

not however without its limitations. Specifically, the cellular foundation of alterations 

in grey matter volume has not as of yet been fully established, and the cellular 

variations that may cause volume increases whilst being detectable and measurable 

through MRI are not fully understood (Kanai & Rees, 2011). Additionally, VBM 

studies attempting to correlate behavioural individual differences to brain structure 

would require very large numbers of participants, and the resulting correlations 

would need to be particularly strong for any inferences between structure and 

function to be made (Kanai & Rees, 2011).  

   The relationship between grey matter volume and perception stretches to studies 

on attention. For example, by using the attention network test (ANT) to investigate 

orienting, alerting, and attentional control, studies have provided evidence for 

changes in cortical thickness in brain regions associated with control and alerting 

(e.g. Westlye et al., 2011). Other examples from this portion of the attention literature 

have linked individual differences to genetic variations; when combined with 

individual social experience, genetic variability produces significant differentiation in 

attentional network activity (Petersen & Posner, 2012).  

   Individual differences have also been found to significantly influence aspects of 

emotional perception, including emotional attention, emotional responses, and 

subjective experience. For example, early behavioural work by Tucker and 

colleagues noted that individual variability in emotional state produced significant 

differences in the operation of attentional arousal (Tucker, 1981). Although the 

majority of conclusions on the loci of neuronal activity involved in emotional 

perception comes from group analyses that partial out specific individual variability, 

the subjective emotional experience, perception, and reaction time have been found 

to be subject to elements of one’s unique personality traits (Hamann & Canli, 2004; 

Schaefer et al., 2002). This research domain has provided evidence for strong 

correlations between variability in personality, and activity in prefrontal and limbic 

brain regions during processing of emotional information (Hamann & Canli, 2004). 

Work by Schaefer and colleagues showed that when participants were tasked with 

maintaining their negative emotional experience following exposure to negatively-

valenced photographs, participants who reported high negative affect also exhibited 
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equivocally high amygdala activation (Schaefer et al., 2002). Additionally, based on 

data from two fMRI studies, Canli and colleagues reported increased amygdala 

activation in high extroversion participants following exposure to happy facial 

expression stimuli, while also reporting strong correlations between neuroticism and 

extroversion and amygdalar activation as a function of exposure to positively and 

negatively valenced facial expression stimuli (Canli et al., 2001; Canli, Sivers, 

Whitfield, Gotlib, & Gabrieli, 2002).  

   Individually variable responses have also been found in studies of higher-order, 

and more socially complex affect such as empathy. For example, when comparing 

activated areas during self-experienced pain and those activated during empathic 

reactions for a loved one experiencing pain, Singer and colleagues reported that the 

activation level in areas for self-experienced pain such as anterior cingulate cortex 

and insula, strongly correlated with the level of individual empathy (Singer et al., 

2004). Lastly, evidence from studies in activation resulting from arousal in sub-

clinical populations such as alexithymics (i.e. alexithymia has been defined as an 

impairment of the ability to identify and communicate one’s emotional state) have 

reported less left-lateralised hemispheric activation displayed by alexithymic 

participants when viewing negative, high-arousal stimuli, whereby less activation in 

the left mediofrontal cingulate cortex was observed, comparatively to the control 

group (Berthoz et al., 2002). During high-arousal positive stimulus presentation 

however, alexithymic participants displayed increased activation in anterior cingulate, 

mediofrontal cortex and in the medial frontal gyrus compared to non-alexithymic 

participants (Berthoz et al., 2002). 

 

5.1.2 ANXIETY AND EMOTIONAL PERCEPTION 

    

   Anxiety has featured prominently in the behavioural literature of emotional 

perception. As a physiological state with direct manifestations in observable 

behaviour, anxiety has been shown to influence our attention, emotional and 

physiological arousal in response to self-relevant environmental stimuli, aspects of 

memory processing, and reasoning (Beck, Emery, & Greenberg, 2005). Specifically 

in the emotional perception literature, anxiety has been often utilised as a modulating 

factor in the eliciting of a suggested attentional bias for threatening stimuli (e.g. 
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Bradley, Mogg, & Millar, 2000; Mogg, Bradley, Williams, & Mathews, 1993; Mogg, 

Bradley, De Bono, & Painter, 1997). The attentional bias that threat-related stimuli 

are suggested in inducing (Horstmann & Bauland, 2006), translates as a propensity 

to preattentively perceive threat, potentially before the stimuli inducing are past the 

detection threshold; this effect would be further accentuated when individuals with 

high anxiety levels respond (Mogg et al., 1993). The suggestion of a preattentive 

processing of threat has also been identified independently to correlations with 

individual anxiety (e.g. Horstmann & Bauland, 2006; Horstmann, 2007). It may 

therefore be the case that anxiety would further promote threat-processing by 

automatically drawing attention towards threatening environmental information 

(Matthews & Wells, 1999; Mogg, Garner, & Bradley, 2007).  

   The relationship between individual anxiety and threat perception has been 

investigated in the neuroimaging literature, which has reported a wide variety of 

results regarding relative subcortical activation. For example, one study examining 

amygdala activation specific to threat perception that has utilised participant anxiety 

groupings (high, medium, low) reports bilateral dorsal amygdala activation specific to 

angry facial expressions that was however only specific to male participants with 

high anxiety (Carré, Fisher, Manuck, & Hariri, 2012). An earlier fMRI study also 

looking at relative amygdalar activation during threat perception reported that high 

anxiety participants, regardless of gender, showed increased activity during 

exposure to fearful faces (Bishop et al., 2004).  Evidence for the influence of a 

possible attentional bias relating to threatening stimuli that also correlates with 

anxiety have also been reported in studies using valenced word stimuli. For 

example, in a study using a valenced version of the Stroop task, Van Strien and 

Valstar reported evidence for high anxiety female participants showing left visual 

field-lateralised interference resulting from positively valenced words and right visual 

field-lateralised interference resulting from negatively valenced words (Van Strien & 

Valstar, 2004).  

   Similar to the criticisms of the behavioural literature on emotional lateralisation the 

present thesis posits in previous chapters, research on the potential advantageous 

processing of threatening stimuli in relation to individual anxiety is prone to similar 

kinds of methodological limitations. For example, although the theoretical suggestion 

of preattentively processing threat requires an almost automatic processing of 

negative stimuli, the majority of neuroimaging studies investigating this claim either 
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display stimuli until participants supply a response, or set the response cut-off point 

to range from 4 to 10 seconds (e.g. Bishop et al., 2004; Carré et al., 2012; Cooper, 

Rowe, & Penton-Voak, 2008), whereby usually the threshold for rapid attentional 

engagement which would be expected to be at play during exposure to emotional, 

environmentally-relevant stimuli ranges between 50-100ms (Posner et al., 1985). 

Additionally, current investigations in this field require participants to subjectively 

classify emotional expressions for the stimuli observed (e.g. Bishop et al., 2004; 

Cooper et al., 2008), or to passively observe negative, positive or neutral pictorial 

stimuli (e.g. Carré et al., 2012), whereas the preattentive and near-automatic rapid 

processing of such valenced stimuli would potentially necessitate the rapid 

engagement of localising attentional networks as opposed to passive perception or 

subjective classification with no incentive to respond – an effect which should be 

even larger in magnitude once high anxiety levels are taken into account. Lastly, 

although theoretically informative, current research correlating anxiety to cognitive 

function and subsequent response overwhelmingly relies on participant anxiety 

groupings, therefore not considering the wide differentiation that individual anxiety 

levels show in the data. This is an often overlooked but important aspect of human 

differentiation that is often attributed to outlier/extreme values in a dataset and 

filtered to present with more normally distributed sample scores; disregard of micro-

differences in emotional perception and response however ultimately takes away 

from the overall psychological significance of results reported based on generalised 

effects.   

5.1.3 MIGHT INDIVIDUAL DIFFERENCES IN ANXIETY LEVELS PREDICT 

PATTERNS OF RESPONSE EFFICIENCY? 

 

   Participant anxiety levels have been shown to significantly influence activation of 

the neural network responsible for the processing of threat (Mogg et al., 2007). 

When examining the orientation of gaze towards angry and fearful faces where 

salience and stimulus face gaze direction were manipulated between a high-anxiety 

and low-anxiety sample sub-groups, the authors observed that high anxiety 

participants tended to direct their gaze towards high-salience angry expressions 

compared to low anxiety participants, with no differences found across groups for 

fearful expressions (Karin Mogg et al., 2007). Early evidence from the neuroscience 

literature highlights the significant influence that individual emotional states can have 
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on activation of attentional arousal and vigilance (Tucker, 1981). More recent work 

examining the effects of individual differences in social anxiety as well as individual 

sensitivity for generalised anxiety on the processing of facial expressions of affect 

has provided evidence of differential neural activation in emotion-processing brain 

regions for high anxiety participants, particularly in the amygdala and insula (Ball et 

al., 2012). Specifically, the authors observed that an increase of connectivity 

between brain areas (amygdala and insula) during general emotional face 

processing manifested as a function of social anxiety, whereas conversely 

decreased activity in response to positively valenced facial expressions was 

predominantly associated with individual subjective negative affect (Ball et al., 2012). 

However, in another study recruiting participants diagnosed with generalised anxiety 

disorder and attempting to link high levels of anxiety to amygdalar dysfunction Prater 

and colleagues report the converse pattern. Specifically, they reported decreased 

connectivity between amygdala, anterior cingulate cortex, and dorsolateral prefrontal 

cortex for fearful facial expressions, a pathway which has been predominantly linked 

with the processing of threat (Prater, Hosanagar, Klumpp, Angstadt, & Phan, 2013). 

One possibility might be that the use of fearful (instead of angry) stimuli in Prater et 

al’s work reversed the activation pattern originally hypothesised. It could therefore be 

the case that fearful and sad stimuli do not necessarily represent a strong social 

signal. Anger however, has been suggested as positing a strong social signal, 

particularly from evidence of recent work in the working memory domain; for 

instance, angry faces have been shown to enhance working memory aspects (i.e. 

encoding) (Jackson, Linden, & Raymond, 2014; Nakashima, Langton, & Yoshikawa, 

2012; Thomas, Jackson, & Raymond, 2014). Chapter 4 in the present thesis has 

also provided evidence that show that fearful facial expressions are not responded to 

as efficiently as angry expressions, especially when threat-enhancing elements such 

as auditory threat and manipulated gaze direction have been added to facial 

expression stimuli. Additionally, seeing as Prater et al utilised participant groupings 

through median split (generalised anxiety disorder vs controls) (Prater et al., 2013), it 

could be the case that micro-differences in individual anxiety levels and their 

manifestation into threat processing subcortical network activation have been filtered 

out, therefore subject to the caveat reported by Kanai and Rees (2011) suggesting 

that it is these micro-differences that potentially modulate the type and pattern of 

response. Recently, neuroimaging and behavioural studies have started to gradually 
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move away from groupings-based generalisations regarding the perception and 

response to stimuli, and have stressed the importance of looking at response and 

perception patterns at an individual level (see Kanai & Rees, 2011 for a review). This 

move towards individual micro-differences in perception and response seems 

particularly appropriate for the study of basic emotional attention and perception. 

Given the historical variation in results – which also seems to be heavily tied to 

methodological and experimental design aspects – regarding emotional perception, it 

might be the case that the main reason underlying this disparity is the lack of 

consideration of the strong modulating role individual personality variability might 

play in this sensory processing domain.  

 

5.1.4 SUMMARY  

 

   The present chapter has discussed the importance and value that individual 

variability in anxiety might place on how we perceive and respond to basic emotional 

stimuli. The chapter also discussed the ability of the physiological condition of 

anxiety to rapidly engage attentional resources in the face of potentially threatening, 

negative emotional stimuli. Despite the large body of literature looking at correlating 

anxiety and emotional perception, particularly through neuroimaging methodologies, 

a wide divergence in results has been reported and attempts at replication often fail 

to produce the original patterns of results. Given the emerging importance of 

individual variability – which is often overlooked or filtered out as data noise – on all 

sensory modalities, perception and resulting behaviour, there is an overall lack of 

focus on how one’s anxiety state might determine the preferential processing of 

some basic emotions more than others. The first of three experiments described in 

the following sections was designed to address this gap, by hypothesising that 

individual anxiety scores per participant will induce distinct attentional engagement, 

which will be additionally subject to visual field attentional biases depending on the 

positioning of target stimuli. This experiment also takes into account theoretical 

recommendations regarding the timing required for the rapid engagement of 

attention, with stimuli however always remaining detectable and suprathreshold. The 

two additional experiments designed for this chapter seek to further explore the 

modulatory role of individual anxiety by incorporating two factors that have been 
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suggested to manipulate primary emotional processing; auditory threat in the form of 

looming or receding sounds when paired with positive or negative expressions of 

affect, and a gaze-direction manipulation for two distinct types of negative affect 

(anger and fear). Specifically, Experiment 5.2 hypothesizes that quicker and more 

accurate responses will be elicited by angry faces paired with a looming sound, 

when these are presented in the left visual field. Happy faces are expected to 

produce quicker and more accurate responses when paired with a looming sound 

and presented on the right visual field. Additionally, participants’ individual anxiety is 

expected to significantly influence participant responses depending on the nature of 

audiovisual emotion received, whereby response time and accuracy will significantly 

decrease as a function of anxiety, and will be quicker and more accurate still when 

the audiovisual stimulus is comprised of either angry faces paired with a looming 

sound, presented on the left visual field, or happy faces paired with a looming sound, 

presented on the right visual field. Finally, Experiment 5.3, hypothesises that angry 

faces with direct gaze and fearful faces with averted gaze will elicit quicker and more 

accurate responses when presented on the left visual field, with participants’ 

individual anxiety further enhancing response speed and accuracy. 
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5 EXPERIMENT 5.1 

 

5.2.1 METHODS 

 

 

5.2.1.1 SUBJECTS    

 

   Twenty-three neurologically healthy adults (Undergraduate students, Department of 

Psychology, City University London) took part in this study (3 males; mean age: 22.3, 

SD: 2.1). Participants were recruited through online advertisements on the 

University’s online experiment participation tool (SONA). Poor quality data from one 

further participant were omitted from analyses due to improbable reaction times 

(<300ms). All participants were right-handed with normal or corrected to normal vision 

and had given written consent prior to testing.  

 

5.2.1.2 APPARATUS & MATERIALS 

    Laboratory setup and apparatus were the same as described in Experiment 2.1, 

chapter 2. In addition, the 20-item State Anxiety form taken from Spielberger’s State-

Trait Anxiety Inventory, Y Form (STAI) (Appendix A) was administered as a self-report 

measure of state anxiety (Spielberger, 2010). The combined STAI form is commonly 

used to differentiate between anxiety and depressive symptoms in clinical diagnoses, 

although its original development was specifically for assessing anxiety within non-

clinical populations for research purposes (Bieling, Antony, & Swinson, 1998). In the 

present chapter, only the State Anxiety 20-item form was used, based on evidence 

suggesting that the Trait Anxiety scale assesses depression in addition to anxiety; the 

State scale has not been suggested to measure states other than anxiety (Bieling et 

al., 1998). Each item on the 20-item State Anxiety form is rated on a 4-point Likert 

scale ranging from “almost never” to “almost always”, with overall higher scores 

indicating higher anxiety levels.   
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5.2.1.3 STIMULI & PROCEDURE 

   Visual target stimuli used in practice and test experimental blocks were the same as 

those used in Experiment 2.1, Chapter 2. The computer-based paradigm used in 

Experiment 2.1 was also used in the present study, with the procedural addition of the 

completion of the State Anxiety scale (Spielberger, Gorsuch, & Lushene, 1970) by each 

participant prior to commencing the computer-based task. Number of experimental 

conditions and total number of experimental trials collected were the same as in 

Experiment 2.1, chapter 2.  

 

5.2.1.4 DESIGN 

   Experiment 5.1 employed a 2x2x5 repeated measures factorial design, with emotion 

(angry/happy), visual field location (left/right), and expression salience intensity (1-5) as 

within-subjects factors. The factors of emotion and visual field location had two levels, 

while the factor of intensity had five. Two dependent measures of response efficiency 

were collected, in the form of manual response times (button press, measured in ms), 

and accuracy scores (% correct).   

 

5.2.1.5 DATA PREPARATION & ANALYSIS 

   Raw reaction time data (ms) were filtered to exclude values from incorrectly 

responded to trials, as well as response times less or more than 2 standard deviations 

from the mean. Mean reaction times (ms) and mean accuracy scores (% correct) were 

calculated per experimental condition, per participant using E-Data Aid (E-Prime, 

Psychology Software Tools, Pittsburgh, MA). Questionnaire scores were aggregated 

per participant, and mean-centred prior to inclusion in subsequent analyses. ‘Centred 

Qscore’ in the following results sections denotes the mean-centred questionnaire 

scores, as in all subsequent experiments reported in the present chapter (Expt. 5.2 & 

5.3). Centred questionnaire scores were manually transformed by subtracting the raw 

covariate values by the centre. This procedure was deemed appropriate as when using 

behavioural data, the assumption of obtaining exact measurements of the covariate 

without error is often violated; as such, utilising the raw scores may cause inconsistent 

results due to estimation errors in the covariate.  Analyses reported in the following 

results section have all been Greenhouse-Geisser – corrected. Function fits were 

calculated with MATLAB PSIGNIFIT toolbox (R2013). Significant covariate interactions 

have been further analysed using Spearman’s Rho.  
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5.3.1 RESULTS  

 

5.3.1.1 REACTION TIME  

 
   A repeated-measures ANOVA was conducted using emotion (angry/happy), visual 

field location (left/right), and expression salience intensity (1-5) as within-subjects 

factors on the reaction time data. The analysis produced a significant main effect of 

emotion [F(1, 23)=20.9, p<.001, partial η2= .56], whereby happy faces (mean=480, 

SE=10.2) were responded to quicker than angry (mean=490, SE=10.9). The analysis 

also showed a significant main effect of visual field location [F(1, 23)=20.1, p<.001, 

partial η2= .47], whereby left visual field targets (mean=472, SE=10.9) were 

responded to quicker than right visual field targets (mean=499, SE=11.01). A final 

significant main effect of intensity was found [F(4, 92)=32.5, p<.001, partial η2= .59], 

where Bonferonni-corrected multiple pairwise comparisons revealed significant 

differences across intensities 2-5. The main effects observed in the present 

experiment replicate those of Exp. 2.1, Ch. 2 which utilized the same paradigm 

(without the inclusion of the anxiety questionnaire).  

 

   The analysis produced a significant interaction between emotion (angry/happy) 

and expression salience intensity (1-5) [F(4, 92)=2.9, p=.02, partial η2= .11], whereby 

happy faces were responded to quicker overall, aside when target stimuli were 

ambiguous (intensity 1) (Fig. 5.1).  
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Figure 5.1. Line graph plots mean RTs for angry (blue line) and happy (green line) target stimuli as a 
function of expression salience intensity (1-5). 

 
A further significant interaction was found between visual field location (left vs. right) 

and expression salience intensity [F(4, 92)=2.62, p=.03, partial η2= .10], whereby left 

visual field targets were responded to quicker across intensities, as opposed to right 

visual field targets (Fig. 5.2). Post-hoc paired-samples t-tests confirmed that visual 

field differences were significant across salience intensities (Table 5.1). 

 

Visual Field 

comparison 

t df Sig. 

LVF Int.1 / RVF Int.1 -4.3 22 .000* 

LVF Int.2 /RVF Int.2 -3.7 22 .001* 

LVF Int.3 / RVF Int.3 -3.4 22 .002* 

LVF Int. 4 /RVF Int. 

4 

-3.7 22 .001* 

LVF Int. 5 /RVF Int. 

5 

-2.9 22 .008* 

Table 5.1. Table reports post-hoc t-test statistics for VF comparisons across the five intensities. Significant 
comparisons are denoted by *. 
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Figure 5.2. Line graph plots mean RTs for LVF (blue line) and RVF (green line) target stimuli as a function of 
expression salience intensity (1-5). 

 
Importantly, the three-way interaction between emotion, visual field, and intensity 

initially observed in Exp. 2.1, Ch. 2 was not replicated in the present data. There 

were no further interactions in the ANOVA for the reaction time data.  

 
   A repeated-measures ANCOVA was conducted using emotion (angry/happy), 

visual field location (left/right), and expression salience intensity (1-5) as within-

subjects factors and mean-centred State Anxiety scores used as a covariate, on the 

reaction time data. A significant interaction was found between emotion 

(angry/happy) and anxiety score [F(1,22)=6.2, p=.02, partial η2=.3]. In unpacking the 

interaction, the difference between happy and angry faces was calculated by 

subtracting angry from happy. This resulted in a range of difference RT scores from 

negative to positive values, relative to the anxiety scores. Post-hoc Spearman’s Rho 

test confirmed that as anxiety increases, RTs to angry faces decrease relative to 

happy faces, resulting in positive values for happy-minus-angry (Figure 5.3).  
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Figure 5.3. Graphic displays the difference in RT between angry and happy faces (y-axis) and anxiety scores 
(x-axis). 

 

 

 

   A further significant interaction between anxiety score and expression salience 

intensity was found [F(4,88)=7, p=.001, partial η2=.3], where post-hoc Spearman’s 

Rho tests revealed a significant positive relationship only for intensity 1 faces 

[rho=0.53, p<.01] (Figures 5.4-5.8). In this interaction, it seems that highly 

ambiguous faces (int. 1), result in increased response latency for participants with 

higher anxiety scores. As anxiety increases, so does response speed, but only for 

the non-salient facial expressions, regardless of type of emotion.   
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Figure 5.4. Graph displays the mean RT distribution for Intensity 1, plotted as a function of centred Q scores 
 
   

 

Figure 5.5. Graph displays the mean RT distribution for Intensity 2, plotted as a function of centred Q scores 
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Figure 5.6. Graph displays the mean RT distribution for Intensity 3, plotted as a function of centred Q scores 

 

 
Figure 5.7. Graph displays the mean RT distribution for Intensity 4, plotted as a function of centred Q scores 
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Figure 5.8. Graph displays the mean RT distribution for Intensity 5, plotted as a function of centred Q scores 

 

   A 3-way significant interaction between emotion, expression salience intensity and 

anxiety score was found [F(4,88)=4, p=.001, partial η2=.13], where post-hoc 

correlational analysis showed significant positive relationships only between intensity 

1 happy-angry RT and anxiety scores (Figure 5.9).  
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Figure 5.9. Graphic displays the significant, moderate positive relationship between response times only to 
intensity 1 emotional stimuli (y-axis) and anxiety scores (x-axis). The higher the anxiety, the quicker 
response times become, but only for highly ambiguous emotional faces.  
 

 
 
   Post-hoc correlational analyses for response times to the two emotions 

(angry/happy) as a function of anxiety, specifically for intensity 1 stimuli, revealed 

significant negative relationships between both emotions and response latency 

(Figure 5.10). This relationship potentially shows that anxious subjects subliminally 

sense the presence of angry faces faster than happy even if they don’t know where 

they are; but more likely, perhaps angry faces are actually harder to see than happy, 

and anxious subjects are faster to make a random guessing response compared to 

when happy faces are visible, while non-anxious subjects are more cautious about 

guessing.  
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 Figure 5.10. Graphic displays the significant, moderate negative relationship between angry stimuli (blue 
line) and response times as a function of anxiety. Significant negative correlations were found for both angry 
(blue line) and happy (green line) facial expressions, at expression salience intensity 1.  

   

 

 There were no further significant interactions for the reaction time data.  
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5.3.1.2 ACCURACY   

 

   A repeated-measures ANOVA was conducted with emotion (angry/happy), visual 

field location (left/right), and expression salience intensity (1-5) as within-subjects 

factors for the accuracy data. Similarly to the main effects found in Exp. 2.1, ch.2, the 

analysis showed a significant main effect of emotion [F(1,23)=48.2, p<.001, partial 

η2= .71], whereby happy faces elicited higher accuracy (mean=.80, SE=.1) than 

angry faces (mean=.75, SE=.01). The analysis also showed a significant main effect 

of visual field location [F(1,23)=18.51, p<.001, partial η2= .51], whereby left visual 

field presentations elicited higher accuracy (mean=.82, SE=.01) than right visual field 

presentations (mean=.74, SE=.01). A final significant main effect of intensity was 

found [F(4,92)=464.3, p<.001, partial η2= .95], where Bonferonni-corrected multiple 

pairwise comparisons showed significant differences across all intensity pairs (1-5).  

 

   The interaction between emotion and expression salience observed in ch.2 was 

replicated in these data. Specifically, the ANOVA revealed a significant interaction 

between type of emotion (angry/happy) and expression salience intensity (1-5) 

[F(4,92)=12.5, p<.001, partial η2= .35], whereby happy faces achieved overall higher 

accuracy than angry across intensities 2-5. At intensity 1, accuracy for both angry 

and happy faces was at chance level (Fig. 5.11).  
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Figure 5.11. Line graph plots mean accuracy scores for angry (blue line) and happy (green line) stimuli as a 
function of expression salience intensity. 

 

Again similarly to the interaction between visual field and expression salience first 

observed in ch.2, the present data resulted in a significant interaction between visual 

field location (left/right) and expression intensity [F(4, 92)=3.83, p=.006, partial η2= 

.15]. In this interaction, left visual field presentations elicited overall higher accuracy 

than right visual field presentations, across all expression salience intensities (1-5). 

This interaction suggests that expression salience modulates the overall left 

advantage, with subjects guessing when responding to ambiguous stimuli; as 

salience intensifies, subjects’ accuracy for happy is enhanced, before responses 

reach ceiling responses for both angry and happy at the highest salience intensities 

(Fig. 5.12). 
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Figure 5.12. Line graph plots mean accuracy scores for LVF (blue line) and RVF (green line) target stimuli as 
a function of expression salience intensity. 

 

Importantly, the interaction between emotion and visual field location observed in 

ch.2 was not replicated in the present data. The ANOVA revealed no further 

significant interactions for the accuracy data.  

 

    A repeated-measures ANCOVA was conducted using emotion (angry/happy), 

visual field location (left/right), and expression salience intensity (1-5) as within-

subjects factors and mean-centred State Anxiety scores used as a covariate, on the 

accuracy data. A significant interaction between expression salience intensity and 

anxiety score was also observed [F(4,88)=3.8, p=.007, partial η2=.2]. In unpacking 

the interaction, the difference between happy and angry faces was calculated by 

subtracting angry from happy. This resulted in a range of difference accuracy scores 

from negative to positive values, relative to the anxiety scores. Post-hoc Spearman’s 

Rho analyses revealed that accuracy increases as a function of anxiety, but only for 

intensity 1 (Figure 5.13). 
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Figure 5.13. Graphic displays the significant, moderate positive relationship between accuracy scores only to 
intensity 1 emotional stimuli (y-axis) and anxiety scores (x-axis).  
 

 
   

On further post-hoc investigation of the correlation between anxiety score and 

intensity 1 faces, Spearman’s rho analyses at expression salience intensity 1 for 

angry and happy faces revealed a significant negative relationship between anxiety 

and angry faces, but a non-significant relationship between anxiety and happy faces 

(Figure 5.14), whereby for angry stimuli, an increase in anxiety reflects a decrease in 

response accuracy for highly ambiguous facial expressions (intensity 1). Accurate 

responding to happy stimuli does not appear to be influenced by level of state 

anxiety.  
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 Figure 5.14. Graphic displays the significant, moderate negative relationship between angry stimuli (blue 
line) and accuracy scores as a function of anxiety.  
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5.3.1.3 THRESHOLDS 

 

   Individual functions between anxiety score and mean accuracy were fit per 

participant to calculate discrimination thresholds, that denote the intensity required 

for participants to correctly identify the emotional expression at 75% accuracy (for 

the methodology of calculations, see Ch. 2, Exp. 2.1).  

Thresholds were correlated to angry and happy expression stimuli separately as 

functions of anxiety, with significant positive relationships resulting for each type of 

affect (Figure 5.15).  

 

Figure 5.15. Graphic displays significant relationships between angry (blue line) and happy (green line) 
stimuli to detection thresholds (y-axis) as a function of anxiety (x-axis). Correlations are significant for both 
emotions, with the angry correlation being stronger than that for happy.  
 

 

Comparison of thresholds per emotion as a function of level of state anxiety revealed 

a borderline significant difference between the two types of emotional expression 

(Figure 5.16). It appears that thresholds for angry faces increase relative to happy as 

a function of increasing anxiety (i.e. they become relatively less sensitive to angry 

features compared to happy).  
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Figure 5.16. Graphic illustrates the difference for thresholds for angry faces relative to happy as a function of 

increasing anxiety. 
 

 
   The speed-accuracy trade off was calculated for present data. This measure 

quantifies how the threshold accuracy covarried with response latency, across 

experimental conditions (Heitz, 2014). For this calculation, the mean response speed 

and mean accuracy rates were fitted as functions per participant and for each 

condition using the PSIGNIFIT function in MATLAB (R2013). The average fits were 

then plotted as a function of the covariate (mean-centred anxiety scores). Finally, rho 

values for the correlation of RT with % correct scores for each intensity was plotted 

as a function of anxiety (Fig. 5.17), showing that higher anxiety correlates with a 

decrease in the strength of the correlation towards zero, whereby participants with 

low anxiety tend to trade off speed for sensitivity, while for participants with high 

anxiety sensitivity is not related to response time.  
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Figure 5.17. Graphic plots the speed-threshold accuracy trade off (SATO) (y-axis) for threshold faces as a 
function of anxiety. The higher the anxiety score, the higher SATO becomes for responses to emotional faces.   
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5.3.1.4 EXPERIMENT 5.1 SUMMARY 

 

   Both response time and accuracy data were firstly analysed without utilizing the 

anxiety covariate. Findings from these preliminary analyses showed a left visual field 

bias for both measures, with happy faces eliciting quicker and more accurate 

responses overall. The present results partially replicated the findings from 

experiment 2.1, chapter 2, without however managing to replicate the emotion and 

visual field interactions for response latency and accuracy. When including 

participants’ anxiety scores in the analysis, findings from the present experiment 

revealed the significant influence of state anxiety in responses to ambiguous facial 

expressions of affect. For response latency, the higher anxiety that participants 

reported, the more speeded responses were to emotional expressions. Responses 

were quicker still for the most ambiguous of stimuli (intensity 1). Although the 

relationship between expression intensity and anxiety was true for both types of 

affect (angry/happy) at intensity 1, angry faces elicited even quicker responses as 

state anxiety levels increased. As the response time data reflected values from 

correctly responded-to trials, this finding may indicate the existence of a subliminal 

effect of the facial emotion; it may be the case that participants are indeed 

processing the emotions observed instead of blindly guessing the location of the 

target. Alternatively, they are less likely to hesitate from making a fast guess when 

the stimuli are nearly or completely indistinguishable.  

   The accuracy data reinforced the influence of stimulus ambiguity on response 

efficiency. Again it was ambiguous stimuli (intensity 1) that in this case elicited 

decreasing accuracy scores as a function of increasing state anxiety scores.  When 

inspected for each emotion separately, angry intensity 1 faces showed a decrease in 

accuracy as state anxiety levels increased. The accuracy data showed that accuracy 

for happy faces remains roughly constant, but decreases for angry faces (even more 

so as expression salience for angry decreases). Although the accuracy of responses 

to happy stimuli does not appear to be influenced by the level of participants’ anxiety, 

for ambiguous (int. 1) angry faces, participants’ increase in anxiety reflects a 

decrease in accuracy.  

   Calculation of detection thresholds confirmed the speed-accuracy trade-off for high 

ambiguity facial expressions. Although this was evident for both types of affect, 

angry thresholds decreased relative to happy when state anxiety levels increased.  
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5 EXPERIMENT 5.2 

 

OVERVIEW 

 

The second experiment in this chapter seeks to further examine the role of individual 

anxiety in influencing response efficiency for positive and negative facial expressions of 

varying salience, when facial expressions are paired with threatening auditory stimuli 

(looming vs. receding sounds). This experiment hypothesizes that quicker and more 

accurate responses will be elicited by angry faces paired with a looming sound, when 

these are presented in the left visual field. Happy faces are expected to produce quicker 

and more accurate responses when paired with a looming sound and presented on the 

right visual field. Participants’ individual anxiety is expected to significantly influence 

participant responses depending on the nature of audiovisual emotion received. 

Specifically, it is hypothesized that response time and accuracy will significantly decrease 

as a function of anxiety, and will be quicker and more accurate still when the audiovisual 

stimulus is comprised of either angry faces paired with a looming sound, presented on the 

left visual field, or happy faces paired with a looming sound, presented on the right visual 

field.  

 

5.2.2 METHODS 

 

5.2.2.1 SUBJECTS    

 
   Twenty-four neurologically healthy adults (Undergraduate students, Department of 

Psychology, City University London) took part in this study (4 males; mean age: 

22.3, SD: 2.1). Participants were recruited through online advertisements on the 

University’s online experiment participation tool (SONA). Poor quality data from a 

further two participants were omitted from analyses due to improbable reaction times 

(<300ms. All participants were right-handed with normal or corrected to normal 

vision and had given written consent prior to testing. 
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5.2.2.2 APPARATUS & MATERIALS 

 

   Laboratory setup and apparatus was the same as in Experiment 4.1, with the 

addition of Spielberger’s 20-item State Anxiety scale (Spielberger et al., 1970).  

 

5.2.2.3 STIMULI & PROCEDURE 

 

  Visual target stimuli, and auditory looming and receding stimuli used in practice and 

test experimental blocks were the same as those used in Experiment 4.1, Chapter 4. 

The computer-based paradigm used in Experiment 4.1 was also used in the present 

study, with the procedural addition of the completion of the State Anxiety scale 

(Spielberger, Gorsuch, & Lushene, 1970) by each participant prior to commencing 

the computer-based task. Number of experimental conditions and total number of 

experimental trials collected were the same as in Experiment 4.1, chapter 4. 

 

5.2.2.4 DESIGN 

 

   Experiment 5.2 employed a 2x2x2x5 repeated measures factorial design, with sound 

(looming/receding), emotion (angry/happy), visual field location (left/right), and 

expression salience intensity (1-5) as within-subjects factors. The factors of emotion 

and visual field location had two levels, while the factor of intensity had five. Two 

dependent measures of response efficiency were collected, in the form of manual 

response times (button press, measured in ms), and accuracy scores (% correct).   

 

5.2.2.5 DATA PREPARATION & ANALYSIS 

 

   Raw reaction time data were filtered to exclude values from incorrectly responded to 

trials, as well as response times less or more than 2 standard deviations from the 

mean. Mean reaction times (ms) and mean accuracy scores (% correct) were 

calculated per experimental condition, per participant using E-Data Aid (E-Prime, 

Psychology Software Tools, Pittsburgh, MA). Questionnaire scores were aggregated 

per participant, and mean-centred prior to inclusion in subsequent analyses. Analyses 

reported in the following results section have all been Greenhouse-Geisser – corrected. 

Significant covariate interactions have been further analysed using Spearman’s Rho. 
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5.3.2 RESULTS 

 

5.3.2.1 REACTION TIME 

 
A repeated-measures ANOVA was conducted using sound (looming/receding), 

emotion (angry/happy), visual field location (left/right), and expression salience 

intensity (1-5) as within-subjects factors on the reaction time data. The analysis 

showed a significant main effect of emotion [F(1,23)=23.3, p<.001, partial η2= .50], 

whereby happy faces were responded to quicker (mean=522, SE=13.1) than angry 

faces (mean=532, SE=14.5). A further significant main effect of sound was observed 

[F(1,23)=23.4, p<.001, partial η2= .50], whereby receding sounds elicited quicker 

responses (mean=518, SE=13.6) than looming sounds (mean=536, SE=14.2). A final 

significant main effect of expression salience intensity was found [F(1,27)=30.1, 

p<.001, partial η2= .61], where Bonferonni-corrected multiple pairwise comparisons 

found significant differences across intensities 2 to 4. These main effects replicate the 

effects observed in Exp. 4.1, ch.4.  

 

  Unlike findings from Exp. 4.1, ch.4 which did not observe an interaction between 

visual field and emotion, the ANOVA on the present data showed a significant 

interaction between emotion and visual field location [F(1,23)=3.9, p=.05, partial η2= 

.15], where happy faces on the RVF were responded to quicker than when on the 

LVF, and angry faces on the LVF were responded to quicker than when on the RVF 

(Fig. 5. 18). 
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Figure 5.18 Line graph plots mean RT for angry (blue line) and happy (green line) when on the left and right 
visual field respectively.  

 

Similarly to the interaction between visual field and expression salience observed in 

Exp. 41, ch.4 the present data revealed a further significant interaction between visual 

field location and expression salience intensity [F(4,92)=3.3, p=.02, partial η2= .12], 

whereby for the more ambiguous intensities (1-2) target stimuli on the left visual field 

elicit quicker responses; this pattern is however reversed for the salient intensities (3-

5), where right visual field presentations elicit quicker responses (Fig. 5.19).  
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Figure 5.19 Line graph plots mean RT for left visual field (blue line) and right visual field (green line) 
presentations of target stimuli as a function of expression salience intensity.  

 

The ANOVA revealed no further significant interactions for the response time data, 

and did not replicate the three-way interaction between emotion, sound and 

expression salience intensity observed in Exp. 4.1, ch.4.   

 

 A repeated-measures ANCOVA was conducted using sound (looming/receding), 

emotion (angry/happy), visual field location (left/right), and expression salience 

intensity (1-5) as within-subjects factors and mean-centred State Anxiety scores used 

as a covariate, on the reaction time data. A significant interaction between visual field 

location and state anxiety score was found [F((1,22)=8, p=.009, partial η2=.6] (Figure 

5.20), ]. In unpacking the interaction, the difference between LVF and RVF target 

location was calculated by subtracting LVF RTs from RVF RTs. This resulted in a 

range of difference response time scores from negative to positive values, relative to 

the mean-centred anxiety scores. Post-hoc Spearman’s Rho analyses revealed a 

significant negative relationship between visual field and anxiety scores [Rho=-.5, 

p=.01], suggesting that as anxiety increases, participants became less reliant on a 

dominant visual field for locating the target. 
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Figure 5.20 Scatterplot shows the relationship between the calculated VF difference (LVF-RVF) as a function 
of mean-centred questionnaire score (anxiety).  

 

  

5.3.2.2 ACCURACY 

 

A repeated-measures ANOVA was computed using sound (looming/receding), 

emotion (angry/happy), visual field location (left/right), and expression salience 

intensity (1-5) on the accuracy data. Replicating the effects observed in Exp. 4.1, 

ch.4, the analysis produced a significant main effect of emotion [F(1,23)=42.1, 

p<.001, partial η2= .64], with happy faces eliciting higher accuracy (mean=.80, 

SE=.01) than angry faces (mean=.75, SE=.01). A further significant main effect of 

sound was found [F(1,23)=16.4, p<.001, partial η2= .41], with looming sounds 

eliciting higher accuracy (mean=.78, SE=.01) than receding sounds (mean=.76, 

SE=.01). A significant main effect of visual field location was also found [F(1,23)=4.5, 

p=.04, partial η2= .16], with left visual field presentations producing higher accuracy 

(mean=.79, SE=.01) than right visual field presentations (mean=.75, SE=.01). A final 

significant main effect of intensity was found [F(2,42)=294, p<.001, partial η2= .92], 

with Bonferonni-corrected multiple pairwise comparisons showing significant 

differences across intensities 1 to 4.  
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  The ANOVA replicated the interaction observed in Exp. 4.1, ch.4, by revealing a 

significant interaction between type of emotion and visual field location [F(1,23)=6.3, 

p=.02, partial η2= .22], where both angry and happy faces elicited higher accuracy 

when displayed on the left visual field (Fig. 5.21). Post hoc paired-samples t-tests 

revealed significant differences between angry and happy faces, across visual field 

locations (Table 5.1) 

 t df Sig. 

Angry L / Angry R 2.5 23 .002* 

Happy L / Happy R -9.4 23 .001* 

Angry L / Happy L 18.5 23 .001* 

Angry R / Happy R -6.2 23 .001* 

 Table 5.1. Table reports t-test statistics for each paired comparison unpacking the visual field  and emotion interaction. 
Significant pairs are denoted by *.  

 

 

Figure 5.21 Line graph displays mean accuracy scores for angry (blue line) and happy (green line) stimuli 
when presented on the left and right visual field respectively.  

 

A further significant interaction between type of emotion and expression salience 

intensity was found [F(3,67)=9.5, p<.001, partial η2= .3], whereby happy faces 
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elicited consistently higher accuracy for intensities 2-5. In intensity 1, accuracy 

scores for both types of emotion were at chance level (Fig. 5.22). Post hoc paired-

samples t-tests revealed significant differences between angry and happy faces, 

across for intensities 2-5, with no significant differences observed at intensity 1 

(Table 5.2). 

 t df Sig. 

Angry 1 / Happy 1 -.02 23 .9 

Angry 2 / Happy 2 -5.1 23 .001* 

Angry 3 / Happy 3 -5.9 23 .001* 

Angry 4 / Happy 4 -3.8 23 .001* 

Angry 5 / Happy 5 -5.6 23 .001* 

Table 5.2. Table reports t-test statistics for each paired comparison unpacking emotion and intensity interaction. 
Significant pairs are denoted by *. 
 

 

Figure 5.22 Line graph displays angry (blue line) and happy (red line) mean accuracy scores as a function of 
expression salience intensity. Error bars represent Cousineau-corrected within-subjects +-1 SE of the mean. 

 

  Unlike Exp. 4.1, ch.4, the ANOVA on the present data showed a significant 3-way 

interaction between type of emotion (angry/happy), visual field location (left/right), 

and expression salience intensity [F(2.9, 67.3)=2.9, p=.04, partial η2= .11], whereby 

happy faces produce overall higher accuracy, which is higher still when they are 

presented on the LVF for the ambiguous intensities, and the RVF for the salient 

intensities. Angry faces on the LVF produce consistently higher accuracy scores 

than when on the RVF, regardless of expression intensity. It appears that there could 
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be a response bias for hitting ‘left’ when subjects are guessing; in this case, it may 

be informative to measure false alarm rates (i.e. signal detection theory) to derive a 

bias-free measure of accuracy. (Fig. 5.23). Post hoc paired-samples t-tests revealed 

significant differences between angry and happy faces, for both visual fields and 

across intensities (Table 5.3). 

Visual Field Intensity Emotion Pair t df Sig. 

 1 Angry / 

Happy 

-.44 23 .66 

LVF 2 Angry / 

Happy 

-1.8 23 .07 

 3 Angry / 

Happy 

-3.9 23 .001* 

 4 Angry / 

Happy 

-2.1 23 .041* 

 5 Angry / 

Happy 

-2.8 23 .009* 

 1 Angry / 

Happy 

.6 23 .55 

 2 Angry / 

Happy 

-6.4 23 .001* 

RVF 3 Angry / 

Happy 

-4.8 23 .001* 

 4 Angry / 

Happy 

-3.06 23 .005* 

 5 Angry / 

Happy 

-4.7 23 .001* 

Table 5.3. Table reports t-test statistics for each paired comparison unpacking emotion, visual field, and intensity 
interaction. Significant pairs are denoted by *. 
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Figure 5.23 Line graph displays mean accuracy scores for each emotion/visual field location condition as a 
function of expression salience intensity. Error bars represent Cousineau-corrected within-subjects +-1 SE of 
the mean. 

 

The ANOVA showed no further interactions for the accuracy data.  

 

    A repeated-measures ANCOVA was conducted using sound (looming/receding), 

emotion (angry/happy), visual field location (left/right), and expression salience 

intensity (1-5) as within-subjects factors and mean-centred State Anxiety scores 

used as a covariate, on the accuracy data. A significant interaction between state 

anxiety score and visual field location was also found for the accuracy data [F(1,22), 

p=.04, partial η2=.2], whereby correlational analyses showed a significant positive 

relationship between left visual field-presented stimuli, and a significant negative 

relationship between right visual field-presented stimuli and state anxiety levels. 

Here, as anxiety increases, accuracy increases for left visual field stimuli, whereas 

the opposite pattern is observed for right visual field stimuli.  (Figure 5.24). In 

unpacking the interaction, the difference between LVF and RVF target location was 

calculated by subtracting LVF RTs from RVF RTs. This resulted in a range of 

difference response time scores from negative to positive values, relative to the 

mean-centred anxiety scores. Post-hoc Spearman’s Rho analyses revealed a 

marginally significant relationship between visual field and anxiety scores [Rho=-.32, 
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p=.05], suggesting that as anxiety increases, participants become less reliant on a 

dominant visual field for accurate target identification. 

 

 

 

Figure 5.24  Scatterplot shows the relationship between the calculated VF difference (LVF-RVF) as a function 
of mean-centred questionnaire score (anxiety). 

 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 195 

 

5.3.2.3 EXPERIMENT 5.2 SUMMARY 

 
  Findings from the present experiment not only replicate the core interactions shown 

in Expt. 4.1, chapter 4 for both response speed and accuracy, but also reveal further, 

more complex relationships across factors and in terms of the covariate. Preliminary 

ANOVAs in the present experiment showed an RVF response speed advantage for 

happy faces and an LVF response speed advantage for angry faces. Visual field 

location of target stimuli appeared to modulate response speed regardless of type of 

affect, with ambiguous stimuli eliciting quicker responses when on the LVF, and 

salient stimuli eliciting quicker responses when on the RVF. In terms of accuracy, 

showed an overall LVF advantage for both angry and happy faces regardless of 

sound, with happy faces receiving more accurate responses overall. Ambiguity of 

expression appeared to modulate response accuracy for happy faces, whereby 

ambiguous happy faces on the LVF were more accurately responded to, as were 

happy faces on the RVF. Although sound did not interact with emotion, visual field 

location or salience, receding sounds consistently elicited quicker and more accurate 

responses overall.  

   Findings from the present experiment provided evidence for the modulatory role of 

state anxiety in responses to facial expressions of affect when paired with additional 

auditory threat (looming and receding sounds). State anxiety in the present study 

was found to interact with the visual field location of target stimuli, regardless of the 

nature of the emotion observed (angry vs. happy). 

   For response latency, significant relationships between visual field location (left vs 

right) and state anxiety showed left visual field stimuli eliciting decreased response 

latency as a function of increasing anxiety, whereas right visual field stimuli revealed 

the opposite pattern (increased response latency as anxiety scores increased). For 

detection accuracy, it was again visual field location that interacted with state 

anxiety, whereby left visual field stimuli showed increased accuracy as a function of 

increasing state anxiety and right visual field stimuli elicited decreased accuracy as 

state anxiety increased. Emotion appeared to play an additional modulatory role to 

that of anxiety and visual field location in terms of successful visual target detection 

accuracy in the form of accuracy differences between the two emotions only for post 

detection threshold intensities (2 and above), repeating the pattern of higher 
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accuracy for happy affect over angry observed in previous experiments in the 

present thesis (experiments 2.1, 3.1, 4.1).  

   Findings from the present experiment suggest that in the presence of additional, 

auditory threat acting as a localizer of the source of potential danger, it is response 

efficiency based on visual field location of target stimuli (facial expressions) that is 

the most affected when individual state anxiety is taken into consideration.  
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5 EXPERIMENT 5.3 

 

OVERVIEW 

 

  The present experiment focused on two types of negative affect (anger/fear), in an 

attempt to examine the modulatory role of gaze direction (direct vs. averted), visual 

field location, salience intensity and anxiety on participants’ response efficiency. 

Based on suggestions that angry faces paired with direct and fearful faces paired 

with averted gaze should elicit quicker and more accurate responses, this study 

hypothesises that angry faces with direct gaze and fearful faces with averted gaze 

will elicit quicker and more accurate responses when presented on the left visual 

field, with participants’ individual anxiety further enhancing response speed and 

accuracy. 

 

5.2.3 METHODS 

5.2.3.1 SUBJECTS    

 
   Twenty-five neurologically healthy adults (Undergraduate students, Department of 

Psychology, City University London) took part in this study (2 males; mean age: 

20.1, SD: 2.3). Participants were recruited through online advertisements on the 

University’s online experiment participation tool (SONA). Poor quality data from a 

further three participants were omitted from analyses due to improbable reaction 

times (<300ms). All participants were right-handed with normal or corrected to 

normal vision and had given written consent prior to testing. 

 

5.2.3.2 APPARATUS & MATERIALS 

 

   Laboratory setup and apparatus was the same as in Experiment 4.2, chapter 4, 

with the addition of Spielberger’s 20-item State Anxiety scale (Spielberger et al., 

1970).  
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5.2.3.3 STIMULI & PROCEDURE 

 

  Visual target stimuli used in practice and test experimental blocks were the same 

as those used in Experiment 4.2, Chapter 4 (i.e. gaze direction manipulated facial 

expressions of fearful and angry affect of varying expression salience). The 

computer-based paradigm used in Experiment 4.2 was also used in the present 

study, without however the inclusion of the auditory (looming/receding) sounds 

originally used in experiment 4.2. The sole procedural addition was that of the State 

Anxiety scale (Spielberger, Gorsuch, & Lushene, 1970) administered to each 

participant prior to commencing the computer-based task. Subsequently, participants 

were tested under a total of 60 experimental conditions (totalling 3600 experimental 

trials), so as to incorporate each level of the 4 factors (gaze direction, type of 

emotion, visual field location, and expression salience intensity).  

 
 

5.2.3.4 DESIGN 

 

   Experiment 5.3 employed a 3x2x2x5 repeated measures factorial design, with 

gaze direction (ahead, gaze-left, and gaze-right), emotion (angry/fearful), visual field 

location (left/right), and expression salience intensity (1-5) as within-subjects factors. 

Two dependent measures of response efficiency were collected, in the form of 

manual response times (button press, measured in ms), and accuracy scores (% 

correct).   

 

5.2.3.5 DATA PREPARATION & ANALYSIS 

 

   Raw reaction time data were filtered to exclude values from incorrectly responded 

to trials, as well as response times less or more than 2 standard deviations from the 

mean. Mean reaction times and mean accuracy scores (% correct) were calculated 

per experimental condition, per participant using E-Data Aid (E-Prime, Psychology 

Software Tools, Pittsburgh, MA). Questionnaire scores were aggregated per 

participant, and mean-centred prior to inclusion in subsequent analyses. Analyses 

reported in the following results section have all been Greenhouse-Geisser 

corrected.  
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5.3.3 RESULTS 

 

5.3.3.1 REACTION TIME 

 

   A repeated-measures ANOVA was computed utilising gaze direction 

(ahead/left/right), emotion (angry/fearful), visual field location (left/right), and 

expression intensity (1-5) as within-subjects factors on the reaction time data. The 

analysis produced a significant main effect of emotion [F(1,24)=19.2, p<.001, partial 

η2= .45], whereby angry faces were responded to quicker (mean=519, SE=16.1) 

than fearful faces (mean=530, SE=17.5). A further significant main effect of 

expression intensity was found [F(4, 96)=14.3, p<.001, partial η2= .43), where 

Bonferonni-corrected multiple pairwise comparisons revealed significant differences 

across all intensity pairs. The main effects observed in these data replicate those 

found in Exp. 4.2, ch. 4. Analysis of the reaction time data did not reveal any 

significant interactions, and did not replicate the interactions between emotion and 

sound, and that of emotion and visual field that were found in the Exp. 4.2 RT data.  

   Repeated-measures ANCOVA was conducted using gaze direction (ahead, gaze-

left, gaze-right), emotion (angry/fearful), visual field location (left/right), and 

expression salience intensity (1-5) as within-subjects factors and mean-centred State 

Anxiety scores used as a covariate, on the reaction time data. This analysis yielded 

no significant interactions between the factors and the covariate. 

 
 

5.3.3.2 ACCURACY 

 
A repeated-measures ANOVA was computed utilising gaze direction (ahead, left, 

right), emotion (angry/fearful), visual field location (left/right), and expression 

salience intensity (1-5) as within-subjects factors on the accuracy data. The analysis 

produced a significant main effect of emotion [F(1, 24)=51.5, p<.001, partial η2= .47], 

whereby angry faces elicited higher accuracy (mean=.76, SE=.02) than fearful faces 

(mean=.66, SE=.01). A further significant main effect of expression intensity was 

found [F(4, 96)=97.4, p<.001, partial η2= .80], where Bonferonni-corrected multiple 

pairwise comparisons revealed significant differences across all intensity pairs.  
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  Unlike the accuracy data findings in Exp. 4.2, ch.4, the ANOVA on the present 

accuracy data revealed a significant interaction between visual field location and 

gaze direction [F(2, 48)=9.3, p<.001, partial η2= .31], whereby a left visual field 

accuracy bias was observed for faces gazing ahead and left, with a right visual field 

accuracy bias for faces with right gaze (Fig. 5.25).  

 

 

Figure 5.25 Line graph illustrates the three levels of gaze manipulation (gaze ahead=blue line, gaze-
left=green line, and gaze-right=beige line) across the two visual fields respectively for the accuracy data. 

 

  Replicating the emotion and expression intensity interaction found in the Exp 4.2, 

ch.4 accuracy data, the ANOVA revealed a further significant interaction between 

emotion and expression intensity in the present study [F(4, 96)=8.80, p<.001, partial 

η2= .31], with angry faces achieving overall higher accuracy across expression 

intensities. In this case, accuracy for fearful ambiguous faces was evidently at 

chance, with a gradual increase as salience intensified until reaching ceiling for the 

highest salience expression. This pattern was significantly better for angry faces, 

where participants accurately responded to angry even for the most ambiguous 

intensities (Fig. 5.26). 
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Figure 5.26 Line graph illustrates mean accuracy scores for angry (blue line) and happy (green line) faces as 
a function of expression intensity (1-5).  

 

The three-way interaction between gaze, sound, and emotion originally found in the 

accuracy data of Exp. 4.2, ch.4 was not replicated here. Instead, the present ANOVA 

revealed a significant 4-way interaction between emotion, gaze direction, visual field 

location, and expression salience intensity [F(8,192)=2.20, p=.03, partial η2= .08) 

(Fig. 5.26). In this interaction, whereby angry faces receive more accurate responses 

than fearful overall, accuracy responses to angry faces of ambiguous expression 

intensity (int. 1) appear to benefit from leftward gaze, with a stronger attentional 

cueing effect when target stimuli appear on the visual field congruent to gaze (LVF). 

There is no specific benefit of direct over averted gaze for the angry faces of salient 

intensities (int. 3-5). Gaze manipulation in fearful stimuli did not produce an accuracy 

advantage of averted over direct gaze, regardless of the salience of facial 

expression.  
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Figure 5.26 Plots display mean accuracy scores for angry (top) and fearful (bottom) faces in terms of ahead 
(blue), rightward (red), and leftward (green) gaze direction, as a function of expression salience intensity, 
and per visual field location (RVF = left plots / LVF = right plots).   

 

The ANOVA produced no further interactions for the accuracy data.  

 

   Repeated-measures ANCOVA was conducted using gaze direction (ahead, gaze-

left, gaze-right), emotion (angry/fearful), visual field location (left/right), and 

expression salience intensity (1-5) as within-subjects factors and mean-centred State 

Anxiety scores used as a covariate, on the accuracy data. No significant interactions 

were found between the factors and the covariate were observed for these data.  

 

 
 
 
 
 
 
 
 
 
 
 
 



 203 

5.3.3.3 EXPERIMENT 5.3 SUMMARY 

 
   This experiment employed gaze direction (ahead, leftward and rightward) on two 

negative types of affect (anger/fear) to test the assumption of a possible modulatory 

relationship between individual levels of state anxiety and response efficiency. Aside 

from the addition of the anxiety scale, the paradigm employed here was a direct 

replication of Exp. 4.2, chapter 4. Surprisingly, the response speed data did not 

replicate any of the original interactions (i.e. sound * emotion, and emotion * visual 

field) found in Exp. 4.2. Specifically, preliminary ANOVA analyses for the response 

time data did not reveal an interaction of gaze and visual field location as originally 

hypothesized. Instead, the speed of participant responses appeared to be biased 

towards angry faces overall, regardless of visual field location, direction of gaze, or 

expression salience. Analysis of the accuracy data however, did partially replicate 

findings from Exp. 4.2; the original interaction between emotion and expression 

salience was also present in the 5.3 data, but the three-way interaction across sound 

gaze and emotion seemed to now disappear. Instead, the preliminary ANOVA for the 

accuracy data however showed a significant interaction across all four factors (gaze, 

emotion, location, intensity), whereby the most ambiguous angry faces elicited 

higher accuracy when displaying leftward gaze, and presented in the left visual field. 

Salient angry stimuli did not reveal a particular advantage for direct vs. averted gaze. 

For fearful faces, there was no effect of averted vs. direct gaze for any of the 

expression intensities.  

    When including individual anxiety scores as an analysis covariate, findings from 

the present experiment did not reveal a modulatory role for individual state anxiety 

levels on response efficiency. Instead, participant responses were predominantly 

guided by a combination of gaze direction and visual field location for both types of 

affect. Responses were quicker and more accurate for angry faces overall, with 

accuracy being optimum when a rightward gaze and right visual field visual target 

presentation were combined. In the present experiment, and given that all stimulus 

properties were bound to the visual domain, participants relied predominantly on 

gaze direction as a type of attentional cue for overall response efficiency, with type of 

emotion only influencing speed of responses.  
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5.4 DISCUSSION  

 

   Across three experiments, the present chapter investigated the modulatory effects 

of individual perceived state anxiety levels on response efficiency. This suggested 

modulation was investigated by utilizing specific factors, each of which had 

previously been found to influence the rapid engagement of emotional attention, and 

combines both visual and auditory emotion-manipulating contextual information.  

   Experiment 5.1 focused on the core distinction between positive and negative 

basic affect by employing angry and happy facial expressions of varying expression 

intensity in a speeded bilateral presentation target detection task, in addition to 

individual participant state anxiety scores. Findings from this experiment provided 

evidence for a speed-accuracy threshold trade off specific to high-ambiguity 

(intensity1) facial expressions; this trade-off was stronger for the less anxious 

participants, whereas for participants with higher anxiety, response accuracy 

depended less on response time, although high anxiety participants tended to 

provide faster and less accurate responses overall.  Both positive and negative affect 

were subject to this speed-accuracy trade off, however angry faces in particular 

resulted in even quicker and less accurate responses for the highest in ambiguity 

facial expression stimuli. Happy stimuli on the other hand, did not exhibit the same 

decrease in accuracy for highly ambiguous facial expressions.   

   Experiment 5.2 investigated the modulating properties of anxiety in responses to 

audiovisual threat by using a combination of visual emotional angry and happy facial 

expressions paired with looming or receding sound stimuli. In this case, and given 

the strong localizing benefits that looming and receding sounds have been shown to 

elicit, visual field target location rather than emotion type significantly interacted with 

individual anxiety. It could be that in this case, the response bias that type of emotion 

was originally expected to elicit was replaced by the presence of sounds, and more 

specifically receding sounds which produced both a response speed and accuracy 

advantage. Left visual field stimuli produced quicker and more accurate responses 

as a function of increasing anxiety, possibly as a product of right hemisphere 

attentional engagement due to the additional auditory threat present; this assumption 

cannot be confirmed however, as in Exp. 5.2 the factor of sound did not interact with 

type of emotion. Whether the emotion displayed was positive or negative appeared 

to influence responses in terms of accuracy for stimuli past the discrimination 
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threshold (intensities 2 and over), whereby higher overall accuracy was achieved for 

happy expressions. It is possible that with the addition of threatening sounds, the 

response bias produced by visual field location of emotional stimuli might depend on 

individual anxiety; for this to be considered a true response bias, it should be 

independent of the location of the emotional target, which is the case in Exp. 5.2. In 

this experiment, it looks like there is a general bias towards hitting the left key when 

the stimuli are highly ambiguous, while accuracy remains very close to chance. The 

interaction accuracy and visual field was more prominent for the angry facial 

expressions, which resulted in more accurate responses when presented on the left 

visual field, potentially due to a preferential engagement of the right hemisphere in 

the processing of negative or threatening stimuli.  

   The final experiment (5.3) in the present chapter focused on the vision-only 

domain, by manipulating gaze direction of two types of negative facial expressions 

(fearful and angry) so as to observe the modulating properties of individual anxiety 

on response efficiency. When considering the accuracy of participant responses 

without including individual participant anxiety levels, a strong response bias specific 

to ambiguous angry faces with leftward gaze when presented on the left visual field 

results. When individual micro-differences in anxiety are included in the analysis, this 

relationship disappears, even though no significant relationship between state 

anxiety levels and overall performance was found. Instead, with individual anxiety 

included, gaze-direction proved to be a particularly strong visual attentional cue, 

guiding responses to the visual field congruent to target face location, regardless of 

type of emotion or salience of the expression. One possible interpretation might be 

that strong directional attentional cues such as gaze direction overtake any effect 

individual anxiety variability or nature of the emotion observed might have had in its 

absence. Interestingly, the benefits of gaze direction observed when gaze was 

combined with auditory threat (i.e. experiment 4.2, chapter 4), or when anxiety is not 

used as a covariate in the analysis (i.e. experiment 5.3, Fig. 5.26) diminish 

completely when sound is not included as an emotional contextual factor.  

   The present chapter has produced novel evidence for the dynamic influencing role 

of individual anxiety on response efficiency. An initial conclusion could be that 

anxious subjects are less hesitant at making a guess response when the stimuli are 

indistinguishable, and angry faces are always harder to distinguish than happy. On 

the one hand, the extent to which anxiety influences our responses appears to be 
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dependent on the nature of the emotion observed as it is primarily driven by negative 

affect, which is enhanced if the visual stimuli benefit from the localizing properties of 

auditory threat (i.e. in terms of correct target detection). However, when two types of 

negative affect include additional attentional cues of gaze direction, anxiety does not 

appear to influence response efficiency; instead, the location priming effects of face-

gaze take over the modulation of responses.  

 

5.4.1 AUTOMATICITY OF RESPONSES TO BASIC AFFECT DEPENDS ON 

INDIVIDUAL ANXIETY 

 

   Individual state anxiety was found to significantly influence both speed and 

accuracy of responses in the first two experiments of the present chapter. When 

participant anxiety levels were taken into consideration, the observable response 

resulting from exposure to short bursts of positive or negative facial expressions of 

affect that also varies in expression salience intensity manifests as a distinct speed-

accuracy trade-off between response latency and accuracy of visual target detection. 

The stimulus display times of facial expressions utilised in the present Chapter’s 

experiments included 50 (Exp. 5.1 & 5.3) and 100ms durations (Exp. 5.2); this 

resulted in behaviours that closely resemble startle-like reactions (Posner & 

Rothbart, 2007) that for each participant proved to be closely linked to the amount of 

behavioural arousal their individual anxiety level induced. The paradigms used in this 

chapter took advantage of the established relationship between anxiety, attention, 

and response to potential danger in the environment (Bradley et al., 2000; Mogg et 

al., 1993; Mogg et al., 1997, 2007), combined with the additional attention-grabbing 

benefits factors such as auditory threat (Leo et al., 2011; J. G. Neuhoff, 2004; 

Riskind, Kleiman, Seifritz, & Neuhoff, 2014; Romei et al., 2009; Sutherland et al., 

2014) and face gaze-direction (Adams, Ambady, Macrae, & Kleck, 2006; Adams, 

Gordon, Baird, Ambady, & Kleck, 2003; Adams & Kleck, 2003; N’Diaye, Sander, & 

Vuilleumier, 2009; Sato, Yoshikawa, Kochiyama, & Matsumura, 2004) have been 

shown to elicit. By examining these relationships in terms of the efficiency and 

directionality of observable behaviours that they are thought to inform, the change in 

response patterns depending on which emotion-manipulating factors were present 

became evident.  
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   Some support for a preattentive processing of threatening (negative) affect as a 

function of anxiety was obtained when positive and negative facial expressions of 

affect were compared in terms of response speed and accuracy. When faces were 

highly ambiguous, individual differences in participant anxiety dictated what aspect of 

the behavioural response dominates. For instance, the more anxious participants 

were, the less accurate but quicker their responses to target stimuli were, albeit their 

responses showed a weaker correlation between response times and accuracy. 

Participants with low anxiety levels on the other hand showed a tendency to trade off 

speed for lower accuracy, whereby their slower responses allowed for better 

accuracy. One possible interpretation may be that whenever the stimulus is 

ambiguous, highly anxious participants resort to snap decisions that are on the one 

hand fast, but on the other very low in accuracy, as opposed to low-anxious 

participants that take longer overall to provide with a response. This may appear to 

happen more for angry faces, as they generally tend to be more ambiguous than 

happy facial expression stimuli. An alternative interpretation might be that the finding 

of highly ambiguous angry expressions resulted in a larger in magnitude effect of 

speed accuracy trade-off which further corroborates theoretical suggestions of an 

almost automatic processing of threat. The literature so far has provided examples of 

such automatic responses resulting from preattentive processing of threatening 

environmental stimuli (e.g. Bradley et al., 2000; Mogg et al., 1993; Mogg et al., 

2007); in the case of the present chapter findings, similar automatic responses, 

potentially enhanced by the perceived threat of angry faces, were observed for 

visible, suprathreshold stimuli which were however ambiguous as to their emotional 

load. This could mean that when presented with ambiguous threat, highly anxious 

individuals tend to sacrifice accurate disambiguation in favour of speeded, reflex-like 

reactions. Interestingly, this pattern of the speed accuracy trade-off was not 

maintained when additional emotion-enhancing elements were added to the facial 

expressions. For instance, adding auditory threat translated into highly anxious 

participants relying on the enhanced cueing effects of visual field location, due to the 

heightened vigilance the threat-localising benefits of auditory threat pose on 

perception (i.e. Fig. 5.16 & 5.23). On the other hand, when focusing on the visual 

domain only by adding a gaze-direction manipulation on different types of negative 

facial expression, anxiety does not appear to influence participant responses, 
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perhaps due to the stronger visual attentional bias gaze direction induces on 

perception.  

   There are numerous examples in the literature suggesting that negative affect 

elicits startle-like responses in individuals that self-report high levels of anxiety. The 

individual physiological experience of anxiety has been shown to result in divergent 

activation patterns at a neuronal level during the perception of affect in a number of 

studies from the neuroimaging literature (e.g. Canli et al., 2001, 1998; Canli et al., 

2002). Most of these examples however, are either based on findings from group 

comparisons (i.e. high vs low anxiety), which have been criticised as they are 

thought to exclude micro-differences between participants as noise, or utilise 

predominantly masked, unconsciously perceived emotional stimuli. Findings from the 

present chapter have demonstrated how modulated response patterns can occur 

from visible facial expressions of affect, and that this modulation is determined by the 

ambiguity of the facial expression as a function of individual anxiety. In the case of 

the presence of auditory threat, present findings demonstrate how the attentional 

urgency of disambiguating an ambiguous threatening facial expression is no longer 

modulating response efficiency as a result of increased participant anxiety. In this 

case, it is possible that the combined effects of sound and attentional bias of visual 

field location overtake any near automatic reactions that might have otherwise been 

produced. In the case of manipulated gaze direction, differences in individual anxiety 

levels did not modulate responses at all. Instead, angry faces with rightward gaze 

that were presented on the right visual field resulted in best accuracy – responses to 

fearful faces trended towards the conversely lateralised pattern, although this did not 

reach statistical significance (Fig. 5.27). A possible explanation for the lack of anxiety 

modulation in this case could be that the attentional advantage that peripheral 

presentation of gaze direction-manipulated stimuli have been shown to elicit and has 

been suggested to tap into the same early-onset attentional mechanisms recruited 

during processing of threat (e.g. Sato et al., 2004), is stronger than the vigilance-

increasing properties produced by high, sub-clinical anxiety. Taken together, findings 

from all three experiments in the present chapter point towards the dynamic and 

adaptive modulating properties of anxiety, which appear to be either recruited or 

inhibited depending on the presence or absence of stronger attention-engaging 

cues.  
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5.4.2 CONCLUSION 

 
 
   To the author’s knowledge, findings from the present chapter are the first to 

demonstrate individual anxiety dependent modulation across three methodologically 

comparable paradigms specifically designed to investigate the rapid engagement of 

attentional resources in response to basic facial expressions of affect. By utilising 

speeded target detection tasks as opposed to the typically used speeded or free-

response emotion identification/classification paradigms, as well as by being the first 

series of experiments utilising individual anxiety scores instead of anxiety groupings 

comparisons in relation to basic affect, the present chapter illustrates the dynamic 

modulation imposed by anxiety on behavioural response efficiency. These novel 

findings suggest that the influence of anxiety translates into a speed accuracy 

response trade-off when the task requires participants to distinguish between 

positive and negative affect, and is particularly prone to highly ambiguous expression 

salience intensities that is further intensified for negative affect. A similar trade-off 

that utilises the attentional cueing benefits of visual field location and emotion results 

in the presence of auditory threat, therefore suggesting the potential adaptive 

response strategies anxious participants recruit based on the emotion-relevant 

contextual information attached to visual emotional stimuli. Finally, no trade-off is 

observed in cases where visual stimuli have undergone gaze direction manipulation 

and the emotions responded to both belong in the negative spectrum (i.e. fear and 

anger); in this case, it is the attentional cueing posed by the direction of gaze that 

inhibits the influence of anxiety.  

  



 210 

6     CHAPTER 6: GENERAL DISCUSSION 

 

6.1 CHAPTER OVERVIEW 

 
 
   The present thesis is concerned with the laterality of behavioural responses to 

facial expressions of primary affect. The empirical chapters in this thesis have 

introduced a novel behavioural methodology, utilising rapid, near-threshold stimulus 

display times (50-100ms) in a speeded target detection task, where the type of 

emotion (angry, happy, fearful) was irrelevant to participant responses. By keeping 

the underlying methodological parameters outlined in empirical chapter 2 constant, 

this paradigm was subsequently adapted across empirical chapters 3-5 to include 

specific factors that the affective behavioural and neuroscience literatures suggest 

as significantly manipulating stimulus valence and influencing emotional perception, 

so as to infer the extent to which preferential hemispheric engagement, as evidenced 

by response efficiency, depends on valence.      

  To briefly summarise, chapter 2 introduced a behavioural paradigm that effectively 

investigated behavioural lateralisation through measures of response efficiency. 

Chapter 3 suggested that subcortical lateralisation may be indirectly investigated 

through the same response efficiency measures, by examining visual field 

asymmetries in response to positive and negative affect via nasally and temporally 

viewed stimuli. Chapter 4 investigated the modulating properties of specific valence-

enhancing factors and facial expression on responses to negative affect such as the 

presence of auditory threat, and manipulated gaze direction (rightward, leftward, 

gaze-ahead). Lastly, chapter 5 examined the behavioural manifestation of the 

modulating properties of individual variability in anxiety levels towards primary affect 

(angry, fearful, and happy). Findings from these chapters suggest an interpretation of 

laterality of response efficiency as being susceptible to modulation by both 

contextual and individual parameters. In the following sections, this chapter will first 

summarise the findings of the present thesis, will readdress the question of laterality 

based on the present results, and will then focus on the two key comparisons across 

paradigms of this thesis; namely, the happy vs angry comparison and the resulting 

happy face advantage, and the superiority of anger over fear which goes against 
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suggestions of a fear benefit repeatedly reported in the literature. Finally, this chapter 

will consider directions for future research based on implications from the findings of 

the present thesis.  

 

6.2 SUMMARY OF EXPERIMENTAL CHAPTER FINDINGS 

 
   The first empirical chapter introduced a behavioural paradigm designed to 

investigate the hypothesis of differential hemispheric contribution in response to two 

distinct facial expressions of basic affect (anger and happiness) through measures of 

response efficiency. The decision to focus on developing a purely behavioural 

methodology was motivated by the lack of established response patterns in earlier 

behavioural studies of laterality as opposed to neuroimaging accounts suggesting 

distinctly lateralised activation depending on the type of emotion perceived. Although 

neuroimaging and neurophysiological studies on the suggested lateralised pattern of 

responses towards positive and negative affect have established distinctly lateralised 

subcortical activation routes that are known to increase vigilance and aid detection 

and response efficiency to basic emotional stimuli, reports from the behavioural 

literature have produced a variety of laterality patterns which seems to be dependent 

on the type of paradigm, type of stimuli, and stimulus and response time parameters. 

In experiment 2.1, participants were tasked with identifying the visual field location of 

the emotional face (left or right) – regardless of whether stimuli displayed a positive or 

negative emotion.  Additionally, due to the usage of stimulus durations (i.e. within the 

50-100ms range suggested by Posner et al) that are close to the detection threshold, 

responses collected may reflect spontaneous, reflexive reactions to the presence of 

emotional stimuli that might originate from individuals’ inherent attentional bias 

towards valenced information.  

    A lateralised response pattern was observed for measures of response efficiency, 

showing an angry face advantage for response latency and a markedly less 

pronounced accuracy advantage when displayed on the left visual field (i.e. right 

hemisphere). Conversely, a happy face advantage was observed for both speed and 

accuracy when displayed on the right visual field (i.e. left hemisphere). In terms of 

response latency, this lateralised pattern was only significant for salience intensity 3 

and diminished when stimuli became explicitly angry or happy (intensities 4 & 5). In 

terms of accuracy, happy faces showed specific advantageous processing for 
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accurate recognition when displayed on the right visual field while angry stimuli 

produced negligible differences. Across response efficiency measures, happy faces 

were quicker and more accurately responded to overall. 

   The significant response latency-specific laterality pattern evident only when stimuli 

were at salience intensity 3 may possibly be interpreted in terms of the ambiguity of 

self-relevance those particular stimuli pose on participants. Specifically, this particular 

intensity where the interaction between visual field location and type of emotion was 

observed was halfway between ambiguous and salient. The detection threshold 

analyses for both angry and happy stimuli showed that stimuli at this intensity were 

suprathreshold for correct recognisability. Combining stimulus near-threshold 

detectability with the rapid stimulus duration time used (50ms) may have resulted into 

not allowing higher-order cognitive perceptual processes that require overall cerebral 

engagement to take over, therefore restricting promoting reflex responses. 

   Findings from chapter 2 support hypotheses of lateralised responses to primary 

affect at a behavioural level as being dependent on valence (positive or negative) 

(Adolphs, 2002; Jansari et al., 2000; Killgore & Yurgelun-Todd, 2007; Reuter-Lorenz, 

& Davidson, 1981; Wedding & Stalans, 1985). Furthermore, this chapter 

demonstrated that this laterality occurs under very specific contextual, stimulus-driven 

parameters such as expression salience. It may be possible that behavioural 

lateralisation is not a sustained phenomenon, but instead its presence might depend 

on the contextual information attached to the stimulus (i.e. salience of expression, 

nature of the emotion observed). A possible overarching interpretation might highlight 

that emotional perception at this basic level is not a static process; it adapts, changes 

and translates into distinct patterns of behavioural manifestation depending on the 

presence or absence of additional relevant context. The contextual specificity that 

lateralised responses require as demonstrated in chapter 2 may be a possible 

explanation for contentious laterality patterns reported in the behavioural lateralisation 

domain.  

   Based on the prioritising nature of attentional mechanisms that are fine-tuned in 

filtering environmental information so that biologically significant stimuli such as 

facial expressions of emotion may be sped through and responded to efficiently, the 

neuroimaging and neurophysiological literatures have so far investigated in great 

detail the role of different subcortical structures in recognising, perceiving, and 

attending to emotions. The behavioural literature has in turn successfully used 
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asymmetries in visual attention and behaviour using nasal-temporal hemifield 

asymmetries as a behavioural index of subcortical activation. Given this background, 

Chapter 3 focused on an unexplored question in the literature: the use of nasal-

temporal asymmetries as an indicator of subcortically driven, asymmetrically-

distributed attention to positive and negative facial expressions.  

  Chapter 3 examined whether subcortically driven attentional asymmetries, previously 

reported in the literature as resulting from using subliminal or masked emotional 

stimuli would manifest as nasal-temporal hemifield preferences when using 

suprathreshold facial expressions of positive and negative affect. The methodology in 

chapter 3 utilised measures of response efficiency (participant manual reaction times 

and accuracy scores) as a response mode that might accurately reflect oculomotor 

behaviour. Contrary to predictions, data from experiment 3.1 did not find robust nasal-

temporal asymmetries, apart from in the form of a marginally non-significant 

interaction between emotion and nasal/temporal hemifield for response latency. The 

hypothesis of nasal/temporal asymmetries resulting from the nature of the emotion 

observed was not confirmed, aside from temporally viewed happy faces producing 

marginally quicker response times. 

   Chapter 4 was concerned with the increased emotional importance stimulus 

contextual parameters such as auditory threat and direction of gaze in facial 

expressions might have on response efficiency. Across two experiments, the 

modulatory effects of auditory threat were examined first independently of, and 

secondly in conjunction to, gaze direction in relation to the reflexive responses these 

factors have been suggested to result in. To briefly reiterate main findings, receding 

sounds were shown to significantly influence response latency in the sound-only 

experiment, with happy faces resulting in quicker responses overall. A lateralised 

response accuracy pattern was found only for angry faces, which when on the left 

visual field were responded to more accurately than when on the right. The response 

speed benefit for receding sounds was also observed when the gaze-direction 

manipulation was introduced in the second experiment utilising only negative affect 

(angry vs fearful), with angry/receding stimuli producing the quickest overall reaction 

times. The response time advantage for receding stimuli was also observed within the 

fearful expressions, with fearful/receding achieving quicker responses than 

fearful/looming. Angry faces (regardless of sound) were always more accurately 

responded to regardless of directionality of gaze, as well as for both auditory stimuli. 
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Findings from this chapter provided new evidence for the modulation of behavioural 

responses to facial expressions of emotion that may relate more closely to startle-like 

reflexive responses instead of more higher-order, reflective responses. 

   Chapter 5 investigated the modulatory effects of individual perceived state anxiety 

levels on response efficiency in conjunction with the additional stimulus parameters 

of auditory threat and gaze direction, as well as by examining the effects of individual 

anxiety on the lateralisation of response efficiency based solely on the distinction 

between positive and negative affect. When considering the influence of anxiety on 

the lateralisation of response efficiency for positive and negative affect, the first 

experiment in chapter 5 revealed anxiety’s significant influence in response 

efficiency to ambiguous – but still visible – facial expressions of affect. For response 

latency, the higher anxiety participants reported, the more speeded responses were 

to emotional expressions. The accuracy data reinforced the influence of stimulus 

ambiguity on response efficiency. Again it was the most ambiguous stimuli (intensity 

1) that in this case elicited lower accuracy scores as a function of increasing state 

anxiety scores. Calculation of detection thresholds confirmed the speed-accuracy 

trade off for high ambiguity facial expressions. Although this was evident for both 

types of affect, angry faces in particular showed a larger magnitude of decreasing 

accuracy as state anxiety levels increased. The second experiment in chapter 5 

provided evidence for the modulatory role of state anxiety in responses to facial 

expressions of affect when paired with additional auditory threat (looming and 

receding sounds). In this case, state anxiety interacted with target visual field 

location of stimuli, without valence influencing the direction or strength of these 

interactions. For response latency, significant relationships between visual field 

location (left vs right) and state anxiety showed left visual field stimuli eliciting 

decreased response latency as a function of increasing anxiety, whereas right visual 

field stimuli revealed the opposite pattern (increased response latency as anxiety 

scores increased). For detection accuracy, it was again visual field location that 

interacted with state anxiety, whereby left visual field stimuli showed increased 

accuracy as a function of increasing state anxiety and right visual field stimuli elicited 

decreased accuracy as state anxiety increased. Overall, findings from this 

experiment reversed the speed-accuracy trade off pattern observed in experiment 

5.1. In the presence of additional, auditory threat acting as a localizer of the source 

of potential danger, it was response efficiency based on visual field location of target 
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stimuli that was the most affected when individual state anxiety is taken into account. 

Findings from the last experiment in chapter 5 did not reveal a modulatory role for 

individual state anxiety levels on response efficiency. This experiment employed 

gaze direction (ahead, leftward and rightward) on two negative types of affect 

(anger/fear) to test the assumption of a possible modulatory relationship between 

individual levels of state anxiety and response efficiency. Given the strong attentional 

cue gaze direction was shown to be in the absence of any additional contextual 

stimulus information, participant responses were predominantly guided by a 

combination of gaze direction and visual field location for both types of affect. 

Responses were quicker and more accurate for angry faces overall, with best 

accuracy achieved when a rightward gaze and right visual field visual target 

presentation were combined. 

 

6.3 LATERALISATION 

 

   The behavioural literature reports inconsistent findings in terms of the unilateral vs 

bilateral hemispheric engagement specifically when perceiving and responding to 

primary emotions. For example, right-hemisphere engagement has been reported for 

the processing of both positive and negative, visual and auditory emotional stimuli 

(e.g. Borod & Caron, 1980; Borod et al., 1998; Borod, Koff, & White, 1983; Campbell 

et al., 1990; Hugdahl, Iversen, & Johnsen, 1993; Ladavas et al., 1980; Ley & Bryden, 

1979; McLaren & Bryson, 1987; Safer, 1981). Conversely, right-biased lateralisation 

which is less prominent for positive (vs negative) affect has also been reported in 

studies using the same types of stimuli (i.e. audiovisual affect) (e.g. Dimond, 

Farrington, & Johnson, 1976; Ehrlichman & Halpern, 1988; Ley & Bryden, 1979; 

Sackeim, Gur, & Saucy, 1978; Sackeim & Gur, 1978). Other behavioural work 

reports negative emotion-specific laterality effects, with no converse lateralisation for 

positive emotions (e.g. Best, Womer, & Queen, 1994; Bryden, Free, Gagné, & Groff, 

1991; Mandal et al., 1999), but at the same time, there has been a number of studies 

suggesting that it is positive affect that is preferentially processed by the left 

hemisphere, while negative affect is processed by the right hemisphere. This 

lateralisation pattern (positive/LH vs negative/RH) has been predominantly found in 

studies investigating visual field asymmetries during visual presentation of emotional 

stimuli such as faces and words (Lane et al., 1997; Moretti, Charlton, & Taylor, 1996; 
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Reuter-Lorenz et al., 1990; Reuter-Lorenz, & Davidson, 1981; Schwartz et al., 1979; 

Van Strien & Valstar, 2004; Van Strien & Van Beek, 2000).  

   Findings from the present thesis add some clarity to the discrepancy across 

laterality patterns in the literature. By developing a methodologically comparable 

experimental protocol across studies, the thesis has managed to show that 

lateralised processing of affect is indeed an observable effect, but this effect is highly 

dependent on the methodological context within which it is examined. Across studies 

comparing positive versus negative facial expressions, less salient stimuli (lowest 

intensities) where the ones that consistently produced lateralised responses 

according to the valence hypothesis (happy/LH and angry/RH). It became evident 

that the higher the expression salience, the more likely an overall left visual field bias 

(and therefore RH engagement) guided participant responses. It seems as though 

when the nature of the emotion conveyed by a stimulus is not particularly clear to the 

observer, participants are more sensitive to subtle emotional nuances within the 

stimulus and subsequently result in clear, emotion-dependent unilateral 

engagement. Analyses of detection thresholds across studies in the thesis add 

further support to the laterality hypothesis. For threshold measures across 

paradigms, a very clear lateralisation pattern in terms of accurate target detection 

was observed. Specifically because thresholds are not dependent on specific 

intensities or non-linearities of measurement scales that tend to compress 

performance at floor and ceiling, they offer a valid gauge on lateralisation. 

Essentially, the type of emotion results in differential hemispheric engagement at 

very early stages in the perception process; when stimuli are of ambiguous salience, 

and therefore require the engagement of rapid-onset, fast-route bottom-up 

attentional networks. The fact that lateralisation patterns are particularly difficult to 

replicate simply adds to this interpretation. Specifically, it would be near impossible 

to successfully replicate laterality patterns that result from behavioural observations, 

unless the temporal profile of the emotional attention process can be successfully 

and systematically captured. The present thesis has therefore laid the groundwork 

for a methodology that attempts to systematically investigate the onset-offset of 

emotion-specific lateralisation purely based on measures of response efficiency.  
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6.4 POSITIVITY BIAS 

 

   In the present thesis, all paradigms employing happy facial expressions found a 

robust and consistent response bias for happy faces (both in terms of response 

latency and accuracy), which did not falter even when the emotional load on the 

facial expression was manipulated by the addition of emotion-enhancing factors such 

as sound (i.e. Exp. 4.1 & 5.2). Unlike the weaker, and context-dependent laterality 

effect, a happy face bias was present at all expression salience intensities when 

compared to angry faces. In terms of detection thresholds, all paradigms in the 

present thesis apart from exp. 3.1, ch.3 (nasotemporal), showed a significant 

difference between the expression intensity required for happy vs angry faces to 

become accurately detectable by participants in a time-limited forced-choice 

response setting. This finding is line with a proportion of the behavioural literature 

that posits a happy advantage often correlated to participant mood and emotional 

state, and particularly in studies using facial expression morphs (i.e. gradual 

progression from neutral to emotional within a dynamic display). For example, 

Joorman and Gotlib (2006) conducted an emotion-identification behavioural study 

whereby they examined differences in correctly identifying the target facial 

expression of emotion in groups of depressed, socially anxious, and control 

participants. The authors used dynamic facial expression morphs, where a neutral 

expression would gradually change into a happy, sad, or angry one. Joorman and 

Gotlib observed that out of all three participant groups, the depressed participants 

consistently produced more accurate responses in identifying happy expressions 

instead of sad or angry ones (Joormann & Gotlib, 2006). Additional support for this 

effect comes from more recent work by Becker et al, who showed that when using 

facial expression dynamic morphs of happy and angry expressions, happy faces are 

accurately identified more quickly than angry (Becker et al., 2012). In a similar vein, 

work by Jackson and Arlegui-Prieto that investigated individual normal (i.e. non-

clinical) mood state of participants correlating to speed of accurate emotion detection 

and speed of change of expression overall reported that the higher participants’ 

positive mood was, the less sensitive they were in identifying the appearance of 

negative (angry, sad) expressions (Jackson & Arlegui-Prieto, 2016). These examples 

from the literature have shown that in dynamic facial expression displays (i.e. 

morphs), an overall positive bias is present even when the emotion of the stimulus is 
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subtle and highly ambiguous. A similar happy face advantage has been observed in 

static emotion displays employed in visual search tasks where for example happy 

faces are more quickly and accurately identified as targets as opposed to angry and 

fearful faces (Juth et al., 2005), and has also been shown in studies using schematic 

faces (as opposed to photographs) of facial expressions (Leppänen & Hietanen, 

2004). The experiments in this thesis that have utilised happy expressions verify this 

positivity bias, in the context of static facial expressions displayed for near detection 

threshold durations, and of varying expression salience. In light of the threshold 

calculations across these experiments, a consistent trend of earlier and more 

accurate target detection for ambiguous happy stimuli. Contrarily to the weaker and 

less reliably replicable laterality effect across paradigms, the positivity/happiness 

advantage appears to be a strong and consistent trend. This finding does go against 

the literature of an anger, or threat, advantage which has been observed particularly 

in studies utilising schematic representations of facial affect (e.g. Horstmann, 2007; 

Horstmann & Bauland, 2006). Discussions in the empirical chapters of this thesis 

have considered as a tentative interpretation the possibility of social ambiguity that 

happy, low salience faces may potentially convey. This interpretation seems logical 

particularly from an evolutionary perspective; the most successful and effective 

predators are those who are able to hide their negative intentions. As a defence 

mechanism therefore, it may be the case that we are fine-tuned in quickly 

responding (and allocating our attentional resources) to ambiguous happy stimuli, 

possibly as they may signal the presence of an underlying abstract threat. A slightly 

more concrete conclusion however may be that we are essentially drawn to (and 

subsequently respond to) positive emotions overall.  

6.5 ANGER SUPERIORITY OVER FEAR 

   

   Another key finding from experiments in the present thesis was the lack of a 

response efficiency benefit for fearful faces when compared to angry. Particularly in 

the neuroimaging literature reviewed, a consistent and very robust effect for fearful 

faces in terms of lateralised responses has been reported (see ch. 1 for a 

discussion). The two experiments in the present thesis that directly compared fearful 

faces to angry did so in conjunction to additional emotion-enhancing factors such as 

gaze direction (direct vs. averted) and the presence of auditory threat (looming vs. 
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receding sounds). These two studies found no evidence of a laterality effect specific 

to fear, with angry faces (particularly when paired with receding sounds and direct 

gaze) seem to bias participant responses overall. In the literature, fear is reported as 

a useful social signal that alerts the observer to the presence of potential danger; 

especially if the fearful face is paired with gaze that is averted from the observer and 

could therefore be interpreted as gazing towards the location of the threat. For 

example, Adams and Kleck (2003a) examined the influence of gaze on responses 

over two behavioural paradigms, where participants were shown angry, happy, 

fearful and sad stimuli that were either blended or pure expressions. The authors 

manipulated gaze direction to either averted (left vs. right hemifield), or directed to 

the observer. Response latency findings from the two studies confirmed that correct 

categorisation of emotion resulted from an interaction between direction of gaze and 

emotion displayed, whereby both angry and happy faces with a direct gaze were 

responded to more quickly, and fearful and sad faces with averted gaze were 

responded to more quickly (Adams & Kleck, 2003a). Interestingly however, a 

subsequent attempt to replicate Adams and Kleck’s gaze direction and emotion 

interactions by Bindermann et al however failed to reproduce the same patterns of 

behavioural responses (Bindemann et al., 2008), which was also the case in the two 

paradigms in the present thesis utilising fearful faces with manipulated gaze. 

Specifically, two experiments reported by Bindermann et al, which were designed to 

replicate Adams and Kleck’s emotion and gaze direction interactions resulting from 

pure emotional facial expressions did not find significant differences between angry 

and fearful, or happy and sad faces as dependent on gaze direction. Bindermann 

and colleagues suggested that the lack of replication of the gaze-direction and 

emotion interactions reported by Adams and Kleck (2003a) might be a result of 

potential stimulus confounds (i.e. artificial vs naturalistic eye gaze manipulation). 

This is a plausible interpretation, as the highly sensitive nature of laterality and 

emotion-specific effects (aside from that for happy faces) is evident across results in 

the present thesis. Aside from the possibility of a stimulus artefact of the facial 

expression photographs and the type of gaze manipulation employed, another 

possibility is the strength of the receding sound effect which was replicated across 

the two studies utilising fear (as well as the studies that used sound and examined 

the difference of responses for happy vs angry faces). It could be the case that the 

receding sound translated into a form of positive emotion for participants; as the 
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receding sound implies danger moving away from the observer, it may have been 

interpreted through initial attentional filters as ‘safe’, i.e. positive. If this is the case, 

then the robust happy face advantage observed in the remaining paradigms is in this 

case observed through usage of receding sounds regardless of type of facial affect, 

and ambiguity of the facial expression. Another final possibility for the lack of a fear 

effect may be that it is not as strong a stimulus as happy or angry faces in terms of 

producing robust, lateralised behavioural responses. Essentially, fear-specific 

lateralisation may only be observable in terms of asymmetrical subcortical activation 

(e.g. Vuilleumier & Driver, 2007), and not in terms of visual-field asymmetries and 

behavioural response.   

 

 

6.6 IMPLICATIONS AND DIRECTIONS FOR FUTURE RESEARCH 

   Results from chapter 2 lead to new, testable hypotheses. Given the contextual 

specificity needed for a distinctly lateralised pattern to translate into response 

efficiency, new research avenues could explore how laterality correlates to levels of 

physiological arousal. Although the present thesis is concerned with effects on 

observable behaviour, replication of the behavioural effects and the establishing of 

the contextual specificity required for laterality may be provided via additional 

physiological measures such as skin conductance and changes in heart rate. Further 

support for a context-specific interpretation may also come from future work involving 

primary affective stimuli of higher ecological and biological validity to the ones used in 

this thesis. For example, neuroimaging studies on emotional attention and perception 

often use masked phobic stimuli (i.e. spiders, snakes, mutilation scenes) (e.g. Canli, 

Desmond, Zhao, Glover, & Gabrieli, 1998; Carlsson et al., 2004; Lang, Bradley, & 

Cuthbert, 1997; Lang, Greenwald, Bradley, & Hamm, 1993; Miltner, Krieschel, Hecht, 

Trippe, & Weiss, 2004). The paradigm developed in chapter 2 may be adapted to 

utilise equally short presentations of masks (50ms) following subthreshold 

presentations of phobic stimuli (<50ms).  

   Findings from this chapter also raise questions as to the effect positive affect has on 

laterality. In terms of the interpretation offered in other work reporting strong happy 

facial expression response biases specific to gaze direction manipulated faces (e.g. 

Bindemann, Burton, Hooge, Jenkins, & de Haan, 2005; Bindemann, Burton, & 

Langton, 2008), it could be that a similar perceptual bias occurs; the near-detection 
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threshold stimulus display time of 50ms, paired with the simultaneously competing 

bilateral presentation of both neutral and happy stimulus could be falsely perceived as 

carrying a similar propensity for ambiguity of social intent to that of a happy face with 

averted gaze as Bindermann and colleagues report (2005; 2008). One alternative 

possibility may be that positive and negative affect draws from different, emotion-

specific identification and recognition attentional systems, which result in emotion-

specific response patterns, possibly occurring at differing latencies. Although 

investigated solely for negative affect in humans and animals (e.g. Adams, Gordon, 

Baird, Ambady, & Kleck, 2003; Adolphs, Russell, & Tranel, 1999; Bishop, Duncan, & 

Lawrence, 2004; Hoffman, Gothard, Schmid, & Logothetis, 2007; Kuraoka & 

Nakamura, 2007; Liddell et al., 2005; Straube, Langohr, Schmidt, Mentzel, & Miltner, 

2010), this may be extended to include investigations of positive affect. Behaviourally, 

what might appear as a happy face advantage may be a product of a different 

activation network with distinct timing and cognitive processing demands, that results 

in sequence of processing and response events separate to that for anger.  

Findings from chapter 3 were discussed in relation to methodological and theoretical 

suggestions to interpret the lack of nasal/temporal asymmetries that was 

hypothesised to result from different types of emotional facial expressions. In terms of 

methodology, the decision of utilising response efficiency measures instead of the 

typically used choice saccades in this field of research (e.g. Mulckhuyse & Theeuwes, 

2010; Simion, Valenza, Umiltà, & Dalla Barba, 1998; Sylvester, Shulman, Jack, & 

Corbetta, 2007) was addressed. A possible limitation specific to the paradigm utilised 

in Exp. 3.1 might be that although manual and saccadic responses have shown some 

overall differences in reference to different types of stimuli, these differences have not 

been successfully established in identifying nasal-temporal asymmetries. For 

example, in an target visual field location identification task, Bompas and Sumner 

found response latency differences only for both choice saccades and manual 

responses, with saccadic responses showing a more pronounced bias than manual 

responses (Bompas & Sumner, 2008). Although both response types displayed 

asymmetries towards the two competing stimuli, these differences were of different 

magnitudes. Another methodological limitation might relate to the type of paradigm 

used. Specifically, there are some suggestions in the literature that deviation from 

attentional cueing paradigms or distractor effect tasks might significantly impact the 

resulting presence or absence of behavioural nasal-temporal asymmetries. For 
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example, Bompas and colleagues, comment on the lack of replicable nasal-temporal 

asymmetry findings when different paradigms to the ones commonly reported have 

been used (Bompas et al., 2008). The authors suggested that as they observed 

differences in response latencies between the two types of responses collected, this 

might have been attributable to differences in the time taken from processing stimuli 

to making a decision to respond.   

   Although predictions on the existence of nasal-temporal asymmetries find a 

functional basis due to the existence of structural asymmetries in retinal projections to 

the midbrain, as well as on the existence of attentional asymmetries across the 

hemifields, findings from this field of research have not proven conclusive. For 

example, when attempting to identify the presence of asymmetries across a number 

of saccadic tasks by looking at landing point accuracy and saccadic latency, 

Jóhannesson and colleagues reported that while the saccadic latency measure 

identified no asymmetries, the landing point accuracy showed very moderate 

asymmetric activation (Jóhannesson et al., 2012). Jóhannesson et al highlight that 

superior colliculus mediated responses (in this example in the form of choice 

saccades) might be a more subtle effect than originally hypothesised (Jóhannesson et 

al., 2012). On the whole, this chapter attempted to implement a novel methodology to 

investigating nasal/temporal asymmetries through manual behaviour. The evidence 

suggests that such asymmetries are of a particularly subtle nature, and might not be 

robustly identifiable through manual response modes. A possible future consideration 

therefore could be the application of this paradigm using early onset involuntary 

saccadic responses (pre-saccades) as a more sensitive behavioural index for the 

behavioural manifestation of subcortically driven attentional asymmetries.  

   Chapter 4 produced novel evidence for the way in which facial expressions of affect 

combined with emotion enhancing contextual parameters interact in terms of 

observable behaviour. So far, investigations on the role that auditory threat and gaze 

direction have on perception have been limited either in terms of task demands (i.e. 

reflective versus reflex/startle responses), or in terms of how threat naturally occurs in 

the environment (audiovisual stimuli versus solely audio or solely visual). One main 

implication of findings from chapter 4 may be that audiovisual threat might be 

perceived as a unified percept, which specifically benefits anger (instead of fear). This 

benefit adapts from reflexive reactions (sound-only), to highly accurate responses in 
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the case of added contextual information in the form of eye gaze. Although evidence 

from the literature has suggested an advantage for looming sounds due to their threat 

localising benefits (e.g.Bach et al., 2015; Romei et al., 2009) that should in turn 

facilitate a looming bias in participant behavioural responses (e.g. Neuhoff, 2001), 

findings from chapter 4 showed the opposite trend. This may have been due to a 

stimulus artefact for receding sounds, although as addressed in chapter 4, including 

the suggested 10ms onset delay of sound stimuli reported in the literature (e.g. Leo et 

al., 2011) might have proven counterintuitive for the paradigm used.  

   The main implication of findings from chapter 4 is the highlighting of evidence for 

anger-specific lateralised responses of differing patterns. For example, in the sound-

only study (exp4.1) increased accuracy was observed for left visual field angry faces 

while happy face accuracy was equivocal across visual field locations. In the gaze-

direction and sound study (exp4.2), angry faces on the left visual field were 

responded to quicker, while fearful face response times were equivocal across visual 

field locations, regardless of face-gaze. Although evidence from the neuroimaging 

literature suggests the processing of fearful stimuli near the awareness threshold, in 

the case of behavioural responses anger biases reflexive responses. These findings 

add support to the suggestion of lateralised processing of primary affect being the 

product of a highly adaptive sequence of events, heavily-tied not only to the context 

within which it is being investigated (i.e. paradigm type), but also to the stimulus type 

itself (changes within facial expressions of affect such as directionality of gaze, 

ecological validity of natural vs. schematic/chimeric faces).  

   Although the final chapter in this thesis (ch 5) was concerned with individual 

variability outside of any participant groupings, there are some population elements 

that might provide further insight as to how basic emotional perception differs across 

individuals. Although primary emotions are universal across populations and 

therefore do not fall prone to any societal or cultural biases, factors such as gender 

differences might add further explanatory dimensions to basic emotional perception. 

Establishing the specific, individual nature of basic emotional perception might also 

find future clinical applications by establishing unique, individual emotion-related 

symptomatology outside of general patient groupings that might allow for the tailoring 

of subsequent treatments at an individual level. On the whole, this chapter 

demonstrated the importance of specific individual variability in basic emotional 
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perception, based on individual’s background anxiety state. This might aid our 

understanding of the interaction between the theoretically separate primary and 

background emotional categories.  

 

6.7 CONCLUSION OF THE THESIS 

 
   In summary, the present thesis investigated the lateralisation of response 

efficiency to valenced expressions of primary affect in relation to the modulatory role 

of specific affect-manipulating factors. By using methodologically comparable 

paradigms, experiments in this thesis introduced novel evidence for the laterality of 

response efficiency as being subject to modulation by both contextual and subject-

specific parameters. The empirical chapters in this thesis have introduced a novel 

behavioural methodology, utilising rapid, near-detection threshold stimulus display 

times in a speeded target detection task, where the type of emotion (angry, happy, 

fearful) was irrelevant to participant responses. Upon establishing laterality patterns 

in accordance to the valence hypothesis in the original paradigm proposed in chapter 

2 (negative emotions lateralise to the right hemisphere whereas positive emotions 

lateralise to the left hemisphere), subsequent chapters explored how the 

directionality of lateralisation changed depending on nasal vs. temporal hemifield 

presentation of stimuli under monocular viewing conditions, the presence of looming 

and receding sounds concurrent to visual facial expression stimuli, changes in gaze 

direction (direct gaze vs. averted), and finally in terms of individual participant 

anxiety.  

   Findings from this thesis lead to new research hypotheses concerned with the 

temporal profile of affect-specific behavioural lateralisation either combined with, or 

separate from additional emotion-enhancing factors (i.e. sound and gaze), the utility 

of behavioural measures as indirect indices of subcortical asymmetrical emotional 

attention networks, and the importance of individual variability in behavioural 

responses to basic emotional stimuli. A final, overarching conclusion is that 

behavioural lateralisation of primary affect is not a sustained phenomenon, but 

instead is a dynamic process, modulated by the contextual information attached to 

the stimulus.  
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APPENDIX A 

State Trait Anxiety Inventory 

Read each statement and select the appropriate response to indicate how you feel right 

now, that is, at this very moment. There are no right or wrong answers. Do not spend 

too much time on any one statement but give the answer which seems to describe your 

present feelings best. 

 1 2 3 4 

 Not at all  A little  Somewhat  Very Much So  

  

1. I feel calm  1 2 3 4 

2. I feel secure  1 2 3 4 

3. I feel tense  1 2 3 4 

4. I feel strained  1 2 3 4 

5. I feel at ease  1 2 3 4 

6. I feel upset  1 2 3 4 

7. I am presently worrying  

over possible misfortunes  1 2 3 4 

8. I feel satisfied  1 2 3 4 

9. I feel frightened  1 2 3 4 

10. I feel uncomfortable  1 2 3 4 

11. I feel self confident  1 2 3 4 

12. I feel nervous  1 2 3 4 

13. I feel jittery  1 2 3 4 

14. I feel indecisive  1 2 3 4 

15. I am relaxed  1 2 3 4 

16. I feel content  1 2 3 4 

17. I am worried  1 2 3 4 

18. I feel confused  1 2 3 4 

19. I feel steady  1 2 3 4 

20. I feel pleasant  1 2 3 4 
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