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Abstract

This paper proposes an alternative solution to the endogeneity problem by explicitly
modeling the joint interaction of the endogenous variables and the unobserved causes of
the dependent variable as a function of additional observables. We derive identification
of the parameters, develop an estimator, and establish its consistency and asymptotic
normality.
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1 Introduction

The problem of endogeneity occupies a substantial amount of research in theoretical and

applied econometrics. The most popular solutions are instrumental variables (IV) (see e.g.

Hausman, 1983; Angrist and Krueger, 2001, for surveys) and proxy variables approach (see

e.g. Olley and Pakes, 1996; Levinsohn and Petrin, 2003). These solutions rely on exogenous

information derived from an additional exclusion restriction. In applications, the type of

restriction chosen determines the nature of the model to be used, i.e. the instrument or the

proxy variable. However, in many empirical applications, there is frequently disagreement

and concern about the exclusion restrictions imposed, and instruments and proxies selections.

The potential IV are often argued to be invalid since they are still correlated with the error

term (see, e.g., Bound, Jaeger, and Baker (1995) and Hahn and Hausman (2002)) while the

conditions for identification using proxy variables are many times implausible.

Recently there has been an expanding literature on analyzing endogeneity when IV and

proxy variables models fail. This literature explores alternative moment conditions and

exclusion restrictions. For instance, Altonji, Elder, and Taber (2005a,b, 2008) develop a

strategy to extract information from observables about the endogeneity bias. They construct

an index of observables, which can be used to identify the endogenous variable parameter,

in combination with prior knowledge about the sign of the bias and a condition on the

relationship between included (observable) and excluded (non-observable) variables. Chalak

and White (2011) define a new class of extended IV, and introduce notions of conditioning

and conditional extended IV which allow use of non-traditional instruments, as they may be

endogenous. Chalak (2012) achieves identification of parameters by employing restrictions

on the magnitude and sign of confounding instead of using traditional IV. Nevo and Rosen

(2012) provide bounds for the parameters when the standard exogeneity assumption on IV

fails, by assuming the correlation between the instruments and the error term has the same
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sign as the correlation between the endogenous regressor and the error term and that the

instruments are less correlated with the error term than is the endogenous regressor. Montes-

Rojas and Galvao (2014) exploit information on the structure of endogeneity and use prior

information in a Bayesian framework to infer about the potential heterogeneity in parameter

estimators.

This paper proposes an alternative solution to the endogeneity problem by explicitly

modeling the joint interaction of the endogenous variables and the unobserved causes of

the dependent variable as a function of additional observables. Identification uses the en-

dogeneity structure of the model to build an alternative moment condition which is based

on the non-zero conditional expectation implied by the endogeneity. That is, rather than

imposing a sign on the endogeneity effect or exploring the bounds derived from its potential

magnitude, we work with an alternative moment restriction. The intuition on the main

identification condition of the new procedure is that, by using the proposed condition, the

econometrician is able to model the endogeneity bias using the additional observable vari-

ables. Our framework allows for situations in which there are no valid standard IV or proxy

variables available, but there exist additional variables that happen to be related to both

the endogenous variable and the unobserved causes of the dependent variable. We develop

a simple estimator based on the identification, and establish its consistency and asymptotic

normality.

Many potential empirical applications might benefit from the proposed approach, espe-

cially those where the potential IV might still be related to the unobservables, or the proposed

proxy variable does not satisfy all the requirements. Consider the errors-in-variables setting

to motivate its empirical relevance. Many empirical applications rely on lagged mismeasured

variables as IV to solve the implied endogeneity (see e.g. Biorn, 2000). This would fail if the

measurement error is persistent because the instruments (i.e. lagged mismeasured variables)
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would still be correlated with the error term. More reliable estimates could be obtained by

modeling the joint interaction of the mismeasured variable and the error term as a function

of lagged mismeasured variables.

The paper is organized as follows. Section 2 presents the econometric model and estab-

lishes identification. Section 3 develops a consistent estimator, and establishes its asymptotic

properties.

2 The Model

Consider the following structural model

yi = x1iβ1 + x2iβ2 + εi, i = 1, ..., n, (1)

where β1 is a p1-vector, β2 is a p2-vector, and εi is a scalar innovation term. Define β =

[β>1 ,β
>
2 ]>. We assume that x2i is endogenous, and correlated with the innovation term

εi in (1), such that E[x>2iεi] 6= 0. In addition, x1i is exogenous with E[x>1iεi] = 0. The

endogeneity in x2 produces endogeneity bias. To solve the endogeneity problem we will

model the interaction of the endogenous variable and the error term, x2iεi and establish

identification of β under some mild conditions. For simplicity, throughout we consider

the case where p2 = 1, i.e., there is only one endogenous variable, x2i. Extension to the

multivariate case is straightforward.

The following equation formalizes modeling endogeneity,

E(x2ε | z,x) = zφ. (2)

Equation (2) considers a linear model only for simplicity, but it could be extended to a

nonparametric model (e.g., method of sieve). It explicitly models the endogeneity of x2

using variables z. In this case, by modeling endogeneity we mean to model the term x2ε.
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When φ 6= 0, we can interpret the exogenous variable z as a noisy measure of the common

cause(s) of x2 and ε, which is related to the joint interaction of the endogenous variable and

the unobservables. Our identification strategy requires observable variables, z.

The proposed identification is related to the control function approach. When the cor-

relation between x2 and ε is modeled, equation (2) can be rewritten as x2E(ε | z,x) = zφ,

hence, we have E(ε | z,x) = z
x2
φ. Therefore, the conditional expected value of the un-

observed error term is a function of the “normalized” variables , i.e., z
x2

. The emphasis is

however on the nature of z, which provide information about the joint interaction of the

endogenous variable and the error term.

We are interested in identifying and estimating the parameters β in equation (1). In

practice, φ is unknown, and it is important to note that this parameter cannot be directly

estimated from equation (2) because ε is unobservable. Define θ ≡ [β>1 ,α
>]> with α ≡

[β>2 ,φ
>]>. To ease the notation, define ỹ and x̃2 after netting out the exogenous regressor

x1 and multiplying the resulting objects by x2. Thus, ỹ = x2(y−x1E(x>1 x1)
−1E(x>1 y)) and

x̃ = [x̃2, z], with x̃2 = x2(x2−x1E(x>1 x1)
−1E(x>1 x2)). Let z̃ be a set of variables induced by

conditioning variables [z,x]. Note that in this case we are obtaining the residual projection

on x1. Consider the following assumptions.

Assumption 1

(i) E(x>1 ε) = 0;

(ii) E(x2ε | z,x) = zφ.

Assumption 2 E(x>1 x1) and E(z̃>x̃) are non-singular.

Assumptions 1 and 2 allow identification of the parameters of interest. Assumption 1 (i)

simply states that x1 are exogenous regressors. Assumption 1 (ii) is the main identification
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condition. It is new in the literature and deserves further discussion. Condition 1 (ii)

explicitly models the interaction between the endogenous variable and the unobserved causes

of the dependent variable using a parametric model specification. It states that z are able

to capture the information on the endogeneity term. The intuition behind this assumption

is that once one controls for z, x is not related to the interaction term x2ε. In other words,

the endogeneity bias implied by the non-zero conditional expectation of the interaction term

can be specified as a function of z.

It is important to notice the restrictions this assumption imposes relative to IV approach

in the literature. For simplicity we consider a model with only one (endogeneous) covariate

y = xβ + ε. In our case, the additional equation can be rewritten as xε = zφ+ u where u is

the orthogonal projection of xε on z. Our required moment conditions are two: E[zu] = 0

and E[x2u] = 0. The IV model requires dependence between the endogenous regressor

and the instrumental variables, which are restricted to be uncorrelated with the error term.

This could be written as an additional equation x = zφ+ u (where now u is the orthogonal

projection of x on z) with also two moment conditions E[zu] = 0 and E[zε] = 0. Our method

is able to allow the additional variable(s) z to still be correlated with the error term, ε, and

also the endogenous variable to be correlated with u, the residual (unexplained) component

in the additional equation. As a result, the difference between our proposed model and

traditional IV approach rests on different model specifications; researchers fail to identify

parameters if an incorrect method is employed to control for the endogeneity in each case.

In our case we model endogeneity, the correlation of x and ε, i.e. xε.

We now return to the general structural equation (1) and general identification. For the

sake of clarity, we focus on exactly identified model motivated by the conditional moment

restriction of equation (2). The following theorem formalizes the identification results of θ,

with θ ≡ [β>1 ,α
>]> and α ≡ [β>2 ,φ

>]>.
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Theorem 1 Suppose Assumption 1 holds. Then, θ is fully identified with

α = E(z̃>x̃)−1E(z̃>ỹ), β1 = E(x>1 x1)
−1E(x>1 y)− E(x>1 x1)

−1E(x>1 x2)β2,

if and only if Assumption 2 holds.

Proof. In Appendix.

In practice, the choice of the simultaneous variables is an important problem. The set

of variables included in z is crucial, and the economic theory and empirical findings can

be applied to guide the selection of the simultaneous variables and why the identification

assumptions are satisfied in each case. An example on how relevant theory and empirical

findings help in the selection of z is the returns to education. After the human capital

theory of wage determination pioneered by Becker (1964, 1975) and following various em-

pirical results, it is common to model the logarithm of wages as a function of education and

other characteristics. However, a major concern regarding return to education has been the

presence of ability bias because education and unobserved ability are positively correlated.

According to economic theory (e.g. Roy, 1951; Willis and Rosen, 1979) and psychological

theory (e.g. Binet, 1905; Cecci, 1991; Ree, Earles, and Teachout, 1994), intelligence quotient

(IQ) or other measure of ability can be modeled as a function of both the unobserved ability

and education. Thus, under some assumptions, one can use IQ or other measure of ability

as simultaneous variables to model the interaction of education and the unobserved ability.

In particular, IQ explains not only ability, but also the interaction of ability and education,

as individuals with high IQ are likely to have more years of schooling.

3 Estimator

Given the identification result in Theorem 1, an estimator of θ is
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α̂ =

(
1

n

n∑
i=1

z̃>i x̂i

)−1(
1

n

n∑
i=1

z̃>i ŷi

)
, (3)

β̂1 =

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x>1iyi

)
−

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x>1ix2i

)
β̂2, (4)

where z̃ is the set of variables generated by conditioning variables, x̂ and ŷ are sample

analogs of x̃ and ỹ, which are obtained by replacing the expectations with sample means,

and where β̂2 is the first element of α̂.

The implementation of the proposed estimator can be carried through a sequence of OLS

estimations as follows. First, compute the variables x̂ and ŷ. To calculate ŷ, one first partials

out the exogenous regressors by computing the errors from a OLS regression of y on x1, then

multiply those by x2. Computation of x̂ is analogous. Second, estimate α̂ using equation

(3) and z̃, the set of variables generated by the conditioning variables. Finally, given α̂ and

consequently β̂2, β̂1 can be estimated from OLS as in equation (4), by using the coefficients

of the OLS regression of y on x1 and also the coefficients of the regression of x2 on x1. These

generated variables affect the asymptotic variance-covariance matrix (see e.g. Pagan, 1984),

as shown in the derivation of the asymptotic normality below.

The limiting behavior of the estimator, consistency and asymptotic normality, follows.

Theorem 2 Let assumptions of Theorem 1 hold and the observations {(yi,xi, zi); i = 1, 2, ..., n}

be i.i.d. across i and their fourth moments exist, i.e., E(‖yi‖4) < ∞, E(‖xi‖4) < ∞, and

E(‖zi‖4) < ∞. Denote Q ≡ E(z̃>i x̃i), C1 ≡ E(x>1ix1i), and C2 ≡ E(x>1ix2i). Then, as

n→∞,

α̂
p→ α.

In addition, we have that

√
n(α̂−α)

d→ N(0, Q−1MQ−1),
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with M = V ar(z̃>u − Gr(δ) + Hs(γ)), where G, r(δ), H, and s(γ) are defined in the proof.

Moreover,

β̂1
p→ β1,

and

√
n(β̂1 − β1)

d→ N(0,C−11 C2Vβ2C
>
2 C

−1
1 ),

where Vβ2 is the variance of β̂2.

Proof. In Appendix.

Appendix: Proof of the Results

Proof of Theorem 1

Note that from Assumption 1, E(x2ε − zφ | z,x) = E(x2(y − x1β1 − x2β2) − zφ |

z,x) = E(x2y − x2x1β1 − x2x2β2 − zφ | z,x) = E(x2y − x2x1(E(x>1 x1)
−1E(x>1 y) −

E(x>1 x1)
−1E(x>1 x2)β2)− x2x2β2 − zφ | z,x) = E(x2(y − x1E(x>1 x1)

−1E(x>1 y))− x2(x2 −

x1E(x>1 x1)
−1E(x>1 x2))β2 − zφ | z,x) = E(ỹ − x̃α | z,x) = 0. We then have E(z̃>(ỹ −

x̃α)) = 0 or E(z̃>ỹ) = E(z̃>x̃)α. Also note that from E(x>1 ε) = 0, E(x>1 (y − x1β1 −

x2β2)) = 0, E(x>1 y)− E(x>1 x1)β1 − E(x>1 x2)β2 = 0. This system admits a unique solution

θ if and only if E(z̃>x̃) and E(x>1 x1) are non-singular (Assumption 2). Q.E.D.

Proof of Theorem 2

Let x̃ ≡ [x2(x2 − x1δ), z] and x̂ ≡ [x2(x2 − x1δ̂), z] where δ ≡ E(x>1 x1)
−1E(x>1 x2) and

δ̂ ≡
(
1
n

∑n
i=1 x

>
1ix1i

)−1 ( 1
n

∑n
i=1 x

>
1ix2i

)
. Also let ỹ ≡ x2(y−x1γ) and ŷ ≡ x2(y−x1γ̂) where

γ ≡ E(x>1 x1)
−1E(x>1 y) and γ̂ ≡

(
1
n

∑n
i=1 x

>
1ix1i

)−1 ( 1
n

∑n
i=1 x

>
1iyi
)
.
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From ỹi = x̃iα+ ui, where ui is i.i.d. innovation, we have

ỹi + (ŷi − ŷi) = (x̃i + x̂i − x̂i)α+ ui,

ŷi = x̂iα + ui − (x̂i − x̃i)α+ (ŷi − ỹi). (5)

Also we have

α̂ =

(
1

n

n∑
i=1

z̃>i x̂i

)−1(
1

n

n∑
i=1

z̃>i ŷi

)

= α+

(
1

n

n∑
i=1

z̃>i x̂i

)−1(
1

n

n∑
i=1

z̃>i (ui − (x̂i − x̃i)α+ (ŷi − ỹi))

)
.

Then

√
n(α̂−α) = Q̂−1n−1/2

n∑
i=1

z̃>i (ui − (x̂i − x̃i)α+ (ŷi − ỹi)), (6)

where Q̂ ≡ 1
n

∑n
i=1 z̃

>
i x̂i. By Chebychev’s LLN and Slutsky’s theorem,

Q̂ ≡ 1

n

n∑
i=1

z̃>i x̂i
p→ E(z̃>i x̃i) ≡ Q.

As considered in Pagan (1984), equation (5) contains generated regressors and generated

dependent variables. So we need to consider errors from these approximations in equation

(6).

First, since E(z̃>i ui) = 0, we have

n−1/2
n∑
i=1

z̃>i ui = op(1).

Second, by a mean value expansion,

n−1/2
n∑
i=1

z̃>i (x̂i − x̃i)α =

[
n−1

n∑
i=1

z̃>i ∇δx̃iα

]
√
n(δ̂ − δ) + op(1),

= G
√
n(δ̂ − δ) + op(1),

where G = E[z̃>i ∇δx̃iα].
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Third, a similar argument gives us

n−1/2
n∑
i=1

z̃>i (ŷi − ỹi) =

[
n−1

n∑
i=1

z̃>i ∇γ ỹi

]
√
n(γ̂ − γ) + op(1),

= H
√
n(γ̂ − γ) + op(1),

where ∇γ ỹi = −x2x1 and H = E[z̃>i ∇γ ỹi].

Note that from the definition δ, we can write the following Bahadur representation

√
n(δ̂ − δ) =

√
n

n∑
i=1

ri(δ) + op(1),

where ri(δ) =
(
1
n

∑n
i=1 x

>
1ix1i

)−1 (
x>1i(x2i − x1iδ)

)
, and E[ri(δ)] = 0 by the Law of Iterated

Expectations (LIE). In the same way, given the definition of γ, we can write the following

representation

√
n(γ̂ − γ) =

√
n

n∑
i=1

si(γ) + op(1),

where si(γ) =
(
1
n

∑n
i=1 x

>
1ix1i

)−1 (
x>1i(yi − x1iγ)

)
, and E[si(γ)] = 0 by LIE.

By combining all terms together, we have

√
n(α̂−α) = Q−1

{
n−1/2

n∑
i=1

[z̃>i ui −Gri(δ) +Hsi(γ)]

}
+ op(1).

For the consistency of α̂, we have

α̂
p→ α+Q−1 · 0 = α.

For the asymptotic normality, we have that by the Lindeberg-Lévy Central Limit Theorem,

√
n(α̂−α)

d→ Q−1N(0,M) ≡ N(0, Q−1MQ−1),

where M = V ar(z̃i
>ui −Gri(δ) +Hsi(γ)).
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Similarly,

β̂1 =

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x1i(x1iβ1 + x2iβ2 + ε)

)
−

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x1ix2i

)
β̂2

= β1 +

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x>1ix2i

)
β2 −

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x>1ix2i

)
β̂2

= β1 −

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x>1ix2i

)
(β̂2 − β2).

By Chebychev’s LLN,

Ĉ1 ≡
1

n

n∑
i=1

x>1ix1i
p→ E(x>1ix1i) ≡ C1,

Ĉ2 ≡
1

n

n∑
i=1

x>1ix2i
p→ E(x>1ix2i) ≡ C2,

we have

β̂1
p→ β1 −C−11 C2Q

−1
β2
· 0 = β1,

where Qβ2 is the element in the Q matrix that corresponds to the estimation of β2.

Note that

√
n(β̂1 − β1) = −

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x>1ix2i

)
√
n(β̂2 − β2).

Thus, we have

√
n(β̂1 − β1)

d→ C−11 C2N(0, Vβ2) ≡ N(0,C−11 C2Vβ2C
>
2 C

−1
1 ).

Q.E.D.
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