

City, University of London Institutional Repository

Citation: Littlewood, B. (2006). Comments on 'Evolutionary neural network modelling for

software cumulative failure time prediction' by Liang Tian and Afzel Noore [Reliability
Engineering and System Safety 87 (2005) 45-51]. Reliability Engineering & System Safety,
91(4), pp. 485-486. doi: 10.1016/j.ress.2005.02.001

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1622/

Link to published version: https://doi.org/10.1016/j.ress.2005.02.001

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Discussion

Comments on ‘Evolutionary neural
network modelling for software

cumulative failure time prediction’

Bev Littlewood

Centre for Software Reliability, City University,

Northampton Square, London EC1V 0HB, UK

b.littlewood@csr.city.ac.uk

Abstract

This paper [1] purports to present a useful means of predicting the cumulative failure
time function for software reliability growth. In fact, the nature of the ‘prediction’ is
too simplistic to be of use. Furthermore, the authors’ claims for the accuracy of the
predictions appear to be without value.

1 Introduction

The authors’ objective in this paper is to make one-step-ahead predictions of the
cumulative failure plot of software reliability growth, i.e. (in the authors’ notation) the
plot of total elapsed time, xi, as a function of failure number, i. The authors’ approach to
solving the problem is via evolutionary neural network modelling involving
‘modification of Levenberg-Marquardt algorithm with Bayesian regularization.’ In what
follows I intend to show that:

• The prediction problem that is solved here is so simplistic as to be of no
practical utility;

• The ‘solution’ to the problem is unnecessarily complex: a trivial alternative
will perform as well;

• The assessment of predictive accuracy, used by the authors in their claims
for the efficacy of their approach, is flawed.

Letter to Editor, Re Tian/Noore paper in RESS, vol 87, no 1, 2005 2

2 Critique

 Software reliability growth modelling concerns the stochastic process of
successive failures of a computer program under some kind of testing or operational
use. In its simplest form, as in [1], it is assumed that when a failure occurs the fault that
caused the failure is removed with certainty. As time passes, therefore, the reliability will
be seen to improve.

The stochastic process can be characterised by the successive inter-failure time
random variables, T1, T2, …, Ti, …, or, alternatively, by the occurrence epochs of the
successive failures, X1, X2, …, Xi, … Clearly

X j = Tk

k=1

j

∑

Reliability growth would show itself in the tendency for successive inter-failure
times to become larger: e.g. they might be stochastically ordered.

If we denote by lower case variables the realisations of (upper case) random
variables, e.g. xi is a realisation of Xi, the authors describe their prediction problem as
follows: ‘…we want to forecast xi+1 by use of (x1, x2, …, xi) …’

This is an odd formulation: what does it mean to ‘predict’ the realisation of the
random variable Xi+1? Since the realisation of Xi is known – it is xi – any prediction of
Xi+1 is essentially equivalent to predicting the next inter-failure time, Ti+1. However such
a prediction is expressed, it must take account of our uncertainty about the values these
random variables will take. This seems to be completely absent from the authors’
formulation of the problem.

This is unfortunate, because the authors make strong claims for their approach
when compared with others. In fact they seem to be comparing apples and oranges. The
probabilistic modelling approaches [2] attempt to solve the real – and much more
difficult – problem of predicting in the face of uncertainty. Specifically, in the context of
this problem, they obtain predictive distributions for random variables such as Xi+1, Ti+1.

It is also worth noting that these existing approaches allow more interesting
predictions to be made than the simple one-step-ahead ones obtained here.

One interpretation of the authors’ results might be that their approach gives a
‘best guess’ of the value that Xi+1 will take. Unfortunately, they do not tell the reader
what ‘best’ means here (it cannot simply mean that it optimises some objective function
in their neural network, because that would be tautological). It does not appear to
represent any particular point on the distribution of Xi+1 (a predictive mean, or median,
might be of some interest).

Even if one were to take the authors’ claims at face value, what possible value is
there in a one-step-ahead predictive plot of cumulative failure time? It does not, for
example, even provide an estimate of current reliability. Since the plot is irregular, its
‘slope’ cannot be used to obtain an estimate of the rate of occurrence of failures.

Finally, the authors’ claims for efficacy seem flawed. The goodness-of-fit
comparisons of predicted with actual cumulative time plots are useless: almost any
predictor would look good on such plots. For example, simply adding the previous
inter-failure time, ti, to xi will give predictions of xi+1 that are virtually indistinguishable
on the authors’ goodness-of-fit plots from the ones they show.

Letter to Editor, Re Tian/Noore paper in RESS, vol 87, no 1, 2005 3

The authors’ relative error (RE) measure is similarly worthless as an absolute
measure of accuracy. They define this as

RE =
ˆ x i − xi

xi

where ˆ x i is the predicted value of the cumulative failure time xi. Since a one-step-ahead
prediction of the cumulative failure time is equivalent, as noted above, to a prediction of
the next inter-failure time, RE can easily be re-expressed as

RE =
ˆ t i − ti

tk

k=1

i

∑

This clearly decreases, as i increases, in some stochastic sense. The authors’ RE
amounts to expressing ‘error’ in the prediction of the next inter-failure time as a
proportion of the sum of all previous inter-failure times. It is a trivial observation that
this ‘error’ can be made a small as you like by making i large enough. It is thus
nonsense to claim, as the authors do, that small values of RE vindicate their approach.

This problem of validating the accuracy of predictions is one that has been
studied extensively in the literature on probabilistic modelling of software reliability
growth. Techniques of real depth and sophistication have been borrowed from
developments in mathematical statistics: see [2, 3], for example.

3 Summary and conclusion

The authors purport to pose, and solve, a useful software reliability prediction
problem. Unfortunately the problem they pose is unrealistically simplistic, as it ignores
the essentially stochastic nature of the situation. Because of this the results have no
practical utility. The authors’ claims for the accuracy of their approach are flawed, even
in their own very restricted terms.

I do not believe the paper was worthy of publication in RESS.

References

[1] L. Tian and A. Noore, "Evolutionary neural network modelling for software
cumulative failure time prediction," Reliability Engineering and System Safety,
vol. 87, pp. 45-51, 2005.

[2] A. A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood, "Evaluation of Competing
Software Reliability Predictions," IEEE Trans. on Software Engineering, vol.
12, pp. 950-967, 1986.

[3] S. Brocklehurst and B. Littlewood, "New Ways to get Accurate Reliability
Measures," IEEE Software, vol. 9, pp. 34-42, 1992.

