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Abstract

We examine the behaviour of optimal mean–variance hedging strategies at high
rebalancing frequencies in a model where stock prices follow a discretely sampled
exponential Lévy process and one hedges a European call option to maturity. Using
elementary methods we show that all the attributes of a discretely rebalanced optimal
hedge, i.e. the mean value, the hedge ratio and the expected squared hedging error, con-
verge pointwise in the state space as the rebalancing interval goes to zero. The limiting
formulae represent 1-D and 2-D generalized Fourier transforms which can be evaluated
much faster than backward recursion schemes, with the same degree of accuracy.

In the special case of a compound Poisson process we demonstrate that the con-
vergence results hold true if instead of using an infinitely divisible distribution from
the outset one models log returns by multinomial approximations thereof. This result
represents an important extension of Cox, Ross, and Rubinstein (1979) to markets with
leptokurtic returns.
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1 Introduction

It is an empirical fact that equity returns are non-normal on high sampling frequencies,
contradicting the assumption of the Black–Scholes model. The departure from normality
grows as the rebalancing interval becomes shorter; as a rule of thumb kurtosis is inversely
proportional to the length of the rebalancing interval. We examine a model where log returns
are generated by a Lévy process, that is a process with stationary, independent increments,
which provides a simple but flexible framework to analyze impacts of excess kurtosis on
option hedging. It is in fact the only possible representation of a continuous-time model
with IID returns.

In this model we examine the performance of two hedging strategies: the dynamically
optimal strategy that minimizes the unconditional expected squared hedging error among all
trading strategies, and the so-called locally optimal strategy which resembles Black–Scholes
delta hedging in that it only depends on the stock price and time to maturity.

The paper makes a contribution in three directions: i) we give closed-form expressions
for the representative agent price, the optimal hedging coefficient and the unconditional ex-
pected squared hedging error of the optimal hedging strategy in the limit as the rebalancing
interval goes to zero; ii) we compare, in closed form, the performance of locally optimal
and dynamically optimal hedging strategies; iii) we show that the continuous-time results
for compound Poisson processes can be obtained as a limit of multinomial lattice models.
Elsewhere, Černý (2004c) demonstrates that the gain in computational speed afforded by
the closed-form results, as compared to traditional backward recursion schemes, is highly
significant and can be likened to the difference between the Black–Scholes formula and its
binomial implementation.

Modelling of excess kurtosis in equity return data has attracted considerable attention
since mid 1960s. Building on the geometric Brownian motion of Osborne (1959) and
Samuelson (1965) researchers have proposed different parametric distributions for log re-
turns, often generated as normal mixtures, see Mandelbrot (1963), Press (1967), Praetz
(1972), Clark (1973), Madan and Seneta (1990), and Eberlein et al. (1998). All of the above
are special cases of the exponential Lévy process.

In exponential Lévy models it is no longer possible to construct a dynamic self-financing
portfolio that replicates the option. One can visualize this situation in discrete time by
imagining a multinomial stock price lattice (cf. Maller et al. 2004) instead of the standard
binomial tree (cf. Cox et al. 1979 and Madan et al. 1989). Since the hedged position
is risky (synonymously, market is incomplete), it is necessary to formulate a reward-for-
risk measure telling us which option prices are sensible, and which, in contrast, lead to
near-arbitrage opportunities (good deals). Based on the seminal work of Von Neumann and
Morgenstern (1944), it has become customary in economic literature to use utility functions
for this purpose.

Markowitz (1952) pioneered the use of quadratic utility in static portfolio selection, and
his results were extended to dynamic setting and other utility functions by Merton (1969).
Hodges and Neuberger (1989) were the first to apply dynamic optimal portfolio selection
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with a random endowment (short/long position in the option) to option valuation, comput-
ing so-called reservation prices, which make buyer/seller indifferent between undertaking
a given option trade or not trading at all. If, instead, one allows the option trade to shift
the efficient frontier one obtains so-called good-deal price bounds, see Cochrane and Saá-
Requejo (2000), Černý and Hodges (2002), and Černý (2003) who shows that the good–deal
bounds are robust across different utility functions.

Except in special cases both the reservation prices and good-deal prices are difficult to
evaluate in closed form. Duffie and Richardson (1991) and Henderson (2002) give closed
form solutions of the expected utility maximization for non-trivial futures and option po-
sitions in a market with basis risk in the case of a quadratic utility and exponential utility,
respectively. Young (2004) derives reservation catastrophe bond prices in a term structure
model with exponential utility. In all three cases mentioned above asset prices are continu-
ous.

When the option trade is infinitesimally small one obtains so-called representative agent
price, which in some circumstances can be computed even in the presence of jumps. Repre-
sentative agent prices in the exponential Lévy model with power or exponential utility give
rise to so-called Esscher risk-neutral measures which permit fast pricing via Fourier trans-
form, see Madan and Milne (1991), Gerber and Shiu (1994), Carr and Madan (1999) and
Fujiwara and Miyahara (2003). For recent results on representative agent prices in Heston’s
stochastic volatility model see Hobson (2004).

Among the different utility functions the quadratic utility is the most tractable and gives
the best hope of recovering closed-form reservation and/or good-deal prices in the presence
of jumps. Historically, option hedging under mean–variance criteria has focused on mini-
mization of expected squared hedging error (which is the case in this paper) rather than on
maximization of expected utility. It turns out, however, that the two problems are equivalent.
Černý (2004b), Chapter 12 shows how to reinterpret the results of mean-variance hedging
to obtain option price bounds parameterized by unconditional Sharpe ratio.

Dynamic mean–variance hedging has been examined in great generality since the begin-
ning of 1990s, but the theoretical characterization of optimal solutions is still in the process
of being completed, see Pham (2000), Schweizer (2001), Arai (2005) and Černý and Kallsen
(2005). Some explicit formulae are available for continuous price processes and in partic-
ular diffusions, see Heath et al. (2001), Laurent and Pham (1999), Lim (2006), Biagini
et al. (2000). For discontinuous price processes the characterization of optimal solutions
is more patchy. When the opportunity set is deterministic, which is the case in the present
paper, Schweizer (1994) shows the solution can be obtained from the Föllmer-Schweizer de-
composition of the contingent claim. For jump-diffusions this decomposition is computed
explicitly in Colwell and Elliott (1993) and in a geometric Lévy model by Hubalek et al.
(2005).

A general solution is known in the case when the state space is finite, see Černý (2004a),
and also Bertsimas et al. (2001) and Schweizer (1995). The optimal hedging strategy is
determined by exogenous state variables including stock price, volatility and other factors
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as the case may be, and one endogenous state variable represented by the value of the self-
financing hedging portfolio.

One of the remarkable features of dynamic mean-variance hedging is that the optimal
hedge is an (affine) function of the endogenous state variable, which introduces path depen-
dency absent in the Black–Scholes hedge. It is therefore interesting to examine suboptimal
but purely exogenous hedging strategies, which has lead to the concept of local risk mini-
mization, see Föllmer and Schweizer (1991), Schweizer (1991), Colwell and Elliott (1993),
Hofmann et al. (1992). In their original definition locally risk-minimizing strategies are
not self-financing. To emphasize that in the present paper we only use self-financing strate-
gies we call the suboptimal path-independent strategy generated by local risk minimization
locally optimal. Heath et al. (2001) compare the performance of locally optimal and dy-
namically optimal hedging strategies in stochastic volatility models. This paper performs
the same task in a model with IID returns.

From the practical point of view one wishes to compute the exogenous components
of the solution as functions of the exogenous state variables. In the discrete setup this is
done by backward recursion, in continuous time one obtains non-linear partial difference-
differential equations which are then solved by numerical methods not dissimilar to the
backward recursion, see Bertsimas et al. (2001), Heath et al. (2001). The present paper and
Hubalek et al. (2005) sidestep the need to perform the backward recursion numerically by
expressing the option pay-off as a linear combination of exponential affine terms in log stock
price, computing the variance-optimal characteristic function of log returns, and thereby
obtaining all exogenous coefficients of the solution in closed form.

Černý (2004c) uses the results presented here to evaluate option price bounds in a cal-
ibrated model of FTSE 100 returns and concludes that while it may be rational to observe
option prices with implied volatility above historical volatility due to the presence of hedg-
ing risk, the optimal deltas are linked to historical volatility of the stock rather than to the
implied volatility of the option. This calls into question the practice of option hedging based
on risk-neutral models fitted to implied volatility surfaces, because the fitted volatility is
typically much higher than the historical volatility of the underlying stock returns.

The paper is organized as follows: Section 2 summarizes the main results, Section 3
writes down the optimal hedging strategy in a discrete-time model with IID stock returns,
Section 4 describes the solution in a model where stock prices are obtained by discrete
sampling from a geometric Lévy process, Section 5 gives convergence proofs for the setup of
Section 4, Section 6 proves convergence for multinomial lattices, and Section 7 concludes.

2 Overview of the problem and its solution

We fix a time horizon T and consider a sequence of discrete-time models with number
of trading dates n ∈ N and rebalancing interval 4 = T/n. We assume that the log re-
turns in each model are IID and that the unconditional distribution of log return at time
T coincides across all models. It turns out that in the limit the unconditional distribution
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must be infinitely divisible and its characteristic function has the so-called Lévy–Khintchin
representation:

φ
T
(u) := E

[
eiu ln(ST /S0)

]
= eκ(iu)T ,

κ(v) := µv +
σ2

2
v2 +

∫
R

(evx − 1− vh(x))M(dx),

where

µ ∈ R, σ2 ≥ 0, h(x) = x1|x|≤1, M(0) = 0, and

µ(A) :=

∫
A

min(x2, 1)M(dx) is a finite measure on R.

The aim of the paper is to give closed-form solution of the mean–variance hedging problem

inf
ϑ

E
[
(V x,ϑ

T −HT )2
]
,

where HT is the pay-off of a European call option, as the rebalancing interval4 approaches
zero. Here V x,ϑ

T is the terminal value of a self-financing portfolio containing ϑt shares at time
t and starting with initial wealth V0 = x. The trading strategy ϑ is assumed to be adapted to
the filtration generated by stock prices. At each rebalancing frequency the optimal hedging
strategy ϕ is characterized by the mean value process H , in practice very similar to Black–
Scholes value, the locally optimal hedge ξ (similar to Black–Scholes delta), and the expected
squared hedging error to maturity ε2(ϕ).

The limiting values as4 approaches 0 are obtained in closed form by Fourier transform.
The convergence is to be understood on the 3-dimensional state space given by calendar time
t, current stock price S and the current value of the hedging portfolio V . For the mean value
process we have

H(t, lnS) =

∫
(α+1)+iR

ψ(u)e(κ̂(u)−r)(T−t)eu ln Sdu,(2.1)

κ̂(u) := κ(u)− ā (κ(u+ 1)− κ(u)− κ(1)) ,(2.2)

ā :=
κ(1)− r

κ(2)− 2κ(1)
,(2.3)

ψ(u) :=
e−(u−1)k

2πu(u− 1)
,(2.4)

where ψ(u) are the (generalized) Fourier coefficients of the option pay-off:

HT =

∫
(α+1)+iR

ψ(u)eu ln ST du,

with α > 0 such that κ(2 + 2α) is finite. The dynamically optimal strategy ϕ is given by

ϕ(t, lnS, V ) = ξ(t, lnS) + ā
H(t, lnS)− V

S
,(2.5)

ξ(t, lnS) =

∫
(α+1)+iR

e(u−1) ln Sψ(u)e(κ̂(u)−r)(T−t) Ā(u)

Ā(1)
du,(2.6)

Ā(u) := κ(u+ 1)− κ(u)− κ(1).(2.7)
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Note that the notion of locally optimal hedge ξ used in this paper is similar but not iden-
tical to that of locally risk minimizing strategy introduced in Schweizer (1991). The main
difference stems from the fact that we think of ξ as being self-financing, whereas local risk
minimization allows for funds to be added or withdrawn along the way, in such a way that
the amount of extra funds is zero on average.

The expected squared hedging error of the two strategies with x = H0 is given as fol-
lows:

ε2(ϕ) = ε̄2(0, lnS0, 1),

ε2(ξ) = ε̄2(0, lnS0, 0),

where

ε̄2(t, lnS, δ) =

∫
G2

(∏
j=1,2

eκ̂(uj)T+uj ln Sψ(uj)

)
eC̄(u1,u2)(T−t) − e−δb̄(T−t)

C̄(u1, u2) + δb̄

×
(
B̄(u1, u2)−

Ā(u1)Ā(u2)

Ā(1)

)
du1du2,(2.8)

B̄(u1, u2) := κ(u1 + u2)− κ(u1)− κ(u2),(2.9)

C̄(u1, u2) := B̄(u1, u2) + ā
(
Ā(u1) + Ā(u2)

)
,(2.10)

b̄ := ā(κ(1)− r).(2.11)

The interpretation of the parameters in the solution goes as follows: ā is the optimal
proportion of wealth invested in the stock by an agent with unit risk tolerance and short in-
vestment horizon,

√
eb̄T − 1 is the unconditional Sharpe ratio of the optimal dynamic strat-

egy investing only in the stock over the interval [0, T ],
√
κ(2)− 2κ(1) is the instantaneous

volatility of stock returns, and κ(1)− r is the expected rate of excess return.
The convergence proofs for the mean value process and for the hedging strategy are

completely general. The convergence of unconditional hedging errors requires a technical
condition that we are unable to verify in general, but which holds in a large class of models
where either i) σ2 = 0 and

∫
|x|<1

|x|γ M(dx) < ∞ for some γ < 2, or ii) σ2 > 0, see
Theorem 5.13. Thus the convergence of the hedging errors ε(ϕ) and ε(ξ) is verified in all
models with non-zero Brownian motion component and in all frequently encountered pure
jump models including compound Poisson, variance gamma and generalized hyperbolic
models.
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3 Discrete-time model

3.1 Geometry of least squares

Theorem 3.1 LetH be a complex pre-Hilbert space with inner product (., .) and letX1, X2

∈ H be linearly independent. Then for any Y ∈ H and for any β1, β2 ∈ C we have

(3.1) ‖Y − β1X1 − β2X2‖2 = ‖Y − β̂1X1 − β̂2X2‖2 + ‖(β̂1 − β1)X1 + (β̂2 − β2)X2‖2,

where β̂1, β̂2 is the unique solution of the normal equations(
Y − β̂1X1 − β̂2X2, X1

)
= 0,(3.2) (

Y − β̂1X1 − β̂2X2, X2

)
= 0.(3.3)

Furthermore we have

β̂1 =

(
Y − β̂2X2, X1

)
‖X1‖2

=
(MX2Y,MX2X1)

‖MX2X1‖2
=

(Y,MX2X1)

‖MX2X1‖2
,(3.4)

β̂2 =

(
Y − β̂1X1, X2

)
‖X2‖2

=
(MX1Y,MX1X2)

‖MX1X2‖2
=

(Y,MX1X2)

‖MX1X2‖2
,(3.5)

‖Y− β̂1X1 − β̂2X2‖2 = ‖MX2Y ‖2 − |β̂1|2‖MX2X1‖2(3.6)

= ||Y ||2 − |(Y,X2)|2

‖X2‖2
− |β̂1|2

(
‖X1‖2 − |(X1, X2)|2

‖X2‖2

)
,(3.7)

where MXY = Y −X(Y,X)/‖X‖2 is the orthogonal projection of Y away from X.

PROOF. We will need the following standard properties of inner product:
i) (Y −X,X) = 0 ⇒ ‖Y −X‖2 = ‖Y ‖2 − ‖X‖2

ii) (X2,MX2X1) = 0

iii) (Y,MX2X1) = (MX2Y,MX2X1) = (MX2Y,X1).

Suppose that the matrix

A =

[
‖X1‖2 (X2, X1)

(X1, X2) ‖X2‖2

]
is singular, then there is a complex vector z ∈ C2, z 6= 0, such that Az = 0, implying

0 = z∗Az = ‖z1X1 + z2X2‖2,

which contradicts the assumption of linear independence of X1 and X2. Therefore A is an
invertible square matrix and hence the solution β̂1, β̂2 of the system (3.2), (3.3) exists and it
is unique. Equation (3.1) then follows from property i).
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The first equalities in (3.4) and (3.5) follow immediately from the normal equations.
Writing X1 = X2(X1, X2)/‖X2‖2 +MX2X1 equations (3.2) and (3.3) imply(

Y − β̂1X1 − β̂2X2,MX2X1

)
= 0,

whereby properties ii) and iii) yield

0 =
(
MX2Y − β̂1MX2X1,MX2X1

)
.

Solving for β̂1 proves the second and third equality in (3.4), where ‖MX2X1‖ > 0 by linear
independence. Furthermore, property i) implies

‖MX2Y − β̂1MX2X1‖2 = ‖MX2Y ‖2 − |β̂1|2‖MX2X1‖2,

while the normal equation (3.3) gives

Y − β̂1X1 − β̂2X2 = MX2

(
Y − β̂1X1 − β̂2X2

)
= MX2Y − β̂1MX2X1,

proving (3.6). Equation (3.5) follows from (3.4) by symmetry. �

Remark 3.2 The least squares theorem plays a dual role in the derivations that follow. A

real-valued version of the theorem is used to determine the hedging error of locally optimal

and dynamically optimal hedging strategies, while the complex-valued version is instru-

mental in obtaining bounds for the variance-optimal characteristic function, the hedging

coefficients and the hedging error as one passes to continuous-time limit.

Theorem 3.3 Fix n ∈ N, and let {Zi}i=1,...,n be a collection of IID random variables on

the probability space {Ω,F , P} such that 0 < Var(exp(Zi)) <∞. Let {Fi}i=1,...,n be the

information filtration generated by the random variables {Zi}, with F0 trivial. Fix S0 > 0

and define the price process of a risky asset {Si}:

Si = S0 exp

(
j∑

k=1

Zk

)
,

and a risk-free bank account with total return R (implying the rate of return R − 1 per

period). Let Ei[.] denote the expectation conditional on Fi.

Suppose that there is a contingent claim Hn = f(lnSn) such that E[H2
n] <∞. Then the

dynamically optimal hedging strategy ϕ solving

inf
ϑ

E[
(
V x,ϑ

n −Hn

)2
],
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subject to ϑi being Fi-measurable with

V x,ϑ
i = RV x,ϑ

i−1 + ϑi−1(Si −RSi−1)

V x,ϑ
0 = x

is given by

ϕi = ξi + aR
Hi − V x,ϕ

i

Si

,

Hi = Ei[(1− aXi+1)Hi+1]/(bR),(3.8)

ξi = Covi (Hi+1, Si+1) /Vari (Si+1)

= Ei [(Hi+1 −RHi)Xi+1] /
(
SiEi

[
X2

i+1

])
,

Xi = exp(Zi)−R,

a = Ei [Xi+1] /Ei

[
X2

i+1

]
,

b = 1− (Ei [Xi+1])
2 /Ei

[
X2

i+1

]
.

The hedging performance of the dynamically optimal and the locally optimal strategies is

given by

Ej

[
(V x,ϕ

n −Hn)2] =
(
R2b
)n−j (

V x,ϕ
j −Hi

)2
+ ε2

j(ϕ),

Ej

[(
V x,ξ

n −Hn

)2]
=

(
R2
)n−j

(
V x,ξ

j −Hi

)2

+ ε2
j(ξ),

ε2
j(ϕ) = Ej

[
ε2

j+1(ϕ)
]
+
(
R2b
)n−j−1

ESREj (Hj+1) ,(3.9)

ε2
j(ξ) = Ei

[
ε2

j+1(ξ)
]
+
(
R2
)n−j−1

ESREj (Hj+1) ,(3.10)

ε2
n (ϕ) = ε2

n (ξ) = 0,

ESREj (Hj+1) = Ej

[
(RHj + ξjSjXj+1 −Hj+1)

2]
= Ej

[
H2

j+1

]
− bR2H2

j −
(Ej [Xj+1Hj+1])

2

Ei

[
X2

j+1

](3.11)

= Varj

(
H2

j+1

)
− (Covj (Sj+1, Hj+1))

2

Varj (Sj+1)
.

PROOF. The proof for a model with finite number of states is given in Černý (2004b),
Chapter 12. The general discrete-time IID case is handled identically, using Theorem 3.1
with Y = Hi+1, X1 = 1, X2 = Xi+1 and with the inner product given by

(X, Y ) = Ei

[
XȲ

]
.
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Integrability is shown as follows. Equation (3.11) implies H2
i ≤ Ei

[
H2

i+1

]
/b and conse-

quently by the law of iterated expectations

E
[
H2

i

]
≤ E

[
H2

i+1

]
/b <∞.

Since E [H2
n] <∞ and b > 0 by assumption, it follows that E [H2

i ] <∞ for all i. �

3.2 Distribution of log returns under the variance-optimal measure

Equation (3.8) motivates the introduction of a signed martingale measure Q

dQ

dP
:=

n∏
j=1

1− a
(
eZj −R

)
b

.

For any Ft-measurable random variable X with E [X2] < ∞ we define the conditional
expectation under Q following Černý (2004a)

(3.12) Êj [X] := Ej

[
X

n∏
k=j+1

1− a
(
eZk −R

)
b

]
,

The expression (3.12) is well defined even if the density process of Q is zero at time j.
The definition (3.12) is consistent with the theory of E -martingales proposed by Choulli,
Krawczyk, and Stricker (1998). Q is the variance-optimal (signed) measure in the sense of
Schweizer (1995) and it coincides with the minimal martingale measure, cf. Schäl (1994),
Schweizer (1995, Section 4.3).

By virtue of (3.8) and (3.12) we can write

(3.13) Hj = Rj−nÊj [Hn] .

To obtain a more explicit expression for the mean value process {Hj} it is important to
know the characteristic function of log returns under measure Q. To this end, we define the
characteristic function of one-period log returns,

φ(v) := E [exp(ivZ1)] ,

and note that
φ(v) = Ej−1 [exp(ivZj)] for j = 1, . . . , n.

The mean–variance analysis only makes sense if the variance of stock returns is finite,
E [S2

n] < ∞. For technical reasons that will become clear in Section 3.3 we will require
slightly more:

Standing assumption 1 There is α > 0 such that the characteristic function of log returns
is well defined on the strip Re v ∈ R, Im v ∈ [−2− 2α, 0].
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We can now define the (pseudo)-characteristic function of log returns under Q

(3.14) φ̂(v) := Ê [exp(ivZ1)] .

Lemma 3.4 The function φ̂(v) is well defined on the strip Re v ∈ R, Im v ∈ [−1 − 2α, 0]

and we have

φ̂(v) =
1 + aR

b
φ(v)− a

b
φ(v − i),

a :=
φ(−i)−R

φ(−2i)− 2Rφ(−i) +R2
,

b := 1− (φ(−i)−R)2

φ(−2i)− 2Rφ(−i) +R2
.

Furthermore

φ̂(v) = Êj−1 [exp(ivZj)] for j = 1, . . . , n.

PROOF. From the law of iterated expectations we obtain

Êj−1 [exp(ivZj)] = Ej−1

[
eivZj

n∏
k=j

1− a
(
eZk −R

)
b

]

= Ej−1

[
eivZj

1− a
(
eZj −R

)
b

n∏
k=j

Ek−1

[
1− a

(
eZk −R

)
b

]]

= Ej−1

[
eivZj

1− a
(
eZj −R

)
b

]
=

1 + aR

b
φ(v)− a

b
φ(v − i).

Since φ(v) is well defined on R× i[−2−2α, 0] φ(v− i) is well defined on R× i[−1−2α, 1]

and therefore φ̂(v) is well defined on R× i[−1− 2α, 0]. �
We are now ready to compute the mean value process in terms of φ̂.

3.3 Mean value process as a Fourier transform

The main idea of the paper is to express the option pay-off as a sum of terms which are
exponentially affine in the log stock price and then make use of the risk-neutral characteristic
function (3.14) when evaluating the expectation Hj = Rj−nÊj[Hn].
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Lemma 3.5 Let f(lnST ) := (ST − ek)+ be the pay-off of a call option with strike ek. Then

for any α > 0 we have

f(x) =

∫
G

ψ(u)euxdu,(3.15)

ψ(u) :=
e−(u−1)k

2πu(u− 1)
,(3.16)

G := α+ 1 + iR.(3.17)

PROOF. To obtain ψ(u) one computes the inverse Fourier transform of the modified option
pay-off g(lnST ) :=

(
eln ST − ek

)+
S−1−α

T . The multiplication by S−1−α
T is performed to

achieve absolute integrability of the pay-off as a function of lnST . Function g(x) is contin-
uous and therefore by Theorem 11’ in Chandrasekharan (1989) we have

g(x) =

∫
R
χ(v)e−ivxdv,

χ(v) :=
1

2π

∫
R
g(x)e−ivxdx.

A short computation yields χ (v) = e−(α+iv)k/ (2π(α+ iv)(1 + α+ iv)) and consequently
also (3.15)-(3.17). �

Remark 3.6 Carr and Madan (1999) evaluate the inverse Fourier transform with respect

to the log strike k, which happens to yield the harmonic decomposition (3.15)-(3.17). In

general, and particularly for derivative securities that do not feature a striking price such

as the log contract or powers thereof, one has to perform the Fourier transform with respect

to lnST .

Remark 3.7 A formula analogous to (3.15)-(3.17) is valid for all claims that grow at most

linearly in ST as ST → ∞. The Fourier coefficients ψ(u) are easily computed from the

inverse Fourier transform; this can be done for a put option and, a fortiori, for any portfolio

of put and call options including spreads, strangles, straddles etc. In the unlikely case that

it is impractical to evaluate the Fourier coefficients in closed form one can compute them

efficiently using the fast Fourier transform.

Remark 3.8 Another way to achieve integrability is to employ the put–call parity and

examine a put option instead of a call,

(
ST − ek

)+ − ST + ek =
(
ek − ST

)+
,

12



the advantage being that the put pay-off only needs to be multiplied by S−α
T to achieve

integrability with respect to lnST . The hedging errors from being short one call option and

from being short one call and long one stock are the same, since the addition of the stock

just shifts the number of shares in the hedging portfolio by 1.

Lemma 3.9 The discrete-time mean value process Hj := Rj−nÊj [Hn] is given as follows:

Hj =

∫
G

ψ̃j(u)e
u ln Sjdu,(3.18)

ψ̃j(u) := Rj−nψ(u)
(
φ̂(−iu)

)n−j

.(3.19)

PROOF. Proceed by direct calculation:

Rn−jHj = Êj [Hn] = Ej

[
Hn

n∏
k=j+1

1− a
(
eZk −R

)
b

]
(3.20)

= Ej

[∫
G

(
n∏

k=j+1

1− a
(
eZk −R

)
b

)
ψ(u)eu ln Sndu

]
(3.21)

=

∫
G

ψ(u)eu ln SjEj

[
n∏

k=j+1

1− a
(
eZk −R

)
b

eu ln(Sk/Sk−1)

]
du(3.22)

=

∫
G

ψ(u)eu ln Sj

(
Ej

[
n∏

k=j+1

Ek−1

[
1− a

(
eZk −R

)
b

euZk

]])
du(3.23)

=

∫
G

ψ(u)eu ln Sj

(
φ̂(−iu)

)n−j

du.(3.24)

Here (3.20) follows from (3.12) and (3.13), equation (3.21) follows from (3.15), equa-
tion (3.22) follows from Fubini’s theorem, equation (3.23) follows from the law of iterated
expectations and (3.24) follows from Lemma 3.4. �

With (3.18) in hand it is now easy to evaluate the locally optimal hedge ξj and the
expected squared hedging errors to maturity ε2(ϕ) and ε2(ξ).

Lemma 3.10 The discrete-time locally optimal hedging strategy is given by

Sjξj =

∫
G

eu ln Sj ψ̃j+1(u)A(u)/A(1)du,(3.25)

A(u) := φ(−i(u+ 1))− φ(−iu)φ(−i)

PROOF. By direct calculation using Theorem 3.3 we have

ξj = Covj (Hj+1, Sj+1) /Varj(Sj+1),

Covj (Hj+1, Sj+1)

Sj

= Ej

[
Hj+1e

Zj+1
]
− φ (−i) Ej [Hj+1] .

13



Substitute for Hj+1 from (3.18) and use Fubini’s theorem to obtain:

Covj (Hj+1, Sj+1)

Sj

=

∫
G

eu ln Sj ψ̃j+1(u)A(u)du.

By definition of φ we have

Varj(Sj+1)

S2
j

= φ (−2i)− (φ (−i))2 ,

and the claim follows.
�

Lemma 3.11 The dynamically optimal and the locally optimal expected squared hedging

errors are given by the following formulae:

ε2
j(ϕ) = h(j, 1),

ε2
j(ξ) = h(j, 0),

where

h(j, δ) :=

∫
G2

e(u1+u2) ln Sjψ(u1)ψ(u2)

×
(

(φ(−i(u1 + u2))
n−j − b1−δ

(
bδφ̂(−iu1)φ̂(−iu2)

)n−j
)

du1du2,

+ (1− b1−δ)

∫
G2

n−1∑
k=j+1

(φ(−i(u1 + u2))
k−j

×
∏
l=1,2

(
eul ln Sjψ(ul)

(
bδ/2φ̂(−iul)

)n−k

dul

)

−
(
φ(−2i)− 2Rφ(−i) +R2

) ∫
G2

n−1∑
k=j

(φ(−i(u1 + u2))
k−j

×
∏
l=1,2

(
eul ln Sjψ(ul)

(
bδ/2φ̂(−iul)

)n−1−k
(
A(ul)

A(1)
+ aφ̂(−iul)

)
dul

)
PROOF. Proceed from Theorem 3.3, equations (3.9), (3.10) and (3.11), by direct calculation,

h(j, δ) =
n−1∑
k=j

(
bδR2

)n−k−1
Ej [ESREk(Hk+1)]

=
n−1∑
k=j

(
bδR2

)n−1−k
Ej

[
Ek

[
H2

k+1

]
− bR2H2

k − (Skξk + aRHk)
2 Ek

[
X2

k+1

]]
14



= Ej

[
H2

n

]
− b1−δ

(
bδR2

)n−j
H2

j +
n−1∑

k=j+1

Ej

[
H2

k

] (
bδR2

)n−k (
1− b1−δ

)
−

n−1∑
k=j

(
bδR2

)n−1−k
Ej

[
(Skξk + aRHk)

2 (φ(−2i)− 2Rφ(−i) +R2
)]
,

Use equation (3.18) and Fubini’s theorem to write

Ej

[
H2

k

]
= R2(k−n)Ej

[(∫
G

ψ̃k(u1)e
u1 ln Skdu1

)(∫
G

ψ̃k(u2)e
u2 ln Skdu2

)]
= R2(k−n)Ej

[∫
G2

ψ̃k(u1)ψ̃k(u2)e
(u1+u2) ln Skdu1du2

]
= R2(k−n)

∫
G2

ψ̃k(u1)ψ̃k(u2) (φ (−i (u1 + u2)))
k−j e(u1+u2) ln Sjdu1du2,

with ψ̃k(u) defined in equation (3.19). Similarly, utilize formulae (3.18) and (3.25) to write

Ej

[
(Skξk + aRHk)

2] =

∫
G2

e(u1+u2) ln Sj (φ(−i(u1 + u2)))
k−j

×
∏
l=1,2

(
ψ(ul)

(
φ̂(−iul)

)n−1−k
(
A(ul)

A(1)
+ aφ̂(−iul)

)
dul

)
.

�

4 Towards continuous time

Consider a fixed time horizon T ∈ R++ divided into n ∈ N time intervals of length 4,

4 := T/n.

We wish to consider a general model where stock returns are IID at any sampling frequency
4. To achieve this and to avoid technicalities associated with optimization of dynamic
portfolios generated by geometric Lévy processes we will work with a family of models,
one for each sampling frequency, and we will characterize the hedging strategy and hedging
errors in the limit as 4→ 0.

For a fixed n ∈ N let {Zjn : j = 1, . . . , n} be independent and identically distributed
real-valued random variables on the probability space (Ωn,Fn, Pn) and let {Fjn : j =

0, . . . , n} be the information filtration generated by {Zjn}

F0n := {Ωn, ∅},
Fjn := σ({Zkn : 1 ≤ k ≤ j ≤ n}).

The expectation operator on (Ωn,Fn, Pn) will be denoted En [.]. The expectation condi-
tional on information at time j in model n is denoted by Ejn [.],

Ejn [.] := En [.|Fjn] .
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For S0 ∈ R++ define a triangular array of random variables {Sjn} by setting

Sjn := S0 exp

(
j∑

k=1

Zkn

)
for j = 0, . . . , n.

Lemma 4.1 (Characterization of return distributions) Suppose lnSnn
d→ Z̄ as n → ∞.

Then Z̄ has an infinitely divisible distribution.

PROOF. Infinite divisibility follows by Theorem 7.5.2 in Ash and Doléans-Dade (1999). �

Theorem 4.2 Suppose that Z̄ is infinitely divisible. Then

1. Its characteristic function has the Lévy–Khintchin representation

φ(v) := E
[
eivZ̄
]

= eκ(iv),(4.1)

κ(u) := µu+
σ2

2
u2 + κ̃(u),(4.2)

κ̃(u) :=

∫
R

(eux − 1− uh(x))M(dx),(4.3)

where

(4.4) µ ∈ R, σ ∈ R+, h(x) = x1|x|≤1, M(0) = 0, and

(4.5) µ(A) :=

∫
A

h2(x)M(dx) is a finite measure on R.

Conversely, every representation (4.1)-(4.5) corresponds to an infinitely divisible dis-

tribution.

2. The representation (4.1)-(4.5) is valid in the strip a ≤ −Im (v) = Re (u) ≤ b, such

that

E [Sy
T ] <∞ for a ≤ y ≤ b.

PROOF. See Theorem 25.17 in Sato (1999). �
Lemma 4.1 justifies the following standing assumption.

Standing assumption 2 The conditional Pn-distribution of log returns is such that the re-
sulting unconditional distribution of log returns coincides across all models with dif-
ferent values of 4 , that is

(4.6) φn(v) := Ejn

[
exp(ivZ(j+1)n)

]
= eκ(iv)4,

for all n ∈ N and j = 1, . . . , n, with κ given in (4.2).
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Assumption (4.6) guarantees that the unconditional distribution of log returns lnSnn

coincides for all n and it is infinitely divisible. Effectively, the stock prices in the discrete-
time model are obtained by sampling from a geometric Lévy model at the frequency 1/4.
We will relax the infinite divisibility assumption for finite n in Section 6.

The next assumption together with Theorem 4.3 is equivalent to the Standing assumption
1 in the context of this section:

Standing assumption 3 En [S2+2α
nn ] <∞ for some α > 0.

One can dispose of the requirement α > 0 by using a transformation akin to put–call
parity, see Remark 3.8.

Standing assumption 4 We wish to consider the non-trivial case when the stock return is
risky: Varn (Snn) > 0.

Standing assumption 5 The risk-free rate of return coincides across all models, i.e. there
is r ∈ R such that the one-period risk-free total return in model n equals

Rn := er4.

Theorem 4.3 Suppose lnSnn is infinitely divisible with its Lévy–Khintchin representation

given by (4.1)-(4.5). Under the standing assumptions 3 and 4 the integral representation

(4.1)-(4.5) is valid at least in the strip 0 ≤ −Im (v) = Re (u) ≤ 2 + 2α, and we have

κ(2)− 2κ(1) > 0.

PROOF. If E [S2+2α
nn ] <∞ then for 0 ≤ y ≤ 2 + 2α we have E [Sy

nn] <∞. The rest follows
from Theorem 4.2. Regarding the variance of Snn we can write explicitly

Varn (Snn) = En

[
S2

nn

]
− (En [Snn])2 = eκ(2)T − e2κ(1)T > 0,

which implies κ(2) > 2κ(1). �

Remark 4.4 Under the standing assumption 3 the variance of stock returns is always finite,

but the variance of log returns may be infinite if negative jumps arrive with sufficiently high

intensity. It may even happen that the mean log return is infinitely negative, En(lnSnn) =

−∞.

Proposition 4.5 Define the following functions

H̄n(t, x) :=

∫
G

euxer(t−T )ψ(u)
(
φ̂n(−iu)

)n(1−t/T )

du(4.7)

ξ̄n(t, x) := er(t+T/n−T )

∫
G

e(u−1)xψ(u)
(
φ̂n (−iu)

)n(1−t/T−1/n) An(u)

An(1)
du(4.8)

ϕ̄n(t, x, V ) := ξ̄n(t, x) + anRne
−x
(
H̄n(t, x)− V

)
17



ε̄2
n(t, x, δ) :=

∫
G2

e(u1+u2)xψ(u1)ψ(u2)

×
(

(φn(−i(u1 + u2))
n−j − b1−δ

n

(
bδnφ̂n(−iu1)φ̂n(−iu2)

)n−j
)

du1du2,

+ (1− b1−δ
n )

∫
G2

n−1∑
k=bt/4c+1

(φn(−i(u1 + u2))
k−j

×
∏
l=1,2

(
eulxψ(ul)

(
bδ/2
n φ̂n(−iul)

)n−k

dul

)

− cn

∫
G2

n−1∑
k=bt/4c

(φn(−i(u1 + u2))
k−j e(u1+u2)x

×
∏
l=1,2

(
ψ(ul)

(
bδ/2
n φ̂n(−iul)

)n−1−k
(
An(ul)

An(1)
+ anφ̂n(−iul)

)
dul

)
,(4.9)

with

An(u) := φn(−i(u+ 1))− φn(−iu)φn(−i),(4.10)

an := (φn(−i)−Rn)/cn,

bn := An(1)/cn,

cn := φn(−2i)− 2Rnφn(−i) +R2
n

φ̂n(u) :=
1 + anR

bn
φn(v)− an

bn
φn(v − i).(4.11)

Then in the n-period model described by standing assumptions 2-5 the mean value process

Hjn, the optimal strategy ϕjn, the locally optimal strategy ξjn and the expected squared

hedging error to maturity ε2
jn(ϕ), ε2

jn(ξ) are well defined and equal

Hjn = H̄n(j4, lnSjn),

ξjn = ξ̄n(j4, lnSjn),

ϕjn = ϕ̄n(j4, lnSjn, V
x,ϕ
jn ),

ε2
jn(ϕ) = ε̄2

n(j4, lnSjn, 1),

ε2
jn(ξ) = ε̄2

n(j4, lnSjn, 0).

PROOF. The statement follows directly from Lemmata 3.5, 3.9, 3.10, 3.11 in combination
with the standing assumptions 2-5. �
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The preceding proposition motivates the study of sufficient conditions for convergence

H̄n(t, x) → H̄(t, x),

ξ̄n(t, x) → ξ̄(t, x),

ϕ̄n(t, x, V ) → ϕ̄(t, x, V ),

ε̄2
n(t, x, δ) → ε̄2(t, x, δ),

for t ∈ [0, T ], x ∈ R, V ∈ R, δ ∈ {0, 1} and n→∞.

5 Proofs of convergence

5.1 Variance-optimal measure

We now examine the behaviour of the variance-optimal characteristic function in the limit
as 4→ 0.

Lemma 5.1 The coefficients an and bn satisfy

an = ā+ ã4+ o(4),(5.1)

ā =
κ(1)− r

κ(2)− 2κ(1)
, ã finite,(5.2)

bn = 1− b̄4+ o(4),(5.3)

b̄ := ā (κ(1)− r) ≥ 0.(5.4)

Furthermore there is δ > 0 such that for all 0 < 4 < δ we have

0 < (κ(2)− 2κ(1)) /2 < En

[(
eZ1n − er4)2] /4 < 3 (κ(2)− 2κ(1)) /2,(5.5)

0 < (κ(2)− 2κ(1)) /2 < Varn

(
eZ1n

)
/4 < 3 (κ(2)− 2κ(1)) /2,(5.6)

e−(b̄+1)4 < bn < e(−b̄+1)4.

PROOF. By direct calculation

En

[
eZ1n − er4] = eκ(1)4 − er4 = (κ(1)− r)4+ o(4),

En

[(
eZ1n − er4)2] = eκ(2)4 − 2eκ(1)4er4 + e2r4

= (κ(2)− 2κ(1))4+ o(4),

Varn

(
eZ1n

)
= eκ(2)4 − e2κ(1)4 = (κ(2)− 2κ(1))4+ o(4),

the rest follows from the Taylor expansion of an and bn. The existence of δ > 0 such that
inequalities (5.5) and (5.6) hold follows from the fact that

lim
4→0

En

[(
eZ1n − er4)2] /4 = lim

4→0
Varn

(
eZ1n

)
/4 = κ(2)− 2κ(1) > 0.
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Since lim4→0(bn−1)/4 = − lim4→0(b
−1
n −1)/4 = −b̄ ≤ 0 we have bn < 1+(−b̄+1)4

and b−1
n < 1 + (b̄ + 1)4 for all 4 sufficiently small which implies bn < e(−b̄+1)4 and

b−1
n < e(b̄+1)n. �

Lemma 5.2

φ̂n(v) = 1 + κ̂(iv)4+ o(4)

κ̂(u) := κ(u)− ā (κ(u+ 1)− κ(u)− κ(1)) ,(5.7)

where κ̂(u) is well defined on [0, 1 + 2α]× iR.

PROOF. Lemma 3.4 yields:

φ̂n(v) = Ên

[
eivZ1n

]
=

1 + aner4

bn
φn(v)− an

bn
φn(v − i)

=
1 + aner4

bn
eκ(iv)4 − an

bn
eκ(1+iv)4.

Now expand the above around 4 = 0 using (5.1) and (5.3)

κ̂(u) =
d

d4

(
1 + aner4

bn
eκ(u)4 − an

bn
eκ(1+u)4

)∣∣∣∣
4=0

= ār + ã+ b̄ (1 + ā) + (1 + ā)κ(u)− (ã+ b̄ā)− āκ(u+ 1)

= ār + b̄+ (1 + ā)κ(u)− āκ(u+ 1),

and on using the definition of b̄ (5.4) we obtain the desired result (5.7). By Theorem 4.3 κ
is well defined on [0, 2 + 2α]×iR hence κ̂ is well defined on [0, 1 + 2α]×iR. �

We are now ready to compute the continuous-time limit of the mean value process.

5.2 Mean value process

Lemma 5.3 There are constants K > 0 and δ > 0 such that for 0 < 4 < δ and Reu =

1 + α we have |φ̂n(−iu)| ≤ eK4.

PROOF. Apply Theorem 3.1 with Y = euZ1n , X1 = 1, X2 = eZ1n − er4 and inner product
defined by (X1, X2) = En

[
X1X̄2

]
, which yields φ̂n(−iu) = β̂1. Equation (3.7) implies

bn|β̂1|2 ≤ ‖Y ‖2,

which is equivalent to

|φ̂n(−iu)|2 ≤ φn(−2iReu)/bn = eκ(2Re u)4/bn.
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By Lemma 5.1 there is δ > 0 such that b−1
n < e(b̄+1)4 for 0 < 4 < δ, therefore we have

|φ̂n(−iu)| ≤ eK4 with K =
(
κ (2 + 2α) + b̄+ 1

)
/2. �

It is now possible to find the pointwise limit of the integrand in (4.7) and to apply the
dominated convergence theorem to make the passage to the limit legitimate.

Theorem 5.4 Under the standing assumptions the continuous-time limit of the mean value

process is obtained by taking pointwise limit of the integrand in (4.7):

lim
n−→∞

H̄n(t, x) = H̄(t, x) :=

∫
G

ψ(u)e(κ̂(u)−r)(T−t)euxdu

PROOF. Set τ := T − t. Pointwise limit of
(
φ̂n(−iu)

)n(1−t/T )

is easily established from

Lemma 5.2:

lim
4→0

(
φ̂n(−iu)

) τ
4

= lim
4→0

(1 +4κ̂(u) + o(4))
τ
4

= lim
4→0

eln(1+4κ̂(u)+o(4))τ/4 = exp (κ̂(u)τ) .

Here ln denotes the principal value of the logarithm. In addition, by Lemma 5.3 there is

K > 0 such that ∣∣∣∣(φ̂n(−iu)
) τ
4
∣∣∣∣ =

∣∣∣(φ̂n(−iu)
)∣∣∣ τ

4 ≤ eKτ .

Since |eux| = eRe (u)x = e(1+α)x, and
∫

G
|ψ(u)| du is finite the statement of the theorem

follows from (4.7) by dominated convergence. �

5.3 Hedging strategy

To prove convergence of the hedging strategy ξ̄n in (4.8) we will require an estimate of
the characteristic function φ̂n that is somewhat stronger than the one provided by Lemma
5.3. This is because |An(u)/A1(u)| for An defined in (4.10) can be of the order |Imu|
asymptotically as |Imu| → ∞, and |ψ(u)Imu| is no longer integrable. The necessary
estimates are computed in Lemmata 5.5-5.9.

Lemma 5.5 We have

|ez − 1| ≤ 2 |z| for |z| < 1/2

and

1 + x ≤ ex for any x ∈ R.

PROOF. See Abramowitz and Stegun (1992), 4.2.38, p. 70 and Hardy et al. (1952), 142, p.
103. �
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Lemma 5.6 There are constants K1, K2 > 0 such that for 0 ≤ Re (u) ≤ 1 + α

|κ(u+ 1)− κ(u)| ≤ K1

(
1 +

√
K2 − Reκ(u)

)
,

Reκ(u) ≤ K2.

PROOF. Apply Theorem 3.1 with Y = euZ1n , X2 = 1, X1 = eZ1n and inner product defined
by (X1, X2) = En

[
X1X̄2

]
. This in particular implies

β̂1 =
φn (−i(u+ 1))− φn (−iu)φn (−i)

φn (−2i)− (φn (−i))2 .

Equation (3.7) yields

0 ≤ ‖Y ‖2 − ‖MX2Y ‖2 − |β̂1|2
(
‖X1‖2 − ‖M2X1‖2

)
,

0 ≤ φn (−2iReu)− |φn (−iu)|2 − |φn (−i(u+ 1))− φn (−iu)φn (−i)|2

φn (−2i)− (φn (−i))2

= eκ(2Re u)4 − e2Re κ(u)4 −
∣∣eκ(u+1)4 − e(κ(u)+κ(1))4

∣∣2
eκ(2)4 − e2κ(1)4 .

Divide both sides by 4 and take a limit as 4 approaches 0 using Lemma 5.5 and the fact
that the absolute value is continuous in C, obtaining

(5.8) 0 ≤ κ(2Reu)− 2Reκ(u)− |κ(u+ 1)− κ(u)− κ(1)|2

κ(2)− 2κ(1)
.

The statement of the lemma is obtained by setting

K1 = max(|κ(1)| ,
√

2 (κ(2)− 2κ(1)),

K2 = max
0≤β≤2+2α

κ(β)/2.

K2 exists and is finite because the cumulant generating function is continuous in its strip of
regularity. Equation (5.8) also implies

2Reκ(u) ≤ κ(2Reu),

Reκ(u) ≤ K2.

�

Lemma 5.7 There is K3 > 0 and δ > 0 such that∣∣∣(φ̂n(−iu)
)n∣∣∣ < exp ((Reκ(u) +K3 +K3 |κ(u+ 1)− κ(u)|)T ) ,

for all u ∈ C such that 0 ≤ Reu ≤ 1 + α and for δ > 4 > 0.
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PROOF. Take δ sufficiently small, 0 < 4 < δ, such that |r| δ < 1/4. The limits lim4→0
an

bn

and lim4→0
1
bn

are finite, therefore there is K > 0 such that

max
(
|an/bn| ,

∣∣(1 + ane
r4) /bn∣∣) < K for 0 < 4 < δ.

For |κ(u+ 1)− κ(u)|4 < 1/2 we can write∣∣∣(φ̂n(−iu)
)n∣∣∣ = eRe κ(u)T

∣∣∣∣1 +
an

bn

(
er4 − e(κ(u+1)−κ(u))4)∣∣∣∣ T

4

,

and by Lemma 5.5 we have∣∣∣(φ̂n(−iu)
)n∣∣∣ ≤ eRe κ(u)T (1 + 2K (|r|+ |κ(u+ 1)− κ(u)|)4)

T
4

≤ e(Re κ(u)+2K(|r|+|κ(u+1)−κ(u)|))T .

For 0 < 4 < δ and

(5.9) |κ(u+ 1)− κ(u)|4 ≥ 1/2

we can estimate |φ̂n(−iu)| very coarsely:

|φ̂n(−iu)| ≤
∣∣∣∣1 + ane

r4

bn

∣∣∣∣ eRe κ(u)4 +

∣∣∣∣an

bn

∣∣∣∣ eRe κ(u)4eRe (κ(u+1)−κ(u))4

≤ KeRe κ(u)4(1 + e|κ(u+1)−κ(u)|4)

≤ 2KeRe κ(u)4e|κ(u+1)−κ(u)|4.

This yields ∣∣∣(φ̂n(−iu)
)n∣∣∣ ≤ e(Re κ(u)4+|κ(u+1)−κ(u)|4+ln(2K))T/4

= e(Re κ(u)+|κ(u+1)−κ(u)|+ln(2K)/4)T

≤ e(Re κ(u)+|κ(u+1)−κ(u)|(1+2 ln(2K)))T ,

where the last inequality follows from (5.9). Statement of the lemma therefore follows by
taking K3 = max((1 + 2 ln(2K)), 2K, 2K |r|). �

Lemma 5.8 For Reu ≤ 2 + 2α and for K2 > 0 defined in Lemma 5.6 we have

Reκ(u) ≤ 2K2.

PROOF. From the Lévy–Khintchin representation (4.1)-(4.3) we obtain

Reκ(u) = µReu+
σ2

2

(
(Re u)2 − (Imu)2)

+

∫
R

(
cos (xImu) exRe u − 1− h(x)Re u

)
M(dx)

≤ µ (Re u) +
σ2

2
(Re u)2

+

∫
R

(
exRe u − 1− h(x)Re u

)
M(dx)

= κ(Re u) ≤ 2K2.

�
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Lemma 5.9 There isK4 > 0 and δ > 0 such that for all Reu = 1+α and for all 0 < 4 < δ

we have ∣∣∣∣An(u)

An(1)

∣∣∣∣ =

∣∣∣∣eκ(u+1)4 − e(κ(u)+κ(1))4

eκ(2)4 − e2κ(1)4

∣∣∣∣ < K4 (1 + |κ(u+ 1)− κ(u)|) .

PROOF. By virtue of Lemma 5.1
(
eκ(2)4 − e2κ(1)4) /4 > (κ(2)− 2κ(1)) /2 > 0 for all 4

sufficienly small and therefore it is enough to examine∣∣eκ(u+1)4 − e(κ(u)+κ(1))4∣∣ /4.
Take4 < δ := min(1, 1/ (2 |κ(1)|)). For |κ(u+ 1)− κ(u)|4 < 1/2 , using Lemmata 5.5,
5.6 and 5.8, we find∣∣eκ(u+1)4 − e(κ(u)+κ(1))4∣∣ /4 = eRe κ(u)4 ∣∣e(κ(u+1)−κ(u))4 − eκ(1)4∣∣ /4

≤ e2K24 (|κ(u+ 1)− κ(u)|+ |κ(1)|) ,

whereas for |κ(u+ 1)− κ(u)|4 ≥ 1/2 we can write∣∣eκ(u+1)4 − e(κ(u)+κ(1))4∣∣ /4 ≤
(
e2K24 + e4K24

)
/4

≤ 2
(
e2K24 + e4K24

)
|κ(u+ 1)− κ(u)| .

It is therefore enough to take

K4 =
2
(
e2K2δ + e4K2δ

)
max(|κ(1)| , 1)

(κ(2)− 2κ(1)) /2
.

�

Theorem 5.10 The continuous-time limit of the locally optimal hedging strategy is obtained

by taking pointwise limit of the integrand in (4.8):

lim
n→∞

ξ̄n(t, x) = ξ̄(t, x) :=

∫
G

e(u−1)xψ(u)e(κ̂(u)−r)(T−t)κ(u+ 1)− κ(u)− κ(1)

κ(2)− 2κ(1)
du.

PROOF. Set τ := T − t and take 0 < 4 < τ
2
. By Lemmata 5.6, 5.7 and 5.9 there are positive

constants δ,K1, K2, K3 and K4 such that∣∣∣∣(φ̂n (−iu)
)n(1−t/T−1/n) An(u)

An(1)

∣∣∣∣ ≤ e

�
Re κ(u)+K3+K3K1

�
1+
√

K2−Re (κ(u))
��

(τ−4)

×
(
K4(1 +K1) +K1K4

√
K2 − Reκ(u)

)
,

for 0 < 4 < δ. We wish to show that the right hand side is bounded uniformly in 4. The
expression

f(Reκ(u)) := Reκ(u) +K3 +K3K1

(
1 +

√
K2 − Re (κ(u))

)
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is continuous in Reκ(u) for Reκ(u) < K2 and left-continuous at Reκ(u) = K2. Its limit
as Reκ(u) approaches −∞ is 0, therefore f(.) is bounded from above by some constant
K > 0. Hence we have

f(Reκ(u))τ ≤ Kτ/2 + f(Reκ(u))τ/2 for all 0 < 4 < min (δ, τ/2) .

The expression

eKτ/2+f(Re κ(u))τ/2
(
K4(1 +K1) +K1K4

√
K2 − Reκ(u)

)
is continuous in Reκ(u) and its limit as Reκ(u) → −∞ is 0, it is therefore bounded. We
have thus shown an existence of K̃ > 0 such that∣∣∣∣(φ̂n (−iu)

)n(1−t/T−1/n) An(u)

An(1)

∣∣∣∣ ≤ K̃ for 0 < 4 < min(δ, τ/2).

The statement of the theorem follows by dominated convergence. �

5.4 Hedging error

Theorem 5.11 If

(5.10)
∫

G2

eRe κ(u1+u2)T−t
4

∏
l=1,2

|ψ(ul)| |κ(ul + 1)− κ(ul)| du1du2 <∞,

then the continuous-time limit of the unconditional hedging error is obtained by taking

pointwise limit under the integral sign in (4.9)

lim
n→∞

ε̄2
n(t, x, δ) = ε̄2(t, x, δ)

:=

∫
G2

e(C̄(u1,u2))(T−t) − e−δb̄(T−t)

C̄(u1, u2) + δb̄

(
B̄(u1, u2)−

Ā(u1)Ā(u2)

Ā(1)

)
×

(∏
j=1,2

eκ̂(uj)(T−t)+ujxψ(uj)dul

)
,(5.11)

with

B̄(u1, u2) := κ(u1 + u2)− κ(u1)− κ(u2),(5.12)

Ā(u) := B̄(u, 1),(5.13)

C̄(u1, u2) := B̄(u1, u2) + ā
(
Ā(u1) + Ā(u2)

)
(5.14)

PROOF. The first two terms in (4.9) do not pose any problems since |bnn|, |bn − 1|/4,
|φ̂n (−iul) |n and |φn (−i(u1 + u2))|n are uniformly bounded by Lemmata 5.1, 5.3 and 5.8,
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respectively. It is more difficult to find integrable majorant for the last term in (4.9), partic-
ularly for k close to n. To this end Lemmata 5.3 and 5.9 yield

(5.15)
∣∣∣An(u)/An(1) + anφ̂n(−iul)

∣∣∣ ≤ (K4 + 2(|ā|+ 1)) (1 + |κ(u+ 1)− κ(u)|) .

By Lemmata 5.3 and 5.8 there isK > 0 such that |φ̂n (−iul) | < eK4 and Reκ(u1+u2) < K

therefore

|φ̂n (−iul) |n−j ≤ eK(T−t)/2|φ̂n (−iul) |(T−t)/4 for j ≤ n/2,(5.16)

|φn (−i(u1 + u2)) |j ≤ eK(T−t)/2+Re κ(u1+u2)(T−t)/4 for j ≥ n/2.(5.17)

Reasoning identical to that of Lemma 5.1 shows that there is K > 0 such that for all 4
sufficiently small

(5.18) 0 ≤ cn := Ejn

[
X2

(j+1)n

]
= eκ(2)4 − 2e(κ(1)+r)4 + e2r4 ≤ K4.

On combining the estimates (5.15)-(5.18) we obtain∫
G2

n−1∑
k=bt/4c

∣∣∣cn (φn(−i(u1 + u2))
k−j e(u1+u2)x

×
∏
l=1,2

(
ψ(ul)

(
bδ/2
n φ̂n(−iul)

)n−1−k (
An(ul)/An(1) + anφ̂n(−iul)

)
dul

)∣∣∣∣∣
≤ K̃

∫ T+t
2

t

dτ

∫
G

∏
l=1,2

(∣∣∣φ̂n (−iul)
∣∣∣T−t

4 |ψ(ul)| (1 + |κ(ul + 1)− κ(ul)|) dul

)

+K̃

∫ T

T+t
2

dτ

∫
G2

eRe κ(u1+u2)T−t
4

∏
l=1,2

(|ψ(ul)| (1 + |κ(ul + 1)− κ(ul)|) dul) .

The proof of Theorem 5.10 shows that the first integral on the right hand side is finite
whereas the assumption (5.10) of this theorem guarantees convergence of the second in-
tegral. By dominated convergence we therefore have

lim
n→∞

ε̄2
n(t, x, δ) =

∫
G2

∏
l=1,2

(ψ(ul)e
ulxdul)

(
eκ(u1+u2)(T−t) − e(κ̂(u1)+κ̂(u2)−δb̄)(T−t)

)
+ (1− δ)b̄

∫
G2

∏
l=1,2

(ψ(ul)e
ulxdul)

∫ T

t

dτeκ(u1+u2)(τ−t)e(κ̂(u1)+κ̂(u2)−δb̄)(T−τ)

−
∫

G2

∏
l=1,2

(ψ(ul)e
ulxdul)

∫ T

t

dτeκ(u1+u2)(τ−t)e(κ̂(u1)+κ̂(u2)−δb̄)(T−τ)

×Ā(1)
∏
l=1,2

(
Ā(ul)/Ā(1) + ā

)
.

After a simple algebraic manipulation utilizing (5.2), (5.4), (5.7) and (5.12)-(5.14) we obtain

lim
n→∞

ε̄2
n(t, x, δ) =

∫
G2

du1du2ψ(u1)ψ(u2)e
(u1+u2) ln S0

(
B̄(u1, u2)−

Ā(u1)Ā(u2)

Ā(1)

)
×
∫ T

t

dτeκ(u1+u2)(T−τ)e(κ̂(u1)+κ̂(u2)−δb̄)(τ−t),

26



which on integration yields the formula (5.11) �
To conclude this section, we wish to list sufficient conditions under which the assump-

tion (5.10) is satisfied. Here we need a result that estimates the growth of |κ(u+ 1)− κ(u)|
for large values of |Imu| .

Lemma 5.12 Take 0 ≤ γ ≤ 2 and suppose
∫
|x|<1

|x|γ M(dx) < ∞. Then there is K > 0

such that

|κ(u+ 1)− κ(u)| < K
(
1 + |Imu|max(γ−1,0) + σ2 |Imu|

)
for all Reu = 1 + α.

PROOF. To simplify notation let K represent a generic positive constant, not necessarily the
same in each line. For any δ > 0 write explicitly

κ̃(u) =

∫
R

(eux − 1− uh(x))M(dx),

κ̃(u+ 1)− κ̃(u) =

∫
R

(eux(ex − 1)− h(x))M(dx)

= Z1(u, δ) +

∫
|x|<δ

(eux (ex − 1)− x)M(dx)

= Z2(u, δ) +

∫
|x|<δ

(eux − 1) (ex − 1)M(dx),

with Z1, Z2 ∈ C, such that for given δ > 0 |Zi(u, δ)| is uniformly bounded for all Reu =

1 + α. We continue with the estimation of the last integral, choosing ε and δ sufficiently
small so that Lemma 5.5 applies

I =

∣∣∣∣∫
|x|<δ

(eux − 1) (ex − 1)M(dx)

∣∣∣∣
≤

∫
|x|<δ
|xu|<ε

|eux − 1| |ex − 1|M(dx) +

∫
|x|<δ
|ux|≥ε

|eux − 1| |ex − 1|M(dx),

≤ K

∫
|x|<δ
|ux|<ε

|u| |x|2M(dx) +K

∫
ε/|u|≤|x|<δ

|x|M(dx).

If γ ≤ 1 it follows immediately that I ≤ K. Suppose then that γ > 1; we carry on with

I ≤ K

∫
|xu|<ε

|u| |x|2−γ |x|γ M(dx) +

∫
ε/|u|≤|x|<δ

|x| (|xu| /ε)γ−1M(dx)

≤ K

∫
|ux|<ε

|u| (ε/ |u|)2−γ |x|γ M(dx) +Kε1−γ |u|γ−1

∫
|x|<δ

|x|γ M(dx)

≤ K(1 + |Imu|γ−1),

where the last inequality utilizes

|u| =
√

(1 + α)2 + (Imu)2 ≤
√

2 (|Imu|+ |1 + α|) .
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This proves the case of σ2 = 0. For σ2 > 0 we have

κ(u+ 1)− κ(u) = µ+ σ2(Re u+ 1/2) + iσ2Imu+ κ̃(u+ 1)− κ̃(u),

and the statement of the lemma follows. �

Theorem 5.13 The assumption of Theorem 5.11 is satisfied either if

i) there is γ < 2 such that
∫
|x|<1

|x|γ M(dx) <∞ and σ = 0, or

ii) σ2 > 0.

PROOF. Without loss of generality we can take t = 0. We know from Lemma 5.8 that
eRe κ(u1+u2)T

4 < K for u1, u2 ∈ G. If i) holds then by Lemma 5.9 |κ(ul + 1)− κ(ul)| ≤
K
(
1 + |Imu|γ−1) and therefore

∫
G
|ψ(ul)| |κ(ul + 1)− κ(ul)| <∞, which implies∫

G2

eRe κ(u1+u2)T/4
∏
l=1,2

|ψ(ul)| |κ(ul + 1)− κ(ul)| du1du2 <∞.

If σ > 0 then there are positive constants K̃ and K̂ such that∫
G2

eRe κ(u1+u2)T/2
∏
l=1,2

|ψ(ul)| |κ(ul + 1)− κ(ul)| du1du2

≤ K̃

(
1 +

∫
G2

e−σ2T (Im (u1+u2))2/4
∏
l=1,2

1

1 + |Imul|
du1du2

)

≤ K̂

(
1 +

∫
z1>1
z2>1

e−σ2T (z1−z2)2/4

z1z2

dz1dz2

)

= K̂

(
1 +

∫
R

e−σ2Tx2/4 ln(1 + |x|)
|x|

dx

)
<∞,

where in the last integral we have performed the transformation x = z1 − z2, y = z1 and
integrated over y. �

6 Convergence of multinomial lattices

This section extends the results of Cox et al. (1979) and Madan et al. (1989) to incomplete
markets. Consider a model where log returns follow a compound Poisson process with jump
sizes and arrival intensities {xj, λj}m

j=1 and with deterministic drift µ. Let us define

λ =
m∑

j=1

λj,
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and assume without loss of generality that xj 6= xk for j 6= k, xj 6= 0 and λj > 0.
Now consider a multinomial approximation of this process at the rebalancing frequency
4 < 1/λ, assigning to the log return values {x̃j}m

j=0 with probability {pj}m
j=0

x̃0 = µ4,(6.1)

x̃j = xj + µ4,(6.2)

p0 = 1− λ4,(6.3)

pj = λj4.(6.4)

The characteristic function of one-period log returns then reads:

Standing assumption 2’

(6.5) φn(−iu) := En

[
eu ln(S1n/S0)

]
= euµ4

(
1 +

m∑
j=1

(euxj − 1)λj4

)
.

Lemma 6.1 The statement of Lemma 5.1 holds also for the conditional distribution of log

returns given in (6.5), provided that we take

(6.6) κ(u) = uµ+
m∑

j=1

(euxj − 1)λj.

PROOF. The statement of Lemma 5.1 depends only on the expression

lim
4→0

φn(−iu)− 1

4
= uµ+

n∑
j=1

(euxj − 1)λj for u = 1, 2.

�

Lemma 6.2 There areK, δ > 0 such that for φn defined in (6.5) and for φ̂n defined in (4.11)

we have

1. |φn(−iu)| ≤ eK4,

2. |φ̂n(−iu)| ≤ eK4,

3. |φn(−i(u+ 1))− φn(−iu)φn(−i)| /4 < K,

for Reu ≤ 2 + 2α and 0 < 4 < δ.

PROOF.
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1. By virtue of Lemma 5.5

|φ4(−iu)| ≤ eRe uµ4

(
1 +

m∑
j=1

(
eRe uxj + 1

)
λj4

)
≤ e(Re uµ+

Pm
j=1(eRe uxj +1)λj)4.

2. The statement follows directly from Lemma 6.1 and the proof of Lemma 5.3.

3. We can write

|φn(−i(u+ 1))− φn(−iu)φn(−i)| /4 ≤ |φn(−i(u+ 1))− φn(−iu)| /4
+ |φn(−iu)| |φn(−i)− 1| /4.

By virtue of 1. |φn(−iu)| is uniformly bounded, it is therefore enough to examine

|φn(−i(u+ 1))− φn(−iu)|/4 ≤ eRe uµ4 ∣∣(eµ4 − 1)/4
∣∣

+eRe uµ4
m∑

j=1

(
eRe uxj + 1

)
λj + e(Re u+1)µ4

m∑
j=1

(
e(Re u+1)xj + 1

)
λj

|φn(−i)− 1| /4 ≤
∣∣(eµ4 − 1)/4

∣∣+ eRe uµ4
m∑

j=1

(
eRe uxj + 1

)
λj.

Fixing δ > 0, the expression
∣∣(eµ4 − 1)/4

∣∣ is bounded for all 0 < 4 < δ, which
completes the proof.

�

Theorem 6.3 The mean value process, the optimal hedging strategy and the expected squa-

red error in the multinomial model (6.1)-(6.4) converge, as 4 approaches 0, to the conti-

nuous-time limits (2.1)-(2.11), with κ given in equation (6.6).

PROOF. Lemma 6.2 together with Lemma 6.1 show that all estimated quantities appearing
in the proof of Theorems 5.4, 5.10, and 5.11 are uniformly bounded by a constant for 4
small; the statement of the theorem therefore follows by dominated convergence. �

7 Conclusions

We have examined the behaviour of (locally) optimal mean–variance hedging strategies at
high rebalancing frequencies in a model where stock returns follow a discretely sampled
exponential Lévy process and one hedges a European call option to maturity. Using ele-
mentary methods we have shown that all the attributes of a discretely rebalanced (locally)
optimal hedge, i.e. the mean value, the hedging coefficient and the expected squared hedg-
ing error, converge pointwise in the state space as the rebalancing interval goes to zero.
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The limiting formulae represent 1-D and 2-D generalized Fourier transforms which can be
evaluated much faster than backward recursion schemes, with the same degree of accuracy.

In the special case of a compound Poisson process we have demonstrated that the conver-
gence results hold true if instead of using an infinitely divisible distribution from the outset
one models log returns by multinomial approximations thereof. This result represents an
important extension of Cox et al. (1979), Madan et al. (1989) and He (1990) to incomplete
markets with leptokurtic returns.

The results related to dynamically optimal hedging have been obtained independently in
Hubalek et al. (2005), who show that formulae (2.1)-(2.11) represent the optimal solution
in the continuous-time exponential Lévy model and are applicable also in cases when the
Fourier coefficients ψ are not absolutely integrable and the pay-off H must be obtained by
taking principal value in the Fourier integral.
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