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Generalised Sharpe Ratios and Asset Pricing in Incomplete
Markets ¤

Aleš µCerný (a.cerny@ic.ac.uk)
Imperial College Management School

First draft: November 1998, this version November 2002

Abstract.
The paper presents an incomplete market pricing methodology generating asset

price bounds conditional on the absence of attractive investment opportunities in
equilibrium. The paper extends and generalises the seminal article of Cochrane and
Saá-Requejo who pioneered option pricing based on the absence of arbitrage and
high Sharpe Ratios. Our contribution is threefold:

We base the equilibrium restrictions on an arbitrary utility function, obtaining
the Cochrane and Saá-Requejo analysis as a special case with truncated quadratic
utility. We extend the de…nition of Sharpe Ratio from quadratic utility to the entire
family of CRRA utility functions and restate the equilibrium restrictions in terms
of Generalised Sharpe Ratios which, unlike the standard Sharpe Ratio, provide a
consistent ranking of investment opportunities even when asset returns are highly
non-normal. Last but not least, we demonstrate that for Itô processes the Cochrane
and Saá-Requejo price bounds are invariant to the choice of the utility function, and
that in the limit they tend to a unique price determined by the minimal martingale
measure.

Keywords: Generalised Sharpe Ratio, price bounds, arbitrage, good deal, incom-
plete market, certainty equivalent, reward for risk measure, optimal portfolio, duality
and martingale methods, minimal martingale measure

JEL classi…cation code: G12, D40, C61

1. Introduction

Asset pricing in incomplete markets is an intriguing problem because
of the price ambiguity one has to deal with. Traditionally this ambi-
guity is either removed completely by assuming a representative agent
equilibrium or it is acknowledged in its fullest by looking at the no-
arbitrage bounds. Arguably the former assumption is too strong and the
latter assumption is too weak. Good-deal pricing introduces moderately

¤ Forthcoming in European Finance Review. I wish to thank Simon Benninga, An-
tonio Bernardo, John Cochrane, Bernard Dumas, Hélyette Geman, Stewart Hodges,
Leonid Kogan, Terry Lyons, anonymous EFR referee and the participants at the
AFA 2001 meeting in New Orleans for helpful comments, discussions and pointers
to references. An earlier version of this paper has been circulated under the title
‘Generalized Sharpe Ratios and Consistent No-Good-Deal Restrictions in a Model
of Continuous Trading’. All remaining errors are mine.



2 A. µCerný

strong equilibrium restrictions somewhere between the two extremes,
postulating the absence of attractive investment opportunities – good
deals – in equilibrium. Under the in‡uence of CAPM and APT attrac-
tive investments became associated with high Sharpe Ratios, both in
theoretical and empirical work (Ross (1976), Shanken (1992), Cochrane
and Saá-Requejo (2000)), but µCerný and Hodges (2001) show that one
can impose the good-deal restrictions with considerable generality. The
generic term ‘good deals’ was introduced by Cochrane and Saá-Requejo
(2000) who were the …rst to successfully apply the good-deal restric-
tions to option pricing. The idea of Cochrane and Saá-Requejo was to
restrict the availability of high Sharpe Ratios at every point in time.
Using the dual discount factor restrictions and backward recursion
they calculated option price bounds that are based on very believable
equilibrium restrictions, yet are much narrower than the corresponding
super-replication bounds.
The association of good deals with high Sharpe Ratios has its pit-

falls. High Sharpe Ratios do not include all arbitrage opportunities,
therefore to make the equilibrium restrictions meaningful one must
eliminate not just high Sharpe Ratios (grey circle in Figure 1) but also
arbitrage opportunities (dark triangle) and all the convex combinations
between the two types of investments (black contour). As a result the

Figure 1. Black contour contains the set of good deals generated as a combination
of high Sharpe Ratios (grey circle) and arbitrage opportunities (dark grey triangle).

equilibrium restriction of Cochrane and Saá-Requejo cannot be de-
scribed by imposing restrictions on the standard Sharpe Ratio alone,
but as we show here it is associated to a level of the Arbitrage-Adjusted
Sharpe Ratio discussed in section 3.1.
To understand why pricing requires the use of Generalised Sharpe

Ratios, it is useful to step back and examine the standard Sharpe Ratio.
Sharpe Ratio is closely related to quadratic utility; there is a one-to-
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one relationship between the maximum quadratic utility attainable in a
market and the market Sharpe Ratio. Crucially, Sharpe Ratio re-labels
the levels of quadratic utility in such a fashion that the labels do not
depend on the initial wealth.
The relationship with quadratic utility explains why Sharpe Ratio is

not a good reward-for-risk measure. Quadratic utility has a bliss point,
one is penalised for achieving wealth beyond this point. Consider two
assets A and B with excess returns given in Table I. The optimal wealth

Table I. Asset A stochastically dominated by asset B

Probability 1
6

1
2

1
3 Sharpe Ratio

Return of Asset A -1% 1% 2% 1.0
Return of Asset B -1% 1% 11% 0.8

in market A does not extend beyond the bliss point, whereas in market
B it does. This is why asset A achieves a higher Sharpe ratio of 1.0
than the unambiguously more attractive asset B (SR of 0.8). To obtain
meaningful price bounds based on Sharpe ratio one must prevent such
anomalous behaviour. The remedy is to make the utility non-decreasing
after the bliss point – hence the need for truncated quadratic utility.
The resulting wealth-independent labelling of the levels of truncated
quadratic utility leads to the Arbitrage-Adjusted Sharpe Ratio. The
Cochrane and Saá-Requejo set of good deals is simply the set of excess
returns with high Arbitrage-Adjusted Sharpe Ratio.
Since truncated quadratic utility has none of the tractability of its

non-truncated counterpart, it is natural to ask whether other utility
functions are a viable alternative. For a given candidate utility function
this means …rstly de…ning the corresponding Generalised Sharpe Ratio,
and secondly computing so called ‘discount factor restrictions’ corre-
sponding to that GSR. For example, the Cochrane and Saá-Requejo set
of equilibrium pricing kernels must satisfy Var(m) · h2A wherem is the
pricing kernel and hA is the upper bound on Arbitrage-Adjusted Sharpe
Ratio. Our …rst contribution is in showing how to derive this duality
restriction for an arbitrary utility function. The second contribution is
in extending the de…nition of the Sharpe ratio from quadratic utility
to the entire CRRA family of utility functions and showing how such
extension can, in principle, be performed for any utility function.
Our general approach permits to prove an interesting property of the

Cochrane and Saá-Requejo good-deal bounds: for Itô price processes
these bounds are invariant to the choice of the reward-for-risk measure
(utility function). The representative agent equilibrium in this case
always corresponds to pricing with the minimal martingale measure of
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Föllmer and Schweizer (1989), closely related to the numeraire portfolio
of Long (1990), see also µCerný (1999) and Kallsen (2002).
As an answer to ‘What are the discount factor restrictions implied

by standard utility functions?’ we can o¤er the following:

1. Truncated quadratic utility

1 + h2A(basis) · E
h
m2
i
· 1 + h2A (1)

2. Negative exponential (CARA) utility

1

2
h2E(basis) · E [m lnm] ·

1

2
h2E (2)

3. CRRA utility 0 < ° 6= 1; and truncated CRRA utility ° < 0³
1 + h2°(basis)

´ 1¡°
2°2 · E

h
m
1¡ 1

°

i
·
³
1 + h2°

´1¡°
2°2 (3)

Truncated quadratic is a special case with ° = ¡1, h¡1 = hA.
4. Logarithmic utility ° = 1

ln
³
1 + h21(basis)

´
· ¡2E [lnm] · ln

³
1 + h21

´
(4)

where m > 0 is the change of measure, hA is the Sharpe Ratio
adjusted for arbitrage, hE ; and h° are the Generalised Sharpe Ra-
tios generated by the CARA and CRRA utility, respectively. All
variables with attribute ‘basis’ refer to the market containing only
basis assets (that is without focus assets to be priced).

5. For Itô price processes the instantaneous restrictions coincide for
all utility functions. Denoting º the market price of risk vector, the
no-good-deal restriction becomes

h2(basis) · jjºjj2 · h2.

For each of the utility functions in (1)-(4) the two inequalities are a
direct consequence of the Extension Theorem, familiar from no-arbitrage
pricing1. The left hand side inequalities are known in …nancial litera-
ture, although the authors do not seem to be aware of the common
principle underlying all of them. These restrictions have been used
to diagnose asset pricing models, and correspond to the above utility
functions as follows

1 For the derivation of the Extension Theorem in good-deal setting and for proofs
of general properties of good-deal price bounds see µCerný and Hodges (2001).
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1. Hansen and Jagannathan (1991), Hansen et al. (1995),

2. Stutzer (1995),

3. with 0 < ° 6= 1 Snow (1991), and

4. Bansal and Lehmann (1997).

The economic interpretation of the left hand side inequalities in (1)-
(4) is simple: the best deal in a market containing only basis assets
cannot be better than the best deal in a market including also the
focus asset. The genuine no-good-deal restrictions are the right hand
side inequalities, which quantify by how much the best deal can improve
after the introduction of a focus asset. Here the only representative was
the restriction (1) of Cochrane and Saá-Requejo (2000).
The Generalised Sharpe Ratios in (1)-(4) provide a scale-free mea-

sure of risk which behaves like the standard Sharpe Ratio for excess
returns with small dispersion. We derive simple formulae that permit
calculation of Generalised Sharpe Ratios for an arbitrary vector of
excess return X: In the case of CRRA family of utility functions we
have

h2°(X) =

µ
max
¸
E
h
(1 + ¸X)1¡°

i¶ 2°
1¡° ¡ 1 for 0 < ° < 1 (5)

h2°(X) =

µ
min
¸
E
h
(1 + ¸X)1¡°

i¶ 2°
1¡° ¡ 1 for 1 < ° (6)

h2°(X) =

µ
min
¸
E
h
max (1 + ¸X; 0)1¡°

i¶ 2°
1¡° ¡ 1 for ° < 0 (7)

h2°(X) = e
2max¸ E[ln(1+¸X)] ¡ 1 for ° = 1: (8)

To obtain the Arbitrage-Adjusted Sharpe Ratio one computes h¡1 in
equation (7), to obtain the standard Sharpe Ratio2 one simply removes
the truncation at zero in the de…nition of h¡1,

h2(X) =

µ
min
¸
E
h
(1 + ¸X)2

i¶¡1
¡ 1: (9)

2 Since its …rst appearance in Sharpe (1966) there has been a number of gen-
eralisations of Sharpe Ratio within the portfolio management literature. These
generalisations, important as they are, are captured in our de…nition of the standard
Sharpe Ratio (9). In particular, the ‘generalised Sharpe Ratio’ of Dowd (1999) is
obtained from (9) when X is a vector of risky excess returns, one of which represents
the current portfolio.
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The Generalised Sharpe Ratios proposed in this paper can be used
with great advantage in portfolio management, because unlike the stan-
dard Sharpe Ratio they provide a consistent ranking of investment
opportunities when asset returns are highly skewed.
Bernardo and Ledoit (2000) propose to base the de…nition of good

deals on the gain-loss ratio. This reward-for-risk measure cannot be
captured in our framework, for the following reason. In the present
paper we …x the utility function and we measure good deals by the
(appropriately rescaled) levels of expected utility. Bernardo and Ledoit,
on the other hand, …x the level of expected utility that de…nes a good
deal and they rank the good deals by changing the shape of the utility
function. Namely, the gain-loss ratio is based on the Domar-Musgrave
utility. With a piecewise linear utility in a frictionless market the maxi-
mum expected utility of a risky investment is either zero or plus in…nity,
and one can a¤ect the outcome by changing the ratio of the slopes of
the two linear parts of Domar-Musgrave utility function. The slope
ratio at which expected utility switches from 0 to +1 is the market
gain-loss ratio. The discount factor restrictions are similar in nature to
those mentioned above

Lbasis · ess supm

ess infm
· L;

where L denotes the maximum gain-loss ratio in the market. The gain-
loss does not work well in Itô process environment with continuous
trading where typically Lbasis = +1; as in, for example, the standard
Black-Scholes model.

1.1. Organisation of the paper

The second section discusses one-period no-good-deal equilibria and
the corresponding discount factor restrictions. The third section de-
scribes the link between the certainty equivalent gains and (Gener-
alised) Sharpe Ratios; in particular it extends the de…nition of Sharpe
Ratio to the entire family of CRRA utility functions. Section four gives
two numerical examples which illustrate the computation of option
price bounds in multiperiod model based on a number of Generalised
Sharpe Ratios.
Section …ve translates the discrete time results into the Itô process

framework and derives the instantaneous restrictions on the market
price of risk. Section six quanti…es the extent to which the instantaneous
good-deal restrictions limit investment opportunities in the long run.
Section seven explores the limiting cases of the instantaneous good-deal
price bounds, and section eight concludes.



Generalised Sharpe Ratios 7

2. No-good-deal restrictions in one-period model

Consider a market with a …nite number of states. Let r be the risk-
free rate of return and let X be the vector of excess returns of basis
risky assets. By µ denote the portfolio of basis assets. For a …xed utility
function and …xed initial endowment V0 it is natural to measure the
attractiveness of a self-…nancing investment by the certainty equivalent
of the resulting wealth V relative to the wealth of a riskless investment
into the bank account. Speci…cally, the value of the best deal in a
market characterised by excess return X will be denoted a(X);with
a(X) de…ned implicitly as follow

U [(1 + r)V0 + a(X)] , sup
µ
E [U ((1 + r)V0 + µX)] , (10)

having substituted for V from equation (40). The fact that the cer-
tainty equivalent a(X) depends on V0 is a nuisance, but it allows us
to formulate and solve the pricing problem for any utility function,
therefore formulation (10) is the most convenient at this point. Section
3 discusses the link between the certainty equivalent gain a(X) and
Generalised Sharpe Ratios.
Consider a focus asset Y: By P1(Y ) we will denote the no-arbitrage

price range of Y . Taking a …xed upper bound ¹a, we de…ne the set of
no-good-deal equilibrium prices of Y as

P¹a(Y ) , fpyja(X;Y ¡ (1 + r)py) · ¹ag \ P1(Y ): (11)

Before we give a full characterisation of no-good-deal price bounds
in …nite dimension (Theorem 2), it is useful to provide the following
classi…cation of utility functions

DEFINITION 1. Let U(x) be a non-decreasing concave function de-
…ned on an interval D = (c;+1); ¡1 · c < +1. We will distinguish
the following three cases

U1) U(x) is unbounded from above (and necessarily strictly increasing
on D):

U2) U(x) is bounded from above and strictly increasing on D.

U3) U(x) is bounded from above and there is a threshold ¹x 2 D such
that U(x) is constant for x ¸ ¹x and U(x) is strictly increasing for
x 2 D such that x < ¹x. In this case we assume (1+r)V0 < ¹x; utility
can be improved by trading in risky assets.
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THEOREM 2. Assume that utility function U(:) is non-decreasing,
di¤erentiable and that it satis…es

lim
x!¡1

x

U(x)
= 0:

Assume further that there is no arbitrage among the basis assets. Then

1. The a(X) The supremum in (10) is …nite and it is attained by at
least one portfolio µ: Moreover, the corresponding certainty equiv-
alent a(X) is …nite. Let us denote its value by abasis.

2. For any focus asset Y the set P¹a(Y ) is empty for ¹a < abasis and it
is a non-empty interval for ¹a > abasis:

3. In cases U1), U2) Pabasis(Y ) is non-empty, in case U3) Pabasis(Y )
may be empty.

4. For ¹a > abasis P¹a(Y ) contains a single point if and only if Y is a
redundant asset (there is µ such that Y = const+ µX).

5. If abasis · a1 < a2 and Y is non-redundant then Pa1(Y ) is inside
Pa2(Y ) which in turn is inside P1(Y ) (the no-arbitrage price region
for Y): If Pa2(Y ) is strictly inside P1(Y ) then Pa1(Y ) is strictly
inside Pa2(Y ): In the case U1) Pa2(Y ) is always strictly inside
P1(Y ):

6. As a2 tends to in…nity Pa2(Y ) tends to the no-arbitrage price range,
mathematically [

a2

Pa2(Y ) = P1(Y ): (12)

7. The no-arbitrage restriction in (11) is cosmetic in the following
sense. If p 2 fpyja(X;Y ¡ (1 + r)py) · ¹ag then p 2 clP1(Y );
that is only the end points of fpyja(X;Y ¡ (1 + r)py) · ¹ag may lie
outside the no-arbitrage bounds and this may only happen in the
cases U2), U3).

Proof: See Appendix A.

Theorem 2 guarantees that good-deal prices are well de…ned. As one
varies the upper bound ¹a between abasis and +1 the range of no-good-
deal prices changes monotonically from representative agent prices to
no-arbitrage bounds. With an unbounded utility the no-arbitrage bounds
are never reached for …nite ¹a; but they are approached as ¹a ! +1:
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With a bounded utility function it may happen that the no-good-deal
price region P¹a(Y ) hits one or both no-arbitrage bounds for …nite ¹a; in
such case P¹a(Y ) does not grow further beyond the no-arbitrage bounds
as ¹a increases.
In the rest of this section we will proceed in 2 steps. First we will

explain how to …nd the highest a attainable in a complete market.
In the second step we will show how, with the help of an extension
theorem, this information can be used to …nd the no-good-deal price of
an arbitrary focus asset. The second step will in a natural way lead to
the dual discount factor restrictions.
Suppose the market X is complete and the state prices are given

by a unique change of measure m; our aim is to …nd the maximum
certainty equivalent gain a(m) in this market. Instead of looking for
the optimal investment strategy µ we will use an elegant trick, due
to Pliska (1986), of searching for the optimal distribution of wealth,
subject to the budget constraint dictated by the state prices m

max
µ
E [U ((1 + r)V0 + µX)] = max

V
s.t.E[mV ]=(1+r)V0

E [U(V )] ;

whereby for a(m) we simply have

U [(1 + r)V0 + a(m)] , max
V

s.t.E[mV ]=(1+r)V0

E [U(V )] : (13)

In a …nite state model the maximisation problem (13) is standard. Since
there is just one linear constraint one solves (13) using unconstrained
maximisation separately in each state with a Lagrange multiplier

max
V (!)
!2­

U (V (!))¡ ¸m(!)V (!):

The …rst order conditions give

U 0(V (!)) = ¸m(!)

Denoting I(:) the inverse function to the marginal utility U 0(:) we
obtain

V = I(¸m) (14)

and from the restriction E [mV ] = (1 + r)V0 we can recover the value
of ¸.
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As an example let us apply the above procedure to the negative
exponential utility. First we …nd the inverse of the marginal utility

U(V ) = ¡e¡AV
U 0(V ) = Ae¡AV

I(x) = ¡ 1
A
ln
x

A
:

The optimal terminal wealth is then

V = I(¸m) = ¡ 1
A
ln
¸m

A
:

We recover the Lagrange multiplier from the budget constraint and
plug this value back into the expression for optimal wealth

E [mV ] = (1 + r)V0

¸ = Ae¡A(1+r)V0¡E[m lnm]

V = (1 + r)V0 +E

·
m

A
ln
m

A

¸
¡ 1

A
ln
m

A
:

Finally, we recover the certainty equivalent of the optimal risky invest-
ment

U(V ) = ¡me¡A(1+r)V0¡E[m lnm]
E [U(V )] = ¡e¡A(1+r)V0¡E[m lnm]

a(m) = U¡1 (E [U(V )])¡ (1 + r)V0 = 1

A
E [m lnm] : (15)

2.1. Discount factor restrictions in good-deal pricing

We have just seen how one calculates the maximum attainable certainty
equivalent a(m) in a complete market. The crucial link between the
complete and incomplete market is provided by the extension theorem3

which asserts that any incomplete market without good deals can be
embedded in a complete market that has no good deals. Let us denote
by abasis the certainty equivalent of the best deal attainable in the
market containing only the basis assets: Two observations follow from
the extension theorem. The best deal in the completed market cannot

3 Interestingly, both the idea of Sharpe Ratio restrictions and the use of the
extension theorem can be traced back to Ross, see Ross (1976) pg. 354 and the
appendix of Ross (1978). For application of the extension theorem in good-deal
pricing see µCerný and Hodges (2001).
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be worse than the best deal in the original market containing only basis
assets: On the other hand, for any " > 0 there is no good deal of size
abasis + " in the market containing just basis assets. Consequently, by
extension theorem there must be a completion with a pricing kernel m
for which a(m) < abasis + ": By letting "! 0 we obtain

abasis = inf
m
a(m)

wherem must price correctly all basis assets. This argument is inspired
by ‘…ctitious completions’ of Karatzas et al. (1991). In a …nite state
model the in…mum is always attained by at least one pricing kernel.

THEOREM 3. Assume that utility function U(:) satis…es

lim
x!¡1

x

U(x)
= 0:

If there is no arbitrage among the basis assets then we have the following
dual characterisation of good-deal price bounds:

1. In the cases U1, U2 for ¹a ¸ abasis

P¹a(Y ) =

½
E [mY ]

1 + r

¯̄̄̄
abasis · a(m) · ¹a;E [mX] = 0;m > 0

¾
: (16)

Furthermore, for unbounded utility (U1) m > 0 in (16) can be
omitted.

2. In the case U3 for ¹a ¸ abasis and Y non-redundant de…ne

~P¹a(Y ) ,
½
E [mY ]

1 + r

¯̄̄̄
abasis · a(m) · ¹a;E [mX] = 0;m ¸ 0

¾
;

P1(Y ) = (p¡1; p1); p¡1 < p1

Then

P¹a(Y ) µ ~P¹a(Y ) µ P¹a(Y ) [ fp¡1g [ fp1g: (17)

Proof: See Appendix A.

The restrictions of the type abasis · a(m) are well known in …nan-
cial economics, where they have been employed to test di¤erent asset
pricing models4. We are, however, primarily interested in the pricing

4 See Stutzer for CARA utility, Bansal and Lehmann for log utility. Snow dis-
cusses the CRRA utility. In all these cases the discount factor restrictions are derived
ad hoc from the Jensen’s inequality.
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implications of the extension theorem. Suppose that we want to …nd
all prices of a focus asset that do not provide good deals of size ¹a in
the enlarged market. From the extension theorem all such prices must
be supported by pricing kernels for which a(m) · ¹a: This is the dual
no-good-deal discount factor restriction.
For example, for the CARA utility we have from (15) Aa(m) =

E [m lnm] and therefore the discount factor restrictions read

Aabasis · E [m lnm] · A¹a (18)

E [mX] = 0; m > 0:

In conclusion, the market including both basis and focus assets does
not provide deals better than ¹a; as measured by CARA utility, if (and
only if) the focus assets are priced with no-arbitrage pricing kernels
consistent with basis assets and satisfying the restriction (18).
Below we summarise the no-good-deal restrictions on the change of

measure m for standard utility functions. The derivation proceeds as
explained above between equations (13) and (15).

1. Truncated quadratic utility U(V ) = ¡( ¹V ¡ V )2 ; V < ¹V and
U(V ) = 0 ; V ¸ ¹Vµ

1

1¡Aabasis
¶2
· E

h
m2
i
·
µ

1

1¡Aa
¶2

(19)

2. Negative exponential utility U(V ) = ¡e¡AV

Aabasis · E [m lnm] · Aa (20)

3. Power (isoelastic) utility U(V ) = V 1¡°
1¡° ; 0 < ° 6= 1; V > 0µ

1 +
Aabasis
°

¶ 1
°
¡1
· E

h
m1¡

1
°

i
·
µ
1 +

Aa

°

¶ 1
°
¡1

(21)

4. Logarithmic utility U(V ) = lnV; V > 0

ln (1 +Aabasis) · ¡E [lnm] · ln (1 +Aa) : (22)

In equations (19)- (22) A stands for the coe¢cient of absolute risk
aversion evaluated at point (1 + r)V0:
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3. Generalised Sharpe Ratios

Having derived the state price restrictions (19)-(22) the task changes
into interpreting the state price bounds as reward for risk measures,
preferably ones that are close in nature to Sharpe Ratio. Note that
if one uses a as the measure of attractiveness then one has to specify
the coe¤cient of absolute risk-aversion in restrictions (19)-(22). It turns
out that for small Sharpe Ratios there is an unambiguous link between
Sharpe Ratios and certainty equivalent gains, which we describe next.
To keep technicalities at minimum we assume that the excess return

X has bounded support and that the utility function is su¢ciently
di¤erentiable. From the Taylor expansion we obtain

E [U (V0 + µX)] = U(V0) + U
0(V0)µE [X] +

+
1

2
U 00(V0)µ2E

h
X2
i
+ o(µ2E

h
X2
i
)

and after maximisation with respect to µ we will have

µ̂ =
U 0(V0)E [X]
U 00(V0)E [X2]

+ o

µ
E [X]

E [X2]

¶
max
µ
E [U(V0 + µX)] = U(V0)¡ 1

2

(U 0(V0)E [X])2

U 00(V0)E [X2]
+ o

Ã
(E [X])2

E [X2]

!
.(23)

Without loss of generality we can assume thatX E[X]
E[X2] is small for all re-

alisations ofX so that the Taylor series approximation of U
³
V0 + µ̂X

´
can

be made arbitrarily precise. At the same time, for a small certainty
equivalent gain we can write

U(V0 + a) = U(V0) + U
0(V0)a+ o(a); (24)

and the comparison of (23) and (24) gives

a =
h2(X)

2A(V0)
+ o(h2) (25)

where A(V ) = ¡U 00(V )
U 0(V ) is the coe¢cient of absolute risk-aversion, h(X)

is the Sharpe ratio of X

h(X) , E [X]q
E [X2]¡ (E [X])2

;

and limh2!0
o(h2)
h2

= 0.
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In conclusion, one could replace Aa in expressions (19)-(22) with
h2

2 . Naturally, this is not the only transformation that satis…es the
asymptotic property (25). For example, for small values of h2 we have

h2 =
h2

1 + h2
+ o(h2) = eh

2 ¡ 1 + o(h2);

and indeed we might equally well replace Aa with any other function
f(h2) as long as f is continuously di¤erentiable around 0 with f(0) = 0
and f 0(0) = 1

2 . The rest of this section describes how the ambiguity
in choosing the function f(h2) is resolved for negative exponential,
truncated quadratic and CRRA utility.

3.1. Truncated quadratic utility

To begin with, consider maximisation of non-truncated quadratic util-
ity for a single asset with excess return X;

max
µ
¡E

h
(1¡ µX)2

i
:

The optimal investment is

µ̂ =
E [X]

E [X2]
(26)

and the maximum utility is an increasing function of the Sharpe Ratio

max
µ
¡E

h
(1¡ µX)2

i
=
(E [X])2

E [X2]
¡ 1 = ¡ 1

1 + h2(X)
; (27)

or conversely

h2(X) =
1

minµ E
h
(1 + µX)2

i ¡ 1: (28)

The quadratic utility function has a bliss point at µX = 1; having
more wealth than 1 actually lowers the expected utility. The optimal
wealth will not extend beyond the bliss point if and only if µ̂X · 1;
that is if

xmaxE [X] · E
h
X2
i
; (29)

where xmax , ess supX is the highest excess return. If (29) is violated
then the one-to-one relationship (27) between expected utility and
Sharpe ratio tells us that the Sharpe Ratio of X cannot be a good
measure of investment opportunities because by throwing some money
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θXθX=1

U(θX)

Figure 2. Quadratic utility has a bliss point

away in the states where µ̂X > 1 the Sharpe Ratio of X will actually
increase. More speci…cally, we can replace the original excess return
distribution X with a distribution Xcap capped at a …xed value xcap:
Initially xcap is set at xmax and condition

xcapE [Xcap] · E
h
X2
cap

i
(30)

is not satis…ed. By lowering xcap we increase the Sharpe Ratio of the
capped distribution and make the di¤erence between the left hand side
and the right hand side in condition (30) smaller. The Sharpe Ratio of
the capped distribution reaches its maximum just when

xcapE [Xcap] = E
h
X2
cap

i
: (31)

At this point we have decomposed X into a pure Sharpe Ratio part
Xcap and the pure arbitrage part X ¡Xcap.

EXAMPLE 4. Consider a security with the following distribution of
excess return X:
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Table II. Distribution of excess
return

x -1% 1% 11%

Pr(X = x) 1
6

1
2

1
3

For the Sharpe Ratio we have

E [X] = 4

Var [X] =
25

6
+
9

2
+
49

3
= 25

h(X) =
4p
25
= 0:8:

Let us now see whether the bliss point condition (29) is violated. To
this end

xmaxE [X] = 11£ 4 = 44;
whereas

E
h
X2
i
= Var [X]¡ (E [X])2 = 25¡ 16 = 9;

which means that the condition is indeed violated and one can in-
crease the Sharpe Ratio by putting some money aside. Guessing that
the truncation point will occur at xcap > 1% we can write the bliss
point condition (31) as

xcap

µ
1

6
£ (¡1) + 1

2
£ 1 + 1

3
£ xcap

¶
=

µ
1

6
£ (¡1)2 + 1

2
£ 12 + 1

3
£ x2cap

¶
:

Solving for xcap we …nd xcap = 2 and

hA(X) = h(Xcap) =
E [Xcap]r

E
h
X2
cap

i
¡ (E [Xcap])2

=

=
1q

xcap
E[Xcap]

¡ 1
=

1q
2
1 ¡ 1

= 1

The arbitrage-adjusted Sharpe Ratio is 1 compared to the standard
Sharpe Ratio of 0:8. The pure Sharpe Ratio part of excess return X
is

Xcap = [¡1% 1% 2%]
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and the pure arbitrage part is

XA = [0% 0% 9%].

Figure 3 shows a slice of the 3D space of excess returns in the plane
x1 + x2 + x3 = 1; it is, so to speak, bird’s-eye view of the market from
direction (1,1,1). The set of arbitrage opportunities (positive octant)
appears as a dark grey triangle, the set of Sharpe Ratios greater than
1.0 appears as the medium grey circle and the Sharpe Ratios greater
than 0.8 are inside the outer light grey circle. The decomposition into
pure Sharpe Ratio and a pure arbitrage opportunity is captured as a
movement from the original excess return X with low Sharpe Ratio to
the truncated excess return Xcap with high Sharpe Ratio, away from the
arbitrage opportunity XA. The Arbitrage-Adjusted Sharpe Ratio of X
is de…ned as the Sharpe Ratio of Xcap.

XA

X

X cap

Figure 3. Illustration to Arbitrage-adjusted Sharpe Ratio: Movement from X to-
wards Xcap, away from the arbitrage opportunity XA, leads to higher Sharpe Ratio
(circle with smaller radius).

Truncated quadratic utility formalises the ‘throwing money away’
procedure. With truncated utility one is neither rewarded nor penalised
for achieving wealth levels above the bliss point, thus the excess return
is e¤ectively capped at a level where µX = 1:
Namely

max
µ
¡E

h
(max(1¡ µX; 0))2

i
=
(E [Xcap])

2

E
h
X2
cap

i ¡ 1 = ¡ 1

1 + h2(Xcap)
;

(32)
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θXθX=1

UTQ(θX)

Figure 4.

where

Xcap = min

µ
X;
1

µ̂

¶
(33)

with µ̂ being the optimal portfolio weight in (32). The …rst order con-
ditions in (32) correspond exactly to

xcapE [Xcap] = E
h
X2
cap

i
:

Appendix B shows that the above argument works with E [X] > 0. For
E [X] < 0 the value xmax in condition (30) has to be replaced with
xmin ´ ess infX and the truncation proceeds from below.
We have argued intuitively that the Sharpe Ratio of Xcap is the

arbitrage-adjusted Sharpe Ratio ofX. Equation (32) then suggests how
to de…ne hA(X) using the truncated quadratic utility

h2A(X) ,
1

minµ E [max(1 + µX; 0)2]
¡ 1: (34)

The obvious advantage of (34) is that it can be used with multiple
assets, whereas the intuition of ‘throwing money away’ only works with
one asset.
The proposition below shows that the Cochrane and Saá-Requejo

set of good deals can be described by an upper bound on the arbitrage-
adjusted Sharpe Ratio.
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PROPOSITION 5. The convex hull of fXjh(X) ¸ ¹hg and fXjX ¸
0g coincides with fXjhA(X) ¸ ¹hg [ fXjX ¸ 0g: Graphically, if the
medium grey circle in Figure 3 is described by h(X) ¸ ¹h then the
area delineated by the black contour in the same Figure is described by
hA(X) ¸ ¹h.
Proof. Denote by B the convex hull of fXjh(X) ¸ ¹hg and fXjX ¸

0g; and let C = fXjhA(X) ¸ ¹hg [ @fXjX ¸ 0g: If X 2 B then there
is XA ¸ 0 and Xh with h(Xh) ¸ ¹h such that X = XA +Xh. By virtue
of (26) and (28) h(Xh) ¸ ¹h implies

¹h2 · 1

E
h
(1 + µ̂Xh)2

i ¡ 1
for µ̂ = ¡ E [Xh]

E
£
X2
h

¤ :
Because the truncated utility is non-decreasing we have E

h
(1 + µ̂Xh)

2
i
¸

E
h
max(1 + µ̂ (Xh +Xa) ; 0)

2
i
, therefore

¹h · 1

E
h
max(1 + µ̂X; 0)2

i ¡ 1 · 1

minµ E [max(1 + µX; 0)2]
¡ 1 = hA(X)

and we have shown X 2 B ) X 2 C:
Conversely, assume X 2 C: Then either X 2 fXjX ¸ 0g (X lies in

the positive orthant) and then trivially X 2 B; or X 62 fXjX ¸ 0g and
then by virtue of Theorem 2, part 1. there is …nite µ̂ such that h2A(X) =

1
E[max(1+µ̂X;0)2]

¡ 1: By virtue of (32), (33) we obtain a decomposition
X = Xcap +XA such that h(Xcap) = hA(X) ¸ ¹h and XA ¸ 0; proving
that X 2 B:

Table III shows that standard Sharpe Ratio of 2:0 may seriously
underestimate the true investment potential if the excess returns have
high dispersion, whereas at the value of 0.5 this di¤erence is negligible.
The table shows arbitrage-adjusted Sharpe Ratios hA against standard
Sharpe Ratios for log-normally distributed returns. Because the returns
are unbounded from above, the standard Sharpe Ratio is not an ap-
propriate measure of risk. The di¤erence between the AASR and SR
is reported in the last column. The necessary calculations are given in
the Appendix B.
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Table III. Di¤erence between hA and h for lognormal
risky return. hA arbitrage-adjusted Sharpe Ratio, h
standard Sharpe Ratio, ¹R expected risky return, R
risk-free return, ¾ return volatility

¹R R ¾ h hA %error hA¡h
h

1.04 1.02 0.04 0.5 0.502 0.5%
1.06 1.02 0.08 0.5 0.503 0.6%
1.18 1.02 0.16 0.5 0.512 2.4%
1.04 1.02 0.02 1.0 1.085 8.5%
1.06 1.02 0.04 1.0 1.093 9.3%
1.18 1.02 0.08 1.0 1.140 14.0%
1.06 1.02 0.02 2.0 3.675 83.7%
1.10 1.02 0.04 2.0 3.824 91.2%
1.34 1.02 0.08 2.0 4.845 142.3%

3.2. Family of CRRA utility functions

Recall from (21) that the duality between pricing kernels and certainty
equivalent gains in this case reads

Et¡1
·
m
1¡ 1

°

tjt¡1

¸
=

µ
1 +

Aa

°

¶ 1
°
¡1
: (35)

The asymptotic relationship between certainty equivalent and Sharpe
Ratio is Aa = h2

2 which yields

Et¡1
·
m
1¡ 1

°

tjt¡1

¸
=

Ã
1 +

h2°
2°

! 1
°
¡1
: (36)

By virtue of (25) all the generalised Sharpe Ratios h° de…ned by (36)
have the same asymptotic behaviour for small values. It remains to
check the consistency of this de…nition with the de…nition of the Arbitrage-
Adjusted Sharpe Ratio, for which the duality is

Et¡1
h
m2tjt¡1

i
= 1 + h2A:

Recall that quadratic utility has ° = ¡1; substituting this value into
equation (36) we obtain

Et¡1
h
m2tjt¡1

i
=

Ã
1¡ h

2¡1
2

!¡2
;
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and it is clear that h¡1 from (36) is not equal to hA even though
asymptotically they are the same. Fortunately, there is an easy way
out to achieve h¡1 = hA. It is enough to realise that asymptoticallyÃ

1 + ·
h2°
2°

! 1
·

¡
1
°
¡1
¢
=

Ã
1 +

h2°
2°

!¡ 1
°
¡1
¢
+ o(h2°)

for all ·: There are many choices of ·(°); for example · = ¡2 or · = 2°;
such that h¡1 = hA: A good way to pinpoint the ‘right’ value of · is to
look at the time scaling properties of the standard Sharpe Ratio and
to compare them with the time scaling properties of the Generalised
Sharpe Ratio h°; see Section 6. It turns out that one needs · = 2°:
The discount factor restrictions then become³

1 + h2°basis

´ 1¡°
2°2 · E

·
m

°¡1
°

¸
·
³
1 + h2°

´ 1¡°
2°2 (37)

1

2
ln
³
1 + h21basis

´
· ¡E

h
lnmtjt¡1

i
· 1

2
ln
³
1 + h21

´
: (38)

Comparing (37) with (21) and using the de…nition of certainty equiv-
alent gain we obtain the computational de…nition of CRRA Sharpe
Ratio for a given excess return X

1 + h2°(X) =

µ
max
¸
E
h
(1 + ¸X)1¡°

i¶ 2°
1¡°

for 0 < ° < 1

1 + h2°(X) = e2max¸ E ln(1+¸X) for ° = 1

1 + h2°(X) =

µ
min
¸
E
h
(1 + ¸X)1¡°

i¶ 2°
1¡°

for 1 < °:

These de…nitions naturally extend to ° < 0 if the CRRA utility is
truncated at the value of zero

U(V ) = ¡
¡
¹V ¡ V ¢1¡°
1¡ ° for V < ¹V

U(V ) = 0 for V ¸ ¹V

1 + h2°(X) =

µ
min
¸
E
h
max(1 + ¸X; 0)1¡°

i¶ 2°
1¡°

:
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3.3. Negative exponential utility

Interestingly, there is a special case where the relationship h2 = 2Aa
holds for large certainty equivalent gains. By inverting the no-good-
deal restriction (10) for negative exponential utility with an arbitrary
random excess return X one obtains

a(X) = ¡ 1
A
ln

µ
¡max

µ
¡E

h
e¡AµX

i¶
= ¡ 1

A
ln

µ
min
µ
E
h
eµX

i¶
:

Hodges (1998) points out that for a normally distributed excess return
X we have identically

1

2
h2(X) = ¡ ln

µ
min
µ
E
h
eµX

i¶
; (39)

where h(X) is a standard Sharpe Ratio, and consequently Hodges uses
equation (39) to de…ne the Generalised Sharpe Ratio hE for an arbitrar-
ily distributed excess return. The maximum Exponential Sharpe Ratio
is hence related to the maximum certainty equivalent gain through (25)

1

2
h2E = Aa;

and one can write the state price restriction (20) in a scale-free form

1

2
h2E(basis) · E [m lnm] ·

1

2
h2E :

4. Two numerical examples

4.1. The relationship between one-period and multi-period
model

Let us have a …ltered probability space (­;F ;P; fFtgt=0;1;::: ;T ) with
Et [:] denoting the expectation conditional on the information at time
t: We assume ­ …nite. There are n risky securities with Rn-valued
processes S and D denoting their price and dividends respectively in
money terms. Suppose that there is short-term riskless borrowing at a
bounded rate rt, that is an agent can borrow one unit of the numeraire
in period t at the known rate rt and repay (1 + rt) > 0 units of the
numeraire in the next period. It is natural to assume that the …ltration
fFtgt=0;1;::: ;T is generated by the processes S;D; r:
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Let µ be an Rn-valued portfolio process for ‘risky securities’. If an
agent uses self-…nancing strategies her wealth Vt evolves over time as
follows

Vt = (1 + rt¡1)Vt¡1 + µt¡1Xt (40)

Xt = St +Dt ¡ (1 + rt¡1)St¡1; (41)

where Xt
St¡1 can be interpreted as excess return when St¡1 6= 0. No

arbitrage means that there is a strictly positive Ft-measurable variable5
mtjt¡1 with Et¡1

h
mtjt¡1

i
= 1 such that

Et¡1
h
mtjt¡1Xt

i
= 0 ,

that is with arti…cial probabilities de…ned by mtjt¡1 the discounted
wealth process is a martingale between t¡ 1 and t

Et¡1
h
mtjt¡1Vt

i
= (1 + rt¡1)Vt¡1 .

Now if we de…ne unconditional change of measure mT as

mT = m1j0 £m2j1 £ : : :£mT jT¡1
then from the law of iterated expectations E0 [mT ] = 1 and we can
de…ne a new probability measure Q

dQ

dP
= mT .

It is useful to note that the density process mt

mt ´ Et [mT ] = m1j0 £m2j1 £ : : :£mtjt¡1
is related to the conditional change of measure as follows

mtjt¡1 =
mt
mt¡1

: (42)

In a dynamic model the good-deal equilibria can be imposed in two
ways, either as instantaneous restrictions of the Cochrane and Saá-
Requejo type where the price bounds are evaluated in every period, or

5 The variable mtjt¡1 can be visualised as the ratio between one-step risk-neutral
probabilities and one-step objective probabilities at every node of a multinomial
tree at time t¡ 1: The ratio mtjt¡1

1+rt¡1 is known under a score of names: Intertemporal
Marginal Rate of Substitution, stochastic discount factor, pricing kernel, or state
price density.
Since there are …nitely many securities the marketed subspace is …nite dimensional

and then by Theorem 6 in (Clark, 1993) a strictly positive valuation operator exists
which is nothing else than the conditional change of measure mtjt¡1.
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as unconditional bounds whereby one assumes a …xed position in the
focus asset at the beginning and thereafter only dynamically trades in
the basis assets, as in Hodges (1998). In this paper we will discuss the
former approach.
By CT let us denote an FT -measurable random variable representing

the payo¤ of a derivative security. We say that the F-adapted processes
fCHt (¹a)g; fCLt (¹a)g de…ned by

CHt (¹a) , supfpjat
³
Xt+1; C

H
t+1 ¡ (1 + r)p

´
· ¹ag

CLt (¹a) , inffpjat
³
Xt+1; C

L
t+1 ¡ (1 + r)p

´
· ¹ag

CLT (¹a) , CHT (¹a) , CT

are the instantaneous good-deal bounds. From the Theorem 3 we have

CHt = sup

8<:Et
h
mt+1jtCHt+1

i
1 + rt

¯̄̄̄
¯̄Et hmt+1jtXt+1i = 0; at(mt+1jt) · ¹a

9=;
CLt = inf

8<: Et
h
mt+1jtCLt+1

i
1 + rt

¯̄̄̄
¯̄Et hmt+1jtXt+1i = 0; at(mt+1jt) · ¹a

9=; :
Here the one-step conditional change of measure mt+1jt assumes the
role of m from the one-period model and at(Xt+1) is de…ned in the
natural way from (10)

U [(1 + rt)Vt + at(Xt+1)] , sup
µt

Et [U ((1 + rt)Vt + µtXt+1)] :

4.2. Pricing with Logarithmic Sharpe Ratio

This is a simple example set up in such a way that the price bounds can
be computed in Excel6 without using Visual Basic. Consider a model
with a constant risk-free rate r = 5% p.a. where the expected rate of
return on the stock is 10% p.a. and annual volatility is 20%. The stock
price moves in a recombining trinomial lattice calibrated to the stated
volatility and expected return with logarithmic upstep u = 0:035: Each
time period represents one week and stock returns are by assumption
independent. Our aim is to price an at-the-money European call option
with strike price K = 100 and 6 weeks to maturity: The calibrated
objective probabilities of movement in the lattice are p1 = 0:348; p2 =
0:350; p3 = 0:302 for the upstep, middle and downstep respectively.

6 Spreadsheet available from author’s web site.
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We assume that the above model is a true representation of stock
price movements rather than an approximation to a di¤usion model.
Then, in the absence of other securities, the market is incomplete and
the no-arbitrage price of the option is not unique. More speci…cally, the
risk-neutral probabilities q = (q1; q2; q3) have one free parameter, and
satisfy 0@ q1(®)q2(®)

q3(®)

1A =
0@ 0:3410:333
0:325

1A+ ®
0@ 0:378
¡0:770
0:392

1A
with ¡0:830 < ® < 0:433 parametrizing the range of no-arbitrage
pricing kernels.
The maximum logarithmic Sharpe Ratio in the absence of the option

can be found by minimizing7 the central expression in equation (22)

min
®¡0:830<®<0:433

¡
3X
i=1

pi ln
qi(®)

pi

which gives ®̂ = ¡0:0224, q̂ = (0:3329; 0:3505; 0:3166) and¡P3
i=1 pi ln

qi(®̂)
pi

=

0:00065: From expression (38) the basis logarithmic Sharpe Ratio is

h1basis =

vuutexpÃ¡2 3X
i=1

pi ln
qi(®̂)

pi

!
¡ 1 = 0:0361

weekly, equivalent to 0.573 per annum.
To decide which discount factors are admissible in equilibrium after

the option is introduced, we must decide what level of Sharpe Ratio
constitutes a good deal. One can either target an absolute level of
Sharpe Ratio, say 2:0 p.a., or use a relative measure of c times the
basis Sharpe Ratio, that is only those risk-neutral probabilities are
admissible which satisfy

¡
3X
i=1

pi ln
qi(®)

pi
· ln(1 + (c h1basis)2): (43)

We take c = 2 and …nd numerically

¡0:0615 · ® · 0:0157. (44)

7 Alternatively, one can solve the primal portfolio problem

max
¯
E ln

£
¯R+ (1¡ ¯)Rf¤

where R is the risky return and Rf is the risk-free return.



26 A. µCerný

The admissible risk-neutral probabilities are a convex combination of
vectors qL and qU corresponding to the lower and upper bound on ®
in (44)

qL =

0@ 0:31810:3806
0:3013

1A qU =

0@ 0:34730:3211
0:3315

1A : (45)

With this range of discount factors we can price our option, bearing
in mind that at every node of the lattice we have to keep track of the
highest and lowest no-good-deal price CHt and CLt

CHt =
max(EqLt

h
CHt+1

i
;EqUt

h
CHt+1

i
)

1:00407

CLt =
min(EqLt

h
CLt+1

i
;EqUt

h
CLt+1

i
)

1:00407

CH5 = CL5 = (S5 ¡K)+

The results are reported in a spreadsheet (Figure 5) with the middle
price being the unique price which would result from taking c = 1: This
price coincides with representative equilibrium price of the option for a
representative agent with logarithmic utility of terminal wealth.
It is interesting to note that at t = 5 the option is a redundant asset

in all states but one. The e¤ect of this state, however, spreads quickly
and at t = 2 the option is not redundant in any state. The option price
bounds for di¤erent values of c are summarised in Table IV. The value
c = +1 corresponds to the no-arbitrage (super-replication) bounds.

Table IV. No-good-deal option price bounds

multiple of basis GSR c = 1 c = 2 c = 4 c = 10 c = +1
implied GSR p.a. (h1) 0:57 1:15 2:29 5:73 +1

CL0 3.02 2.95 2.86 2.60 0.58

CH0 3.02 3.08 3.16 3.33 3.57

4.2.1. Graphical representation of good-deal state prices
The good-deal discount factors corresponding to di¤erent values of c
are displayed in Figure 6. The triangle contains all no-arbitrage risk-
neutral probabilities for the three states, with the objective probability
corresponding to the point P: The risk-neutral probability measures
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t=6

23.37
t=5 23.37

23.37
19.22 19.12

t=4 19.22 19.12
19.22 19.12

15.22 15.12 15.03
t=3 15.22 15.12 15.03

15.22 15.12 15.03
11.36 11.26 11.17 11.07

t=2 11.36 11.26 11.17 11.07
11.36 11.26 11.17 11.07

7.88 7.67 7.44 7.35 7.25
t=1 7.86 7.65 7.44 7.35 7.25

7.84 7.63 7.44 7.35 7.25
5.09 4.79 4.46 4.13 3.66 3.56

t=0 5.04 4.75 4.43 4.10 3.66 3.56
4.99 4.70 4.39 4.07 3.66 3.56

3.08 2.79 2.46 2.11 1.67 1.24 0.00
3.02 2.73 2.41 2.06 1.63 1.18 0.00
2.95 2.66 2.35 2.01 1.59 1.13 0.00

1.28 1.01 0.72 0.43 0.00 0.00
1.23 0.96 0.68 0.39 0.00 0.00
1.17 0.92 0.64 0.36 0.00 0.00

0.30 0.149 0.00 0.00 0.00
0.27 0.13 0.00 0.00 0.00
0.25 0.11 0.00 0.00 0.00

0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

0.00 0.00
0.00 0.00
0.00 0.00

0.00
0.00
0.00

Figure 5. Option price bounds with c = 2.

which give less than 4 times the basis logarithmic Sharpe Ratio, that is
those which satisfy equation (43) with c = 4, are contained in the oval
area8 ¾2 and those which only give double of the basis Sharpe Ratio

8 Note that, unlike in the case of bounded utility functions, the no-good-deal
state prices derived from the log utility are strictly inside the no-arbitrage triangle
for all c < +1. Consequently, the no-good-deal price bounds are strictly sharper
than the no-arbitrage price bounds for all c < +1.
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are within the smaller oval area ¾1: The segment A1A2 contains all the
no-arbitrage risk-neutral measures that are consistent with the stock
returns, and among those measures segments B1B2 and C1C2 represent
the good-deal risk-neutral probabilities consistent with c = 4 and c = 2
respectively.

 

1 , 0 , 0 

0 , 0 , 1 

0 , 1 , 0 
P A 1 

A 2 
B 1 B 2 C 1 C 2 

σ 1 
σ 2 

Figure 6. Admissible good-deal risk-neutral probabilities. Points C1 and C2 corre-
spond to qL and qH from equation (45).

4.3. FTSE 100 Equity Index Option pricing

This is a heavy duty version of the trinomial tree model above. Here
we use a 50-nomial tree calibrated to historical weekly returns of FTSE
100 index in the period 2/1/84 to 1/11/2001. We use a range of CRRA
utility functions with ° = §0:25;§0:5;§1;§2;§5;§50: Starting value
of the index is 5100 and the call option is 5% out of the money with
six weeks to maturity and hedging once a week. Unlike the trino-
mial implementation, this model has a high degree of incompleteness,
consequently the bounds are computed directly from the primal util-
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0.25 -0.25
0.228 0.229

multiple of basis GSR 1 2 4 10 infty multiple of basis GSR 1 2 4 10 infty

lower price bound 32.44 28.78 25.30 17.56 0.00 lower price bound 31.84 25.38 11.07 0.00 0.00
upper price bound 32.44 39.61 58.83 156.46 474.71 upper price bound 31.84 36.09 40.52 53.25 474.71

0.5 -0.5
0.230 0.230

multiple of basis GSR 1 2 4 10 infty multiple of basis GSR 1 2 4 10 infty

lower price bound 32.29 28.42 24.56 16.52 0.00 lower price bound 32.00 26.81 17.80 0.00 0.00
upper price bound 32.29 37.60 48.57 105.75 474.71 upper price bound 32.00 36.38 41.33 54.24 474.71

1 -1
0.230 0.230

multiple of basis GSR 1 2 4 10 infty multiple of basis GSR 1 2 4 10 infty

lower price bound 32.22 28.19 24.01 15.28 0.00 lower price bound 32.08 27.49 22.22 10.80 0.00
upper price bound 32.22 37.11 44.89 78.60 474.71 upper price bound 32.08 36.57 41.99 56.58 474.71

2 -2
0.230 0.230

multiple of basis GSR 1 2 4 10 infty multiple of basis GSR 1 2 4 10 infty

lower price bound 32.18 28.05 23.67 14.39 0.00 lower price bound 32.11 27.70 22.76 12.08 0.00
upper price bound 32.18 36.94 43.77 68.47 474.71 upper price bound 32.11 36.68 42.43 58.72 474.71

5 -5
0.230 0.230

multiple of basis GSR 1 2 4 10 infty multiple of basis GSR 1 2 4 10 infty

lower price bound 32.16 27.96 23.43 13.77 0.00 lower price bound 32.13 27.77 23.06 12.83 0.00
upper price bound 32.16 36.85 43.27 64.29 474.71 upper price bound 32.13 36.75 42.75 60.60 474.71

gamma 50 -50
basis GSR 0.230 0.230

multiple of basis GSR 1 2 4 10 infty multiple of basis GSR 1 2 4 10 infty

lower price bound 32.15 27.90 23.28 13.36 0.00 lower price bound 32.15 26.33 22.23 12.77 0.00
upper price bound 32.15 36.80 43.02 62.41 474.71 upper price bound 32.15 36.79 42.97 62.05 474.71

gamma
basis GSR

gamma
basis GSR

gamma
basis GSR

gamma
basis GSR

gamma
basis GSR

gamma
basis GSR

gamma
basis GSR

gamma
basis GSR

gamma
basis GSR

gamma
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gamma
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Figure 7. FTSE 100 equity index option price bounds implied by levels of CRRA
Generalised Sharpe Ratios for di¤erent values of °:

ity maximisation problem. The required numerical procedures were
implemented in GAUSS9.
Figure 7 summarises the option price bounds for di¤erent values of °.

It is striking how robust these results are with respect to changes in °,
particularly for low levels of Sharpe Ratio and for j°j ¸ 1. For example,
at double the basis Sharpe Ratio (roughly 0.5 p.a.) the Cochrane and
Saá-Requejo bounds are (° = ¡1) [27:49; 36:57] , log-utility bounds
(° = 1) are [28.19,37.11], for ° = 5 the bounds are [27:96; 36:85]; for
truncated bicubic utility (° = ¡5) the bounds are [27:77; 36:75] etc.
Figure 8 describes the bounds implied by the negative exponential util-

9 Code available from author’s website.
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ity. Again the results point at robustness of Generalised Sharpe Ratios;
at double the basis Sharpe Ratio we obtain the bounds [27:89; 36:81].

basis GSR 0.230

multiple of basis GSR 1 2 4 10 infty

lower price bound 32.15 27.89 23.21 12.78 0.00
upper price bound 32.15 36.81 43.07 63.57 474.71

Exponential utility

Figure 8. FTSE 100 equity index option price bounds implied by levels of CARA
Generalised Sharpe Ratio

The price bounds appear to be largely invariant to the choice of
utility function. An interesting open question is how tight would the
bounds become with shorter rehedging intervals. Here we mean a limit
with jumps; it is well known that in a di¤usion limit with independent
and identically distributed returns the bounds collapse to the Black-
Scholes price.

5. Continuous time Brownian motion setting

In continuous time it is convenient to de…ne a cumulative return on one
unit of the numeraire invested in the bank account at the beginning
and thereafter rolled over until time t

Rt = exp

µZ t

0
rtdt

¶
.

The self-…nancing condition is written as

d
Vt
Rt
= d

pt
Rt
+
Dt
Rt
dt, (46)

and it is convenient to introduce the discounted gain process G

Gt =
pt
Rt
+
Z t

0

Ds
Rs
ds.

Suppose that the discounted gain process is an Itô process with stochas-
tic di¤erential equation

dGt = ¹tdt+ ¾tdB
P
t

where BPt stands for a vector of s uncorrelated Brownian motions under
objective probability measure P .
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The trick of risk-neutral pricing is to write dGt as

dGt = ¾t(ºtdt+ dB
P
t )

and then set

dBQt = ºtdt+ dB
P
t .

The process ºt is known as the market price of risk. It is a known result
that the density process10 mt for the unconditional change of measure
mT =

dQ
dP under which B

Q
t is a martingale

11 is given as

mt = exp

·
¡1
2

Z t

0
jjºsjj2ds¡

Z t

0
ºsdB

P
s

¸
: (47)

By analogy to equation (42) we have

mt+dtjt =
mt+dt
mt

= exp[¡1
2

Z t+dt

t
jjºsjj2ds¡

Z t+dt

t
ºsdB

P
s ]; (48)

that is the conditional change of measure is roughly speaking a lognor-
mal variable.

5.1. Instantaneous no-good-deal restrictions

PROPOSITION 6. The market price of risk ºt does not admit Sharpe
ratio of more than h

p
dt between time t and t+ dt if and only if

jjºtjj2 · h2 (49)

PROPOSITION 7. The market price of risk ºt does not admit cer-
tainty equivalent gain of more than adt for a utility function U from
time t until time t+ dt if and only if

1

2
jjºtjj2 · A(Vt)a (50)

where A(Vt) = ¡U 00(Vt)
U 0(Vt) is the coe¢cient of absolute risk aversion.

10 The density process mt and the discount factor ¤t used in Cochrane and Saá-
Requejo are related through ¤t = mt

Rt
.

11 The no-good-deal restrictions derived in (49) guarantee that the Novikov
condition

E0 exp

·Z T

0

jjºtjj2dt
¸
< +1

is satis…ed and hence the density process mt is a martingale as required.
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Proof. The proofs are stated in Appendix C.
Since our analysis was performed for small Sharpe Ratios and small

certainty gains it is natural that the bounds in restrictions (49) and (50)
correspond via (25). Proposition 7 shows that with Itô price processes
instantaneous restrictions coincide for all utility functions and therefore
for all Generalised Sharpe Ratios.

6. Time scaling of maximum attainable Sharpe Ratio

An interesting question is how the instantaneous no-good-deal restric-
tions a¤ect availability of high Sharpe Ratios over a longer time hori-
zon12. We will limit our attention to Hodges’s Exponential Sharpe Ratio
on the one hand and the CRRA family of Generalised Sharpe Ratios,
on the other hand. For these two cases we have

Et¡1
h
mtjt¡1 lnmtjt¡1

i
· 1

2
h2E

Et¡1
·
m

°¡1
°

tjt¡1

¸
·
³
1 + h2°

´1¡°
2°2 :

Recall that the Arbitrage-Adjusted Sharpe Ratio (truncated quadratic
utility) is a special case with ° = ¡1. For simplicity the risk-free interest
rate is assumed to be 0.

PROPOSITION 8. If the maximum Exponential Sharpe Ratio attain-
able over a short period dt is hE

p
dt then the maximum attainable

Exponential Sharpe Ratio over T periods is hE
p
T:

Proof. The best attainable deal over time interval [0; T ] is bounded
from above by

E0 [mT lnmT ] :

This expression can be written equivalently as

E0

"
mT lnmT¡4t +mT¡4t

mT
mT¡4t

ln
mT

mT¡4t

#

12 It is of course plausible that the actual upper bound on the long run Sharpe
Ratios is lower than the one implied by the instantaneous Sharpe Ratio restrictions.
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and using the law of iterated expectations we have

E0 [mT lnmT ] =

= E0
h
ET¡4t [mT lnmT¡4t] +mT¡4tET¡4t

h
mT jT¡4t lnmT jT¡4t

ii
=

· E0
·
mT¡4t lnmT¡4t +mT¡4t

1

2
h2E4t

¸
=

=
1

2
h2E4t+E0 [mT¡4t lnmT¡4t]

By induction then

E0 [mT lnmT ] <
1

2
h2ET

PROPOSITION 9. If the maximum °-Sharpe Ratio attainable over a
short time dt is h°

p
dt the maximum attainable °-SR over T periods isq

exp[h2°T ]¡ 1.
Proof. The best attainable deal over time interval [0; T ] is deter-

mined by

E0

·
m

°¡1
°

T

¸
= E0

·
m

°¡1
°

4tj0m
°¡1
°

24tj4t : : :m
°¡1
°

T¡4tjT¡24tm
°¡1
°

T jT¡4t

¸
=

= E0

·
m

°¡1
°

4tj0E4t
·
m

°¡1
°

24tj4t : : :ET¡24t
·
m

°¡1
°

T¡4tjT¡24tET¡4t
·
m

°¡1
°

T jT¡4t

¸¸¸
: : :

¸
·

·
µ
(1 + h2°4t)

T
4t
¶ 1¡°

°2 !
³
exp[h2°T ]

´ 1¡°
°2

This also shows that all CRRA Generalised Sharpe Ratios have the
same time scaling property.
Figure 9 compares the long run Sharpe Ratio restrictions implied

by the maximum instantaneous Sharpe Ratio equal to 1. The instan-
taneous Exponential Sharpe Ratio provides a sharper bound on the
attractiveness of a long term investment.

7. Limiting cases of good-deal price bounds

From the identity ¾tºt = ¹t it follows that the market price of risk has
a unique decomposition

ºt = ´t + Ãt
´t = ¾¤t (¾t¾

¤
t )
¡1¹t

´¤tÃt = 0:
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Figure 9. Maximum Exponential Sharpe Ratio (dashed line) and Arbi-
trage–Adjusted Sharpe Ratio (solid line) implied by instantaneous restrictions as
a function of investment horizon. Instantaneous Sharpe Ratio limit set equal to 1.

From here we can see that

jjºtjj2 = jj´tjj2 + jjÃtjj2 (51)

and ´ can be naturally called the minimal market price of risk13. The
minimal market price of risk naturally de…nes the minimal martingale
measure via (47).
The following proposition asserts that the good-deal price bounds

obtained from instantaneous state price restrictions lie between the
unique price determined by the minimal martingale measure and the
no-arbitrage super-replication bounds.

PROPOSITION 10. Consider a contingent claim CT and let us denote
CminNA and C

max
NA respectively its no-arbitrage price bounds, CminNGD(h) and

CmaxNGD(h) respectively its no-good-deal price bounds corresponding to
maximum instantaneous Sharpe Ratio h, and C0 its price determined
by the minimal martingale measure. Then

CminNA · CminNGD(h) · C0 · CmaxNGD(h) · CmaxNA

and

lim
jjÃjj!0

CminNGD(h) = lim
jjÃjj!0

CmaxNGD(h) = C0

lim
h!1

CminNGD(h) = CminNA

lim
h!1

CmaxNGD(h) = CmaxNA

13 The minimal market price of risk de…nes the minimal martingale measure via
(), see Schweizer (1991).
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Proof. The relationship between good-deal price bounds and no-
arbitrage price bounds can be read o¤ from Theorem 3.1.1 of El Karoui
and Quenez (1995). As for the relationship with the minimal martingale
measure, the martingale representation theorem under the minimal
martingale measure allows us to write the contingent claim CT uniquely
as

CT = C0 +

Z T

0
#tdGt +

Z T

0
¸tdBt;

¸t¾
¤
t = 0:

Using the Itô formula we …nd the expectation of CT under an arbitrary
equivalent martingale measure Q such that dQdP = mT

E0 [mTCT ] = C0 ¡E0
"Z T

0
mt¸

¤
tÃtdt

#
;

where

dmt = ¡mt(´t + Ãt)dBt
m0 = 1:

Consequently the lower no-good-deal price bound is obtained as

CminNGD(h) = min
jjÃtjj2·h2t¡jj´tjj2

C0 ¡ E0
"Z T

0
mt¸

¤
tÃtdt

#
· C0:

At the same time as ht & jj´tjj we have jjÃtjj ! 0 and CminNGD(h)! C0:
Analogous argument applies to the upper bound.
It is interesting to note that the minimal martingale measure has al-

ready been used to price non-redundant claims under stochastic volatil-
ity in Hofmann et al. (1992). For a closely related concept of local utility
maximisation and neutral prices see Kallsen (2002).

8. Conclusions

The paper provides a generalisation of the incomplete market pricing
technique of Cochrane and Saá-Requejo (2000) to good deals de…ned by
an arbitrary (increasing) smooth utility function. We have derived the
corresponding discount factor restrictions and linked these restrictions
to the availability of Sharpe Ratios and Generalised Sharpe Ratios. In
particular, we have extended the de…nition of the Sharpe Ratio from
quadratic utility to the entire family of CRRA utility functions and
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given a number of numerical examples that demonstrate robustness of
Generalised Sharpe Ratios. It is the author’s conviction that the Gen-
eralised Sharpe Ratios, thanks to their ability to handle skewed asset
returns, will become an indispensable performance evaluation tool for
modern portfolio managers. Last but not least, we have shown that for
Itô price processes the instantaneous good-deal price bounds coincide
for all reward-for-risk measures.

Appendix

A. Proofs of Theorems 2 and 3

LEMMA 11. Suppose j­j < 1; and U satis…es limx!¡1 x
U(x) = 0.

Every unbounded sequence of desirable claims has a subsequence with
a common direction, and this direction is strictly positive. Mathemati-
cally, if for a …xed a > 0 we have E [U(V0 + xn)] ¸ E [U(V0 + a)] for all
n and jjxnjj ! 1, then there is z ¸ 0; Pr(z > 0) > 0 and a subsequence
of fxng such that

n
xn
jjxnjj

o
! z:

Proof. Unit ball in a …nite-dimensional space is compact thereforen
xn
jjxnjj

o
must have a convergent subsequence. Denote its limit z: By

Lemma B.1 in µCerný and Hodges (2001) z ¸ 0; Pr(z > 0) > 0:

Proof of Theorem 2
1). By M0 denote the subspace of marketed excess returns

M0 , fµXjµ 2 Rng
For Z 2M0 de…ne a(Z) 2 R implicitly from

U(V0 + a(Z)) , E [U(V0 + Z)] :

Set

¹a , sup
Z2M0

a(Z)

0 < ¹a · +1:
By de…nition of supremum there is a sequence of marketed excess
returns fZng such that fa(Zn)g ! ¹a > 0. For large enough n we
will have a(Zn) > min( ¹a2 ; 1) which means that fZng is a sequence
of desirable claims. If fZng were unbounded, by Lemma 11 we could
…nd an arbitrage excess return z and a subsequence

n
Zn
jjZnjj

o
! z.

The marketed subspace M0 is …nite dimensional and therefore closed,
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furthermore Zn
jjZnjj 2 M0, implying z 2 M0 which contradicts the no-

arbitrage assumption. Thus fZng must be bounded. Then it must have
a convergent subsequence fZng ! z 2M0: The function a : Rm!R is
continuous which implies a(z) = ¹a < +1. We continue by proving two
key results, 1.5a) and 1.5b).
1.5) De…ne

f(µ; ¸; p) , E [U ((1 + r)V0 + µX + ¸ (Y ¡ (1 + r)p))]
g(p) , max

µ;¸
f(µ; ¸; p):

Property 1) guarantees existence of µbasis such that

max
µ
f(µ; 0; :) = f(µbasis; 0; :):

Moreover, by the argument in the proof of Theorem 4.1 c) in µCerný
and Hodges Y has a unique price pbasis such that

g(pbasis) = max
µ;¸

f(µ; ¸; pbasis) = f(µbasis; 0; p):

with

E
£
(Y ¡ (1 + r)pbasis)U 0 ((1 + r)V0 + µbasisX)

¤
= 0: (52)

Y is non-redundant if and only if it has a range of no-arbitrage prices
P1(Y ) , (p¡1; p1) such that p¡1 < p1 (this is a consequence of
Theorem 4.1 in µCerný and Hodges). From (52) we know that pbasis 2
(p¡1; p1) in cases U1) and U2), and pbasis 2 [p¡1; p1] in the case
U3). We claim that 1.5a) g(p) is strictly decreasing on (p¡1; pbasis]
and strictly increasing on [pbasis; p1);and 1.5b) g(p) is continuous on
P1(Y ) [ pbasis.
1.5a) i) For p¡1 < p < pbasis we have g(p) > g(pbasis): To show this

de…ne h(¸) , f(µbasis; ¸; p). Then by virtue of (52)

h0(0) = (1 + r) (pbasis ¡ p) E
£
U 0 ((1 + r)V0 + µbasisX)

¤
> 0: (53)

by strict monotonicity in cases U1) U2). In case U3) (53) still holds, be-
cause by assumption U3) in De…nition 1 E [U 0 ((1 + r)V0 + µbasisX)] =
0 would imply µbasisX > 0;which would mean arbitrage among basis
assets.
By Theorem 1.30 in Beavis and Dobbs (1990) U is continuously

di¤erentiable and therefore h is continuously di¤erentiable. A Taylor
expansion of the form

h(¸) = h(0) + ¸h0(»¸) for 0 < » < 1
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shows that for su¢ciently small ¸ > 0 we have h(¸) > h(0) and
consequently

g(p) ¸ h(¸) > h(0) = g(pbasis):
1.5a) ii) Now take p¡1 < p1 < p2 < pbasis. By 1. and 2. there are

µ2 and ¸2 such that

g(p2) = f(µ2; ¸2; p2): (54)

We claim ¸2 > 0; arguing by contradiction. ¸2 · 0 together with
monotonicity of U imply that f(µ2; ¸2; p2) is non-decreasing in p2

g(p2) = f(µ2; ¸2; p2) · f(µ2; ¸2; pbasis) · g(pbasis)
which contradicts 1.5a) i). With ¸2 > 0 f(µ2; ¸2; p2) is a strictly de-
creasing function of p2 (in case U3 we again appeal to De…nition 1) and
therefore

g(p2) = f(µ2; ¸2; p2) < f(µ2; ¸2; p1) · g(p1):
The proof for pbasis < p1 < p2 < p1 proceeds symmetrically.
1.5b) Take p¡1 < p · pbasis:Assume by contradiction limpn!p+ g(pn) <

g(p): By 1) there must be µ; ¸ such that g(p) = f(µ; ¸; p): Since f is
continuous in p we have g(p) =limpn!p+f(µ; ¸; pn) · limpn!p+ g(pn);
a contradiction. Assume now limpn!p¡ g(pn) = g(p)+ ± with ± > 0. By
1) there is a sequence fµn; ¸ng such that g(pn) = f(µn; ¸n; pn); and by
1.5a) ii) ¸n > 0. Fix " > 0 such that p¡ " > p¡1: For su¢ciently large
n we have pn > p¡" and g(pn) > g(p) and hence g(p) < f(µn; ¸n; pn) <
f(µn; ¸n; p¡"): Therefore fµnX+¸n(Y ¡(1+r)(p¡")g de…ne a sequence
of desirable claims. If this sequence were unbounded by Lemma 11 a
subsequence would have a strictly positive common direction implying
arbitrage in the market with excess returns X;Y ¡ (1 + r)(p ¡ ");
which would contradict p¡ " > p¡1: Hence the sequence of desirable
claims must be bounded, without loss of generality this implies fµn; ¸ng
bounded. Consequently fµn; ¸ng has a convergent subsequence with
limit µ; ¸: Since f is a continuous function of µ and ¸ we have

lim inf
pn!p¡

g(pn) = lim inf
pn!p¡

f(µn; ¸n; pn) < lim
pn!p¡

f(µn; ¸n; p¡ ") = f(µ; ¸; p¡ ")

Note that the sequence fµn; ¸ng is independent of the choice of " and
therefore µ; ¸ can be chosen independently of ". This means for any
small " we have

g(p) + ± = lim inf
pn!p¡

g(pn) < f(µ; ¸; p¡ ")
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For …xed µ and ¸; f(µ; ¸; p¡ ") is a continuous function of " hence
g(p) + ± · f(µ; ¸; p):

Finally, by de…nition f(µ; ¸; p) · g(p) which contradicts ± > 0:
2,3) In cases U1,2) by virtue of (52) pbasis 2 (p¡1; p1) and P¹a(Y ) is

non-empty for ¹a ¸ abasis. In case U3) it may happen that pbasis = p1
(or pbasis = p¡1) and then Pabasis(Y ) is empty. However, in such case
1.5a,b) imply that g(p) is continuous and decreasing on (p¡1; p1];hence
P¹a(Y ) has non-empty interior for ¹a > abasis: Convexity is a direct
consequence of 1.5a).
4) One cannot have a mis-priced redundant asset and a(X;Y ¡

(1 + r)p) …nite in either of the three cases U1,2,3). Thus redundant
assets command a unique price. For Y non-redundant the claim follows
directly from 1.5a,b).
5) Again, this is a direct consequence of 1.5a,b). In the case U1)

the absence of good deals already implies the absence of arbitrage (see
Lemma B.3 in µCerný and Hodges) and therefore P¹a(Y ) = fpjg(p) ·
E [U ((1 + r)V0 + ¹a)]g which is a closed interval, necessarily strictly
inside the open no-arbitrage price region.
6) By virtue of 1.5a,b). g(p) is continuous, and therefore …nite-

valued, on (p¡1; pbasis], thus for any p 2 (p¡1; pbasis] there is ¹a < 1
such that g(p) · E [U ((1 + r)V0 + ¹a)] and p 2 P¹a(Y ): Similarly for the
interval [pbasis; p1):
7) In cases U2,3) absence of good deals allows for some arbitrage

opportunities, but these arbitrage opportunities lie on the boundary
of the positive orthant (see Lemma B.2 in µCerný and Hodges), conse-
quently the no-good-deal price range may include the points p¡1 and
p1, but nothing beyond these points.
Proof of Theorem 3.
1) By Theorem 2, part 1) there is market portfolio z 2M0 such that

abasis = sup
Z2M0

a(Z) = a(z):

Function f : Rm!R;
f(Z) , E [U(V0 + Z)] (55)

is convex and continuous therefore the upper level set K , fZjf(Z) ¸
abasisg is convex and closed. Furthermore, the interior points of K do
not intersectM0. By Theorem 1.13 in Beavis and Dobbs (1990) there is
a hyperplane that separates K andM0, in other words there is a linear
functional ³ on Rm such that

³(M0) = 0 (56)
³(K) ¸ 0:
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Continuity of ³ implies

f(z +4V ) · f(abasis) = f(z) (57)

for all 4V such that ³(4V ) = 0: (58)

From (57) we deduce that ³ is strictly positive with probability 1.
By contradiction if ³ is not strictly positive with probability 1 then
there is 4V 2 Rm such that 4V ¸ 0;4V 6= 0 and ³(4V ) = 0:
Function f is strictly increasing, hence with this choice of 4V we have
f(z +4V ) > f(z) which contradicts (57). De…ne a complete market
pricing rule p

p(Y ) ,
Pm
i=1 ³iYi

(1 + r)
Pm
i=1 ³i

:

By virtue of (56) p prices correctly all the basis excess returns, and by
construction it prices correctly also the risk-free security. p is strictly
positive with probability 1, which implies no arbitrage in the completed
market. Finally, by virtue of (57) the completed market does not admit
good deals. Conversely, if there is no good deal in the completed market,
there cannot be a good deal among basis excess returns. Finally, in
the case U1) a complete market with abasis < 1 implies the absence
of arbitrage (see Lemma B.3 in µCerný and Hodges) and hence the
condition m > 0 is not necessary.
2) The same procedure as in part 1) proves existence of a non-

negative complete market price rule p consistent with basis assets,
consequently we have

P¹a(Y ) µ ~P¹a(Y ):

From the arbitrage theorem½
E [mY ]

1 + r

¯̄̄̄
E [mX] = 0;m > 0

¾
= (p¡1; p1)

and from the continuity

~P¹a(Y ) µ
½
E [mY ]

1 + r

¯̄̄̄
E [mX] = 0;m ¸ 0

¾
µ [p¡1; p1]: (59)

From the extension theorem ~P¹a(Y ) cannot contain prices inside P1(Y )
and outside P¹a(Y ); which together with (59) gives

~P¹a(Y ) µ P¹a(Y ) [ fp¡1g [ fp1g:
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B. Arbitrage-adjusted Sharpe Ratio

Suppose the excess return X has a piecewise absolutely continuous
cumulative distribution function F: From (34)

hA(X) =
1

min¸
R 1
¸¡1(1¡ 2¸x+ ¸2x2)dF (x)

¡ 1 for ¸ > 0: (60)

Let us examine the optimisation in the denominator. The integral is well
de…ned as long as

R 0
¡1 x

2dF (x) is …nite, thus a necessary and su¢cient
condition for its existence is …nite variance of X¡ , ¡min(X; 0). Let
us now calculate the formal derivatives with respect to ¸

@

@¸

Z 1
¸

¡1
(1¡ 2¸x+ ¸2x2)dF (x) = 2

Z 1
¸

¡1
(¡x+ ¸x2)dF (x) (61)

@2

@¸2

Z 1
¸

¡1
(1¡ 2¸x+ ¸2x2)dF (x) = +2

Z 1
¸

¡1
x2dF (x): (62)

By §7.3 Theorem 11 in Widder (1989) the interchanges of di¤erentia-
tion and integration are warranted. Equation (61) implies that withR+1
¡1 xdF (x) > 0 (60) attains global maximum at ¸¤ > 0. WhenR+1
¡1 xdF (x) < 0 truncation proceeds from the other end, formally
we apply the procedure above to ¡X.
If we realise that 1

¸ corresponds to xcap; the …rst order condition
(61) implies

xcap

Z xcap

¡1
xdF (x) =

Z xcap

¡1
x2dF (x); (63)

which can be restated in terms of the capped distribution as follows

xcap

·Z xcap

¡1
xdF (x) + xcap(1¡ F (xcap))

¸
=

Z xcap

¡1
x2dF (x) + x2cap(1¡ F (xcap));

xcapE [min(X;xcap)] = E
h
(min(X;xcap))

2
i
:

The same trick can be used to show that (60) is in fact equal to the
Sharpe Ratio of the capped distribution.
Our task now is to evaluate (63) for a lognormally distributed return.

Let us write

X = e¹+¾Z ¡ er;
where Z is a standard normal variable, r is risk-free rate of return,

expected risky return is e¹+
s2

2 and the variance of risky return is
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e2¹+2s
2 ¡ e2¹+s2 . We …rst recall an auxiliary resultZ zcap

¡1
e®+¯zd©(z) = e®+

¯2

2 ©(zcap ¡ ¯);

which follows easily by direct integration or by referring to Black-
Scholes formula. We apply this result repeatedly with

zcap =
ln(xcap + e

r)¡ ¹
¾

to obtain Z xcap

¡1
xdFX(x) =

Z zcap

¡1
(e¹+¾z ¡ er)d©(z) =

= e¹+
¾2

2 ©(zcap ¡ ¾)¡ er©(zcap)Z xcap

¡1
x2dFX(x) =

Z zcap

¡1
(e¹+¾z ¡ er)2d©(z) =

= e2¹+2¾
2
©(zcap ¡ 2¾)¡ 2er+¹+¾2

2 ©(zcap ¡ ¾) + e2r©(zcap):
The …rst order condition therefore reads

xcap

·
e¹+

¾2

2 ©(zcap)¡ er©(zcap)
¸
=

= e2¹+2¾
2
©(zcap ¡ 2¾)¡ 2er+¹+¾2

2 ©(zcap ¡ ¾) + e2r©(zcap):
To solve it one has to perform a straightforward numerical search over
xmax:

C. Continuous time limit

Proof of Proposition 6
Recall from (48)

mt+dtjt = exp[¡
1

2

Z t+dt

t
jjºsjj2ds¡

Z t+dt

t
ºsdB

P
s ]:

Assuming that ºs is constant in the time interval [t; t+ dt] we have

mt+dtjt = exp[¡
1

2
jjºtjj2dt] exp (¡ºtdBt) ;

where dBt is distributed normally with mean 0 and variance dt. From
the moment generating function of normal distribution we have

Et [exp (¡2ºtdBt)] = exp(2jjºtjj2dt)
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and consequently

Et
h
m2t+dtjt

i
= exp(jjºtjj2dt) = 1 + jjºtjj2dt+ o(dt) (64)

We can write the restriction (19) as

Et
h
m2t+dtjt

i
· 1 + h2dt

and evaluate the left hand side using the expression (64) to obtain

1 + jjºtjj2dt+ o(dt) · 1 + h2dt

jjºtjj2 · h2:

Proof of Proposition 7
De…ne process z¿ as follows

z¿ ´ mt+¿ jt = 1¡
Z t+¿

t
zsºsdBs;

that is z¿ represents the conditional change of measure starting at time
t. We know from (14) that the optimal wealth satis…es

Vt+dt = I(¸zdt);

and that ¸ is found from the condition

Et [zdtI(¸zdt)] = (1 + rtdt)Vt + o(dt)

Assuming that ºs is constant in the interval [t; t + dt] and using the
Itô’s formula we …nd

Et [zdtI(¸zdt)] = I(¸) +

µ
¸I 0(¸) +

1

2
¸2I 00(¸)

¶
jjºtjj2dt+ o(dt)

and hence

(1 + rtdt)Vt = I(¸) +

µ
¸I 0(¸) +

1

2
¸2I 00(¸)

¶
jjºtjj2dt+ o(dt) (65)

Now we use the Itô’s formula again to …nd Et [U(Vt+dt)]

d2

dz2
U (I(¸z)) = ¸2I 0(¸z) + ¸3zI 00(¸z)

Et [U(Vt+dt)] = U [I(¸)] +
1

2

³
¸2I 0(¸) + ¸3I 00(¸)

´
jjºtjj2dt+ o(dt)(66)

The good-deal restriction is

Et [U(Vt+dt)] · U ((1 + rtdt)Vt + adt)
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Substituting from expression (65) and using Taylor expansion we obtain

Et [U(Vt+dt)] · U (I(¸)) + U 0 (I(¸))
µµ
¸I 0(¸) +

1

2
¸2I 00(¸)

¶
jjºtjj2 + a

¶
dt+ o(dt)

Finally, substitution for Et [U(Vt+dt)] from equation (66) shows that
the good-deal restriction becomes

¡1
2
¸I 0(¸)jjºjj2 · a+O(dt): (67)

Di¤erentiating both sides of the identity U 0[I(¸)] = ¸ we obtain

U 00[I(¸)]I 0(¸) = 1

¡¸I 0(¸) = ¡U
0[I(¸)]

U 00[I(¸)]
:

Since equation (65) implies I(¸) = Vt +O(dt) we have

¡¸I 0(¸) = 1

A(Vt)
+O(dt)

and the good-deal restriction (67) is shown to be of the form

1

2
jjºtjj2 · A(Vt)a:
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