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The impact of diversity upon
common mode failures

Bev Littlewood
Centre for Software Reliability

City University
Northampton Square
London EC1V 0HB

Abstract

Recent models for the failure behaviour of systems involving redundancy and diversity
have shown that common mode failures can be accounted for in terms of the variability
of the failure probability of components over operational environments. Whenever such
variability is present, we can expect that the overall system reliability will be less than
we could have expected if the components could have been assumed to fail
independently. We generalise a model of hardware redundancy due to Hughes [Hughes
1987], and show that with forced diversity, this unwelcome result no longer applies: in
fact it becomes theoretically possible to do better than would be the case under
independence of failures.
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1 Introduction

Notions of redundancy and diversity are ubiquitous in the design of systems
which have demanding safety or reliability requirements. Whilst there is clear evidence
that these approaches can bring benefits when compared with unitary systems, these
benefits can be difficult to quantify. In particular, it is usually difficult to measure the
overall system reliability or safety when redundancy and/or diversity plays a rôle in
system design.

At the very simplest level, where components can be replicated and their failures
in operation can be assumed to be statistically independent, we know that we can build
arbitrarily reliable systems with arbitrarily unreliable components. Quite elementary
mathematics will allow the system reliability to be computed in terms of component
reliabilities. Unfortunately, even in this simple case of redundancy, such results are
little more than mathematical curiosities, since the assumptions of complete
independence are rarely (probably never) justified. We are therefore in practice forced
into estimating the effects of common mode failures. At a higher level of sophistication,
the use of design diversity as a means of masking failures caused by design faults in
complex systems introduces, as we shall see, novel and perhaps intractable problems.
In particular, there is overwhelming evidence that here also it is not possible to ensure
statistical independence in the failure processes of the different versions, and so once
again the effect of common mode failures must be taken into account in the assessment
of such a system.

For the most part, until quite recently, evidence for the practical efficacy of
redundancy and diversity, taking account of the possible common mode failures, relied
largely upon quite sparse empirical evidence. This relative paucity of data on common
mode failures resulted in a concentration upon qualitative guidance on the design and
operation of redundant systems, with only cursory treatment of a quantitative view at
system level [Bourne, Edwards et al. 1981]. Such a qualitative view has admittedly had
considerable success in achieving reliability: we know from operational experience that
some systems exhibit extraordinarily high reliability. But it does not help those
responsible for the assessment of the reliability and safety of particular systems before
they are put into operation.

 A typical pragmatic approach to the problem of quantification involves the β-
factor - the probability that if a failure occurs in one channel other channels are also
failed due to a common cause. Bourne et al [op cit] show the effect of common mode
failures upon system reliability. The efficacy of a redundant design is exemplified via
calculations based on a 2-out-of-3 system: the system failure rate is plotted against β-
factor for various values of the component reliability (probability of failure). An
important feature is the part of these plots that relates to those β-factor values for which
the authors claim that some data exist - between 0.07 and 0.4. The authors give the
example of a 2-out-of-3 system for which a system failure probability of better than
10-3 is required. They show that taking account of common mode failure possibilities
one would realistically need to have a component failure probability of better than
5x10-3; this compares with the component failure probability of only 1.8x10-2 that
would suffice if there were independence between the three components. The interest of
such calculations for us is that they show the seriousness of the problem when faced
with β-factors of the magnitude that one could, it appears, reasonably expect. Most
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importantly, they show that we must be able to estimate accurately the actual degree of
dependence between the different component failure processes before we can make
accurate estimates of the overall system reliability or safety.

There is an assumption in all this work involving the β-factor that such a factor
alone can capture the effect of common mode failure sources on the final system
reliability - essentially it is being assumed that failures due to common causes are
simply related to single channel failures via the β-factor. Is this reasonable? It could be
argued that the techniques used to increase reliability generally are also successful at
finding those faults that are common between channels. On the other hand, a more
conservative view might be that common faults are different in kind from single channel
faults. In the worst case then it might be that putting a lot of effort into increasing
channel reliabilities does not significantly improve that part of the total unreliability that
is due to common modes - essentially the β-factor is not constant, and the proportion of
common mode failures increases as component reliabilities increase. There seems little
hard evidence on this issue. Even in the case of software there is little agreement on the
question. It is often argued that the vulnerability to design faults in software is
influenced by how hard one has tried to eliminate these (extensiveness of testing, etc),
but there is hardly any quantitative evidence and we know even less about the effect of
common faults in diverse software versions. This is an area that will repay further
research effort, not least to resolve open questions of relative cost-effectiveness of
different design approaches.

The numerical example above illustrates the first important lesson here: with a
realistic assumption about the possibility of common cause failures, the system
reliability can be dramatically less than we could expect under the (incorrect)
assumption of independence. The assumptions that go into these results, it should be
said, are not particularly conservative; indeed, they are based upon real data, albeit of a
scanty nature. In [Bourne, Edwards et al. 1981] hardware systems are being discussed
throughout, but the picture is very much the same for software systems and there is
some evidence that things may even be worse. Experiments have been conducted
[Eckhardt, Caglayan et al. 1991; Knight and Leveson 1986] in which many diverse
versions have been developed and tested on many millions of input cases in order to
detect common faults. Dramatic differences were observed between actual achieved
system reliability for, say, a 2-out-of-3 system, and the nominal reliability that could be
expected under an assumption of independence.

In [Knight and Leveson 1986] there were several instances in which many of
their 27 versions shared common faults. Thus which three versions were chosen for a
2-out-of-3 system would determine the behaviour of the system when an input
triggered such version failures - the number of failed versions in the triplet could be
none, one, two or three. This brings us to the second cautionary observation here - that
there could be great uncertainty in the actual results to be obtained from a system in
which there is the possibility for common mode failures, even if we were able to be
confident of the benefits that might be achieved on average. If we are not in a position
to measure what has actually been achieved with the particular application of
redundancy or diversity, it seems vital that, at least in a safety-critical context, only
conservative assumptions should be allowed in claims about the reliability of such a
system.

Clearly there are large gaps in our understanding of some of the basic issues
here. We know that we would like to have independence of the failure behaviour of the
components in a redundant or diverse system, because this would allow us to carry out
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quite simple calculations to determine system reliability. If we cannot claim
independence, then we need to estimate the degree of dependence achieved for the
particular system under examination in order to compute its reliability. Unfortunately,
means of using information about system design in order to estimate this dependence
are very poor; and direct empirical evidence of common failures is, by its nature,
extremely sparse. The poor general understanding is illustrated well in the literature
concerning software diversity for fault tolerance, where until recently it was common to
use words like ‘independent’ and ‘diverse’ quite loosely: for example, it was said that
‘independent development’ of ‘diverse’ versions was a means to obtaining
‘independent’ failure behaviour in the versions. Before we can develop theories and
models that will allow us to predict system reliability in the presence of common mode
failures, we need to have a basic understanding of these fundamental concepts and their
relationships. We need to answer questions such as: what is diversity? are these
designs more diverse than those? how  diverse are these two designs? what diversity
can I expect by allowing designers complete freedom, but forbidding their
communication with one another? can I force greater diversity by insisting on ‘doing
things differently’? how does version diversity impact upon version failure behaviour?
In the past few years, formal models have been proposed that start to answer some of
these questions.

2 The effect of environmental variability upon common
mode failures

2.1 The models of Hughes and of Eckhardt and Lee

The first serious attempts to construct a formal model for common mode
failures were due to Hughes [Hughes 1987] and Eckhardt and Lee [Eckhardt and Lee
1985], who seem to have worked independently to arrive at similar models to
characterise the nature of failure dependence. Hughes discusses the problem in the
framework of hardware reliability, whereas Eckhardt and Lee (E&L) treat failures due
to design faults in software. The later work of Littlewood and Miller [Littlewood and
Miller 1989] extends the model of Eckhardt and Lee, and the main objective of the
present paper is to show that there is a similar extension to the Hughes model for
hardware.

The key notion in both the Hughes and E&L models is variability. In the
Hughes model, there is variability, from one operating environment to another, in the
probability that a particular type of component will fail. By ‘operating environment’,
Hughes has in mind a very general formulation that includes, for example, maintenance
policy. If we were to place more than one similar component in a redundant
architecture, in order to try to improve the reliability over what we could expect from a
single component, it is the nature of the distribution of this variability of failure
probability that determines how successful we would be. Very informally, the idea here
is as follows. Let us imagine that we have built a system from two similar components,
and the system works successfully if at least one component works. As an example
consider an emergency cooling system comprising two similar pumps: a demand upon
the system is satisfied if at least one of the pumps starts up successfully when the
demand occurs. Now we observe that one of the pumps has indeed failed: what do we
think is the chance that the other will fail? Under a naive assumption of independence of
failure behaviour between the two components, the probability that the second pump
will also fail is merely the marginal probability of failure of a pump. If this assumption
of independence were correct, then, we could expect a significantly greater reliability
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for the 1-out-of-2 system than for a single component alone: in fact a probability of
failure p2 instead of the single component probability of failure p.

In the Hughes model, we reason that, since the first pump has failed, this is
probably a stressful environment for all pumps of this type, and thus the second
component will be more likely to fail. At its worst, in this model each environment
could have the property that either all components fail, or all components work - in
which case knowledge that the first component had failed would mean it was certain
that the second component would fail, and thus so would the 1-out-of-2 system (Figure
1b).

In general, whenever there is variation of stressfulness between environments
(and it seems hard to conceive of circumstances where this is not the case) the 1-out-of-
2 system will have a reliability less than that given by the independence assumption: the
probability of system failure will lie somewhere between p and p2.

0              p                   1 

0.9

0.1

1.0

0              p                   1 0     0.1        p               1 

Figure 1a. The most
general formulation, in
which there is ‘continuous
variation’ of stressfulness
over environments.

Figure 1b.  The case when,
with probability 0.1, all
components of the same type
are certain to fail. In this case
the two-pump system has
exactly the same probability
of failure as a single pump
and redundancy brings no
advantage.

Figure 1c.  The case of
completely independent
failures. Here the two-pump
system has a probability of
failure 0.1x0.1, giving the
greatest benefit from
redundancy in this scenario.  

To be a little more formal about the model, we need to state carefully the nature
of the uncertainty in the various statements about probabilities. In the Hughes model,
let P fail | e( )  represent the probability that a particular type of component fails in a
particular environment, e . We could estimate P fail | e( )  by putting many such
components to work in this environment, and calculating the proportion that fail. Thus
P fail | e( )  can be thought of as a conditional probability - it is the probability that a
(randomly chosen) component will fail given that it is in operating environment e .
Now there are many (often an infinite number of) environments, and the selection of an
environment is itself a random process. If we have a mechanism that selects
environments for us, this induces a probability distribution on P fail | e( ) : say
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F p( ) ≡ P P fail |e( ) < p( ) . It is the shape of this distribution, and in particular its
variance, that determines the degree of success that will come from building redundant
systems from such components. The worst case, mentioned above, is one where all the
probability mass of F(p) is concentrated at 0 and 1, when no benefit at all is gained
from redundancy, since this guarantees that all failures of components will be
coincident ones. The case of independent failures is that where all the probability mass
is concentrated at some point between 0 and 1 (Figure 1c). In reality something
between these two extremes will be the case, and it would be reasonable to believe that
the probability will be spread over the whole interval (0,1) - in which case the precise
shape of this distribution will determine the efficacy of a redundant architecture (Figure
1a).

It is important to stress here the very different sources of uncertainty that are
represented by the different probabilities. When we talk of the probability
p = P fail |e( ) , we are referring to the uncertainty of failure behaviour between different
components of the same type in the same environment: even if we kept the environment
completely fixed, there would be uncertainty about the failure behaviour of individual
components. Thus we would not know for certain how different pumps would behave
under the same demand. The distribution F p( ) , on the other hand, deals with the
variation of this p  over different randomly selected environments. It concerns the
differing propensity of this type of component to succumb to different environments.
The variance of this distribution is the key: the greater this is, the greater the propensity
to failure commonality and thus the further we shall be from the ‘independence’ ideal.

In the E&L model the variation of ‘environment’ is replaced by variation of
‘inputs’, and this is somewhat more plausible in this software context. Also, instead of
redundancy (involving similar components), we here have diversity - different versions
of a program involving different designs. The informal arguments here are somewhat
similar to those of Hughes in the hardware redundancy case. It is assumed that there is
a large space of possible inputs, and that execution of the program in a particular
environment involves the selection of an input via a probability distribution over this
space. This probability distribution therefore represents the ‘operational’ environment1,
and will vary from one environment, or type of operation, to another. It is variation
within such an environment, of the ‘difficulty’ of an input, that is the key to the
modelling of failure dependence. Consider, for simplicity, the case of a 1-out-of-2
system, involving two diverse versions. If an input is selected, and version A fails to
execute that input correctly, what is the chance that version B will also fail, i.e. that the
system will fail? As in the Hughes model, the probability is greater than the marginal
probability of failure of a single version, which would be the case under a naive
assumption of failure independence. Here the reasoning is that the failure of A suggests
that the input was probably a ‘difficult’ one, and thus the chance of B failing is greater
than it otherwise would be. The underlying informal idea is that designing software
involves thinking of solutions to different problems, represented by different sets of
inputs, and that some of these problems represent greater intellectual challenges (and
thus scope for human error) than others. Consider, as an example, the case of a fly-by-

                                                

1 There is a potential confusion of terminology between the Hughes and Eckhardt and Lee models. In
E&L, ‘input’ plays the role that ‘environment’ plays in Hughes. However, it is usual in the
software context also to talk of the ‘environment’ in which a program operates: this is the space of
all inputs together with the probabilistic mechanism for selecting sequences of inputs during
operation.
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wire aircraft: the inputs being received during a landing in severe wind-shear would be
intrinsically harder to respond to correctly (i.e. would be intrinsically harder for the
designers of the different versions to program a correct response to) than those coming
from straight and level flight in perfect conditions.

Once again, it is necessary to spell out carefully the precise nature of the
randomness in order to understand what the different probabilities mean. For a
particular input x, the probability of a program failing is (in the E&L notation) x).
This can be thought of as the proportion, of all programs that could be written, that
would fail on this input. That this probability is a function of x is the key to the model
of dependency: if this probability is large (i.e. there is a tendency for many programs to
fail), then x is a ‘difficult’ input. In this model, the idea of operational environment
plays a different role from that in the Hughes model. Here the operational environment
is represented by the probability distribution over the different inputs, x, which in turn
induces a probability distribution on the probabilities of failure x); in E&L notation

we have G(  = P( x) < ). As before, it is the variance of this distribution that plays
an important role; the greater the variance, the greater the deviation from the kind of
failure behaviour that we would expect if the failures of the different versions were to
occur independently.

2.2 Discussion

Both models embody carefully thought out representations of key notions such
as ‘similarity’ and ‘independence’. By itself, this is a valuable service. In the software
literature, in particular, these words have been used heretofore in a rather cavalier
fashion: thus builders of fault-tolerant systems have said that the different versions
were developed ‘independently’, in order to create ‘independent’ versions that would
fail ‘independently’! In E&L (and in Hughes, although there things are stated less
explicitly) these different roles of independence (and thus, by inference, dependence)
are defined rigorously. First, there is the independence of the developments of the
different versions. This arises formally in E&L via random independent selection of the
program versions from the population of all programs - the distribution used for this
selection can be thought of as in some way characterised by the nature of the application
problem and perhaps of the development methods available. Thus in the model,
programs can be thought of as ‘similar’ in the sense that they can be regarded as
independent, identically distributed objects, so capturing the idea that the diversity
arises ‘naturally’ (we shall see later how this idea can be extended to embrace the notion
of forced diversity). Secondly, there is conditional independence of failure behaviour of
the versions: specifically, for any given input x the different versions fail
independently. Finally, there is the subtle implication of all this:  there is not
independence in the unconditional failure processes of the different versions. That is,
for a randomly selected input (i.e. for a future unknown input), the versions fail
dependently.

For all their mathematical similarity, however, there are some important
differences of interpretation in the two models. Informally, I hope to show that there is
‘more similarity’ between components in the Hughes model than there is between
versions in E&L, and the components in the Hughes model behave ‘more randomly’.

The Hughes model is concerned with redundancy in hardware. It treats the case
where nominally similar components - identical in design - are placed in the same
‘environment’. In the E&L model, on the other hand, the different ‘components’ -
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program versions - are known to be different in kind, i.e. in design. The purpose of
design diversity is precisely to make them differ in the hope that differences in design
will lessen the possibility of simultaneous failure, due to design faults, under particular
circumstances.

In the Hughes model, each component has a possibility of failure in the selected
environment: in the case of the pumps, for example, the ‘environment’ may be
represented by the physical conditions under which a demand for start-up occurs.
Within a particular environment, the failures of different components are independent
(i.e. they are conditionally independent). The randomness, or uncertainty as to whether
a failure of a particular component will occur, arises at least partly as a result of
unobserved ‘natural’ differences in the physical make-up of the components.

An issue that is not addressed in the Hughes model, and to which I shall return
in more detail in the next section, concerns the possibility of variation in failure
behaviour between components. It seems clear that a component will in general not
always behave the same when presented repeatedly with the same environment: for
example it may fail today in an environment in which it worked successfully yesterday.
This means that ‘probability of failure’ is a meaningful concept not only in terms of the
proportion of all components that might fail when each is presented singly with a
particular environment, as considered by Hughes, but also for a single component
when repeatedly presented with the same environment. Thus, as an example, we could
use a geometric distribution for the probability that a component used repeatedly, and
independently, in the same environment will succeed n times, and fail on the (n+1)th
trial. We could even, in the case where the probability of failure of a particular
component in a particular environment is unknown, carry out statistical inference as a
result of seeing a particular number of successful operations of the component in the
environment2. Most importantly, it is sensible to ask whether, for a particular
environment, all components will have the same probability of failure: it seems clear
that, in practice, this will not be the case. If so, the probability of failure discussed by
Hughes, P(fail|e), can then be thought of as an average, over the population of all
components, of these individual component probabilities of failure in the environment e
(see section 3). The precise nature of this average will depend upon the nature of the
(random) selection mechanism for choosing components: in many cases it will be
realistic to assume equally-likely selection.

In contrast to the Hughes model, in E&L each version, when presented with an
input, has a possibility of failure, but whether or not a failure actually occurs is, in a
sense, deterministic: thus a version that fails on a particular input will always  fail on
that input. The indeterminacy here arises only because we do not know, a priori,
whether a particular version is prone to fail on a new input. The ‘probability of failure’
here can only be thought of as the proportion of all programs that fail on that input; in
particular it does not make sense in this model, in contrast to Hughes’, to talk of the
probability of failure of a particular version on a particular input (such a ‘probability’ is
always either 1 or 0). That is, the uncertainty arises in E&L only via the process of
selection of the version: our uncertainty arises from our ignorance as to the properties -
in particular failure propensities over the input space - of the version. We can imagine

                                                

2 This observation does not require any notion of repairability: merely seeing n successes in n trials
allows us to infer something about the probability of failure, at least in the Bayesian framework. If,
in addition, we allow the component to be restorable to its original state by ‘repair’, we can
imagine a series of Binomial trials which allow the usual statistical inference, Bayesian or classical,
for the probability of failure. Of course, such inference will rarely be possible in practice.



The impact of diversity upon common cause failures 9

_____________________________________________________________________

(although it is a practical impossibility) knowing the outcomes (failure or success) of all
programs on all inputs, whereupon the model becomes completely deterministic; there
is no such completely deterministic case in the Hughes model.

Notice that the Hughes model does not rule out the possibility of a common
design fault causing all components to fail whenever they are required to operate in a
particular environment. This would be represented by there being non-zero probability
associated with the point p=1 in Figure 1. However, it is possible that even a design
fault will not always be certain to cause a particular component to fail each time a certain
environment is encountered, so some of the probability associated with the interval
(0,1) may also refer to design faults. Equally, two components with the same design
fault may not always fail together (there may be unexplained variation between them
that determines whether or not the design fault results in a failure in a particular
environment). Once again, this contrasts with the case of software, where it is
conventional to think of a common design fault in two versions as corresponding to a
set of inputs, all of which would fail both versions3.

The distinctions being made here are quite subtle, for example between
nominally similar components with hidden physical differences, on the one hand, and
deliberately different versions where these difference have unknown consequences, on
the other hand. However, important practical differences arise when we try to carry out
statistical inference on these models. In the Hughes case, it is likely that there will be
data available from a comparatively large number of components, operating in a
relatively small number of environments. In the case of E&L, there is likely to be data
from only a very small number of versions, but the number of possible inputs that
could be observed will be large. Even in the case of software diversity experiments
[Knight and Leveson 1986], involving ‘small’ problems, it is expensive to generate
many versions; for real problems it is likely that it would only be possible to study the
two or three versions that would eventually be used in a fault-tolerant architecture in the
final system. This clearly presents serious problems of inference, since the important
probabilities in E&L are defined only over the population of all programs.

2.3 Littlewood and Miller model

Both the Hughes and E&L models, in their different applications to hardware
and software, address the problem of common mode failures in circumstances when
there is a high level of ‘similarity’ in the redundancy or diversity that is present in the
system. Thus in Hughes, although not stated explicitly, it seems clear that it is the
intention to model the situation where components of identical type - i.e. design - are
placed in a redundant structure. In E&L, the different program versions will have
different designs, but these differences will have arisen, merely willy-nilly, as a result
of the use of different teams of designers being given the same specification - the
different programs can be regarded as independent, identically distributed random
objects. Most importantly, there is no attempt to force diversity by specifying that the
different teams do things in different, particular, ways; diversity merely arises as a
result of random selection4.

                                                

3 This conventional assumption is rather strong, even for software (and is not required within the
E&L model). One could imagine, for example, inputs on the ‘edge’ of the fault region where one
program fails and another succeeds as a result of other differences between them.

4 The detailed mechanism that is operating here is not modelled directly in E&L. Presumably it
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Littlewood and Miller [Littlewood and Miller 1989] generalise the E&L model
to represent the situation where diversity of design is forced upon the different
versions. Practical examples of such forced diversity might include stipulating that the
different development teams use different programming languages, different testing
methods, etc. Clearly, some discretion would need to be exercised in practice over the
extent to which diversity - and thus particular design solutions - would be imposed on
the developers. Intuitively, the idea here would be to try to force sufficient ‘deliberate’
diversity as to decrease the tendency for coincident failures, without introducing novel
opportunities for commonality via the inevitable extra commonality in the high-level
design.

For the simple 1-out-of-2 case, the L&M model assumes that there are two
different methodologies A and B which will be used to develop the two different
versions. We would like it to be the case that when there is a large probability of the
type-A program failing, there is a small probability of the type-B program failing - and
vice-versa. Specifically, it is assumed that the type-A program will have probability
PA(x) of failing on an input x, and the type-B program a probability PB(x). As before,
these probabilities can be thought of as the proportions of programs, from the
populations of all programs that could be written using the two methodologies, that
would fail to execute x correctly. The joint distribution G(pA, pB) = P(PA(x)<pA,
PB(x)<pB) then determines the efficacy of the fault-tolerant system. Just as, in the other
two models, it is the variance of the univariate distribution that plays the key role, here
it is the correlation coefficient that is the key. It can be shown that if this is negative,
then we shall do better even than what would be achieved under the assumption of
complete independence of failure behaviour of the versions. Even in the case of positive
correlation, the E&L result can be shown to be a worst case - essentially it is the case
where the distribution G(pA, pB) in the (pA, pB) plane is concentrated entirely on the
line of unit slope.

In the next section we use the mathematical framework of the L&M model to
generalise the Hughes model before going on, in the following section, to represent the
situation in which components with known-different designs are used in a redundant
architecture.

3 A generalised Hughes model

We begin with some notation that closely follows that in [Littlewood and Miller
1989]. There is a population of all possible components

C  =  {c1, c2, . . . } (1)

from which a particular component will be randomly selected to be used in a particular
context. Thus the component chosen is a random variable, C, with

P(C = c) = S(c) (2)

for some measure S(.) over C .

                                                                                                                                          
involves independent (i.e. from team to team) random selection by the different teams of the
different components of the software development process from among the many competing
candidates - e.g. formal specification and implementation languages, testing techniques, etc.
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There is similarly a population of environments

E = {e1, e2 . . . } (3)

from which one will be chosen in which the component will be required to operate.
This environment is, in turn, a random variable E with

P(E = e) = Q(e) (4)

for some measure Q(.) over E.

For a particular component in a particular environment, there is a probability of
failure

f(c,e) = P(component c fails in environment e). (5)

This can be thought of as the probability that this component will fail upon demand in
this environment. It allows the possibility of a particular component to behave
differently in successive similar demands, something which does not appear to be
included in the original formulation of the Hughes model. Notice that this probability
contrasts with the E&L equivalent, where it is replaced by a simple (0,1) indicator
function since a particular program version will always fail (or always succeed) on a
particular input. For software it is often said that faults are ‘systematic’, meaning that
program failure behaviour will always be the same in the same circumstances.

We are now interested in measures of failure behaviour such as

(e) ≡ P( fail |E = e) = f (c,e)S(c)
C
∑ = ES ( f (C,e)) (6)

which is the probability of failure in a particular environment e for a randomly chosen
component. It is the variation of this probability over the different environments,
representing informally the differing stressfulness of the environments, that underlies
the Hughes model. For a randomly chosen environment, E, (E) is also a random
variable, with a distribution

F( ) = P( (E) ≤ ). (7)

This is equivalent to the distribution given in section 3 of [Hughes 1987].
However, our treatment here is more general than that represented in Hughes, and
admits of the following dual formulation.

(c) = f (c,e)Q(e)
E
∑ = EQ( f (c, E)) (8)

is the probability of failure of a particular component, c, in a randomly chosen
environment. So 1- (c) is the reliability of component c. Different components have
different reliabilities in this generalisation, in contrast to the Hughes model where this
possibility is not considered. For a randomly chosen component, C, (C) is also a
random variable with distribution

H( ) = P( (C) ≤ ) . (9)
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A particularly important measure is now the probability that a randomly chosen
component fails in a randomly chosen environment, which is given by

E( (E)) = E( (C)) = ES, Q( f (C,E)) = f (c,e)S(c)Q(e)
E
∑

C
∑ . (10)

In the present notation, the Hughes results primarily concern the distribution of
(E) over the different environments, and in particular the effect that the variance of this

distribution has on the probabilities of simultaneous failure of several components
operating in the same environment. Consider the simple case of two components
selected randomly and independently to operate as a 1-out-of-2 system, i.e. the system
works successfully if at least one component works. The probability of the system
failing in a randomly selected environment is

f (c1,e) f (c2,e)S(c1 )S(c2 )Q(e)
C
∑

C
∑

E
∑ = f (c,e)S(c)

C
∑ 

 
  

 E
∑

2

Q(e)

= (e)( )2
Q(e) = E ( (E))2( )

E
∑ (11)

which is bigger than the result we would obtain under the (incorrect) assumption that
the two versions fail independently with the probability (10), since

E ( (E))2( ) = E (E)( )( )2
+ Var (E)( ) ≥ E (E)( )( )2

. (12)

Putting this another way:

P(second component fails|first component failed ) =
P(both failed)

P(first component failed )

=
E (E)( )( )2 + Var (E)( )

E (E)( ) = E (E)( ) +
Var (E)( )
E (E)( )

= P(second component fails) +
Var (E)( )
E (E)( )

≥ P(second component fails). (13)

That is, knowing that the first component has failed in this randomly chosen
environment increases our probability that the second component will fail. Informally,
having observed the failure of one of the components makes us more confident that this
is a ‘stressful’ environment, i.e. that the probability of failure is greater for every
component, than would otherwise be the case. This can be formalised as follows

(E)|first component has failed ≥
st

 (E), (14)

i.e. the conditional and unconditional random variables are stochastically ordered (see
[Littlewood and Miller 1989] for proof). There is equality in (13) and (14) if and only if
the variance is zero, i.e. all the probability in the distribution (7) is concentrated at a
single point and there is no variation in stressfulness over the different environments. It
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is only in this case that conditional independence of failures of two components results
in unconditional independence, and we can resort to the more naïve model. In all other
cases - and, it presumably follows, in all reasonable real-life situations - we shall have
worse failure behaviour of the system than the naïve model suggests. Exactly how
much worse depends upon the magnitude of the variance of the distribution of failure
probabilities, as is shown in (12).

There are similar dual results to the above, concerning a randomly selected
single component called upon to operate in two randomly selected environments, if we
allow perfect restoration following failure:

P(C fails in E1, E2) = E(( (C))2) ≥ (E( (C)))2 (15)

which is the dual of (11), (12);

(C)|failure in first environment ≥
st

(C) (16)

which is the dual of (14). The reasoning here is similar to before: the fact that this
component has failed in the first environment makes us think that ‘it is probably a weak
component’, and thus will be more likely than otherwise to fail when presented with
another environment. Proofs of (14), (16) are similar to those in [Littlewood and Miller
1989] for the software design diversity context. Notice that the dual results only really
make sense in the hardware context if it is possible for the component to be restored by
repair to the same state it was in prior to failure.

These results show the crucial importance that variability plays in several areas,
and how misleading it can be merely to average out this variation when studying
common mode failures. Most importantly, the average behaviour of an average
component, (10), is not sufficient for us to know the reliability of a redundant 1-out-of-
2 system, (11). In fact, of course, the general thrust of these arguments about the
optimism of incorrect assumptions about failure independence apply much more widely
than this simple 1-out-of-2 system. Hughes shows, for example, that in the 1-out-of-n
case the failure process will be dominated by failures that are common cause in origin.

4 Forced diversity

4.1 A new model

We consider now a new model for forced diversity of hardware components,
similar to the E&L model [Littlewood and Miller 1989] for software design diversity.
The idea here is that we may have available two, or more, different types of
components, A, B, . . . Components of type A may differ from those of type B
because they represent two different designs, but all of the As will have the same
design, as will all of the Bs. Alternatively, manufacturing processes may be known to
be different, even though the designs are nominally identical: an example would be that
different manufacturers used different testing regimes, so that the components weeded
out during testing had succumbed to different kinds of stress (leaving components that
were more resistant to that kind of stress).

This kind of diversity introduces another form of variation over and above that
already discussed. In particular, in addition to variation among the A component
reliabilities, and among the B component reliabilities, over the different environments,
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there will be variation between As and Bs. We can capture this in an enhanced version
of the notation used in the previous section. Keeping, for simplicity, to the situation of
a 1-out-of-2 system, constructed from an A and a B, we have:

For the population of A components

CA  = {cA1, cA2, . . . } (17)

the component chosen is a random variable, CA, with

P(CA = cA) = SA(cA) (18)

and similarly for B components. Selection of the environment is, as before, determined
by (3), (4).

Within the population of type-A components things are as described above,
with A(e) representing the probability that a randomly chosen type-A component will
fail in a particular environment e, similarly for type-B. Just as, in the univariate case of
a single population of components, interest centres on the distribution of the probability
of failure over different environments, so here we have the bivariate distribution

F( A, B) = P( A(E) ≤ A, B (E) ≤ B ) (19)

Consider now the case where a 1-out-of-2 system is built using components
selected independently and randomly from the two populations. That is

P(CA = cA, CB = cB) = P(CA = cA)P(CB = cB) = SA(cA)SB(cB) (20)

The probability that, for a particular environment e, the system fails is just

A(e) B(e) (21)

representing the conditional independence of failures. But for a randomly chosen
environment the unconditional probability that the system fails is, in an obvious
notation

f (cA ,e) f (cB ,e)SA(cA)SB(cB)Q(e)
CB

∑
CA

∑
E
∑

= f (cA,e)SA(cA )
CA

∑
 

 
  

 
 

E
∑ f (cB,e)SB(cB)

CB

∑
 

 
  

 
 Q(e)

= A (e) B (e)Q(e) = E A(E) B(E)( )
E
∑

= Cov A(E) B(E)( ) + E A(E)( )E B (E)( ) (22)

= Cov A(E) B(E)( ) + P( A component fails)P(B component fails) (23)

> P(A component fails)P(B component fails)

if and only if  Cov( A(E) B(E)) > 0.
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Putting this another way,

P(B component fails| A component fails) =
Cov A(E) B(E)( )

E A(E)( ) + E B(E)( )

> E B(E)( ) = P(B component fails) if and only if Cov( A(E) B(E)) > 0.

4.2 Discussion: some general results

The point about these results is that everything now depends upon the value of
Cov( A(E) B(E)), particularly its sign. There is a sense in which we can say that, all
other things being equal, forcing diversity in this way guarantees that we shall do better
than we would by selecting the pair of components randomly from a single population.
In the event that the covariance term is negative, we even do better than we would
under the assumption of independence. Even if, as seems likely, the covariance is not
negative, the Hughes model is still the worst case scenario. Then A(e) ≡ B(e) for all

e. That is, the bivariate distribution F( A, B) is concentrated on the line of unit slope in

the ( A, B) plane.

Just as the E&L model is essentially identical to the Hughes model in the case of
a single population, so the model presented here is mathematically similar to that of
[Littlewood and Miller 1989]. The only difference lies, as before, in the fact that a
program fails ‘systematically’ in the sense that a particular program failing on a certain
input will always fail on that input. In our case, in contrast, the component that fails in
a particular environment today may not do so tomorrow. The mathematical implication
of this is that the indicator variables of E&L and L&M are replaced by the probabilities
f(c,e), representing the probability that component c will fail in environment e. This
does not affect the structure of the mathematical arguments significantly, and the results
presented in L&M [Littlewood and Miller 1989] go through quite simply.

For example, it is possible to give quite general advice as to which of several
different systems should be preferred among the many alternatives that could be built.
Consider again a 1-out-of-n system. Clearly the reliability of such a system will depend
not only upon the degree of dependence between the failure behaviours of the
components, as discussed above, but also upon the individual component reliabilities.
To make some general statements about the efficacy of this kind of forced diversity we
can make some simplifying assumptions about indifference between types of
components. We shall say we are indifferent between types A and B if we believe that
permutations of the component type do not change our probabilities of failure. Thus for
systems comprising single components, we shall be indifferent between A and B if

P(A system fails) = P(B system fails).

Similarly, we are indifferent between 1-out-of-2 homogeneous A systems, and similar
B systems if, in an obvious notation

P(AA system fails) = P(BB system fails).

We then obtain the following result: If we know that A components and B
components are different, but we are indifferent between randomly chosen AA and BB
systems, then we should build instead a randomly chosen AB system.
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In other words, a randomly chosen mixed system will be more reliable than
either of the possible randomly chosen homogeneous systems. The result generalises to
the case of 1-out-of-n systems if we have n types of components: it is best to select the
components randomly one from each of the different types.

In the case where we wish to build a 1-out-of-n system, but have fewer than n
different types of components,  it can be shown that: The best design is the one that
uses all the available types of components, but uses each as little as possible. Thus for
example, an AABBC system will be preferable than an AAABC (see [Littlewood and
Miller 1989] for details).

It should be emphasised that all these results are based upon averages, and
concern what we should regard as the best system design when we know nothing about
the reliabilities of particular components in particular environments. If we have more
information, things can change dramatically. Thus, for example, for a particular
environment e, we may know that type-A components are more reliable than other
types, in which case if we have to build a 1-out-of-2 system we may prefer a randomly
chosen pair of components to make an AA, than to make an AB. In fact, in L&M it is
shown that for a particular e the best of AA and BB will be better than the average AB.
In general, it can be shown that preferences that we have ‘on average’ are precisely
reversed when we have sufficient knowledge to be able to talk of ‘best of’. Thus, in the
example of n = 5 above, the best AAABC will be more reliable than the best AABBC5

However, in spite of these qualifications, the results here are quite strong. They
essentially say that, in the event of not having detailed information about the way that
the reliabilities of the different types of components vary over different environments,
and subject to certain indifference assumptions, ‘the maximum application of diversity
is the best strategy’.

In practice, we may have available sufficient information to undermine the
indifference assumptions here. For example, we may know that, even on average,
type-A components are more reliable than type-B components. In such a case the
reliability of, say, a 1-out-of-2 system is determined by the trade-off between
component reliability and component failure dependence: see (22). The information we
need is contained in the joint distribution F( A, ); in particular, we need the
covariance and the means of the marginal distributions.

4.3 Calculation of system reliability: the use of failure data

We have seen that there are some general things we can prove about the
advantages of using forced diversity rather than merely redundancy as in the Hughes
model. In practice, though, we shall wish to have estimates of the actual reliability of
systems we build in this way. A major advantage of the approach of Hughes, and its
generalisation described here, is that everything depends upon distributions such as that
for ( A, B) given by (19). We can estimate these distributions from the data that we
have collected over the operational behaviour of different earlier systems containing A
and B components; in particular, there is no necessity for the systems that provide this
information to be similar to the ones about which we wish to make predictions. All that

                                                

5 The actual labels here are not significant: by AAABC here we simply mean a system built of three
types of component, with three of the components being of the same type.
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is needed is that we have information that ties together the failure behaviour, component
type, and environment. It is worth emphasising that such information is much more
likely to be available in quantity than will be the case for design diversity in software.

Let us assume that there are m environments in total. For environment ej let us
assume that we have observed nAj demands upon type-A components, of which rAj

resulted in failure, and nBj demands upon type-B components of which rBj resulted in
failure.

Further, let us assume that the mechanism for selecting environments is such
that there is a probability pj of selecting environment ej, and that these probabilities
remain the same for all selections of environment. Assume that we have observed that ej

has been selected qj times (j =1,2, . .,m).

A crude way to proceed now is to use the data to estimate the (conditional)
probabilities of failure of the component types in the different environments, and then
combine these with the estimates of the probabilities of selection of the environments to
obtain an estimate of the unconditional distribution, (19), for the joint probability of
failure of type-A and type-B components. A simple Bayesian argument for this case of
Binomial trials [DeGroot 1970] gives an estimate

rAj +1

nAj + 2
(24)

for A(ej), the probability of failure of a type-A component in environment ej, with a
similar expression for the failure of a type-B component. Note that these components
fail (conditionally) independently in this environment. A similar argument, this time
based upon the multinomial distribution, gives an estimate

q j +1

qk + m
k

∑ (25)

for pj.

The unconditional probability distribution for ( A, B) is then

P A(E) =
rAj +1

nAj + 2
, A (E) =

rBj +1

nBj + 2

 

 
  

 
 =

q j +1

qk + m
k
∑ (26)

which of course only has support on a finite number of points. Then, for example, the
probability of failure of a 1-out-of-2 diverse AB-system will be

rAj +1

nAj + 2

 

 
  

 
 

j
∑ rBj + 1

nBj + 2

 

 
  

 
 

q j +1

qk + m
k

∑ (27)

A naïve assumption of independence here would give a probability of system
failure
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r Aj +1

nAj + 2

 

 
  

 
 

q j +1

qk + m
k
∑j

∑
 

 

 
 

 

 
  

r Bj +1

nBj + 2

 

 
  

 
 

q j +1

qk + m
k
∑j

∑
 

 

 
 

 

 
  (28)

and, under the Hughes model, a 1-out-of-2 system comprising only type-A
components would fail with probability

rAj +1

nAj + 2

 

 
  

 
 

j
∑

2
q j +1

qk + m
k

∑ (29)

and similarly for a system made out of type-B components.

The point of all this, of course, is that it allows in principle for the probability of
system failure given by (27) to be smaller than any of those given by (28) and (29).
Naturally, such superiority cannot be guaranteed, but we are at least free from the
tyranny of the Hughes model’s certainty of positively associated failures. In practice,
the extent to which we can gain extra confidence about a system from this approach will
depend critically upon the nature of the correlation between the failure behaviour of the
different types of components, given by the difference between the expressions in (27)
and (28): all other things being equal, we wish this correlation to be ‘as negative as
possible’.

A less crude approach than the above, following that in Hughes’ paper, would
replace the point estimates of the probabilities of failure of the different types of
component, (24), with the Bayesian posterior distributions from which these were
derived. With uniform independent priors we have, conditionally, the probability
density function

f ( A, B |e j ) = C. A
r Aj (1− A )

nA j
−r Aj . B

rBj (1− B)
nB j

−r Bj (30)

where C is a normalising constant. Then the unconditional joint distribution of the
failure probabilities has probability density function

f ( A, B ) = f ( A, B | e j)
j

∑ q j +1

qk + m
k

∑ (31)

Then, for example, the probability of failure of a 1-out-of-2 AB system is

E A(E) B(E)( ) = A B f ( A , B)d Ad B

0

1

∫
0

1

∫ (32)

with similar expressions for different architectures. These results easily and naturally
extend to more than two types of components. Thus the probability of failure of a 2-
out-of-3 ABC system is

E A(E) B(E)( ) + E A(E) C (E)( ) + E B(E) C (E)( )
−2E A(E) B(E) C (E)( )

(33)
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All the terms in expressions such as (32) and (33) essentially involve moments
of Beta distributions and are thus easily computed.

An advantage of these ways of computing system reliabilities is that they factor
out the two different kinds of evidence needed - about the component behaviour in
particular environments, and about the mechanism that selects environments. In the
above it has been assumed that prediction of system reliability will take place under the
same mechanism for selection of environments as the component failure behaviour was
collected. But this is not necessary. If it is required to predict for a novel kind of
environment selection - i.e. a system operating in circumstances that differ from those
previously seen - it may sometimes be possible to replace (25) by pjs calculated
directly, for example by direct observation in the new context.

4.4 An example

In his paper, Hughes considers some hypothetical data on a single system with
four components, upon which a total of 20 demands have been made. This data is
shown in Table 1.

Number of system demands Number of component failures

16 0

2 1

1 2

1 3

0 4

Table 1:  Hypothetical data for a 4-fold redundant system showing the number of
system demands with a given number of component failures.

Let us now suppose that in fact the components from which the system is built
are of two types, A and B, and that there are two components of each type comprising a
system. Upon inspection of the above failure data, it is found that the failures
corresponded to the different types of components as shown in Table 2.

Number of system
demands

Number of A component
failures

Number of B component
failures

16 0 0

1 1 0

1 0 1

1 2 0



The impact of diversity upon common cause failures 20

_____________________________________________________________________

1 1 2

Table 2: The data of Table 1 when we have additional information that allows the
type of component to be identified.

We must now identify the different ‘environments’ associated with the
demands. In reality, such classification of demands into different environments will be
carried out using engineering information about the nature of the demands. Here we
shall assume, in the same spirit as Hughes, that all demands that produce the same pair
of numbers for A and B component failures correspond to a single environment: this is,
of course, unrealistic and we adopt the assumption purely for illustrative purposes Thus
above we saw 16 demands from the environment corresponding to (0,0); 1 demand
corresponding to the environment for (0,1); 1 demand for the environment
corresponding to (1,0); 1 demand for the environment corresponding to (2,0); 1
demand for the environment corresponding to (1,2). There are 5 environments in total:
we shall assume for simplicity that the possible remaining environments, corresponding
to (0,2), (1,1), (2,1) and (2,2), do not exist.

Now line j of Table 2 corresponds to environment ej. Then, in the notation of
the previous subsection: m=5; nA1=nB1=32, rA1=rB1=0; nA2=nB2=2, rA2=1, rB2=0;
nA3=nB3=2, rA3=0, rB3=1; nA4=nB4=2, rA4=2, rB4=0; nA5=nB5=2, rA5=1, rB5=2;
qi=16, q2=q3=q4=q5=1.

Substituting in (27) we find that the estimated probability of failure of a 1-out-
of-2 diverse AB-system is 0.0656. This compares with 0.0906 and 0.0756 obtained
from substitution in (29) for the estimated probabilities of failure of, respectively, AA-
and BB- systems under the Hughes model. Thus the forced diverse system is
preferable to each of the two possible homogeneous systems. However, in this case
there is still positive covariance between the two different system types. This can be
seen by substituting in (28), which gives a probability of failure of 0.0288 (the product
of 0.18 and 0.16, being respectively the estimates of the probability of failure of single
A and B components) under the naïve (incorrect) assumption of independence.

5 Discussion and conclusions

The main strength of all this modelling work is that it provides us with a formal
conceptual framework within which we can reason probabilistically about dependencies
in the failure processes of redundant and diverse systems. In the hardware context, the
Hughes model played the same rôle as the Eckhardt and Lee model played for software:
it provided a mathematical reason for the common-sense assumption that components
do not fail completely independently in practice. The new model presented here
provides an opportunity to avoid the worst implications of the Hughes model - it even
allows in principle for failure behaviour better than independence.

In practice, of course, such ‘negatively correlated’ failure behaviour may be
very rare. However, under the conditions of this new model, at least there is a sense in
which the Hughes model can be regarded as the worst case.

In real applications of this work, it will be necessary to estimate what has
actually been achieved, rather than to rely upon the more general results presented here.
It is here that hardware engineers have a considerable advantage over their software
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counterparts. As long as there is sufficient failure data, from previous use of the
different component types, that ‘covers’ the environments within which the new system
will operate, the distributions that are needed to compute system reliability will be
estimable. This contrasts with the software diversity situation, where estimability is
severely constrained by the practical limitations to the number of versions that can be
developed. Thus the E&L and L&M models remain largely conceptual, whilst the
Hughes model and the model presented here could be of practical assistance in
computing the reliability of real systems.

The rôle played by variation in all this modelling is somewhat mysterious and
surprising. In the Hughes model (and in E&L), variation of ‘difficulty’ or
‘stressfulness’ over the different environments is what prevents us achieving the ideal
of independent failure behaviour that would, in turn, allow the achievement of
arbitrarily high reliability by the use of sufficient redundancy. Thus here variation is a
bad thing: the more variation we have here, the worse things are. In the new model, in
contrast, the variation between the failure behaviours of different types of component is
a good thing, and allows in extremis the achievement of component failure behaviour
better than independent.
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