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typo in Theorem 3 (time subscripts in expression for εt) corrected 15/10/2004

Abstract. In this paper we solve the general discrete time mean-variance hedging
problem by dynamic programming. Thanks to its simple recursive structure our
solution is well suited for computer implementation. On the theoretical side, we show
how the variance-optimal measure arises in our dynamic programming solution and
how one can define conditional expectations under this (generally non-equivalent)
measure. We are then able to relate our result to the results of previous studies
in continuous time, namely Rheinländer and Schweizer (1997), Gourieroux et al.
(1998), and Laurent and Pham (1999).
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1. Introduction

This paper gives a dynamic programming solution to the general dis-
crete time mean-variance hedging problem, a solution which from the
practical point of view is well suited for computer implementation
thanks to its recursive structure. We show how the optimal strat-
egy hedging is implemented on a spreadsheet for the case with lep-
tokurtic IID stock returns. On the theoretical side, we show how the
variance-optimal measure arises in the dynamic programming solution
and how one defines conditional expectations under this (generally non-
equivalent) measure. We are then able to relate our result to the results
of previous studies in continuous time.
The mean-variance hedging in continuous time has been tackled

via Galtchouk-Kunita-Watanabe decomposition under a suitable, so-
called variance-optimal, martingale measure. The problem was first
formulated in Duffie and Richardson (1991), Schweizer (1992) obtained
∗ I wish to thank Martin Schweizer and three anonymous referees for valuable

comments that led to improvements in the paper. I am solely responsible for any
errors in the manuscript.
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the first ground breaking result under the assumption of a so-called
constant investment opportunity set. This special case has the property
that the variance-optimal measure coincides with the so-called minimal
martingale measure of Föllmer and Schweizer (1991). A fully general
solution was finally obtained by Rheinländer and Schweizer (1997)
and Gourieroux et al. (1998), the latter using an elegant numeraire
method. Laurent and Pham (1999) used the framework of Gourieroux
et al. (1998) coupled with duality theory and dynamic programming to
calculate explicit characterization of the variance-optimal measure in
stochastic volatility models.
Studies of mean-variance hedging in discrete time are relatively few.

Schäl (1994) applies dynamic programming in the case of constant
investment opportunity set to examine various intertemporal mean-
variance criteria. Schweizer (1995) solves the general problem with one
asset and non-stochastic interest rate. This solution, however, does not
have fully recursive structure. Namely, it requires calculation of two
processes (βt)t=0,1,...,T−1 and (ρt)t=0,1,...,T−1 as conditional expectations
of T -measurable variables at every node of the state space, which is
computationally inefficient — in a recombining trinomial tree it requires
in the order of 3T−t operations at every node at time t and for all t.
In the same situation, a fully recursive dynamic programming solution
requires only 3 operations at every node and at all times. Such solution
has been derived, independently of our work, by Bertsimas et al. (2001)
for one basis asset and non-stochastic interest rate1.
The present paper can be seen as an extension of Schäl (1994)

to the case of non-constant investment opportunity set and several
risky assets. The contribution of our paper is threefold. Firstly, unlike
Schweizer (1995) and Bertsimas et al. (2001) we solve the hedging
problem with stochastic interest rate (and an arbitrary number of basis
assets). Secondly, we give a simple recursive solution which in Markov
setting improves greatly on the computational efficiency compared to
the result of Schweizer (1995). Last but not least, by suitably defining
the conditional expectation under the non-equivalent variance-optimal
measure we are able to link our discrete time results to the continuous-
time results of Rheinländer and Schweizer (1997), Gourieroux, Laurent,
and Pham (1998), and Laurent and Pham (1999).

1 Bertsimas et al. (2001) solve the hedging problem with rt = 0, claiming that
this entails no loss of generality. What they mean is that with stochastic interest rate

they are able to minimize E0
h¡
V x,θ
T −HT

¢2
/
¡
S0T
¢2i
. Of course, the economically

interesting problem is that of minimizing E0
h¡
V x,θ
T −HT

¢2i
to which Bertsimas

et al. (2001) cannot provide an answer within their setup when interest rates are
stochastic.
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The paper is organized as follows: In the first section we present the
main result. The second section gives an explicit example with fat-tailed
return distribution and weekly rebalancing period. In the third sec-
tion we show how the variance-optimal measure arises in the dynamic
programming solution, how one defines conditional expectations under
this measure and how the existence of the variance-optimal measure
is related to the no-arbitrage assumption. The final section relates our
result to the results of previous studies in discrete and continuous time.

1.1. Notation

Let us have a filtered probability space (Ω,F ,P, {Ft}t∈T ) with EPt
denoting the expectation conditional on the information at time t

EPt [X] ≡ EP [X|Ft] ,
T = {0, 1, . . . , T}.

To keep the technicalities at minimum we will assume that Ω is finite2,
that is the information structure can be represented by a tree. The
conditional expectation EPt [X] assigns one value to each node at time
t in the information tree.
All processes defined in the next section, except for the cumulative

discount S0, are adapted. For a process {Xt}t∈T being adapted means
that the value of Xt is known at time t but that generally the value of
Xt is uncertain as of t− 1. The process S0 is predictable, that is S0t is
known already at time t− 1.
Measurability is important for manipulation of conditional expecta-

tions, for example we will frequently use the fact that

EPt [XtY ] = XtE
P
t [Y ] ,

and vice versa. The only other tool we need is the law of iterated
expectations

EPt

h
EPs [X]

i
= EPt [X] ,

whenever s ≥ t. Matrix transpose is denoted by asterisk∗.

2. Mean-square hedging in discrete time

Suppose that there are n basis assets with Rn-valued price process
S = (St)t=0,...,T and dividend process δ = (δt)t=1,...,T . Assume further

2 Interested reader should consult Schweizer (1996) for questions of integrability.
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that there is a risk-free short term borrowing and lending with return
Rf t and define the cumulative discount

S0t = Rf 0 ×Rf 1 × . . .×Rf t−1,
S00 = 1.

Let us define the discounted gain process of the basis assets X

Xt ≡
St
S0t
+

tX
i=1

δi
S0i
,

∆Xt ≡ Xt −Xt−1.

Process V x,θ denotes the wealth obtained by self-financing strategy
with initial investment x and with shares of risky investment given by
the portfolio process θ = (θt)t=0,...,T−1 .

V x,θt = Rf t−1V
x,θ
t−1 + S

0
t θ
∗
t−1∆Xt (1)

∆

Ã
V x,θ

S0

!
t−1

= θ∗t−1∆Xt (2)

V x,θt

S0t
= x+

t−1X
i=0

θ∗i∆Xi+1.

In what follows it is important to capture the fact that some processes
are unaffected by the choice of the trading strategy.

DEFINITION 1. A random variable X : Ω→ R is called exogenous if
for every fixed ω ∈ Ω the value X(ω) does not depend on the choice of
V x,θ0 (ω), θ0(ω), . . . , θT−1(ω).

We assume that processes X and S0 are exogenous; this is a stan-
dard assumption in finance literature, its relaxation has been studied
prominently by Frey and Stremme (1997); see also Černý (1999). Given
an exogenous and FT -measurable payoff HT the best mean-square
hedge for HT is given by the initial wealth x and portfolio weights
θ which are found by minimizing the expected square replication error

EP0

h
V x,θT −HT

i2

min
x,θ0,...,θT−1

EP0

ÃS0T
Ã
x+

T−1X
i=0

θ∗i∆Xi+1

!
−HT

!2
x is F0-measurable, θi is Fi-measurable, i = 0, 1, . . . , T − 1.
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THEOREM 2 (Optimal controls). Let kt and Ht be Ft-measurable and
exogenous, with kt > 0 a.s. Assume further that there is no arbitrage
among the basis assets, which in particular implies Rf t−1 > 0, and that
the excess returns of basis assets are linearly independent.
Then the matrix EPt−1 [kt∆Xt∆X

∗
t ] is invertible at each node of the

information set Ft−1 and the problem

min
x,θ0,...,θt−1

EP0

·
kt
³
V x,θt −Ht

´2¸
(3)

has the same optimal controls x, θ0, . . . , θt−2 as the problem

min
x,θ0,...,θt−2

EP0

·
kt−1

³
V x,θt−1 −Ht−1

´2¸
(4)

with kt−1 > 0 and Ht−1 being Ft−1-measurable and exogenous
kt−1
R2f t−1

= EPt−1 [kt]− EPt−1 [kt∆X∗t ]
³
EPt−1 [kt∆Xt∆X

∗
t ]
´−1

EPt−1 [kt∆Xt] ,

(5)

Ht−1 =
EPt−1

·µ
kt − EPt−1 [kt∆X∗t ]

³
EPt−1 [kt∆Xt∆X

∗
t ]
´−1

kt∆Xt

¶
Ht

Rf t−1

¸
kt−1
R2f t−1

,

(6)
and the dynamically optimal value of θt−1 is given as

θDt−1 = −
³
EPt−1 [kt∆Xt∆X

∗
t ]
´−1

EPt−1

kt∆Xt
V x,θ̂t−1
S0t−1

− Ht
S0t

 . (7)

Proof. See Appendix A.

THEOREM 3 (Value function). Let kT > 0 and HT be FT -measurable
random variables. Then

min
θt,...,θT−1

EPt

·
kT
³
V x,θT −HT

´2¸
= kt

³
V x,θt −Ht

´2
+ ε2t

where {ε} is a well-defined F-adapted exogenous process satisfying

ε2t = EPt

h
ε2t+1

i
+EPt

·
kt+1

³
Rf tHt + S

0
t+1

³
θ̄
D
t

´∗
∆Xt+1 −Ht+1

´2¸
,

ε2T = 0,

where θ̄Dt−1 is obtained from (7) by substituting Ht−1 for V
x,θD

t−1 ,that is,

θ̄
D
t−1 = −

³
EPt−1 [kt∆Xt∆X

∗
t ]
´−1

EPt−1

"
kt∆Xt

Ã
Ht−1
S0t−1

− Ht
S0t

!#
. (8)
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Proof. See Appendix A.

COROLLARY 4. Theorems 2 and 3 provide complete characterization
of the solution to the mean-variance hedging problem. A repeated appli-
cation of the theorems starting from T with kT = 1 gives us all values
of kt and Ht for 0 ≤ t ≤ T. Further, at the end of the backward run
we learn that the optimal value of initial wealth is x̂ = H0 and that the
expected squared hedging error is ε20. In a forward run from time 0 we
can then recover the optimal portfolio and optimal hedging wealth from
(7) and (1). If Xt is Markov, the interest rate is non-stochastic and
HT is a European contingent claim, HT = H(XT ), then it follows from
(5) and (6) that the processes kt, Ht, θ̄

D
t−1 and ε2t depend only on one

state variable, Xt. The optimal wealth V
H0,θ

D

t , however, is - save for
very special cases - path dependent, see Schweizer (1998).

3. Discrete Time Hedging with IID Returns

In this section we illustrate how the dynamic programming solution can
be usefully applied in practice. We will consider trading once a week
for 6 weeks. We assume that weekly log-returns are spaced regularly
with 2% gap, see Figure 1.

0.06
0.04
0.02
0.00
-0.02
-0.04
-0.06

Figure 1. Logarithm of weekly stock returns.

The conditional objective probabilities of movement in the lattice
are calibrated from historical data, based on the FTSE 100 weekly
returns in the period 1984-2001, see Figure 2.
Obviously, in a more practically-minded application one will trade

more frequently, the spacing of log-returns will be finer and the returns
will be more leptokurtic. All these concerns are easily accommodated
in the present framework. Crucially, one may want to abandon the
assumption of IID returns to allow for periods of high and low volatility,
bull/bear markets etc. These features can be easily handled within the
recursive solution of Theorems 2 and 3, if one is willing to accept a



Mean-Variance Hedging in Discrete Time 7

0.013
0.067
0.273
0.384
0.199
0.050
0.014

Figure 2. Conditional objective probabilities of stock price movement.

larger number of state variables. Such extensions, however, are beyond
the scope of this illustrative section.
Our aim is to hedge a European call option with 6 weeks to expiry,

rehedging once a week. We will assume that the initial value of the
index is S0 = 100 and that the option is struck at the money K = 100.
The resulting stock price lattice is depicted in Figure 3.

3.1. Mean value process H

This process could be computed directly from equation (6), but in
an IID model it is most conveniently constructed with the help of
special risk-neutral probabilities called variance-optimal probabilities,
see equation (18). The variance-optimal probabilities in turn are com-
puted from the distribution of excess return. The variance-optimal
measure will be denoted P̃ to distinguish it from the objective proba-
bility measure P . The corresponding change of measure is given by the
formula

dP̃

dP
= m1|0m2|1 . . .mT |T−1 (9)

mt+1|t ,
qt+1|t
pt+1|t

=
1− a (Rt+1 −Rf)

b
(10)

a =
EPt [Rt+1 −Rf]

EPt

h
(Rt+1 −Rf)2

i (11)

b = 1−

³
EPt [Rt+1 −Rf]

´2
EPt

h
(Rt+1 −Rf)2

i . (12)
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t=6

143.33
t=5 140.49

137.71
134.99 134.99

t=4 132.31 132.31
129.69 129.69

127.12 127.12 127.12
t=3 124.61 124.61 124.61

122.14 122.14 122.14
119.72 119.72 119.72 119.72

t=2 117.35 117.35 117.35 117.35
115.03 115.03 115.03 115.03

112.75 112.75 112.75 112.75 112.75
t=1 110.52 110.52 110.52 110.52 110.52

108.33 108.33 108.33 108.33 108.33
106.18 106.18 106.18 106.18 106.18 106.18

t=0 104.08 104.08 104.08 104.08 104.08 104.08
102.02 102.02 102.02 102.02 102.02 102.02

100.00 100.00 100.00 100.00 100.00 100.00 100.00
98.02 98.02 98.02 98.02 98.02 98.02
96.08 96.08 96.08 96.08 96.08 96.08
94.18 94.18 94.18 94.18 94.18 94.18

92.31 92.31 92.31 92.31 92.31
90.48 90.48 90.48 90.48 90.48
88.69 88.69 88.69 88.69 88.69

86.94 86.94 86.94 86.94
85.21 85.21 85.21 85.21
83.53 83.53 83.53 83.53

81.87 81.87 81.87
80.25 80.25 80.25
78.66 78.66 78.66

77.11 77.11
75.58 75.58
74.08 74.08

72.61
71.18
69.77

Figure 3. Stock price lattice.

Numerically,

Rt+1 =
£
e0.06 e0.04 e0.02 e0.00 e−0.02 e−0.04 e−0.06

¤
,

Rf = 1.00075,

Rt+1 −Rf
=
£
6. 108 4. 006 1.945 −0.075 −2. 056 −3. 997 −5. 899

¤
× 10−2,

EPt [Rt+1 −Rf] = 1.58× 10−3, EPt

h
(Rt+1 −Rf)2

i
= 4.72× 10−4,
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a =
1.58× 10−3
4. 72× 10−4 = 3. 35

b = 1− 1.58
2 × 10−6

4. 72× 10−4 = 0. 9947

mt+1|t =
£
0.7995 0.8704 0.9398 1. 007 9 1. 0746 1. 1400 1.2041

¤
qt+1|t = mt+1|tpt+1|t

=
£
0.010 0.058 0. 257 0. 387 0. 214 0.057 0.017

¤
The risk-neutral probabilities q and the option payoff HT define the

mean value process {Ht}t=0,1,...,T as follows

Ht = E
P̃
t

"
HT

RT−tf

#
In our special case with IID returns and deterministic interest rate
the conditional variance-optimal probabilities qt+1|t coincide with the
risk-neutral probabilities of one-period Markowitz CAPM model. Thus
HT−1 is the CAPM price of the option at time T − 1, HT−2 is the
CAPM price of HT−1 at time T − 2 and so on.
The value of Ht is computed recursively using the risk-neutral prob-

abilities and starting from the last period as in the complete market
case

Ht = EP̃t

·
Ht+1
Rf

¸
, (13)

t = T − 1, . . . , 0.
However, formula (13) differs from its complete market counterpart
in one important aspect. While in a complete market there is a self-
financing portfolio with value Ht that perfectly replicates Ht+1, in an
incomplete market such a portfolio generally does not exist.
The mean value processHt is depicted in Figure 4, together with cor-

responding continuous Black—Scholes value for comparison. Consider,
for example the middle node at t = 1. The Black—Scholes formula
dictates

C(S,K, r,σ, τ) = SΦ

Ã
ln S
K + (r +

σ2

2 )τ

σ
√
τ

!
−e−rτKΦ

Ã
ln S

K + (r −
σ2

2 )τ

σ
√
τ

!
with

S = 100, K = 100,

r = lnRf = 7.5× 10−4,

σ =
q
VarPt (lnRt+1) = 2. 165× 10−2,

τ = 6− 1 = 5,
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resulting in C = 2.12 as compared to H = 2.09.

t=6 t=6

43.33 43.33
t=5 40.49 t=5 40.49

37.71 37.71
35.06 34.99 35.06 34.99

t=4 32.39 32.31 t=4 32.39 32.31
29.77 29.69 29.77 29.69

27.28 27.20 27.12 27.28 27.20 27.12
t=3 24.76 24.68 24.61 t=3 24.76 24.68 24.61

22.29 22.22 22.14 22.29 22.22 22.14
19.95 19.87 19.80 19.72 19.95 19.87 19.80 19.72

t=2 17.58 17.50 17.43 17.35 t=2 17.58 17.50 17.43 17.35
15.25 15.18 15.10 15.03 15.25 15.18 15.10 15.03

13.06 12.98 12.90 12.83 12.75 13.05 12.98 12.90 12.83 12.75
t=1 10.83 10.75 10.67 10.59 10.52 t=1 10.83 10.75 10.67 10.59 10.52

8.68 8.58 8.48 8.40 8.33 8.68 8.57 8.48 8.40 8.33
6.78 6.63 6.49 6.36 6.26 6.18 6.78 6.63 6.49 6.36 6.26 6.18

t=0 4.95 4.75 4.56 4.36 4.19 4.08 t=0 4.95 4.76 4.56 4.36 4.18 4.08
3.36 3.13 2.87 2.59 2.27 2.02 3.38 3.14 2.89 2.61 2.29 2.02

2.32 2.09 1.85 1.57 1.24 0.82 0.00 2.35 2.12 1.88 1.61 1.30 0.90 0.00
1.18 0.96 0.72 0.45 0.16 0.00 1.21 1.00 0.77 0.51 0.22 0.00
0.59 0.43 0.27 0.12 0.02 0.00 0.62 0.46 0.30 0.15 0.03 0.00
0.26 0.16 0.08 0.02 0.00 0.00 0.29 0.19 0.10 0.03 0.00 0.00

0.05 0.02 0.00 0.00 0.00 0.06 0.03 0.00 0.00 0.00
0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

0.00 0.00
0.00 0.00
0.00 0.00

Black-Scholes valueMean value process H_t

Figure 4. Comparison of mean value process H with continuous-time Black—Scholes
option prices.

3.2. Black—Scholes delta and optimal hedging strategy

It transpires from the proof of Theorems 2 and 3 that the dynami-
cally optimal hedging strategy θDt is obtained from the minimization of
the one-step-ahead hedging error EPt

h
(Vt+1 −Ht+1)2

i
. Using the self-

financing condition Vt+1 = RfVt + θDt St (Rt+1 −Rf) the squared error
can be written as

EPt

·³
RfVt + θDt St (Rt+1 −Rf)−Ht+1

´2¸
(14)

and it is clear that the optimal value of θt depends not only on Ht+1
but also on Vt.
The nature of the self-financing portfolio means that once we arrive

at time t we cannot chose Vt, it is given by our past trading strategy
and realizations of stock prices. But it makes sense to inquire what
value of Vt we would prefer if we had the choice. It turns out that the
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optimal pair Vt, θt minimizing (14) is Vt = Ht, θt = θ̄
D
t

θ̄
D
t =

EPt [(Ht+1 −RfHt) (Rt+1 −Rf)]
StEPt

h
(Rt+1 −Rf)2

i , (15)

where θ̄Dt is the discrete time analogy of the continuous time Black—
Scholes delta. It turns out that in the IID model θ̄Dt represents so-
called locally optimal hedge. The evaluation of locally optimal and
dynamically optimal hedging errors appears in Černý (2002). θ̄Dt can
be obtained mechanically by simplifying equation (8).
Effectively, the Black—Scholes hedging strategy assumes that the

value of the hedging portfolio is always at its optimum Ht. In an
incomplete market this is obviously not always the case, therefore the
dynamically optimal strategy makes an adjustment for the difference
between Vt and Ht

θDt = θ̄
D
t +Rfa

Ht − Vt
St

.

The coefficient a is computed from (11), numerically a = 3.35. When
the self-financing portfolio is above the target value Ht the delta is
adjusted downwards and vice versa. Chapter 3 in Černý (2004) shows
that a represents the optimal proportion of investment in the stock per
unit of investor’s risk tolerance.
The locally optimal delta is easily computed from formula (15), be-

cause we already know the values of H in all nodes. Figure 5 compares
θ̄
D
t with its continuous-time counterpart,

θBSt = N

 lnS/K +
³
r + σ2

2

´
(T − t)

σ
√
T − t

 . (16)

3.3. Squared error process

The mean value process Ht represents the target value the hedging
portfolio Vt is trying to achieve. It follows from Theorem 3 that Vt = Ht
minimizes the expected squared replication error as seen at time t,
EPt

h
(VT −HT )2

i
. The size of the error in the ideal case Vt = Ht is

measured by the squared error process ε2t and is computed recursively
as follows

ε2t = EPt

h
ε2t+1

i
+ kt+1ESRE

P
t (Ht+1) (17)

εT = 0
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B la c k – S c h o le s  d e l t a
t= 6 t= 6

N /A N /A
t= 5 N /A t= 5 N /A

N /A N /A
1 .0 0 N /A 1 .0 0 N /A

t= 4 1 .0 0 N /A t= 4 1 .0 0 N /A
1 .0 0 N /A 1 .0 0 N /A

1 .0 0 1 .0 0 N /A 1 .0 0 1 .0 0 N /A
t= 3 1 .0 0 1 .0 0 N /A t= 3 1 .0 0 1 .0 0 N /A

1 .0 0 1 .0 0 N /A 1 .0 0 1 .0 0 N /A
1 .0 0 1 .0 0 1 .0 0 N /A 1 .0 0 1 .0 0 1 .0 0 N /A

t= 2 1 .0 0 1 .0 0 1 .0 0 N /A t= 2 1 .0 0 1 .0 0 1 .0 0 N /A
1 .0 0 1 .0 0 1 .0 0 N /A 1 .0 0 1 .0 0 1 .0 0 N /A

1 .0 0 1 .0 0 1 .0 0 1 .0 0 N /A 1 .0 0 1 .0 0 1 .0 0 1 .0 0 N /A
t= 1 0 .9 9 1 .0 0 1 .0 0 1 .0 0 N /A t= 1 0 .9 9 1 .0 0 1 .0 0 1 .0 0 N /A

0 .9 7 0 .9 9 1 .0 0 1 .0 0 N /A 0 .9 7 0 .9 9 1 .0 0 1 .0 0 N /A
0 .9 1 0 .9 3 0 .9 5 0 .9 8 1 .0 0 N /A 0 .9 1 0 .9 3 0 .9 5 0 .9 8 1 .0 0 N /A

t= 0 0 .8 3 0 .8 5 0 .8 8 0 .9 2 0 .9 7 N /A t= 0 0 .8 2 0 .8 4 0 .8 7 0 .9 1 0 .9 7 N /A
0 .7 0 0 .7 2 0 .7 4 0 .7 7 0 .8 4 N /A 0 .7 0 0 .7 1 0 .7 3 0 .7 6 0 .8 3 N /A

0 .5 5 0 .5 5 0 .5 4 0 .5 4 0 .5 4 0 .5 4 N /A 0 .5 4 0 .5 4 0 .5 4 0 .5 3 0 .5 3 0 .5 2 N /A
0 .3 8 0 .3 6 0 .3 3 0 .2 8 0 .1 8 N /A 0 .3 8 0 .3 6 0 .3 2 0 .2 8 0 .1 9 N /A
0 .2 4 0 .2 0 0 .1 6 0 .1 0 0 .0 3 N /A 0 .2 3 0 .2 0 0 .1 6 0 .1 1 0 .0 4 N /A
0 .1 3 0 .1 0 0 .0 6 0 .0 3 0 .0 0 N /A 0 .1 3 0 .1 0 0 .0 6 0 .0 3 0 .0 0 N /A

0 .0 4 0 .0 2 0 .0 0 0 .0 0 N /A 0 .0 4 0 .0 2 0 .0 1 0 .0 0 N /A
0 .0 1 0 .0 0 0 .0 0 0 .0 0 N /A 0 .0 1 0 .0 0 0 .0 0 0 .0 0 N /A
0 .0 0 0 .0 0 0 .0 0 0 .0 0 N /A 0 .0 0 0 .0 0 0 .0 0 0 .0 0 N /A

0 .0 0 0 .0 0 0 .0 0 N /A 0 .0 0 0 .0 0 0 .0 0 N /A
0 .0 0 0 .0 0 0 .0 0 N /A 0 .0 0 0 .0 0 0 .0 0 N /A
0 .0 0 0 .0 0 0 .0 0 N /A 0 .0 0 0 .0 0 0 .0 0 N /A

0 .0 0 0 .0 0 N /A 0 .0 0 0 .0 0 N /A
0 .0 0 0 .0 0 N /A 0 .0 0 0 .0 0 N /A
0 .0 0 0 .0 0 N /A 0 .0 0 0 .0 0 N /A

0 .0 0 N /A 0 .0 0 N /A
0 .0 0 N /A 0 .0 0 N /A
0 .0 0 N /A 0 .0 0 N /A

N /A N /A
N /A N /A
N /A N /A

L o c a l l y  o p t im a l  d e l t a

Figure 5. Comparison between the locally optimal delta θ̄D from equation (15) and
the continuous-time Black—Scholes delta in (16).

The term ESREPt (Ht+1) is the one-period Expected Squared Replica-
tion Error from hedging payoff Ht+1 using the risk-free bank account
and the stock as basis assets

ESREPt (Ht+1) = E
P
t

·³
RfHt + θ̄

D
t St (Rt+1 −Rf)−Ht+1

´2¸
.

In our model with IID returns and non-stochastic interest rate process
k becomes deterministic

kt = R
2(T−t)
f bT−t = 0.9962T−t.

Recall from (12) that b = 1 − (E
P
t [Rt+1−Rf ])

2

EPt [(Rt+1−Rf)
2]
. An econometrician

would interpret (
EPt [Rt+1−Rf ])

2

EPt [(Rt+1−Rf)
2]
as the non-central R2 from the regression

of the risk-free rate onto the excess return. Naturally, the excess return
performs very poorly in explaining the variation in the risk-free rate,
consequently the R2 will be small and b will be very close to 1, which is
one reason why the expected squared error of the dynamically optimal
hedge is only marginally smaller than the expected squared error of the
locally optimal hedge, see Černý (2002). The coefficient b can also be
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interpreted in terms of the market Sharpe Ratio SR,

b = (1 + SR2)−1;

the quantity 1 −
√
b ≈ 1

2SR
2 measures the percentage increase in

investor’s certainty equivalent wealth per unit of risk tolerance, see
Chapter 3 in Černý (2004).
Figure 6 depicts the one-period expected squared hedging errors.

Intuitively we know that options far in the money and far out of the
money can be replicated perfectly. Indeed, we observe that the repli-
cation error is the largest at the money and that it goes down to zero
for very high and very low stock prices. There is a simple relationship
between the one-step ahead expected squared hedging error and the
option gamma. This link is best seen by comparing ESREPt (Ht+1) with
formula (18) in Toft (1996) where transaction costs are ignored.

t= 6

0 .0 0
t= 5 0 .0 0

0 .0 0
0 .0 0 0 .0 0

t= 4 0 .0 0 0 .0 0
0 .0 0 0 .0 0

0 .0 0 0 .0 0 0 .0 0
t= 3 0 .0 0 0 .0 0 0 .0 0

0 .0 0 0 .0 0 0 .0 0
0 .0 0 0 .0 0 0 .0 0 0 .0 0

t= 2 0 .0 0 0 .0 0 0 .0 0 0 .0 0
0 .0 0 0 .0 0 0 .0 0 0 .0 0

0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0
t= 1 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0

0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0
0 .0 2 0 .0 2 0 .0 1 0 .0 1 0 .0 0 0 .0 0

t= 0 0 .0 4 0 .0 4 0 .0 5 0 .0 5 0 .0 5 0 .0 0
0 .0 7 0 .0 8 0 .1 1 0 .1 5 0 .2 7 0 .0 0

0 .0 7 0 .0 9 0 .1 1 0 .1 5 0 .2 3 0 .5 6 0 .0 0
0 .0 8 0 .1 0 0 .1 2 0 .1 7 0 .3 1 0 .0 0
0 .0 5 0 .0 5 0 .0 6 0 .0 6 0 .0 5 0 .0 0
0 .0 2 0 .0 2 0 .0 1 0 .0 1 0 .0 0 0 .0 0

0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0
0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0
0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0

0 .0 0 0 .0 0 0 .0 0 0 .0 0
0 .0 0 0 .0 0 0 .0 0 0 .0 0
0 .0 0 0 .0 0 0 .0 0 0 .0 0

0 .0 0 0 .0 0 0 .0 0
0 .0 0 0 .0 0 0 .0 0
0 .0 0 0 .0 0 0 .0 0

0 .0 0 0 .0 0
0 .0 0 0 .0 0
0 .0 0 0 .0 0

0 .0 0
0 .0 0
0 .0 0

O n e  s te p  a h e a d  s q u a re d  h e d g in g  e rro r

Figure 6. One-period expected squared hedging errors.

The total expected squared replication error ε2t can be computed
recursively from (14). Numerical values are shown in Figure 7.
To summarize, if one sells one option at H0 = 2.32 and hedges

it optimally to maturity then one has entered a risky position with
expected payoff zero and standard deviation of ε0 =

√
0.6 = 0. 77.
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t= 6

0 .0 0
t= 5 0 .0 0

0 .0 0
0 .0 0 0 .0 0

t= 4 0 .0 0 0 .0 0
0 .0 0 0 .0 0

0 .0 0 0 .0 0 0 .0 0
t= 3 0 .0 0 0 .0 0 0 .0 0

0 .0 0 0 .0 0 0 .0 0
0 .0 0 0 .0 0 0 .0 0 0 .0 0

t= 2 0 .0 0 0 .0 0 0 .0 0 0 .0 0
0 .0 0 0 .0 0 0 .0 0 0 .0 0

0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0
t= 1 0 .0 2 0 .0 1 0 .0 0 0 .0 0 0 .0 0

0 .0 5 0 .0 2 0 .0 1 0 .0 0 0 .0 0
0 .1 7 0 .1 3 0 .0 9 0 .0 4 0 .0 0 0 .0 0

t= 0 0 .3 2 0 .2 8 0 .2 3 0 .1 5 0 .0 5 0 .0 0
0 .4 9 0 .4 7 0 .4 4 0 .3 9 0 .2 7 0 .0 0

0 .6 0 0 .6 0 0 .6 0 0 .5 9 0 .5 9 0 .5 6 0 .0 0
0 .5 8 0 .5 6 0 .5 3 0 .4 7 0 .3 1 0 .0 0
0 .4 5 0 .3 9 0 .3 1 0 .2 0 0 .0 5 0 .0 0
0 .2 7 0 .2 1 0 .1 3 0 .0 5 0 .0 0 0 .0 0

0 .0 8 0 .0 4 0 .0 1 0 .0 0 0 .0 0
0 .0 3 0 .0 1 0 .0 0 0 .0 0 0 .0 0
0 .0 1 0 .0 0 0 .0 0 0 .0 0 0 .0 0

0 .0 0 0 .0 0 0 .0 0 0 .0 0
0 .0 0 0 .0 0 0 .0 0 0 .0 0
0 .0 0 0 .0 0 0 .0 0 0 .0 0

0 .0 0 0 .0 0 0 .0 0
0 .0 0 0 .0 0 0 .0 0
0 .0 0 0 .0 0 0 .0 0

0 .0 0 0 .0 0
0 .0 0 0 .0 0
0 .0 0 0 .0 0

0 .0 0
0 .0 0
0 .0 0

D y n a m ic a lly  o p t im a l e x p e c te d  s q u a re d  e r ro r

Figure 7. The smallest possible expected squared hedging error to maturity, ε2t ,
corresponding to a perfectly balanced hedging portfolio, Vt = Ht.

4. The variance-optimal measure

Theorem 2 does not use any duality theory and the only technical
difficulty is to find the self-preserving recursive structure (3), (4). Never-
theless, a martingale measure, known as the variance-optimal measure,
emerges from the solution in equation (6).
Let us define

m̃t|t−1 ≡ R2f t−1
kt − EPt−1 [kt∆X∗t ]

³
EPt−1 [kt∆Xt∆X

∗
t ]
´−1

kt∆Xt

kt−1
(18)

We notice that EPt−1
h
m̃t|t−1

i
= 1 by virtue of equation (5), and more-

over m̃t|t−1 is Ft-measurable. Therefore m̃t|t−1 can be thought of as a
one-step conditional change of measure. The problem is that m̃t|t−1 is
not necessarily strictly positive, and thus one has to be careful when
defining conditional expectations.
We can define the density process

m̃t = m̃t|t−1 . . . m̃1|0 (19)
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and write
dP̃

dP
= m̃T .

Since m̃t|t−1can be equal to 0 with positive probability, the ratio
m̃T
m̃t

is
not well defined. But if we formally agree that

m̃T

m̃t
≡ m̃T |T−1 . . . m̃t+1|t

then we can write

EP̃t [X] =
EPt [m̃TX]

m̃t
≡ EPt

h
m̃T |T−1 . . . m̃t+1|tX

i
(20)

as if P̃ were equivalent to P. Note that by Theorem 1 each of the
variables m̃t+1|t is well defined. Thus although P̃ is a signed measure
and generally not equivalent to P, equation (20) grants a well defined
conditional expectation under P̃ .
Another interesting property of P̃ is that it turns the discounted

gain process into a martingale

EP̃t−1 [∆X
∗
t ] ≡ EPt−1

h
mt|t−1∆X

∗
t

i
= R2f t−1

×
EPt−1 [kt∆X

∗
t ]− EPt−1 [kt∆X∗t ]

³
EPt−1 [kt∆Xt∆X

∗
t ]
´−1

EPt−1 [kt∆Xt∆X
∗
t ]

kt−1
= 0.

Finally, recursive application of equation (6) together with the law
of iterated expectations imply

Ht
S0t

= EPt

"
m̃T |T−1 . . . m̃t+1|t

HT
S0T

#
= EP̃t

"
HT
S0T

#

x̂ = H0 = E
P̃
0

"
HT
S0T

#
. (21)

4.1. Special case: minimal martingale measure

When kt = EPt

h
R2f t . . . R

2
f T−1

i
we obtain one-step conditional change

of measure of the so-called minimal martingale measure. When the
risk-free rate is non-stochastic the minimal change of measure becomes

m̂t|t−1 =
1− EPt−1 [∆X∗t ]

³
EPt−1 [∆Xt∆X

∗
t ]
´−1
∆Xt

1− EPt−1 [∆X∗t ]
¡
EPt−1 [∆Xt∆X

∗
t ]
¢−1

EPt−1 [∆Xt]
. (22)
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4.2. Variance-optimal measure and arbitrage

With P̃ being a martingale measure the equation (21) looks like a
no-arbitrage pricing formula, and therefore H0 is referred to by Schäl
(1994) as the fair hedging price of the contingent claim HT , while
Schweizer (1995) calls H0 approximation price. Schweizer correctly ac-
knowledges, however, that the term price is misleading since H0 is not
necessarily a no-arbitrage price of HT .
A related point is that the variance-optimal measure exists even

when there is arbitrage among the basis assets. Take a simple binomial
tree example with Rf = 1, no dividends, where St+1

St
can only take

two values, +4 and +2 with equal probability 1
2 . Since in both states

the risky return is greater than the risk-free rate there is arbitrage.
The model is actually complete, so there is only one candidate for the
variance-optimal ‘probabilities’

4qup + 2qdown = 1

qup + qdown = 1

qup = −
1

2

qdown =
3

2
.

One can show that the hedging procedure described in Theorem 2 will
go through fine, with kt = 0.1T−t. This means that mean-variance
hedging is not arbitrage-proof, in the sense that the algorithm described
in Corollary 4 will not automatically come to a halt if there is arbitrage
among the basis assets.
As an aside we highlight the result of Schachermayer (1993) who

showed that the minimal measure P̂ (which in the above example is
equal to the variance-optimal measure P̃ ) may not exist even when
there is no arbitrage. This would seem to contradict our Theorem 1,
however, Schachermayer’s result has to do with integrability and we
assumed away all integrability problems by taking Ω finite.

5. Comparison with previous studies

5.1. Definitions of variance-optimal measure

It follows from Section 4 that the natural definition of the variance-
optimal measure P̃ is

dP̃

dP
= m̃T = m̃T |T−1 . . . m̃1|0. (23)
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where m̃t|t−1 was given in equation (18). Let us see how this definition
relates to that of other authors, namely Schweizer (1995), Gourieroux
et al. (1998), and Laurent and Pham (1999).
To simplify expression (23) let us define

at−1 ≡
³
EPt−1 [kt∆Xt∆X

∗
t ]
´−1

EPt−1 [kt∆Xt] , (24)

whereby the expression for the conditional change of measure becomes

m̃t|t−1 =
R2f t−1kt(1− a∗t−1∆Xt)

kt−1
. (25)

For the unconditional change of measure we then have

m̃T =
TY
t=1

R2f t−1kt(1− a∗t−1∆Xt)
kt−1

=

¡
S0T
¢2

k0

TY
t=1

(1− a∗t−1∆Xt). (26)

Since by construction EP0 [m̃T ] = 1, an immediate consequence of the
above is

k0 = E
P
0

"³
S0T

´2 TY
t=1

(1− a∗t−1∆Xt)
#
. (27)

Similarly, the fact that

EPt

h
m̃t+1|tm̃t+2|t+1 . . . m̃T |T−1

i
=

= EPt

m̃t+1|t E
P
t+1

m̃t+2|t+1 . . .E
P
T−1

h
m̃T |T−1

i
| {z }

=1


| {z }

=1

 = 1

implies

kt = E
P
t

ÃS0T
S0t

!2 TY
j=t+1

(1− a∗j−1∆Xj)

 . (28)
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Plugging this result back into equation (24) we have

at−1 =

EPt−1
∆Xt∆X∗t EPt

ÃS0T
S0t

!2 TY
j=t+1

(1− a∗j−1∆Xj)

−1

×EPt−1

∆XtEPt
ÃS0T
S0t

!2 TY
j=t+1

(1− a∗j−1∆Xj)


=

EPt−1
∆Xt∆X∗t

Ã
S0T
S0t

!2 TY
j=t+1

(1− a∗j−1∆Xj)

−1

×EPt−1

∆Xt
Ã
S0T
S0t

!2 TY
j=t+1

(1− a∗j−1∆Xj)

 . (29)

The above expression implies that for zero interest rate the process a
coincides with the adjustment process β of Schweizer (1995). Further-
more, Schweizer defines the variance-optimal measure P̃ as

dP̃

dP
=

QT
t=1(1− a∗t−1∆Xt)

EP0

hQT
t=1(1− a∗t−1∆Xt)

i ,
and this definition by virtue of (27) coincides with our definition of the
variance-optimal measure (26) when the interest rate is zero.
An alternative interpretation of formula (26) comes from the feed-

back form (7) when we set HT = 0 and keep x = 1:

θ̃t−1 = −
V 1,θ̃t−1
S0t−1

at−1, (30)

whereby it becomes clear that at = ãt in Laurent and Pham (1999).

Here V 1,θ̃t−1 is interpreted as the optimal wealth from the self-financing

strategy that minimizes EP0
h
V x,θT

i2
with initial wealth x = 1, θ̃ being

the corresponding optimal investment strategy. From (1) we can write

V 1,θ̃t = Rf t−1V
1,θ̃
t−1 + S

0
t θ̃t−1∆Xt

= Rf t−1V
1,θ̃
t−1

¡
1− a∗t−1∆Xt

¢
and hence

V 1,θ̃T =
TY
t=1

Rf t−1(1− a∗t−1∆Xt) = (31)

= V 1,θ̃t

S0T
S0t

TY
j=t+1

(1− a∗j−1∆Xj). (32)
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Therefore, from (31) and (26) the variance-optimal change of measure
can be expressed equivalently as

m̃T =
S0TV

1,θ̃
T

k0
=

S0TV
1,θ̃
T

EP0

·
S0TV

1,θ̃
T

¸
as in Gourieroux et al. (1998), equation (4.4).
One can use (32) to write (28) as

kt =
EPt

·
V 1,θ̃T S0T

¸
V 1,θ̃t S0t

.

On the other hand equation (4.7) in Laurent and Pham (1999) implies

jt =
V 1,θ̃t S0t

EPt

·
V 1,θ̃T S0T

¸
and hence our process k is the same as their process i ≡ 1

j .

5.2. Feedback form

Schweizer (1995) finds a feedback solution of the following form

θDt = ρt − βtV
H0,θ

D

t (33)

ρt =
EPt−1

h
∆Xt

QT
j=t+1

³
1− βj∆Xj

´
HT

i
EPt−1

·
(∆Xt)

2QT
j=t+1

³
1− βj∆Xj

´2¸ . (34)

assuming Rf t = 1. To verify that (33) is equivalent to (7) we have to

show that ρt =
³
EPt−1

h
(∆Xt)

2 kt
i´−1

EPt−1 [kt∆XtHt]. First we employ
the law iterated expectations

ρt =
EPt−1

h
∆Xt

QT
j=t+1

³
1− βj∆Xj

´
HT

i
EPt−1

·
(∆Xt)

2QT
j=t+1

³
1− βj∆Xj

´2¸

=
EPt−1

h
∆Xt

h
EPt

QT
j=t+1

³
1− βj∆Xj

´
HT

ii
EPt−1

·
(∆Xt)

2 EPt

·QT
j=t+1

³
1− βj∆Xj

´2¸¸
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using the fact that ∆Xt is Ft-measurable. From Lemma 3 in Schweizer
(1996) one has

EPt

 TY
j=t+1

³
1− βj∆Xj

´2 = EPt
 TY
j=t+1

³
1− βj∆Xj

´ . (35)

On the other hand, equation (28) in this paper claims

kt = E
P
t

 TY
j=t+1

³
1− βj∆Xj

´ . (36)

Thus we have

ρt =
EPt−1

h
kt∆XtE

P
t

h
HT

QT
j=t+1

kj
kj−1

³
1− βj∆Xj

´ii
EPt−1

h
(∆Xt)

2 kt
i

=
EPt−1

h
kt∆XtE

P
t

h
m̃t|t−1 . . . m̃T |T−1HT

ii
EPt−1

h
(∆Xt)

2 kt
i

=
EPt−1 [kt∆XtHt]

EPt−1
h
(∆Xt)

2 kt
i

as required by virtue of (6), (18) and (25).
The continuous time solution in feedback form was obtained for

the first time in Schweizer (1992) under the assumption of constant
opportunity set, which implies P̃ = P̂ . A general proof for continuous
semimartingales was given in Gourieroux, Laurent, and Pham (1998)
and Rheinländer and Schweizer (1997). Let us rewrite (7) in a more
familiar form, similar to equation (0.1) in Rheinländer and Schweizer
(1997).

θ̂t−1 = −
h
EPt−1kt∆Xt∆X

∗
t

i−1
EPt−1kt∆Xt

V H0,θ̂t−1
S0t−1

− Ht
S0t

 =
= Rf t−1at−1

V H0,θ̂t−1 −Ht−1
S0t−1

+

+
³
EPt−1 [kt∆Xt∆X

∗
t ]
´−1

EPt−1

·
kt∆Xt∆

Ht
S0t

¸
It follows from the results of Rheinländer and Schweizer (1997) that
for continuous gain process the second term can be interpreted as the
integrand of dXt in the Galtchouk-Kunita-Watanabe decomposition



Mean-Variance Hedging in Discrete Time 21

of HT
S0T

under P̃ . This is essentially made possible by the fact that for

continuous processes the randomness of k in the above formula vanishes
and that both processes X and H

S0 are martingales under P̃ . In jump-
diffusion limit, however, such interpretation is no longer possible, even
if kt is deterministic.
It seems more difficult to relate directly our formula (7) to the con-

tinuous time result of Gourieroux et al. (1998), Theorem 5.1. We can
only refer to Rheinländer and Schweizer (1997) who show the equiva-
lence between their equation (0.1) and the Theorem 5.1 of Gourieroux
et al. (1998).

5.3. Continuous limit

It is interesting to see what happens to the solution in continuous time
limit if we assume that all processes become Itô processes. When X
is a Markov process this procedure can be formalized using the locally
consistent Markov chain approximations championed in Kushner and
Dupuis (2001).
Assume that the stochastic differential equation for the discounted

gain process satisfies

Xt+dt −Xt ≡ dXt = µdt+ σdBt,

and the process k follows

dkt = µkdt+ σkdBt.

The continuous-time counterpart of equation (5) reads

kt = (1 + rtdt)
2

×
µ
EPt [kt+dt]− EPt [kt+dtdX∗t ]

³
EPt [kt+dtdXtdX

∗
t ]
´−1

EPt [kt+dtdXt]

¶
.

(37)

From the Itô’s lemma we have

EPt [kt+dt] = kt + µkdt+ o(dt)

EPt [kt+dtdXt] = ktµdt+ σσ∗kdt+ o(dt)

EPt [kt+dtdXtdX
∗
t ] = ktσσ

∗dt+ o(dt),

and collecting the dt terms in (37) we obtain

0 = 2kr + µk − (kµ+ σσ∗k)
∗ (kσσ∗)−1 (kµ+ σσ∗k)

0 = 2r +
µk
k
−
µ
µ+ σ

σ∗k
k

¶∗
(σσ∗)−1

µ
µ+ σ

σ∗k
k

¶
. (38)
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Similarly, from (30) we have

a = (σσ∗)−1
µ
µ+ σ

σ∗k
k

¶
.

To see the market price of risk defining the variance-optimal measure
we have to look at the continuous time limit of equation (18),

m̃t+dt|t = (1 + rtdt)
2

×
kt+dt − EPt [kt+dtdX∗t ]

³
EPt [kt+dtdXtdX

∗
t ]
´−1

kt+dtdXt

kt
=

= 1 +

µ
σk
k

³
I − σ∗ (σσ∗)−1 σ

´
− µ∗ (σσ∗)−1 σ

¶
dB.

Taking into account that m̃t+dt|t =
m̃t+dt

m̃t
we can rearrange the above

equation to obtain

dm̃t = m̃t

½
σk
k

³
I − σ∗ (σσ∗)−1 σ

´
− µ∗ (σσ∗)−1 σ

¾
dB

whereby we identify

λ̃ ≡ −
h
I − σ∗ (σσ∗)−1 σ

i σ∗k
k
+ σ∗ (σσ∗)−1 µ

as the variance-optimal market price of risk. Recall that the variable

λ ≡ σ∗ (σσ∗)−1 µ

is known as the minimal market price of risk.
There are three interesting special cases:

1. k is non-stochastic. In this case σk = 0 and consequently

λ̃ = λ

a = (σσ∗)−1 µ

2. dk is perfectly correlated with the gain process dX. In this caseh
I − σ∗ (σσ∗)−1 σ

i
σ∗k = 0

and therefore
λ̃ = λ,

that is the variance-optimal measure coincides with the minimal
martingale measure, but we are unable to say more about the
process k.
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3. dk is uncorrelated with the gain process dX (σσ∗k = 0). Then

λ̃ = λ− σ∗k
k

and from (38) we have

0 = 2r +
µk
k
− µ∗ (σσ∗)−1 µ = 2r + µk

k
− λ2.

Note that the Markov chain approximation results coincide with
the rigorously derived results of Laurent and Pham (1999), who in the
cases 2. and 3. are able to provide more explicit characterization of the
process k (called i in their paper).

6. Conclusion

This paper presents a dynamic programming solution to the general
mean-variance hedging problem in discrete time. Our analysis shows
that in discrete time a natural solution exists which does not require
the use of either variance-optimal martingale measure or duality theory.
Comparing the continuous time limit of our results with the results

obtained for continuous semimartingales by martingale and duality
methods we observe that our solution gives good explicit characteri-
zation of the variance-optimal market price of risk, however, it is not
as detailed as the results of Laurent and Pham (1999). One merit
of our solution is that it provides the kind of minimalistic recursive
structure suitable for computer implementation, and that it offers a
simple non-technical context in which the results of previous studies
are easier to analyze and understand. The results presented here are
a natural stepping stone to the analysis of hedging with discontinuous
price processes.

Appendix

A. Proof of Theorems 2 and 3

1) Linear independence of basis assets means θ∗t−1∆Xt = 0 a.s.⇒ θ∗t−1 =
0 where θ∗t−1 is Ft−1-measurable. By contradiction assume that the
matrix EPt−1 [kt∆Xt∆X

∗
t ] is singular at a particular information node at

t− 1. Then there is θ∗t−1 6= 0 such that

0 = θ∗t−1E
P
t−1 [kt∆Xt∆X

∗
t ] θt−1

= EPt−1

·³
θ∗t−1

p
kt∆Xt

´2¸
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at that node, which is only possible if θ∗t−1
√
kt∆Xt = 0 at the node

in question. Since by assumption
√
kt > 0 a.s., we have θ∗t−1∆Xt = 0

and from the linear independence of random variables ∆Xt it follows
that θ∗t−1 = 0 which contradicts θ∗t−1 6= 0. Hence EPt−1 [kt∆Xt∆X

∗
t ] is

invertible at every node of the information set Ft−1.
2) We wish to find the optimal control x ∈ F0, θi ∈ Fi, i = 0, 1, . . . , T−

1, to minimize

min
x,θ0,...,θt−1

EP0

kt
Ã
S0t

Ã
V x,θ0 +

t−1X
i=0

θi∆Xi+1

!
−Ht

!2 .
given that kt > 0 and Ht are Ft-measurable and exogenous in the sense
of Definition 1. Bellman’s principle of optimality dictates

min
x,θ0,...,θt−1

EP0

·
kt
³
V x,θt −Ht

´2¸
=

= min
x,θ0,...,θt−2

EP0

·
min
θt−1

EPt−1

·
kt
³
V x,θt −Ht

´2¸¸
=

= min
x,θ0,...,θt−2

EP0

·
min
θt−1

EPt−1

·
kt
³
Rf t−1V

x,θ
t−1 + S

0
t θt−1∆Xt −Ht

´2¸¸
,

where the last equality follows from the definition of self-financing
strategy (1).
The partial problem

Jt−1 , min
θt−1

EPt−1

·
kt
³
Rf t−1V

x,θ
t−1 + S

0
t θt−1∆Xt −Ht

´2¸
(39)

is simply a least squares regression. Let us recall that the abstract
problem

Û = min
β
E [Y +X∗β]2

has the following solution

β̂ = − (E [XX∗])−1 E [XY ]
Û = E

h
Y 2
i
− (E [XY ])∗ (E [XX∗])−1 E [XY ] ,

provided that the random variables X are linearly independent. Thus
the problem (39) is solved by setting

Û = Jt−1

Y ≡
p
kt
³
Rf t−1V

x,θ
t−1 −Ht

´
X ≡

p
kt∆Xt

β ≡ S0t θt−1,
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whereby, after collecting all the powers of V , we obtain

Jt−1 = kt−1
³
V x,θt−1 −Ht−1

´2
+EPt−1

h
ktH

2
t

i
− kt−1H2

t−1 −

−
³
EPt−1 [kt∆XtHt]

´∗ ³
EPt−1 [kt∆Xt∆X

∗
t ]
´−1

EPt−1 [kt∆XtHt](40)

θDt−1 = −
1

S0t

³
EPt−1 [kt∆Xt∆X

∗
t ]
´−1

EPt−1
h
kt∆Xt

³
Rf t−1V

x,θD

t−1 −Ht
´i

with kt−1,Ht−1 defined in (5), (6).
3) It remains to be shown that the process Ht−1 is well defined, that

is kt−1 > 0 a.s. By assumption kt > 0 a.s. Note from (5) that kt−1 can
be written equivalently as

kt−1 = R
2
f t−1E

P
t−1

·³p
kt − θ∗

p
kt∆Xt

´2¸
, (41)

with θ∗ = EPt−1 [kt∆X
∗
t ]
³
EPt−1 [kt∆Xt∆X

∗
t ]
´−1

. We continue the proof
by contradiction: suppose that kt−1 = 0 at a particular node. From
(41) this is only possible if

√
kt − θ∗

√
kt∆Xt = 0 a.s. for a conditional

distribution at this node. Since by assumption
√
kt > 0 it must be

that 1 = θ∗∆Xt for the conditional distribution at this node, which
contradicts our assumption of no arbitrage at that node. Hence it must
be that kt−1 > 0 a.s.
4) By induction assumption kt and Ht are exogenous. Clearly, the

conditional expectation of an exogenous variable is still exogenous,
and any function of exogenous variables is again exogenous. Since the
formulae (5), (6) only involve functions and conditional expectations of
exogenous variables it follows that kt−1 and Ht−1 are exogenous. The
same reasoning implies that the last three terms in equation (40) are
exogenous, that is the problem

min
x,θ0,...,θt−1

EP0

·
kt
³
V x,θt −Ht

´2¸
=

= EP0

h
ktH

2
t − kt−1H2

t−1−

−
³
EPt−1 [kt∆XtHt]

´∗ ³
EPt−1 [kt∆Xt∆X

∗
t ]
´−1

EPt−1 [kt∆XtHt]
¸
+

+ min
x,θ0,...,θt−2

EP0

·
kt−1

³
V x,θt−1 −Ht−1

´2¸
has the same optimal controls as the problem

min
θ0,...,θt−2

EP0

·
kt−1

³
V x,θt−1 −Ht−1

´2¸
,
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which completes the proof of Theorem 2.
4) As a by-product of the above calculation we have learnt that

min
θt−1

EPt−1

·
kt
³
V x,θt −Ht

´2¸
= kt−1

³
V x,θt−1 −Ht−1

´2
+ESREPt−1 (Ht) ,

(42)
where the one-step ahead expected squared replication error is given
by

ESREPt−1 (Ht) ≡ EPt−1
h
ktH

2
t

i
− kt−1H2

t−1

−
³
EPt−1 [kt∆XtHt]

´∗ ³
EPt−1 [kt∆Xt∆X

∗
t ]
´−1

EPt−1 [kt∆XtHt] .

A simple manipulation demonstrates the identity

ESREPt−1 [Ht] = E
P
t−1

·
kt
³
Rf t−1Ht−1 + S

0
t

³
θ̄
D
t−1
´∗
∆Xt −Ht

´2¸
,

where θ̄Dt is given by (8).
5) A recursive application of (42) starting from t = T gives

min
θt−1

EPt−1

·
kT
³
V x,θT −HT

´2¸
= kt−1

³
V x,θt−1 −Ht−1

´2
+ ε2t−1

where ε is given recursively

ε2t−1 = EPt−1
h
ε2t

i
+ESREPt−1 [Ht] ,

εT = 0.

which completes the proof of Theorem 3.
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