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Abstract

We compute the DC conductance with two different methods, which both exploit
the integrability of the theories under consideration. On one hand we determine the
conductance through a defect by means of the thermodynamic Bethe ansatz and standard
relativistic potential scattering theory based on a Landauer transport theory picture. On
the other hand we propose a Kubo formula for a defect system and evaluate the current-
current two-point correlation function it involves with the help of a form factor expansion.
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1 Introduction

Conductance (conductivity) measurements belong to the easiest and most direct experiments
which can be carried out. They attract a lot of attention, due to the fact that in general
they can be performed without perturbing very much the behaviour of the system, e.g. a
rigid-lattice bulk metal, such that the uncertainty of experimental artefacts is reduced to
a minimum. There exist various well-known theoretical descriptions, such as semi-classical
transport theories (Landauer [1] and Boltzmann-Drude [2]), dynamical linear-response theory
[3, 4] and also Green function linear-response theory [5]. To carry out the latter, in particular
at finite temperature, is still poorly understood in generality [6], even in 1+1 space-time
dimensions [7]. Since recent experimental progress allows conductance measurements also in
1+1 space-time dimensions [8], one can on the theoretical side fully exploit the special features
of low dimensionality.

It is in particular very suggestive to exploit the full scope of non-perturbative techniques
which have been developed in the context of integrable quantum field theories in 1+1 space-
time dimensions, such as the thermodynamic Bethe ansatz (TBA) [9, 10] and the form factor
bootstrap approach [11, 12]. Generalizing the Landauer transport picture a proposal for the
conductance through a quantum wire with a defect (impurity) has been made in [13, 14]

Gα(T ) =
∑

i

lim
(µl

i−µr
i )→0

qi
2

∞
∫

−∞

dθ
[

ρr
i (θ, T, µ

l
i)|Tα

i (θ) |2 − ρr
i (θ, T, µ

r
i )|T̃α

i (θ) |2
]

, (1.1)

which we only modify to accommodate parity breaking, known to occur in integrable lattice
models, see e.g. [15]. This means in particular we allow the transmission amplitudes to be
different for a particle of type i with charge qi passing with rapidity θ through a defect of type
α from the left Tα

i (θ) and right T̃α

i (θ). The density distribution function ρr
i (θ, T, µi), being

a function the temperature T , and the potential at the left µl
i and right µr

i constriction of the
wire, can be determined by means of the TBA. We have already restricted (1.1) to the abelian
(diagonal) situation. It is clear that the effect resulting from the defect is most interesting
when |Tα

i (θ) | 6= 1, which requires the occurrence of simultaneous transmission and reflection
(see (2.6), (2.17)). In this paper we will therefore be mainly interested in that situation. One
may adapt (1.1) also to the case of pure reflection, which physically describes the influence of
the constriction to the conducting process. From the previous statement it is clear that such
boundary theories are only interesting in this physical context when they are non-abelian.

The other prominent way of determining the conductance is a result from linear response
theory, which yields an expression for the conductance in form of the Fourier transform of the
current-current two-point correlation function. This Kubo formula has been adopted to the
situation with a boundary [16]. As we mentioned, this will only capture effects coming from
the constriction of the wire, we propose here a generalization to the analogous situation as
described in (1.1), i.e. when a defect is present

Gα(T ) = − lim
ω→0

1

2ωπ2

∞
∫

−∞

dt eiωt 〈J(t)Zα J(0)〉T,m . (1.2)

Here the defect operator Zα enters in-between the two currents J within the temperature and
mass m dependent correlation function. The Matsubara frequency is denoted by ω.
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The main purpose of this manuscript is to compare the two alternative descriptions (1.1)
and (1.2) for massive bulk theories with a defect which allows for simultaneous reflection and
transmission. There exist various investigations, e.g., [17, 13, 14, 18] for conformal (massless)
theories with defect, which exploit the original folding idea of Wong and Affleck [17]. The
idea is that a conformal field theory with a purely transmitting or reflecting defect can be
mapped into a boundary theory, i.e. a theory living in half space, which has the advantage
that the full restriction of modular invariance can be exploited in the construction of boundary
states as pioneered by Cardy [19]. Since this folding idea relies on the vanishing of either the
reflection or transmission, our considerations do in general not reduce to that set up, even in
the conformal limit. As was already pointed out in [17], and as can be seen directly from (1.1)
and (1.2), in that case the conductance is less interesting because it is either zero or perfect
for abelian theories.

In section 2 we outline the procedure of how the defect scattering matrices may be deter-
mined, since they are needed as input in both approaches. In section 3 we newly formulate
the defect TBA equations and use them to determine the density distribution functions. We
evaluate numerically the Landauer formula (1.1) for various defects and provide some analyt-
ical approximations in certain regimes. In section 4 we propose a Kubo formula (1.2) for a
configuration in which an impurity is present and compute the current-current two-point cor-
relation functions occurring in there by means of a form factor expansion. We find very good
agreement between (1.1) and (1.2) for the complex free Fermion theory with various types of
defects. Our final conclusions and an outlook into open problems is provided in section 5.

2 Determining the defect scattering matrices

An essential input required in both non-perturbative methods which are exploited to compute
the conductance (1.1) and (1.2), that is the TBA and the form factor bootstrap approach,
respectively, is the knowledge of the exact (defect) scattering matrix. It is one of the most
intriguing facts of two dimensional quantum field theories that these matrices can be deter-
mined exactly to all orders in perturbation theory. In the following section we will recall how
much (little) of this approach can be carried over to the situation when defects are present
and compute explicitly the transmission and reflection amplitudes for a variety of concrete
defects.

2.1 Defect Yang-Baxter equations

A cornerstone in the context of integrable models in 1+1 space-time dimensions are the Yang-
Baxter equations [20]. They can be derived most easily simply by exploiting the associativity
of the so-called Zamolodchikov-Faddeev (ZF) algebra [21] and its extended version which
includes an additional generator representing a boundary [22, 23, 24] or a defect [25, 26].
Indicating particle types by Latin and degrees of freedom of the impurity by Greek letters,
the “braiding” (exchange) relations of annihilation operators Zi(θ) of a particle of type i
moving with rapidity θ and defect operators Zα in the state α can be written as

Zi(θ1)Zj(θ2) = Skl
ij (θ1 − θ2)Zk(θ2)Zl(θ1), (2.1)

Zi(θ1)Z
†
j (θ2) = Skl

ij (θ1 − θ2)Z
†
k(θ2)Zl(θ1) + 2πδ(θ1 − θ2), (2.2)
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Zi(θ)Zα = Rjβ
iα (θ)Zj(−θ)Zβ + T jβ

iα (θ)ZβZj(θ) , (2.3)

ZαZi(θ) = R̃jβ
iα (−θ)ZβZj(−θ) + T̃ jβ

iα (−θ)Zj(θ)Zβ . (2.4)

The bulk scattering matrix is indicated by S, and the left/right reflection and transmission
amplitudes through the defect are denoted by R/R̃ and T/T̃ , respectively. We employed
Einstein’s sum convention, that is we assume sums over doubly occurring indices. We suppress
the explicit mentioning of the dependence of Zα on the position in space and assume for the
time being that it is included in α. For the treatment of a single defect this is not relevant,
but it will become important when we consider multiple defects. The same relations hold
when we replace the annihilation operators by the creation operators Z†

i (θ) with R/R̃, T/T̃
and S replaced by their complex conjugates. The algebra (2.3)-(2.4) can be used to derive
various relations amongst the scattering amplitudes. Using extended ZF-algebra twice leads
to the constraints

Skl
ij (θ)Smn

kl (−θ) = δm
i δ

n
j , (2.5)

Rjβ
iα (θ)Rkγ

jβ (−θ) + T jβ
iα (θ)T̃ kγ

jβ (−θ) = δk
i δ

γ
α, (2.6)

Rjβ
iα (θ)T kγ

jβ (−θ) + T jβ
iα (θ)R̃kγ

jβ (−θ) = 0 . (2.7)

The same equations also hold after performing a parity transformation, that is for R ↔ R̃
and T ↔ T̃ in (2.6)-(2.7). From the associativity of the extended ZF-algebra one derives the
equations [22, 23, 24, 25, 26]

S(θ12)[I ⊗Rβ
α(θ1)]S(θ̂12)[I ⊗Rγ

β(θ2)] = [I ⊗Rβ
α(θ2)]S(θ̂12)[I ⊗Rγ

β(θ1)]S(θ12), (2.8)

S(θ12)[I ⊗Rβ
α(θ1)]S(θ̂12)[I ⊗ T γ

β (θ2)] = Rγ
β(θ1) ⊗ T β

α (θ2), (2.9)

S(θ12)[T
β
α (θ2) ⊗ T γ

β (θ1)] = [T β
α (θ1) ⊗ T γ

β (θ2)]S(θ12), (2.10)

where we employed the convention (A⊗B)kl
ij = Ak

iB
l
j for the tensor product and abbreviated

the rapidity sum θ̂12 = θ1 + θ2 and difference θ12 = θ1 − θ2. Once again the same equations
also hold for R ↔ R̃ and T ↔ T̃ . Starting with another initial asymptotic state one derives
[26]

Rβ
α(θ1) ⊗ R̃γ

β(θ2) = Rγ
β(θ1) ⊗ R̃β

α(θ2), (2.11)

[T β
α (θ2) ⊗ I]S(θ̂12)[R̃

γ
β(θ1) ⊗ I]S(θ12) = T γ

β (θ2) ⊗ R̃β
α(θ1), (2.12)

[I ⊗ T̃ β
α (θ2)]S(θ̂12)[I ⊗Rγ

β(θ1)]S(θ12) = Rβ
α(θ1) ⊗ T̃ γ

β (θ2), (2.13)

[T β
α (θ1) ⊗ I]S(θ̂12)[T̃

γ
β (θ2) ⊗ I] = [I ⊗ T̃ β

α (θ2)]S(θ̂12)[I ⊗ T γ
β (θ1)]. (2.14)

On the basis of the equations (2.8)-(2.10), it was shown in [25], for the abelian case without
defect degrees of freedom, that one can not have reflection and transmission simultaneously.
In [26] this result was extended to the non-abelian parity breaking case and it was proven
that for the simultaneous occurrence of reflection and transmission the scattering matrix has
to be rapidity independent and of the form

S(θ)= Pσ , (2.15)
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with P being a permutation operator and σ a constant matrix. When assuming in addition
that σ is a diagonal matrix with the property σijσji = 1, the free Fermion (σij = σji = −1),
free Boson (σij = σji = 1) and also the Federbush model [27] and the generalized coupled
Federbush models [28] are solutions to (2.15).
As a further set of consistency equations, which serve for the determination of the defect
scattering matrix, we report the crossing relations, which are as usual less obvious to justify. In
analogy to the relations which have to hold for the bulk scattering matrix Sij(θ) = Sī(iπ−θ) =
S∗

ji(−θ), (̄ is the anti-particle of j and ∗ denotes the complex conjugation) we deduce from
(2.3)-(2.4) the crossing-hermiticity relations

Rα
̄
(θ) = R̃α

̄
(−θ)∗ = Sj̄(2θ)R̃

α
j (iπ − θ) , (2.16)

Tα
̄

(θ) = T̃α
̄

(−θ)∗ = T̃α
j (iπ − θ) . (2.17)

The first equalities follow when taking Z†
i (θ)

∗ = Zi(θ) and Zα = Z†
α. The latter relations in

(2.17) simply result by considering the relations for S while letting one of the particles freeze,
i.e., setting its rapidity to zero, and viewing it as a defect. Relations (2.16) are obtainable
in a similar fashion as the interpretation put forward in [29, 24]. Our equations (2.16) and
(2.17) disagree slightly from the crossing relations in [29, 24, 25, 30], which is due to the fact
that when parity is broken real analyticity is replaced by Hermitian analyticity [31]. Later
on in our example, this will also be reflected in the representation of the free Fermion field
(2.35), being Dirac rather than Majorana. There is of course no consequence of this choice of
conventions on the physics, since the ambiguity just exploits the fact that only the moduli of
these amplitudes are observable.

Similar as for the bulk scattering matrices an additional powerful constraint results from
the singularity structure of the defect scattering amplitudes. In [26] it was shown that the
defect does not admit any excited state once one demands a simultaneous occurrence of
reflection and transmission. Supposing that the defect scattering matrices have a pole on the
imaginary axis at iθ0 ∈ iR, the corresponding residues are therefore constraint as

Res
θ→iθ0

Rα
j (θ) = Res

θ→iθ0

R̃α
j (θ) = Res

θ→iθ0

Tα
j (θ) = Res

θ→iθ0

T̃α
j (θ)

{

< 0 for θ0 ∈ (0, π)
> 0 for θ0 /∈ (0, π)

. (2.18)

The intervals (0, π) are understood to be mod2π. Hence, there is no pole with positive residue
in the physical sheet.

2.2 Multiple defects

Assuming that we have determined the defect scattering matrices R/R̃ and T/T̃ for a single
defect, for instance by solving the consistency equations in the previous subsection, it is
straightforward to use them in order to compute the related quantities for several defects.
This type of situation is of interest since, unlike for a single defect, it leads to the occurrence
of resonance phenomena and when the number of defects tends to infinity even to band
structures. Let us therefore commence by exploiting the extended ZF-algebra (2.3)-(2.4) for a
double defect. For the reasons mentioned in the introduction we are interested in the situation
when R/R̃ and T/T̃ are simultaneously non-vanishing, and in the light of the result (2.15),
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we shall therefore focus on the diagonal case from now onwards. We compute

Zi(θ)ZαZβ = Rαβ
i (θ)Zi(−θ)ZαZβ + Tαβ

i (θ)ZαZβZi(θ) , (2.19)

ZαZβZi(θ) = R̃αβ
i (−θ)ZαZβZi(−θ) + T̃αβ

i (−θ)Zi(θ)ZαZβ, (2.20)

where we have now introduced overall transmission and reflection amplitudes corresponding
to two defects

Tαβ
i (θ) =

Tα
i (θ)T β

i (θ)

1 −Rβ
i (θ)R̃α

i (θ)
, Rαβ

i (θ) = Rα
i (θ) +

Rβ
i (θ)Tα

i (θ)T̃α
i (θ)

1 −Rβ
i (θ)R̃α

i (θ)
, (2.21)

T̃αβ
i (θ) =

T̃α
i (θ)T̃ β

i (θ)

1 −Rβ
i (θ)R̃α

i (θ)
, R̃αβ

i (θ) = R̃β
i (θ) +

Rα
i (θ)T β

i (θ)T̃ β
i (θ)

1 −Rβ
i (θ)R̃α

i (θ)
. (2.22)

The term [1 − Rβ
i (θ)R̃α

i (θ)]−1 =
∑∞

n=1(R
β
i (θ)R̃α

i (θ))n results from the infinite number of
reflections which we have in-between the two defects, well known from Fabry-Perot type
devices of classical and quantum optics. For the case T = T̃ , R = R̃ the expressions (2.21)
and (2.22) coincide with the formulae proposed in [32]. When absorbing the space dependent
phase factor into the defect matrices, the explicit example presented in [25] for the free fermion
perturbed with the energy operator agree almost for T = T̃ , R = R̃ with the general formulae
(2.21). They disagree in the sense that the equality of Rαβ

i (θ) and R̃αβ
i (θ) does not hold for

generic α, β as stated in [25].
It is now straightforward to extend the expressions to an arbitrary number of defects, say

n, in a recursive manner

Tα

i (θ) =
Tα1...αk

i (θ)T
αk+1...αn

i (θ)

1 − R̃α1...αk

i (θ)R
αk+1...αn

i (θ)
, 1 < k < n , (2.23)

Rα

i (θ) = Rα1...αk

i (θ) +
R

αk+1...αn

i (θ)Tα1...αk

i (θ)T̃α1...αk

i (θ)

1 − R̃α1...αk

i (θ)R
αk+1...αn

i (θ)
, 1 < k < n . (2.24)

For convenience we encoded here the defect degrees of freedom into the vector α ={α1, · · · , αn}.
Similar expressions also hold for T̃α

i (θ) = T̃α1...αn

i (θ) and R̃α

i (θ) = R̃α1...αn

i (θ). It is clear that
from the knowledge of the single defect amplitudes we are now in the position to compute
the corresponding quantities for multiple defects just by nesting successively the expressions
(2.23) and (2.24) for increasing values of n into each other. Nonetheless, in general one does
not succeed to provide simple analytical expressions for n-defect amplitudes and a different
description is useful.

Alternatively, we can define, in analogy to standard quantum mechanical methods (see
e.g. [33, 34]), a transmission matrix which takes the particle from one side of the defect to the
other. From the braiding relations (2.3) and (2.4), we obtain with the help of the unitarity
relations (2.6) and (2.7)

(

Zα1 . . . ZαnZi(θ)

Zα1 . . . ZαnZi(−θ)

)

=

(

n
∏

k=1

Mi
αk

(θ)

)

(

Zi(θ)Zα1 . . . Zαn

Zi(−θ)Zα1 . . . Zαn

)

, (2.25)

with

Mi
αk

(θ) =

(

Tαk

i (θ)−1 −Rαk

i (θ)Tαk

i (θ)−1

−Rαk

i (−θ)Tαk

i (−θ)−1 Tαk

i (−θ)−1

)

. (2.26)
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This means alternatively to the recursive way (2.23) and (2.24), we can also compute the
multi-defect transmission and reflection amplitudes as

Tα

i (θ) =

(

n
∏

k=1

Mi
αk

(θ)

)−1

11

, Rα

i (θ) = −
(

n
∏

k=1

Mi
αk

(θ)

)

12

(

n
∏

k=1

Mi
αk

(θ)

)−1

11

. (2.27)

One may convince oneself that this formulation is indeed the same as (2.23) and (2.24). It
has, however, the virtue that it allows for a more elegant computation of the band structures.
In particular, it is most suitable for numerical computations, since it just involves matrix
multiplications rather than recurrence operations.

Let us now consider the case in which all the defects are of the same type α, equidistantly
separated by an amount y and send n→ ∞. First of all we have to include now explicitly the
dependence of the defect on its position into the discussion. We assume

n
∏

l=1

Mi
α(x = ly) =

n
∏

l=1

[

QyMi
α(x = 0)

]l
Q−1

ny , Qy =

(

eiky 0
0 e−iky

)

, (2.28)

where k corresponds to the wavevector of the lattice. Taking then n→ ∞ this accommodates
Bloch’s theorem (e.g., [33]) for the relativistic set-up. The simple requirement, that the
product of transmission matrices limn→∞

∏n
l=1 Mi

α(x = ly) remains finite, leads now in the
usual way to a restriction for the allowed energies, that is to band structures. To see when
this is the case we can exploit the r.h.s. of the first equation in (2.28) and diagonalize the
matrix QyMi

α(x = 0). Then it is clear that the limit n → ∞ only remains finite when the
eigenvalues of this matrix are not real

λi,α /∈ R . (2.29)

The eigenvalues are computed to

λi,α
1,2 = χα

i (θ) ±
√

χα
i (θ)2 − T̃α

i (−θ)/Tα
i (−θ), (2.30)

χα
i (θ) =

[eikyTα
i (θ)−1 + e−iky(T̃α

i (θ)∗)−1]

2
. (2.31)

In the parity invariant case the criterium (2.29) becomes simpler. From (2.30) and (2.31)
follows in that case that the allowed energies in the infinite lattice have to respect

χα
i (θ) = Re[eikyTα

i (θ)−1] < 1, for T = T̃ . (2.32)

In other words particles are only allowed to travel in the system with rapidities for which
the inequality (2.32) holds. In conclusion, this means the determination of the transmission
amplitudes for a single defect is sufficient to determine multiple defects and the energy band
structure. Let us illustrate the working of this general formulae with a concrete example.

2.3 Free Fermion with defects

The continuous version of the 1+1 dimensional free Fermion (Ising model) with a line of defect
was first treated in [35]. Thereafter it has also been considered in [29, 25] and [30] from a
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different point of view. In [35, 29, 25] the defect line has the form of the energy operator and
in [30] also a perturbation in form of a single Fermion has been considered. In this manuscript
we want to enlarge the class of perturbations having in mind to obtain various different kinds
of structural and physical behaviours.

Let us consider the Lagrangian density for a complex free Fermion ψ with ℓ defects∗

L = ψ̄(iγµ∂µ −m)ψ +
ℓ−1
∑

n=0

δ(x− xn)Dαn(ψ̄, ψ) , (2.33)

where we describe the defect by the functions Dαn(ψ̄, ψ), which we assume to be linear in
the Fermi fields ψ̄ and ψ. In the following we will restrict ourselves mainly to the case of
equidistantly distributed defects of the same type, i.e. xn = ny and Dαn(ψ̄, ψ) = D(ψ̄, ψ) for
n ∈ {0, ℓ− 1}.

2.3.1 Transmission and reflection amplitudes

Unfortunately, it follows from the arguments outlined in section 2.1, that when one is seeking a
situation with simultaneously occurring reflection and transmission the constraining equations
for diagonal bulk scattering matrices reduce simply to unitarity and crossing. These equations
are, however, not restrictive enough by themselves to fix R/R̃ and T/T̃ and therefore one has
to resort to alternative arguments. For instance one may proceed in analogy to standard
quantum mechanical potential scattering theory (see also [29, 25, 30]) and construct the
amplitudes by adequate matching conditions on the field. We consider now a single defect at
the origin which suffices, since multiple defect amplitudes can be constructed from the single
defect ones, according to the arguments of the previous section. We decompose the fields of
the bulk theory as ψ(x) = Θ(x) ψ+(x) + Θ(−x) ψ−(x), with Θ(x) being the Heavyside step
function, and substitute this ansatz into the equations of motion. This way we obtain the
constraints

iγ1(ψ+(x) − ψ−(x))|x=0 =
∂D(ψ̄(x), ψ(x))

∂ψ̄(x)

∣

∣

∣

∣

x=0

. (2.34)

Using here for the left (−) and right (+) parts of ψ the Fourier decomposition of the free field

ψj(x) =

∫

dp1
j√

4πp0
j

(

aj(p)uj(p)e
−ipj ·x + a†

̄
(p)vj(p)e

ipj ·x
)

, (2.35)

with
√

m2
j + p2

j = p0
j and the Weyl spinors

uj(p) =

√

mj

2

(

e−θ/2

eθ/2

)

and vj(p) = i

√

mj

2

(

e−θ/2

−eθ/2

)

, (2.36)

∗Throughout the paper we use the following conventions:

xµ = (x0, x1), pµ = (m cosh θ,m sinh θ), g00 = −g11 = ε01 = −ε10 = 1,

γ0 =

(

0 1
1 0

)

, γ1 =

(

0 1
−1 0

)

, γ5 = γ0γ1, ψα =

(

ψ(1)
α

ψ(2)
α

)

, ψ̄α = ψ†
αγ

0 .
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we can substitute them into the constraint (2.34). Treating the equations obtained in this
manner componentwise, stripping off the integrals, we can bring them thereafter into the form

(

a†
̄,−(θ)

a†
̄,+(−θ)

)

=

(

R̄(θ)
∗ T̄(θ)

∗

T̃̄(θ)
∗ R̃̄(θ)

∗

)

(

a†
̄,−(−θ)
a†

̄,+(θ)

)

, (2.37)

(

aj,−(θ)
aj,+(−θ)

)

=

(

R
j
(θ) T

j
(θ)

T̃
j
(θ) R̃j(θ)

)(

aj,−(−θ)
aj,+(θ)

)

. (2.38)

The creation and annihilation operators ai(θ), a
†
i (θ) play in (2.1) and (2.2) the role of the ZF-

algebra generators in view of the usual fermionic anti-commutation relations {ai(θ1), aj(θ2)} =

0, {ai(θ1), a
†
j(θ2)} = 2πδijδ(θ12). When including the defect operator in the equations (2.37)

and (2.38), on the right/left for −/+-subscript, they acquire precisely the form of the extended
ZF-algebra (2.3)-(2.4), such that one can read off directly the reflection and transmission
amplitudes. One may convince oneself that the expressions found this way indeed satisfy the
consistency equations like crossing (2.16), (2.17), unitarity (2.6), (2.7) and respect (2.18). In
order to find the explicit expressions, we have to consider some concrete defects. Let us first
concentrate on the energy perturbation.

2.3.2 The energy operator defect Dα(ψ̄, ψ) = gψ̄ψ

The defect Dα(ψ̄, ψ) = gψ̄ψ has received already some amount of consideration, for the reason
that it possesses a well studied [36] discrete counterpart. Taking the continuum limit of these
lattice models the defect term in there acquires the form of the energy operator ε(x) = gψ̄ψ(x),
with g being a coupling constant. According to (2.34), (2.37) and (2.38) we compute

R̃α
j (θ, y) = Rα

̄ (θ, y) = Rα
j (θ,−y) = R̃α

̄ (θ,−y) =
sinB cosh θ

i sinh θ − sinB
e2iym sinh θ , (2.39)

Tα
j (θ) = T̃α

j (θ) = Tα
̄ (θ) = T̃α

̄ (θ) =
cosB sinh θ

sinh θ + i sinB
, (2.40)

where we used a common and convenient parameterization in this context†

sinB = − 4g

4 + g2
, −π

2
≤ B ≤ 0 . (2.41)

Note, that there is no explicit y-dependence in T/T̃ and that (2.39)-(2.40) satisfy the “unitar-
ity” relations (2.6)-(2.7) and the crossing-hermiticity relations (2.16)-(2.17) when the defect
is situated at the origin. The residues are constrained as in (2.18). The expressions Rα

j (θ,B)
and Tα

j (θ,B) coincide with the solutions found in [25], which, however, in general does not
correspond to taking our particles simply to be self-conjugated, since we use Dirac Fermions.
Having obtained these amplitudes, we can easily compute the corresponding quantities as-
sociated to multiple defects by means of (2.23), (2.24) or (2.27). The explicit formulae are

†This is suggestive since many bulk theories admit such a relation between the bare and effective coupling.
One may equate some combinations of R and T with some well known bulk scattering matrices. For instance,
we identify the sinh-Gordon S-matrix SSG(θ, BSG) = Tj(θ,Bπ/2)/Tj(−θ,Bπ/2), with the indicated relation
amongst the effective defect coupling constants.
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obvious and since they are quite cumbersome we will not report them here. Instead, we will
depict them as functions of cosh θ in figure 1 for various parameters in order to emphasize
some of their characteristics.

Figure 1: (a) Single defect with varying coupling constant. |T |2 and |R|2 correspond to curves starting

at 0 and 1 of the same line type, respectively. (b) Double defect with varying distance y. (c) Double

defect with varying effective coupling constant B. (d) Double defect ≡ dotted line, eight defects ≡
solid line.

Part (a) of figure 1 confirms the unitarity relation (2.6) where we used R∗
j (θ,B) =

Rj(−θ,B) and T ∗
j (θ,B) = Tj(−θ,B). Part (b) and (c) show the typical resonances of a

double defect, which become stretched out and pronounced with respect to the energy when
the distance becomes smaller and the coupling constant increases, respectively. Part (d) ex-
hibits a general feature which extends to an even number of higher multiple defects, say 2n,
when keeping the distance y between the two most separated defects fixed: The resonances ac-
cumulate at the position around the (2n−1)-th resonances of the double defect. For increasing
n they become very dense in that region such that one may speak of energy bands.

It is interesting to compare these bands with those obtained from the criterium (2.32),
which translates in this case into

sinh θ(cos ky − cosB) < sin ky sinB, k = m sinh θ . (2.42)
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Figure 1 part (d) shows that when taking 2n defects separated by a distance y/(2n − 1) one
obtains for large n an energy spectrum which resembles a band structure. Analyzing instead
the function χα

i (θ) in (2.31) we obtain the same band structure from the criterium (2.32). The
two computations show that the positions as well as the width of the bands in the two figures
1(d) and 2 coincide quite well. Remarkably, even for the double defect the criterium (2.31)
yields energy regions, see figure 2(b), which are in good agreement with the exact computation
as presented in figure 1(d).

Figure 2: Band structures according to the criterium (2.32). The non-shaded regions are forbidden.

(a) eight defects with B = B1 = . . . = B8 = 1.1 equidistant by y = 0.25/7 (b) double defect with

B = B1 = B2 = 1.1 distanced by y = 0.25.

Very often we will not be able to perform certain computations analytically, but instead we
can carry them out in the massless limit. The prescription for taking this limit was originally
introduced in [37]. It consists of replacing in every rapidity dependent expression θ by θ± σ,
where an additional auxiliary parameter σ has been introduced. Thereafter one should take
the limit σ → ∞, m → 0 while keeping the quantity m̂ = m/2 exp(σ) finite. For instance,
carrying out this prescription for the momentum yields p± = ±m̂ exp(±θ), such that one may
view the model as splitted into its two chiral sectors and one can speak naturally of left (L)
and right (R) movers. In this way the expressions (2.39)-(2.40) become

Rα
j,L/R(θ,B) = ±i sinB e±2iyαm̂eθ

and Tα
j,L/R(θ,B) = cosB. (2.43)

Similarly we compute the expression involving two and four defects for later purposes

Tα1α2

j,L/R(θ,B) = T̃α1α2

j,L/R(θ,B) =
cos2B

1 + sin2B exp[∓2im̂(yα1 − yα2)e
θ]
, (2.44)

Rα1α2

j,L/R(θ,B) = ±i sinB e−2iyα1m̂eθ ± i sinB cos2Be−2iyα2m̂eθ

1 + sin2B exp[∓2im̂(yα1 − yα2)e
θ]
, (2.45)

R̃α1α2

j,L/R(θ,B) = ±i sinB e2iyα2m̂eθ ± i sinB cos2Be−2iyα1m̂eθ

1 + sin2B exp[∓2im̂(yα1 − yα2)e
θ]
, (2.46)

Tα1α2α3α4

j,L/R (θ,B) = T̃α1α2α3α4

j,L/R (θ,B) =
Tα1α2

j,L/R(θ,B)Tα3α4

j,L/R(θ,B)

1 − R̃α1α2

j,L/R(θ,B)Rα3α4

j,L/R(θ,B)
. (2.47)
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The remaining amplitudes can be obtained analogously. The expressions of physical quantities,
e.g., the conductance, in the massless limit should not depend on the parameter m̂, such that
the amplitudes (2.43)-(2.47) should in fact always appear in combination with other functions
in order to make the prescription meaningful.

Having discussed this type of defect in some detail we will now compute R/R̃ and T/T̃
for various other defects in order to illustrate several types of physical behaviours.

2.3.3 Transparent defects, D0(ψ̄, ψ) = 0, Dβ(ψ̄, ψ) = gψ̄γ1ψ

The examples which can be handled most easily in later considerations are defects which
behave physically as if they were transparent ones, i.e., as |Tα| = 1. Note that this does not
necessarily mean the absence of the defect. For instance considering the defect Dβ(ψ̄, ψ) =
gψ̄γ1ψ, we compute with the method outlined above

Rβ
j (θ,B) = R̃β

j (θ,B) = Rβ
̄ (θ,B) = R̃β

̄ (θ,B) = 0 , (2.48)

T β
j (θ,−B) = T β

̄ (θ,B) = T̃ β
̄ (θ,−B) = T̃ β

j (θ,B) = eiB , (2.49)

for this defect. The coupling constant is parameterized as in (2.41). Evidently the “unitarity”
(2.6)-(2.7) and the crossing relations (2.16)-(2.17) are satisfied. Note that this is also an
example for a defect which breaks parity invariance, i.e., the left and right transmission
amplitudes are not identical. In the infinite lattice limit, i.e. when the number of defects
tends to infinity, we find

χβ
j/̄(θ) = cos(ky ∓B) ⇒ λβ

j/̄(θ) /∈ R, ∀ θ,B , (2.50)

which means that according to (2.29) there are no forbidden energy regimes.

2.3.4 Energy insensitive defects, Dγ(ψ̄, ψ) = gψ̄γ5ψ, Dδ±(ψ̄, ψ) = gψ̄(γ1 ± γ5)ψ

In comparison with the transparent defects the next complication arises when the defect causes
a phase shift independent of the energy of the incoming particle. For Dγ(ψ̄, ψ) = gψ̄γ5ψ we
compute

Rγ
j (θ,B,−y) = R̃γ

j (θ,−B, y) = Rγ
̄ (θ,B, y) = R̃γ

̄ (θ,−B,−y) = ie2iym sinh θ tanB, (2.51)

T γ
j (B) = T γ

̄ (B) = T̃ γ
̄ (B) = T̃ γ

j (B) = cos−1(B) . (2.52)

In this case we observe that parity is broken for the reflection amplitudes, i.e. R 6= R̃. The
relations (2.6)-(2.7) and (2.16)-(2.17) for y = 0 are satisfied. For y = 0 none of the amplitudes
depend on the rapidities. In the infinite lattice limit we find

χγ
j (θ) = χγ

̄ (θ) = cos ky cosB < 1 ∀ θ,B , (2.53)

such that according to (2.32) there are no forbidden energy regimes.
For Dδ±(ψ̄, ψ) = gψ̄(γ1 ± γ5)ψ we compute

R
δ±
j (θ,B,−y) = R̃

δ±
j (θ,−B, y)=Rδ±

̄ (θ,B, y)=R̃
δ±
̄ (θ,−B,−y)=±i tan

B

2
e2iym sinh θ,(2.54)

T
δ±
j (B) = T

δ±
̄ (−B) = T̃

δ±
̄ (B) = T̃

δ±
j (−B) = 1 − 2i tan

B

2
. (2.55)
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These are examples in which parity is broken for the reflection as well as for the transmission
amplitudes. Again the relations (2.6)-(2.7) and (2.16)-(2.17) are satisfied when the defect
is placed at the origin and, as for Dγ , when y = 0 none of the amplitudes depends on the
rapidities. In this case we find in the infinite lattice limit

χ
δ+

j/̄(θ) = χ
δ−
j/̄(θ) =

cos ky

1 ∓ 2i tan B
2

⇒ λ
δ±
j/̄(θ) /∈ R, ∀ θ,B , (2.56)

such that according to (2.32) there are no forbidden energy regions.

2.3.5 Luttinger liquid type Dε(ψ̄, ψ) = ψ̄(g1 + g2γ
0)ψ

When taking the conformal limit of a defect of the type Dε(ψ̄, ψ) = ψ̄(g1 +g2γ
0)ψ one obtains

an impurity which played a role in the context of Luttinger liquids [38] when setting the
bosonic number counting operator to zero, see e.g. [39]. Besides Dα(ψ̄, ψ) this is also an
example of a defect for which the potential is real. With (2.34), (2.37) and (2.38) we compute
the related transmission and reflection amplitudes

Rε
j(θ, g1, g2,−y) = R̃ε

j(θ, g1, g2, y) =
4i(g2 + g1 cosh θ)e2iym sinh θ

(4 + g2
1 − g2

2) sinh θ − 4i(g1 + g2 cosh θ)
, (2.57)

Rε
̄ (θ, g1, g2,−y) = R̃ε

̄(θ, g1, g2, y) =
4i(g1 − g2 cosh θ)e−2iym sinh θ

(4 + g2
1 − g2

2) sinh θ − 4i(g1 − g2 cosh θ)
, (2.58)

T ε
j (θ, g1, g2) = T̃ ε

j (θ, g1, g2) =
(4 + g2

2 − g2
1) sinh θ

(4 + g2
1 − g2

2) sinh θ − 4i(g1 + g2 cosh θ)
, (2.59)

T ε
̄ (θ, g1, g2) = T̃ ε

̄ (θ, g1, g2) =
(4 + g2

2 − g2
1) sinh θ

(4 + g2
1 − g2

2) sinh θ − 4i(g1 − g2 cosh θ)
. (2.60)

As we expect, since limg2→0 Dε(ψ̄, ψ) = Dα(ψ̄, ψ), we recover the related results also for the
T/T̃ ’s and R/R̃’s in (2.39)-(2.40). On the other hand, for g1 → 0 we obtain the defect
Dζ(ψ̄, ψ) = g2ψ̄γ

0ψ for which the expressions simplify to

Rζ
j (θ,B,−y) = R̃ζ

j (θ,B, y) =
−ie2iym sinh θ sinB

cosB sinh θ + i sinB cosh θ
, (2.61)

Rζ
̄ (θ,B, y) = R̃ζ

̄ (θ,B,−y) =
ie2iym sinh θ sinB

cosB sinh θ − i sinB cosh θ
, (2.62)

T ζ
j (θ,B) = T̃ ζ

j (θ,B) = T ζ
̄ (θ,−B) = T̃ ζ

̄ (θ,−B) =
sinh θ

cosB sinh θ + i sinB cosh θ
.(2.63)

Where the effective coupling B is given by (2.41) with g → g2. The relations (2.6)-(2.7)
and (2.16)-(2.17) may be verified once again for y = 0. In this case the infinite lattice limit
leads to forbidden energy regimes, since according to (2.32), the rapidities have to respect the
inequality

(4 + g2
1 − g2

2) sinh θ cos ky + sin ky(g1 ± g2 cosh θ) < (4 + g2
2 − g2

1) sinh θ for j, ̄ , (2.64)

which possess non trivial solutions.
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2.3.6 The defects Dη±(ψ̄, ψ) = gψ̄(1 ± γ5)/2ψ

For this case we compute now

R
η±

j (θ,B, y) = R
η±
̄ (θ,B,−y) =

e∓θe−2iym sinh θ

i cot(B/2) sinh θ − 1
, (2.65)

R̃
η±
̄ (θ,B,−y) = R̃

η±

j (θ,B, y)=
e±θe2iym sinh θ

i cot(B/2) sinh θ − 1
, (2.66)

T
η±

j (θ,B) = T
η±
̄ (θ,B) = T̃

η±
̄ (θ,B) = T̃

η±

j (θ,B) =
1

1 ∓ i tan−1(B/2) sinh−1(θ)
,(2.67)

which is once again in agreement with (2.6)-(2.7) and (2.16)-(2.17) for y = 0. In the infinite
lattice limit we obtain also in this case forbidden energy regimes. The criterium (2.32) gives

± cos ky/2 < sinh θ tanB/2 sin ky/2 , (2.68)

which has non-trivial solutions for the rapidities.

2.3.7 The defects Dλ±(ψ̄, ψ) = gψ̄(γ0 ± γ1)/2ψ

For this case we compute now

R
λ±

j (θ,B, y) = R
λ±
̄ (θ,B,−y) =

e−2iym sinh θ tan B
2

i sinh θ − tan B
2 cosh θ

, (2.69)

R̃
λ±
̄ (θ,B, y) = R̃

λ±

j (θ,B,−y) =
−e−2iym sinh θ tan B

2

i sinh θ + tan B
2 cosh θ

, (2.70)

T
λ±

j (θ,B) = T
λ±
̄ (θ,−B) = T̃

λ±
̄ (−θ,B) = T̃

λ±

j (−θ,−B) =
(i± tan B

2 ) sinh θ

i sinh θ − tan B
2 cosh θ

. (2.71)

The crossing-hermiticity and unitarity relations hold for y = 0.
In principle we could of course prolong this list of defects and construct their corresponding

R’s and T ’s. However, the main purpose of this exercise was to review how the transmission
and reflection amplitudes for a defect may be obtained and also to give a brief account of some
of their characteristic features. Important to note is that indeed all variations of possible parity
breaking occur and one should keep therefore the discussion generic in that sense. Note that
when the defect is real, namely Dα(ψ̄, ψ), Dε(ψ̄, ψ), parity invariance is preserved, which is
a well known fact from quantum mechanics (see e.g. [34]). Complex potentials might look
at first sight somewhat unphysical from the energy spectrum point of view. However, as is
well-known for some bulk theories, such as for instance affine Toda field theories with purely
complex coupling constants, one can still associate well defined quantum field theories to such
Lagrangians and construct even classically soliton solutions with real energies and momenta
[40].

A classification scheme for possible defects which maintain integrability is highly desirable.
It is interesting to note that in the conformal limit, as outlined before equation (2.43), some
of the defects, namely Dζ(ψ̄, ψ) and Dλ±(ψ̄, ψ), become purely transmitting. Therefore, in
contrast to first impression, the folding idea [17] could be employed. We have now enough
examples at hand to use them in the following to determine the conductance in a multiparticle
system, which we shall do in two alternative ways.
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3 Conductance from the Landauer formula

3.1 Conductance through an impurity

The most intuitive way to compute the conductance is via Landauer transport theory [1]. Let
us consider a set up as depicted in figure 3, that is we place a defect in the middle of a rigid
bulk wire, where the two halves might be at different temperatures.

Figure 3: A conductance measurement. Part (a) represents the initial condition with no current

flowing, i.e., I=0 and part (b), I 6= 0. The defect is placed in the middle of the wire and the left and

right half are assumed to be at temperatures T1 and T2, respectively.

The direct current I through such a quantum wire can be computed simply by determining the
difference between the static charge distributions at the right and left constriction of the wire,
i.e. I = Qr−Ql. This is based on the assumption [13, 16], that Q(t) ∼ (Qr−Ql)t ∼ (ρr−ρl)t,
where the ρs are the corresponding density distribution functions. Placing an impurity in the
middle of the wire, we have to quantify the overall balance of particles of type i and anti-
particles ı̄ carrying opposite charges qi = −qı̄ at the end of the wire at different potentials.
This information is of course encoded in the density distribution function ρr

i (θ, T, µi). In the
described set up half of the particles of one type are already at the same potential at one
of the ends of the wire and the probability for them to reach the other is determined by the
transmission and reflection amplitudes through the impurity. We assume that there is no
effect coming from the constrictions of the wire, i.e. they are purely transmitting surfaces
with T = T̃ = 1. One could, however, also consider a situation in which those constrictions
act as boundaries, namely purely reflecting surfaces. The situation could be described with
the same transport theory picture, see e.g. [13, 14, 41], but then the conductance can only be
non-vanishing if the reflection amplitudes in the constrictions are non-diagonal in the particle
degrees of freedom, such as for instance for sine-Gordon [29], that is in general affine Toda
field theories with purely imaginary coupling constant or in the massless limit folded purely
reflecting (transmitting) diagonal bulk theories.

According to the Landauer transport theory the direct current (DC) along the wire is
given by

Iα =
∑

i

Iα

i (r, µl
i, µ

r
i ) =

∑

i

qi
2

∞
∫

−∞

dθ
[

ρr
i (θ, r, µ

r
i )|Tα

i (θ) |2 − ρr
i (θ, r, µ

l
i)|T̃α

i (θ) |2
]

, (3.1)
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= IB −
∑

i

qi
2

∞
∫

−∞

dθ
[

ρr
i (θ, r, µ

r
i )|Rα

i (θ) |2 − ρr
i (θ, r, µ

l
i)|R̃α

i (θ) |2
]

, (3.2)

where we assume here T1 = T2. The relation (3.2) is obtained from (3.1) simply by making
use of the fact that |R|2 + |T |2 = 1. Equation (3.2) has the virtue that it extracts explicitly
the bulk contribution to the current which we refer to as IB. There are some obvious limits,
namely a transparent and an impenetrable defect

lim
|T α |→1

Iα = IB and lim
|T α |→0

Iα = 0 , (3.3)

respectively. A short comment is needed on the validity of (3.1). Apparently it suggests that
when the parity between left and right scattering is broken, there is the possibility of a net
current even when an external source is absent. In this picture we have of course not taken
into account that charged particles moving through the defect will alter the potential, such
that we did in fact not describe a perpetuum mobile. Thus the limitation of our analysis is
that µl

i − µr
i has to be much larger than the change in the potential induced by the moving

particles.
Finally we want to compute the conductance from the DC current, which by definition is

obtained from

Gα(r) =
∑

i
Gα

i (r) =
∑

i
lim

(µl
i−µr

i )→0
Iα

i (r, µl
i, µ

r
i ) /(µ

l
i − µr

i ) (3.4)

and is of course a property of the material itself and a function of the temperature. In general
the expressions in (3.1) tend to zero for vanishing chemical potential difference such that the
limit in (3.4) is non-trivial.

Thus from the knowledge of the transmission matrix and the density distribution function
we can compute the conductance. Having already described how Tα

i (θ) can be determined,
we will now explain how ρr

i (θ, r, µi) can be evaluated by exploiting the integrability of the
theory.

3.2 Defect TBA equations

The thermodynamic Bethe ansatz is a powerful tool which may be used to compute various
thermodynamic properties of multi-particle systems which interact via a factorizing scattering
matrix [9] and some chosen statistics. In addition, it allows to check the theory for consistency
and to extract some distinct structural quantities such as the Virasoro central in the ultraviolet
limit. The original bulk formulation has been accommodated to a situation which includes
a purely transmitting defect [42] and a boundary [44]. In this section we want to propose a
new formulation which is valid for a situation not treated before in this context, namely when
reflection and transmission occur simultaneously.

As usual we obtain the Bethe ansatz equation by dragging a particle along the world line
of length L. We introduce for convenience the following shorthand notation for the product
of various particle Zi(θ) and defect operators Zα

Z
µ1...µN

k1,α1;k2,α2...kn,αn
:= Zµ1

(θµ1
) . . . Zµk1

(θµk1
)Zα1 . . . Zµkn

(θµkn
)Zαn . . . ZµN

(θµN
). (3.5)
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Then we compute the braiding of a particle operator of type i and the product of N further
particles Zµ1

. . . ZµN
with one defect Zα situated on the right of the particle Zµk

by using the
ZF-algebra (2.3) and (2.4)

Zi(θi)Z
µ1...µN

k,α = Z
µ1...µN

k,α Zi(θi)F̃iα − Z
µ1...µN

k,α Zi(−θi)G̃iα , (3.6)

Z
µ1...µN

k,α Zi(θi) = Zi(θi)Z
µ1...µN

k,α Fiα − Zi(−θi)Z
µ1...µN

k,α Giα . (3.7)

We abbreviated here

F̃α
i =

1

T̃α
i (−θi)

N
∏

l=1

Siµl
(θiµl

) , G̃α
i =

R̃α
i (−θi)

T̃α
i (−θi)

k
∏

l=1

Siµl
(θiµl

)
N
∏

l=k+1

Siµl
(−θ̂iµl

) , (3.8)

Fα
i =

1

Tα
i (θi)

N
∏

l=1

Sµli(θµli) , Gα
i =

Rα
i (θi)

Tα
i (θi)

k
∏

l=1

Sµli(θ̂µli)

N
∏

l=k+1

Sµli(θµli) . (3.9)

Being on a circle of length L, we can make the usual assumption on the Bethe wavefunction,
see e.g. [9], which is captured in the requirement

Zi(θ)Z
µ1...µN

k,α = Z
µ1...µN

k,α Zi(θ) exp(−iLmi sinh θ) . (3.10)

Using this monodromy property together with the braiding relations (3.6), (3.7) and the
unitarity relation (2.6), we obtain

N
∏

l=1

Sli(θ̂li)

Sli(θli)

(

N
∏

l=1

Sli(θli) −
eiLmi sinh θi

T̃α
i (−θi)

)

=
Tα

i (−θi)

T̃α
i (−θi)

(

e−iLmi sinh θi

Tα
i (θi)

−
N
∏

l=1

Sil(θil)

)

. (3.11)

Viewing the subscripts as entire spaces rather than components, equation (3.11) corresponds
to the Bethe ansatz equation with simultaneously occurring transmission and reflection am-
plitudes for the generic, that is also the non-diagonal, case. We restrict it here to the diagonal
case and can therefore use the constraints (2.15), such that the bulk scattering matrix becomes
rapidity independent and the relation (3.11) may be re-written as

1 = eiLmi sinh θD±
iα(θ)

∏N

l=1
Sil (3.12)

where

D±
iα(θ) =

T̃α
i (θ) + Tα

i (θ)
∏N

l=1 S
2
il

2
± 1

2





(

T̃α
i (θ) + Tα

i (θ)

N
∏

l=1

S2
il

)2

− 4Tα
i (θ)

∏N
l=1 S

2
il

Tα
i (−θ)





1
2

.

(3.13)
For consistency reasons it is instructive to consider the limit when the reflection amplitude
tends to zero. In that case we can employ the relations (2.5)-(2.7) and may take the square
root in (3.13), such that we obtain from (3.12) the two equations

R, R̃→ 0 : 1 = eiLmi sinh θT̃α
i (θ)

N
∏

l=1

Sil , 1 = e−iLmi sinh θTα
i (θ)

N
∏

l=1

Sli . (3.14)
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This means we recover the Bethe ansatz equations for a purely transmitting defect, which
were originally proposed by Martins in [42]. The two signs in (3.13) capture the breaking of
parity invariance in the limiting case, i.e. the two equations in (3.14) correspond to taking
the particle either clockwise or anti-clockwise around the world line as formulated for the
parity breaking case for the first time in [43]. We do not expect to recover from here the
equations for a purely reflecting boundary which were suggested in [44], since the equations
(3.6) and (3.7) do not make sense in the limit T, T̃ → 0. For

∏N
l=1 S

2
il = 1, i.e. the free Boson

and Fermion, we can exploit the fact that (3.12) with (3.13) look formally precisely like the
Bethe ansatz equations for a purely transmitting defect. If we want to exploit this analogy we
should of course be concerned about the question whether D±

jα(θ) is a meromorphic function.
Assuming parity invariance, we may take the square root

D±
jα(θ) = Tα

j (θ) ±Rα
j (θ) for T = T̃ , R = R̃ . (3.15)

The matrix D±
jα(θ) has now the usual properties, namely it is unitarity in the sense that

D±
jα(θ)D±

jα(−θ) = 1. It follows further from (3.15), (2.16) and (2.17) that the hermiticity

relation D±
jα(θ) = D±

jα(−θ)∗ and the crossing relations D±
̄α(θ) = D∓

jα(iπ − θ) and D±
̄α(θ) =

D±
jα(iπ − θ) hold for the free Fermion and Bosons, respectively.

Let us now carry out the thermodynamic limit in the usual way, namely by increasing
the particle number and the system size in such a way that their mutual ratio remains finite.
The amount of defects is kept constant in this limit, such that there is no contribution to
the TBA-equations from the defect in that situation, see also [42] where the same argument
was employed. Hence this means that essentially we can employ the usual bulk TBA analysis
when the considerations are carried out not per unit length.

Let us therefore recall the main equations of the TBA analysis. For more details on the
derivation see [9] and in particular for the introduction of the chemical potential see [10].
The main input into the entire analysis is the dynamical interaction, which enters via the
logarithmic derivative of the scattering matrix ϕij(θ) = −id lnSij(θ)/dθ and the assumption
on the statistical interaction, which we take to be fermionic. As usual [9, 10], we take the
logarithmic derivative of the Bethe ansatz equation (3.12) and relate the density of states
ρi(θ, r) for particles of type i as a function of the inverse temperature r = 1/T to the density
of occupied states ρr

i (θ, r)

ρi(θ, r) =
mi

2π
cosh θ +

∑

j
[ϕij ∗ ρr

i ](θ) . (3.16)

By (f ∗ g) (θ) := 1/(2π)
∫

dθ′f(θ−θ′)g(θ′) we denote as usual the convolution of two functions.
The mutual ratio of the densities serves as the definition of the so-called pseudo-energies
εi(θ, r)

ρr
i (θ, r)

ρi(θ, r)
=

e−εi(θ,r)

1 + e−εi(θ,r)
, (3.17)

which have to be positive and real. At thermodynamic equilibrium one obtains then the
TBA-equations, which read in these variables and in the presence of a chemical potential µi

rmi cosh θ = εi(θ, r, µi) + rµi +
∑

j
[ϕij ∗ ln(1 + e−εj )](θ) , (3.18)
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where r = m/T , ml → ml/m, µi → µi/m, with m being the mass of the lightest particle in
the model. It is important to note that µi is restricted to be smaller than 1. This follows
immediately from (3.18) by recalling that εi ≥ 0 and that for r large εi(θ, r, µi) tends to
infinity. As pointed out already in [9] (here just with the small modification of a chemical
potential), the comparison between (3.18) and (3.16) leads to the useful relation

ρi(θ, r, µi) =
1

2π

(

dεi(θ, r, µi)

dr
+ µi

)

. (3.19)

The main task is therefore first to solve (3.18) for the pseudo-energies from which then all
densities can be reconstructed.

3.3 Thermodynamic quantities

Treating the equations (3.12) and (3.13) in the mentioned analogy we can also construct
various thermodynamic quantities. It should be stressed that these quantities are computed
per unit length. Similarly as the expression found in [42] for a purely transmitting defect the
free energy is

F (r) = − 1

πr

∑

l,α

m̂l

∫ ∞

0
dθ [cosh θ +m−1ϕlα(θ)] ln[1 + exp(−rm cosh θ)] . (3.20)

It is made up of two parts, one coming from the bulk and one including the data of the
defect in form of ϕlα(θ) = −id lnDlα(θ)/dθ. From equation (3.20) we also see that when
taking the mass scale to be large in comparison to the dominating scale in the defect, the
latter contribution to the scaling function becomes negligible with regard to the bulk and vice
versa.

3.4 The high temperature regime

Since the physical quantities require a solution of the TBA-equations, which up to now, due
to their non-linear nature, can only be solved numerically, we have to resort in general to a
numerical analysis to obtain the conductance for some concrete theories. However, there exist
various approximations for different special situations, such as the high temperature regime.
For large rapidities and small r, it is known [9] (here we only need the small modification of
the introduction of a chemical potential µi) that the density of states can be approximated
by

ρi(θ, r, µi) ∼
mi

4π
e|θ| ∼ 1

2πr
ǫ(θ)

dεi(θ, r, µi)

dθ
, (3.21)

where ǫ(θ) = Θ(θ) − Θ(−θ) is the step function, i.e. ǫ(θ) = 1 for θ > 0 and ǫ(θ) = −1 for
θ < 0. In equation (3.17), we assume that in the large rapidity regime ρr

i (θ, r, µi) is dominated
by (3.21) and in the small rapidity regime by the Fermi distribution function. Therefore

ρr
i (θ, r, µi) ∼

1

2πr
ǫ(θ)

d

dθ
ln [1 + exp(−εi(θ, r, µi))] . (3.22)

Using this expression in equation (3.1), we approximate the direct current in the ultraviolet
by

lim
r→0

Iα

i (r, µi) ∼
qi

4πr

∞
∫

−∞

dθ ln

[

1 + exp(−εi(θ, r, µl
i))

1 + exp(−εi(θ, r, µr
i ))

]

d
[

ǫ(θ) |Tα

i (θ)|2
]

dθ
, (3.23)
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after a partial integration. For simplicity we also assumed here parity invariance, that is
|Tα

i (θ)| = |T̃α

i (θ)|. The derivation of the analogue to (3.23) for the situation when parity is
broken is of course similar. Taking now the potentials at the end of the wire to be µr

i = −µl
i =

V/2, the conductance reads in this approximation

lim
r→0

Gα

i (r) ∼ qi
2πr

∞
∫

−∞

dθ
1

1 + exp[εi(θ, r, 0)]

dεi(θ, r, V/2)

dV

∣

∣

∣

∣

V =0

d
[

ǫ(θ) |Tα

i (θ)|2
]

dθ
. (3.24)

In order to evaluate these expressions further, we need to know explicitly the precise form of
the transmission matrix, i.e. the concrete form of the defect. An interesting situation occurs
when the defect is transparent or rapidity independent, that is |Tα

i (θ)| → |Tα

i |, in which case
we can pursue the analysis further. Noting that dǫ(θ)/dθ = 2δ(θ), we obtain

lim
r→0

Gα

i (r) ∼ qi
πr

|Tα

i |2
1 + exp εi(0, r, 0)

dεi(0, r, V/2)

dV

∣

∣

∣

∣

V =0

. (3.25)

The derivative dεi(0, r, V/2)/dV can be obtained by solving recursively

dεi(0, r, V/2)

dV
= −r

2
−
∑

j

Nij
1

1 + exp εj(0, r, V/2)]

dεj(0, r, V/2)

dV
, (3.26)

which results form a computation similar to a standard one in this context [9] leading to the
so-called constant TBA-equations. Here only the asymptotic phases of the scattering matrix
enter via Nij = limθ→∞[ln[Sij(−θ)/Sij(θ)]]/2πi. The values of εi(0, r, 0) needed in (3.25) can
be obtained for small r in the usual way from the standard constant TBA-equations.

3.5 Free Fermion with defects

Let us exemplify the general formulae once more with the free Fermion. First of all we note
that in this case in the TBA-equations (3.18) the kernel ϕij is vanishing and the equation is
simply solved by

εi(θ, r, µi) = rmi cosh θ − rµi . (3.27)

Therefore, we have explicit functions for the densities with (3.19) and (3.17)

ρi (θ, r, µi) =
1

2π
mi cosh θ and ρr

i (θ, r, µi) =
mi cosh θ/2π

1 + exp(rmi cosh θ − rµi)
. (3.28)

According to (3.1) the direct current reads

Iα(r, V ) =
qi
2

∞
∫

−∞

dθ
[

ρr
ı̄ (θ, r, V/2) |Tα

ı̄ (θ) |2 − ρr
i (θ, r,−V/2) |Tα

i (θ) |2

−ρr
ı̄ (θ, r,−V/2) |T̃α

ı̄ (θ) |2 + ρr
i (θ, r, V/2) |T̃α

i (θ) |2
]

. (3.29)

Using atomic units me = e = h = mi = qi = 1, we obtain explicitly with (3.28)

Iα(r, V ) =
1

π

∞
∫

0

dθ
cosh θ sinh(rV/2) |Tα (θ) |2
cosh(r cosh θ) + cosh(rV/2)

, (3.30)
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for |Tα

ı̄ (θ) | = |Tα

i (θ) | = |T̃α

ı̄ (θ) | = |T̃α

i (θ) | = |Tα (θ) | . Then by (3.4) the conductance
results to

Gα(r) = rm
e2

h

∞
∫

0

dθ
cosh θ |Tα (θ)|2

1 + cosh(rm cosh θ)
(3.31)

in this case. We have re-introduced dimensional quantities instead of atomic units to be able
to match with some standard results from the literature. The most characteristic features can
actually be captured when we carry out the massless limit as indicated in section 2.3.2, which
can be done even analytically. Substituting t = eθ, we obtain

lim
m→0

Gα(r) ∼ e2

h

∞
∫

0

dt
|Tα

L/R(t y/r)|2

1 + cosh(t)
=
e2

h

{

|Tα

L/R(t y/r)|2 for y ≫ r

|Tα

L/R(y/r = 0)|2 for y ≪ r
. (3.32)

We have identified here two distinct regions. When y ≪ r we can replace the left/right
transmission amplitudes by their values at y/r = 0. When y ≫ r the transmission amplitudes
enter the expression as a strongly oscillatory function in which y/r plays the role of the
frequency. It is then a good approximation to replace this function by its means value as
indicated by the overbar. It is straightforward to extend the expression (3.32) to the case
when the assumption on Tα in (3.30) is relaxed and to the case with different values of y. To
proceed further we need to specify the defect.

3.5.1 Energy insensitive defects, D0(ψ̄, ψ) = 0, Dβ(ψ̄, ψ), Dγ(ψ̄, ψ), Dδ±(ψ̄, ψ)

Let us first consider the easiest example, which supports the general working of the method.
When the defect is transparent, i.e., |Tα| = 1, we can compute the expression for the con-
ductance (3.31) directly in the large temperature limit and obtain the well known behaviour
[45]

lim
r→0,|T α |→1

Gα(r) ∼ e2

h
(1 − rm

2
) . (3.33)

Alternatively we obtain the expression (3.33) also from equation (3.25) and (3.27). In the
massless limit of (3.32) we obtain e2/h which coincides with the result in [13]. However, we
should stress that we consider here purely massive cases and the massless limit only serves as
a benchmark. Note that a transparent defect in this context does not necessarily mean the
absence of the defect. Considering for instance the defect Dβ(ψ̄, ψ), we compute with (2.48)
and (2.49) the same conductance as if there was no defect at all. Similarly simple are the
computations for the defects Dγ(ψ̄, ψ), Dδ±(ψ̄, ψ). We simply get

G0(r) = Gβ(r) = Gγ(r) cos2B = Gδ±(r)/(1 + 4 tan2B/2) =
e2

h
. (3.34)

Since the amplitudes do not depend on the rapidities, the TBA-kernel is zero and there is no
contribution from this defect to the free energy, even unit length.

3.5.2 The energy operator defect Dα(ψ̄, ψ) = gψ̄ψ

For this defect the computation of the conductance according to (3.31) is more involved. The
results of our numerical analysis of the expression (3.31) are depicted in figure 4.
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Figure 4: Conductance G(r) for the complex free Fermion with the energy operator defects as a

function of the inverse temperature r, for fixed effective coupling constant B and (a) for varying

amounts of defects ℓ = 0, 1, 2, 4. (b) for ℓ = 2 for varying distances y.

We observe several distinct features. First of all it is naturally to be expected that when
we increase the number of defects the resistance will grow. This is confirmed, as for fixed
temperature and increasing number of defects, the conductance decreases. Second we see
several well extended plateaux. They can be reproduced with the analytical expressions
obtained in the massless limit (3.32). To be able to compare with (3.31) we re-introduce
atomic units for convenience, i.e. e2/h→ 1/2π. For a single defect there is only one plateaux
and from (3.32) we obtain with (2.43)

Gα(r) ∼ cos2B

2π
. (3.35)

For B = 0.5 the value 0.1226 is well reproduced in figure 4(a). The lower lying plateaux
correspond to the region when y ≪ r. In that case we obtain from (3.32) together with the
expressions (2.44)-(2.47) for a double and four defects

Gα1α2(r) ∼ 1

2π

(

cos2B

1 + sin2B

)2

for y ≪ r , (3.36)

Gα1α2α3α4(r) ∼ 1

2π

(

cos4B

cos4B − 2(1 + sin2B)2

)2

for y ≪ r. (3.37)

For B = 0.5 the values 0.0624 and 0.0095 are well reproduced in figure 4(a) for ℓ = 2 and
ℓ = 4, respectively. The plateaux extending to the ultraviolet regime result from (3.32) and
by taking in (2.44)-(2.47) the mean values

Gα1α2(r) ∼ 2

π

1 + sin4B

(cos2(2B) − 3)2
, for y ≫ r , (3.38)

Gα1α2α3α4(r) ∼ 1

4π
+

cos8B

4π[cos4B − 2(1 + sin2B)2]2
, for y ≫ r. (3.39)

Also in this case the values for B = 0.5, i.e., 0.110784 and 0.084311 for ℓ = 2 and ℓ = 4,
respectively, match very well with the numerical analysis. Finally we have to explain the
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reason for the increase from one to the next plateaux and why the curves are shifted precisely
in the way as indicated in figure 4(b) when we change the distance between the defects.
This phenomenon is attributed to resonances as we shall discuss in more detail in the next
subsection.

3.5.3 Resonances versus unstable particles

In [46] we demonstrated that resonances may be described similarly as unstable particles.
The latter provide an intuitively very clear picture which explains the relatively sharp onset
of the conductance with increasing temperature. The temperature at which this onset occurs,
say TC can be attributed directly to the energy scale at which the unstable particle is formed,
since then it starts to participate in the conducting process. The Breit-Wigner formula [47]
constitutes in this case a relation for the massM and the decay width Γ of an unstable particle.
Supposing that in the scattering process between particles of type i and j an unstable particle
can be formed, this is reflected by a pole in Sij(θ) at θ = σ− iσ̄. Then, for large values of the
resonance parameter σ one may approximate

M2 ≈ 1/2mimj(1 + cos σ̄) exp |σ| and Γ2 ≈ 2mimj(1 − cos σ̄) exp |σ| . (3.40)

Since a renormalization group flow is provided by M → rM , one should observe that the
quantities M ∼ r1e

σ1/2 = r2e
σ2/2 and Γ ∼ r1e

σ1/2 = r2e
σ2/2 remain invariant. Accordingly,

this creation of the unstable particle should be reflected in the conductance as

G(r1, σ1) = G(r2, σ2) for r1e
σ1/2 = r2e

σ2/2. (3.41)

This means we can control the position of the onset in the conductance by M and its extension
in the temperature direction by Γ. For a model which possesses unstable particles we found
indeed such a behaviour [46]. From the data of the previous subsections we find that the
conductance scales as G(r1, y1) = G(r2, y2) for r2y1 = r1y2. Then the comparison with (3.41)
suggests that we can relate the distance between the two defects to the resonance parameter
as σ = 2 ln(const/y). From the maxima in |T (θ)| we may identify various σs and in fact in
this case the net result can be attributed to two resonances [46].

3.5.4 Multiple plateaux

Up to now, we have observed that we always obtain essentially two plateaux in the conduc-
tance, no matter how many (≥ 2) and what type of defects we implement. The natural
question arising at this point is whether it is possible to have a set up which leads to a more
involved plateaux structure? It is clear that if we had many defects in a row separated far
enough from each other such that the relaxation time of the passing particles is so large that
they could be treated as single rather than multiple defects, then any desired type of multiple
plateau structure could be obtained. In this case the conductance is simply the sum of the ex-
pressions one has for each defect independently. Recalling the origin of the different plateaux,
there is another slightly less obvious option. The density distribution function ρr is a peaked
function of the rapidity and if the resonances in Tα (θ) would be separated far enough, such
that they are resolved by ρr, we would also get a multiple plateaux pattern. However, tuning
the distance between the defects or the coupling constant will merely translate the position
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of the resonances in the rapidity variable or change their amplitudes, respectively (see section
2).

Figure 5: Conductance G(r2) for the complex free Fermion with the energy operator defects as a

function of the inverse temperature r2, for fixed effective coupling constant B = 0.5 and varying

temperature ratios in the two halves of the wire.

Therefore the last option left is to change the ρrs, which is possible by varying the temperature.
Choosing now a configuration as in figure 3 with different temperatures T1 and T2, one can
“create” a second plateau at half the height of the original one. The reason for this is simply
that the cooled half of the wire will cease to contribute to the conductance as can be directly
deduced from (3.31). We depict the results of our computations in figure 5.
From this it also obvious that if we only cool the fraction x of the wire, the lowest plateau
will be positioned at the height x times the height of the upper plateau. Thus, by combining
these different configurations, i.e., different temperatures or defects, we could produce any
desired plateau structure.

4 Conductance from the Kubo formula

Having computed the DC conductance by means of a TBA analysis, we want to proceed now
by introducing an alternative method for the acquisition of the same quantity, that is the
evaluation of the celebrated Kubo formula‡ [3]

G(T ) = − lim
ω→0

1

2ωπ2

∞
∫

−∞

dt eiωt 〈J(t)J(0)〉T,m . (4.1)

The key quantity needed for the explicit computation of (4.1) is the occurrence of the current-
current correlation function 〈J(r)J(0)〉T,m. In the latter, the subscripts (T , m) indicate that,
in general, one is interested in a situation when both, the mass scale of the particles in the
quantum field theory and the temperature, are non-vanishing. This is precisely the same
regime in which we have carried out the TBA analysis in the previous section and ultimately

‡For a model independent derivation in the context of dynamical respose theory see, e.g., [4].
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we want to compare the outcome of both computations. So far, formula (4.1) still refers to
a situation in which no defect is present in the theory. Later on we will see how the Kubo
formula can also be generalized in order to incorporate the presence of defects.

As a consequence of the central role played by the two-point function of the current
operator in (4.1), we will devote an important part of this section to recall the key features
of a concrete method which will allow for the computation of such a quantity that is, the
form factor bootstrap approach [11]. To carry out this program one needs essentially as
the only input the scattering matrix and it is then in principle possible to compute form
factors associated to various local operators of the quantum field theory under investigation.
Form factors are defined as matrix elements of some local operator O(~x) located at the origin
between a multiparticle in-state and the vacuum,

F
O|µ1...µn
n (θ1, θ2 . . . , θn) := 〈0|O(0)|Z†

µ1
(θ1)Z

†
µ2

(θ2) . . . Z
†
µn

(θn)〉. (4.2)

They can be obtained by a direct computation once a representation for the operator involved
is known or as solution to a certain set of physically motivated consistency equations [11, 12,
48, 49], in a similar fashion as one can determine exact scattering matrices or transmission
and reflection amplitudes for 1+1 dimensional integrable systems as discussed in section 2.

In the zero-temperature regime, the latter fact is well-known since the original works [11]
and has lead successfully to the computation of correlation functions for many models, albeit
in most cases only approximately. It is easy to show that once the corresponding form factors
associated to two local operators O and O′ are known, the computation of their two-point
function is reduced to the task, still non-trivial, of evaluating the following series

〈

O(r)O′(0)
〉

T=0,m
=

∞
∑

n=1

∑

µ1···µn

∫

dθ1 · · · dθn

n!(2π)n

n
∏

i=1

e−rmi cosh θi

×FO|µ1...µn
n (θ1, . . . , θn)

[

F
O′|µ1...µn
n (θ1, . . . , θn)

]∗
, (4.3)

with xµ = (−ir, 0). The previous expression is simply obtained by introducing a sum over
a complete set of states in between the two operators involved in the correlation function
and by shifting the operator O(r) to the origin thereafter. However, as indicated by the
subscripts, this formula applies only to the zero temperature regime. Obviously, when setting
O = O′ = J , the correlation function (4.3) is precisely the quantity entering the Kubo formula
(4.1), although for T = 0. It is therefore necessary to find a generalization of the expansion
(4.3) to the (T 6= 0)-regime. Such type of generalization was first suggested in [50] for the
Ising model. It appears, however, to be difficult to generalize this to dynamically interacting
models [51] and since by now this has not been achieved we shall concentrate on the zero
temperature regime in this paper.

4.1 Conductance through an impurity

With the help of (4.3) we could in principle compute the current-current correlation function
and therefore evaluate the Kubo formula when there are no boundaries or defects present.
With regard to the inclusion of boundaries, the first examples in which the Kubo formula
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was generalized in order to accommodate that situation were provided in [16]. In there the
expression (4.1) was evaluated for the sinh-Gordon and sine-Gordon model in the m = T =
0 limit and in the presence of a boundary. This was done by replacing the vacuum state |0〉
with a boundary state |B〉 in the current-current correlation function as follows

〈J(r)J(0)〉T,m→〈J(r)J(0)B〉T,m≡〈0| J(r)J(0)B |0〉T,m . (4.4)

The boundary state |B〉 :=B|0〉 is understood as the action of a boundary operator B on the
vacuum state |0〉 [29]. Following [29], one exchanges usually the roles of space and time, such
that the correlation functions are radially rather than time ordered. This is the reason why
the boundary operator B can only enter at the very right or left, since one formulates such
theories in half space. In contrast to the boundary, a defect can also enter in-between the
operators. Therefore, in order to include a defect in (4.1), one has to consider terms of the
form

〈J(r)J(0)〉T,m → 〈J(r)ZαJ(0)〉T,m , 〈J(r)J(0)Zα〉T,m , 〈ZαJ(r)J(0)〉T,m , (4.5)

where Zα represents the defect operator.
As a consequence of (4.5), the evaluation of the defect Kubo formula will require the

computation of matrix elements involving the operators Zα

Gα(T ) = − lim
ω→0

1

2ωπ2

∞
∫

−∞

dr eiωr 〈J(r)Zα1 · · ·ZαnJ(0)〉T,m . (4.6)

Equation (4.6) expresses the conductance for a situation in which n generic defects Zα1 · · ·Zαn

are present in the theory and located at positions yα1 · · · yαn in space. The defect degrees of
freedom are encoded into the vector α ={α1, · · · , αn}, as done in previous sections. In order
to compare with the TBA results we would like, of course, to compute the conductance in the
massive, finite temperature regime. As mentioned the evaluation of temperature dependent
correlation functions is still poorly understood, even for the simplest models. In addition,
the presence of the limit in the parameter ω, together with the introduction of the defect
operator Zα in the current-current two-point function makes the generic evaluation of (4.6)
fairly involved and constitutes a problem which in general can not be solved analytically. This
is specially cumbersome when double defects are considered, since the expressions for the
reflection and transmission amplitudes (2.21), (2.22) are, in general, quite messy to handle.
For these reasons it is interesting to start with a more simplified situation, in which some
analytical calculations can still be performed, that is the T = 0 regime. One may now view
(4.5) as a three-point function and extend the expansion (4.3) to the case when three operators
enter the correlation function. This will only require the inclusion of one more set of complete
states, such that (4.5) is expanded in terms of the form factors of the three operators involved

〈J(r)ZαJ(0)〉T=0,m=

∞
∑

n,m=1

∑

µ1···µn
ν1···νm

∫

dθ1 · · · dθndθ̃1 · · · dθ̃m

m!n!(2π)n+m
F

J |µ1...µn
n (θ1, . . . , θn) (4.7)

×
〈

Zµn
(θn) . . . Zµ1

(θ1)|Zα|Zν1(θ̃1) . . . Zνm(θ̃m)
〉

F J |ν1...νm
m (θ̃1, . . . , θ̃m)∗e

−r
n
∑

i=1
mi cosh θi

.
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We will now restrict ourselves further and consider the massless version of (4.7). In this limit,
the results obtained for the conductance should agree with the UV-limit of the conductance
computed by means of (3.1), (3.31). Such a limit can be carried out by exploiting the mass-
less prescription suggested originally in [37] and already introduced in the paragraph before
equation (2.43). For the form factors in (4.7) the massless limit yields

lim
σ→∞

F
O|µ1...µn
n (θ1 + η1σ, . . . , θn + ηnσ) = F

O|µ1...µn
ν1···νn (θ1, . . . , θn), (4.8)

with ηi = ±1 and νi = R for ηi = + and νi = L for ηi = −. Namely, in the massless limit
every massive n-particle form factor is mapped into 2n massless form factors. Using these
expressions, performing a Wick rotation and introducing the variable E =

∑n
i=1 m̂ie

θi , we
obtain from (4.7)

〈J(r)ZαJ(0)〉T=m=0=
∞
∑

n,m=1

∑

µ1···µn
ν1···νm

∫

dθ1 · · · dθndθ̃1 · · · dθ̃m

m!n!(2π)n+m
F

J |µ1...µn

R1...Rn
(θ1, . . . , θn) (4.9)

×
〈

ZR
µn

(θn) . . . ZR
µ1

(θ1)|Zα|ZR
ν1

(θ̃1) . . . Z
R
νm

(θ̃m)
〉

F
J |ν1...νm

R1...Rm
(θ̃1, . . . , θ̃m)∗e−irE.

We note that for the massless prescription to work, the matrix element involving the defect
Zα can only depend on the rapidity differences, which will indeed be the case as we see below.
Performing the variable transformation θn → lnE′/m̂n −∑n

i=1 m̂i/m̂ne
θi , we re-write the

r.h.s. of (4.9) as

∞
∑

n,m=1

∑

µ1···µn
ν1···νm

∫ E

0
dE′

ln E′/m̂n
∫

−∞

dθ1 · · · dθn−1

n!(2π)n

∞
∫

−∞

dθ̃1 · · · dθ̃m

m!(2π)m
F

J |µ1...µn

R1...Rn
(θ1, . . . , θn(E′))(4.10)

×
〈

ZR
µn

(θn(E′)) . . . ZR
µ1

(θ1)|Zα|ZR
ν1

(θ̃1) . . . Z
R
νm

(θ̃m)
〉

F
J |ν1...νm

R1...Rm
(θ̃1, . . . , θ̃m)∗e−irE′

.

We substitute now this correlation function into the Kubo formula, shift all rapidities as
θi → θi+ lnE′/m̂n, θ̃i → θ̃i+ lnE′/m̂n use the Lorentz invariance of the form factors§ and
carry out the integration in dE′

Gα = − lim
ω→0

ω2s−2

m̂2s
n π

∑

µ1···µn
ν1···νm

0
∫

−∞

dθ1 · · · dθn−1

n!(2π)n

∞
∫

−∞

dθ̃1 · · · dθ̃m

m!(2π)m
1

1 −
∑n−1

i=1 m̂i/m̂neθi

×
〈

ZR
µn

(ln(1 −
∑n−1

i=1
m̂i/m̂ne

θi)) . . . ZR
µ1

(θ1)|Zα|ZR
ν1

(θ̃1) . . . Z
R
νm

(θ̃m)
〉

(4.11)

×F J |µ1...µn

R1...Rn
(θ1, . . . , ln(1 −

n−1
∑

i=1

m̂i/m̂ne
θi))F

J |ν1...νm

R1...Rm
(θ̃1, . . . , θ̃m)∗ .

§Denoting by s the Lorentz spin of the operator O and λ being a constant, the form factors satisfy

FO|µ
1
...µ

n

n (θ1 + λ, . . . , θn + λ) = esλ FO|µ
1
...µ

n

n (θ1, . . . , θn) .
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We state various observations: Since the matrix element involving the defect only depends
on the rapidity difference, it is not affected by the shifts. The Lorentz spin s = 1 plays a
very special role in (4.11), which makes the current operator especially distinguished. In that
case the r.h.s. of (4.11) becomes independent of the frequency ω and the limit is carried out
trivially. Furthermore, since the final expression has to be independent of m̂n, we deduce that
the form factors have to be linearly dependent on m̂n.

One may now compute the form factors by solving either the associated consistency equa-
tions or by using concrete realizations of the operators. For those form factors involving the
current operator J , a realization in terms of the ZF-algebra was given in [28] for complex
free Fermion type models and used to compute the corresponding matrix elements. We will
determine form factors involving the defect operator in the same fashion, which means we
require a concrete realization for the operator Zα.

4.2 Realization of the defect operator

A realization of Zα can be achieved very much in analogy to a realization of local operators,
i.e. as exponentials of bilinears in the ZF-operators [52]. For the case of a boundary a generic
model independent realization for the boundary operator B was originally proposed in [29] for
the parity invariant case, i.e., R = R̃ . This proposal was generalized to the defect operator
in [32] with the same restriction and for self-conjugated particles. This realization was used
by the authors for the computation of various matrix elements involving the defect operator.
Our aim in this section is to extend this realization in order to incorporate the possibility of
parity breaking as well as non self-conjugated particles. A non-trivial consistency check for
the validity of our proposal will be ultimately provided when exploiting it in the computation
of the conductance, obtained before by entirely different means, that is the TBA approach.
The realization we want to propose here is a direct generalization of the one presented in [32],
namely

Zα =: exp[
1

4π

∫ ∞

−∞
Dα(θ) dθ] : , (4.12)

where : : denotes normal ordering and the operator Dα(θ) has the form

Dα(θ) =
∑

i

[

Kα

i (θ)Z†
i (θ)Z

†
ı̄ (−θ) + K̃α

i (θ)∗ Zı̄(−θ)Zi(θ)

+Wα

i (θ)Z†
i (θ)Zi(θ) + W̃α

i (θ)∗Z†
i (−θ)Zi(−θ)

]

, (4.13)

with

Kα

i (θ) := Rα

i (
iπ

2
− θ), K̃α

i (θ) := R̃α

i (
iπ

2
− θ), (4.14)

Wα

i (θ) := Tα

i (
iπ

2
− θ), W̃α

i (θ) := T̃α

i (
iπ

2
− θ). (4.15)

In comparison with [32] we have used a slightly different normalization factor, since in general
we have contributions in the sum over i in (4.13) including both particles and anti-particles, as
for the complex free Fermion we shall treat below. Following the arguments given in [29], the
operator Dα(θ) depends on the amplitudes R(θ), T (θ), R̃(θ) and T̃ (θ) with their arguments
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shifted according to (4.14)-(4.15), as considered also in [25, 32]. The reason for these shifts is
the exchange of the roles played by the space and time coordinates xµ = (t, x) → (ix, it), which
was already mentioned after (4.4). Doing this and keeping simultaneously the product xµ ·pµ

invariant requires the rapidity shifts in (4.14)-(4.15). In our context, this implies that we must
now not only perform the shifts (4.14)-(4.15) in our expressions, but also, with regard to the
positions of the defects, the change yα → iyα should be implemented. The latter replacement
will play an important role since, similar as in the TBA case, the amplitudes (4.14)-(4.15)
will become in this way strongly oscillating functions of yα. Therefore, we may be able to
carry out once more certain analytical calculations, by replacing the mentioned functions with
their mean values. In (4.13) we have already specialized to the case when the reflection and
transmission amplitudes are diagonal both with respect to the particle and defect degrees of
freedom, since that will be the situation for all the examples we want to treat in this paper.

4.3 Defect matrix elements

Having now a concrete generic realization of the defect (4.13), we can compute the defect
matrix elements. One way of doing this is to solve a set of consistency equations which
relate the lower particle matrix elements to higher particle ones, similar as in the standard
form factor program [11]. Such kind of iterative equations were proposed in [25] for a parity
invariant defect and for a real free fermionic and bosonic theory. First we note that the
operator (4.12) becomes

Zα =: exp[
1

2π

∫ ∞

−∞
dθ
∑

i

Z†
i (θ)Zi(θ) ] :, (4.16)

in the limit R = R̃ = 0 and T = T̃ = 1. The defect should act in this case as the identity
operator and, according to (2.2),

〈Zi(θ1)ZαZ
†
j (θ2)〉 = 2π δ(θ12)δij , (4.17)

holds, simply by employing Wick’s theorem when carrying out the necessary contractions.
For two particles we find,

〈Zı̄(θ1)Zi(θ2)Zα〉 = πK̂α

i (θ2)δ(θ̂12), (4.18)

〈ZαZ
†
i (θ1)Z

†
ı̄ (θ2)〉 = π K̂α

i (θ1)
∗δ(θ̂12), (4.19)

〈Zi(θ1)ZαZ
†
j (θ2)〉 = π Ŵα

i (θ1)δ(θ12)δij, (4.20)

where we recall from section 2 the notation θ̂12 = θ1 + θ2 and θ12 = θ1 − θ2. For later
convenience we have introduced the functions

K̂α

i (θ) = Kα

i (θ) + Sı̄i(−2θ)Kα

ı̄ (−θ) = K̃α

i (θ) + Sīı(2θ)K̃
α

ı̄ (−θ), (4.21)

Ŵα

i (θ) = Wα

i (θ) + W̃α

i (−θ)∗ = W̃α

ı̄ (−θ) +Wα

ı̄ (θ)∗ = Ŵα

ı̄ (θ)∗, (4.22)

since the Kα

i , K̃α

i ,Wα

i and W̃α

i amplitudes defined by (4.14)-(4.15) will repeatedly appear in
the combinations (4.21), (4.22) in what follows. The latter equalities in (4.21), (4.22) follow
simply from

W̃α

i (θ) = Wα

ı̄ (−θ) = W̃α

ı̄ (iπ − θ)∗, K̃α

i (θ) = Sīı(2θ)K
α

ı̄ (−θ) = Sīı(2θ)K̃
α

ı̄ (iπ − θ)∗, (4.23)
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which are in turn consequences of the crossing-hermiticity properties (2.16)-(2.17). Having
these matrix elements we can construct the ones involving more particles recursively from

F
µm...µ1ν1...νn
α (θm . . . θ1, θ

′
1 . . . θ

′
n) :=

〈

Zµm
(θm) . . . Zµ1

(θ1)ZαZ
†
ν1

(θ′1) . . . Z
†
νn

(θ′n)
〉

=

π
m
∑

l=2

δµ1µ̄l
δ(θ̂1l)K̂

α

µ1
(θ1)

l−1
∏

p=1

Sµ1µp
(θ1p)F

µm...µ̌l...µ2ν1...νn
α (θm . . . θ̌l . . . θ2, θ

′
1 . . . θ

′
n) (4.24)

+π
n
∑

l=1

δµ1νl
δ(θ1 − θ′l)Ŵ

α

µ1
(θ1)

l−1
∏

p=1

Sµ1νp(θ1p)F
µm...µ2ν1...ν̌l...νn
α (θm . . . θ2, θ

′
1 . . . θ̌

′
l . . . θ

′
n)

F
µm...µ1ν1...νn
α (θm . . . θ1, θ

′
1 . . . θ

′
n) = (4.25)

π
n
∑

l=2

δν1ν̄l
δ(θ̂

′

1l)K̂
α

ν1
(θ′1)

∗
l−1
∏

p=1

Sν1µp
(θ1p)F

µm...µ1ν2...ν̌l...νn
α (θm . . . θ1, θ

′
2 . . . θ̌

′
l . . . θ

′
n)

+π
m
∑

l=1

δν1µl
δ(θ′1 − θl)Ŵ

α

ν1
(θ′1)

∗
l−1
∏

p=1

Sν1µp
(θ1p)F

µm...µ̌l...µ1ν2...νn
α (θm . . . θ̌l . . . θ1, θ

′
2 . . . θ

′
n)

Here we denoted with the check on the rapidities θ̌ the absence of the corresponding particle
in the matrix element. It is clear from the expressions (4.12) and (4.13) that the only possible
non-vanishing matrix elements (4.24) are those when n +m is even. Taking (4.18)-(4.20) as
the initial conditions for the recursive equation (4.24)-(4.25), we can now either solve them
iteratively or use (4.12) and evaluate the matrix elements directly.

4.4 Free Fermion with defects

Similar as for the TBA we want to exemplify our general formulae with the complex free
Fermion. We consider now the particularization of the defect realization (4.13) to this case.

Then the generators of the ZF-algebra Z i(θ), Z
†
i (θ) are just the usual creation and annihilation

operators ai(θ), a
†
i (θ) in the free fermionic Fock space and we have to distinguish between

particles i and antiparticles ı̄. For the complex free Fermion it is interesting to notice that
the realization (4.12) resembles very much the one employed in [52, 28] for a prototype local
field.

4.4.1 Defect matrix elements

Let us now use (4.12)-(4.13) in order to evaluate matrix elements involving the defect operator.
In what follows, the most relevant matrix elements are those involving four particles, for which
we compute

〈ai(θ1) aı̄(θ2)Zα a
†
ı̄ (θ3) a

†
i (θ4)〉 = wα

īı (θ1,θ2)δ(θ14)δ(θ23) + kα

ii (θ1,θ4)δ(θ̂12)δ(θ̂34), (4.26)

〈ai(θ1) ai(θ2)Zα a
†
j(θ3) a

†
j(θ4)〉 = −π2Ŵα

i (θ1)Ŵ
α

i (θ2)δ(θ13)δ(θ24)δij, (4.27)

〈ai(θ1)ak(θ2)ai(θ3)Zαa
†
i (θ4)〉 = π2Ŵα

i (θ4)K̂
α

i (−θ2)
[

δ(θ14)δ(θ̂23) − δ(θ̂12)δ(θ34)
]

δik̄,

〈ai(θ1)Zαa
†
i (θ2)a

†
k(θ3)a

†
i (θ4)〉 = π2Ŵα

i (θ1)K̂
α

i (−θ3)
∗
[

δ(θ̂23)δ(θ14) − δ(θ12)δ(θ̂34)
]

δik̄,
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with the abbreviations

wα

īı (θ1,θ2) = π2Ŵα

i (θ1)Ŵ
α

ı̄ (θ2) kα

ii (θ1,θ2) = π2K̂α

i (θ1)K̂
α

i (θ2)
∗ . (4.28)

One can also find solutions for all n-particle form factors either from (4.24)-(4.25) or by direct
computation. For instance we compute

F
m×(īı) n×(̄ıi)
α (θ2m . . . θ1, θ

′
1 . . . θ

′
2n) =

min(n,m)
∑

k=0

(−1)m+n−2kπn+m

(m− k)!(n − k)!k!k!

∫ ∞

−∞
dβ1 . . . dβ2n+2m

× detA2n(β1 . . . β2n; θ′1 . . . θ
′
2n) detA2m(β2n+1 . . . β2n+2m; θ1 . . . θ2m)

×
k
∏

p=1

Ŵα

i (β2p)Ŵ
α

ı̄ (β2p−1)δ(β2p − β2n+2p)δ(β2p−1 − β2n+2p−1) (4.29)

×
n
∏

p=1+k

K̂α

i (β2p)
∗δ(β2p + β2p−1)

n+m
∏

p=1+k+n

K̂α

i (β2p)δ(β2p + β2p−1) ,

where Aℓ(θ1 . . . θℓ; θ
′
1 . . . θ

′
ℓ) is a rank ℓ matrix whose entries are given by

Aℓ
ij = cos2[(i− j)π/2]δ(θi − θ′j) , 1 ≤ i, j ≤ ℓ . (4.30)

The matrix elements are computed similarly as in [28] and references therein. Likewise we
compute

Fn×i+m×i
α

(θn . . . θ1, θ
′
1 . . . θ

′
m) = δn,m

πn(−1)n−1

n!

∫ ∞

−∞
dβ1 . . . dβn

n
∏

k=1

Ŵα

i (θk)

× detBn(θn . . . θ1;β1 . . . βn) detBn(β1 . . . βn; θ′1 . . . θ
′
n), (4.31)

where we introduced a new rank ℓ matrix Bℓ(θ1 . . . θℓ; θ
′
1 . . . θ

′
ℓ) whose entries are now simply

given by
Bℓ

ij = δ(θi − θ′j), 1 ≤ i, j ≤ ℓ . (4.32)

Since (4.31) is simpler than (4.29) we use it to demonstrate explicitly that it satisfies the
recurrence relations (4.24) and (4.25). The other cases work the same way. Starting with the
expansion of the determinant detBn(θn . . . θ1;β1 . . . βn) with respect to the row involving the
variable θ1 gives

detBn(θn . . . θ1;β1 . . . βn)=
n
∑

l=1

(−1)n+l+1δ(θ1−βl) detBn−1(θn . . . θ2;β1 . . . β̌l . . . βn). (4.33)

Inserting then (4.33) into (4.31), we obtain

Fn×i+m×i
α

(θn . . . θ1, θ
′
1 . . . θ

′
m) = δn,m

πn

n!

n
∑

l=1

Ŵα

i (θ1)

∫ ∞

−∞
dβ1 . . . dβ̌l . . . dβn

×(−1)l
l−1
∏

k=1

Ŵα

i (θk)
n
∏

k=l+1

Ŵα

i (θk) detBn−1(θn . . . θ2;β1 . . . β̌l . . . βn)

× detBn(β1 . . . βl → θ1 . . . βn; θ′1 . . . θ
′
n). (4.34)

31



Expanding now the second determinant in (4.34) with respect to the l-th row, which involves
the rapidity θ1, and using the fact that the βs are just integration variables and therefore, the
sum in l gives actually n times the same contribution, we can write

Fn×i+m×i
α

(θn . . . θ1, θ
′
1 . . . θ

′
m) = δn,m

πn

(n− 1)!

n
∑

p=1

Ŵα

i (θ1)δ(θ1 − θ′p)

∫ ∞

−∞
dβ1 . . . dβn−1

×(−1)p
p−1
∏

k=1

Ŵα

i (θk)
n
∏

k=p+1

Ŵα

i (θk) detBn−1(θn . . . θ2;β1 . . . βn−1)

× detBn−1(β1 . . . βn−1; θ
′
1 . . . θ̌

′
p . . . θ

′
n). (4.35)

We recognize now the matrix element with two particles less on the l.h.s. of (4.35) and can
re-write it as

Fn×i+n×i
α

(θn . . . θ1, θ
′
1 . . . θ

′
n) = π

n
∑

p=1

(−1)p−1Ŵα

i (θ1)δ(θ1 − θ′p) (4.36)

×F (n−1)×i+(n−1)×i
α (θn−1 . . . θ2, θ

′
1 . . . θ̌

′
p . . . θ

′
n),

which is in complete agreement with (4.24). The validity of (4.25) can be checked similarly.

4.4.2 Conductance in the T = m = 0 regime

It is well-known that for a free Fermion theory (also for a single complex free Fermion) the
conformal U(1)-current-current correlation function is simply

〈J(r)J(0)〉T=m=0 =
1

r2
. (4.37)

This expression can also be obtained by using the expansion (4.3), together with the massless
prescription outlined before (2.43) (see [51]) and the expressions for the only non-vanishing
form factors of the current operator in the complex free Fermion theory

F
J |̄ıi
2 (θ, θ̃) = −F J |īı

2 (θ, θ̃) = −iπme θ+θ̃
2 . (4.38)

In particular, the massless limit of the previous expressions gives, according to the massless
prescription,

F
J |̄ıi
RR (θ, θ̃) = −F J |īı

RR (θ, θ̃) = −2πi m̂e
θ+θ̃
2 , (4.39)

F
J |̄ıi
LL (θ, θ̃) = F

J |̄ıi
LR (θ, θ̃) = F

J |̄ıi
RL (θ, θ̃) = 0, (4.40)

F
J |īı
LL (θ, θ̃) = F

J |īı
LR (θ, θ̃) = F

J |īı
RL (θ, θ̃) = 0 . (4.41)

Inserting (4.37) into (4.1) reduces the problem of finding the Fourier transform of the function
r−2 which is given by P

∫∞
−∞ dr eiωrr−2 = −πω for ω > 0, with P denoting the principle value.

This yields in the absence of a defect G0(0) = 1/2π, in complete agreement with the limit
(3.34).
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Let us now consider a more complicated situation, that is, the evaluation of (4.6) for
T = m = 0 in the presence of n defects Zα1 · · ·Zαn located at positions yα1 . . . yαn in space.
The correlation function (4.5) can now be obtained with the help of (4.3), which has to be
generalized for three-point functions. This requires the inclusion of one more sum over a
complete set of states in (4.3). Fortunately the only non-vanishing form factors of the current
are (4.39), which means the expansion (4.3) will already terminate for two particles. Explicitly,
we find

〈J(r)Zα1 · · ·ZαnJ(0)〉T=m=0 =
∑

i

∞
∫

−∞

dθ1dθ2dθ3dθ4

2(2π)4
F

J |̄ıi
RR (θ1, θ2)

[

F
J |̄ıi
RR (θ3, θ4)

]∗

×e−rm̂(eθ1+eθ2)〈ai(θ1)aı̄(θ2)Zα1 · · ·Zαna
†
ı̄ (θ3)a

†
i (θ4)〉m=0, (4.42)

In the light of the expressions (4.28), we can re-write (4.42) in a more explicit form without
the need of specifying a concrete defect yet. Inserting (4.26) and (4.39) into (4.42), we find

〈J(r)Zα1 · · ·ZαnJ(0)〉T=m=0 =
m̂2

2

∑

i





∞
∫

−∞

dθ1

2
e−2rm̂ cosh θ1K̂

α|R
i (θ1)

∞
∫

−∞

dθ2

2
K̂

α|R
i (θ2)

∗

+

∞
∫

−∞

dθ1

2
eθ1−rm̂eθ1

Ŵ
α|R
i (θ1)

∞
∫

−∞

dθ2

2
eθ2−rm̂eθ2

Ŵ
α|R
ı̄ (θ2)



 , (4.43)

where we have exploited the crossing relations stated in (4.23). Here the functions Ŵ
α|R
i (θ),

K̂
α|R
i (θ), . . . defined in (4.43) are the massless limits of the corresponding functions Ŵα

i (θ),

K̂α

i (θ), . . . For all the defects we will consider below, it turns out that the first contribution to
the previous correlation function is actually vanishing, so that (4.43) is considerably simplified.
In many of the examples we will treat later, this is due to the fact that the amplitudes
K̂α

i (θ) are vanishing in the first place, as a consequence of the crossing relations (4.23). This
will be the case for all energy insensitive defects for which we will present a case-by-case
computation of the conductance below. The vanishing of the reflection part in (4.43) also
occurs in some cases as a consequence of the parity of the function K̂α

i (θ). For instance,
we find that, for the energy operator defect such function, although initially non-vanishing,
satisfies K̂α

i (θ) = −K̂α

i (−θ), such that limm→0

∫∞
−∞ dθ K̂α

i (θ)∗ = 0.
We can now either use (4.43) in (4.6) to compute the conductance or evaluate the expression
(4.11) directly in which the frequency limit is already taken

Gα(0) =
1

2(2π)3

∑

i

0
∫

−∞

dθ eθ w
α|RR
īı [ln(1 − eθ),θ] . (4.44)

There are, in addition, further generic results which can be obtained independently of the
specific defect. We present them at this stage and will confirm their validity below by some
specific examples. Specializing to the case in which all ℓ defects are of the same type and
equidistantly separated, i.e., y = yα1 = · · · = yαn . As in the TBA context (3.32), we can
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identify two distinct regions

w
α|RR
īı (θ1,θ2) = π2

{

Ŵ
α|R
i (θ1)Ŵ

α|R
i (θ2)∗ for finite y

|Ŵα|R
i |2 for y → 0

(4.45)

where we used in addition (4.22). Supported by our explicit examples below, we find that for

y → 0 in (4.45) the amplitudes Ŵ
α|R
i (θ) become independent functions of the rapidity. As

we have already argued above

k
α|RR
ii (θ1,θ2) = 0. (4.46)

The two regions specified in (4.45) are in complete agreement with the regions identified in
equation (3.32), since we also consider here the massless limit. When exploiting (4.45), our
explicit examples below yield the values of the conductance as those computed from (3.32). In

the regime y → 0 this is very apparent, since when |Ŵα|R
i | = const it becomes equal to 2|Tα

R |
and the conductance reduces just to the constant factor given by (4.45) times the value 1/2π
obtained when defects are not present in the theory. The vanishing of the first contribution
in (4.43) is also quite suggestive with regard to the TBA results, since the conductance
obtained in terms of thermodynamic quantities only involves the moduli of the transmission
or the reflection amplitudes, but not both simultaneously and, in the light of the previous
discussion, that seems to extend also to the form factor computation. The coincidence in the
regime for finite value of y between the Kubo formula based on (4.45) and the results from
the Landauer formula are less obvious and we support this by some explicit computations for
several specific defects, similar as in subsection 3.5.

4.4.3 Energy insensitive defects, D0(ψ̄, ψ) = 0, Dβ(ψ̄, ψ), Dγ(ψ̄, ψ), Dδ±(ψ̄, ψ)

A simple example to start with, which at the same time provides a first test of the working of
the Kubo formula in the UV-limit is a transparent defect, i.e., purely transmitting. As shown
in subsection 2.3.3, examples for this are the absence of a defect D0(ψ̄, ψ) = 0 as well as the
defect Dβ(ψ̄, ψ) = gψ̄γ1ψ, for which the associated reflection and transmission amplitudes
are given by (2.48) and (2.49). In this case the observation K̂α

i (θ) = 0 is of course trivial
and therefore only the second integral in (4.43) is relevant. The situation in which there is
no defect was already commented on in the paragraph after equation (4.41). We found in
that case that the Kubo formula leads to entirely consistent results with regard to our TBA
analysis, that is G0(0) = 1/2π in the massless limit. Considering now a theory with n defects
of the type Dβi(ψ̄, ψ), we find

Ŵ
β1...βn

i (θ) = 2e−inB , K̂
β1...βn

i (θ) = 0 , (4.47)

simply by exploiting the expressions (2.49) for a single defect and the formulae (2.23) and
(2.24). From (4.47) it follows that

w
β1...βn|RR
īı (θ1, θ2) = 4π2, k

β1...βn|RR
ii (θ1, θ2) = 0 , (4.48)

just, as in the case in which the defect is absent. Therefore, we recover once more the value

Gβ1...βn(0) =
1

2π
, (4.49)
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for the conductance at zero mass and temperature.
The next complication arises for defects whose reflection and transmission amplitudes are

simultaneously non-vanishing, but at the same time are independent functions of the rapidity.
As we have seen in section 3.5, those defects can be very easily handled in the context of a
TBA calculation for the conductance, since the modulus of the transmission amplitudes is a
constant, depending only on the defect coupling g. Therefore, the conductance is simply given
by the constant |Tα|2 times the value (4.49). The vanishing of the function K̂α

i (θ) can be
established in those cases by exploiting the crossing properties listened above. Namely, from
(2.16)-(2.17) we find Ki = K̃∗

i = −K̃ı̄, whenever the reflection amplitudes are independent
of the rapidity, and therefore K̂α

i = Ki + K∗
i = 2Re(Ki). The latter quantity is zero for

the defects Dγ and Dδ± treated in section 2.3.4, when setting y = 0, since the reflection
amplitudes are purely complex quantities. Therefore, the Kubo formula computation leads to
the same results as found in subsection 3.6.1, since we find

w
γ|RR
īı (θ1, θ2) = 4π2(1 + 4 tan2B/2), k

γ|RR
ii (θ1, θ2) = 0, (4.50)

w
δ±|RR
īı (θ1, θ2) =

4π2

cos2B
, k

δ±|RR
ii (θ1, θ2) = 0 , (4.51)

which yields

Gγ(0) =
(1 + 4 tan2B/2)

2π
and Gδ±(0) =

1

2π cos2B
. (4.52)

As expected, for B = 0 we recover once more the value (4.49).

4.4.4 The energy operator defect D(ψ̄, ψ) = gψ̄ψ

Let us now treat the energy operator defect, the example which has been most extensively
studied in our previous sections. Considering first a theory possessing a single defect of this
type, we find

Ŵα
i (θ) =

4 cosB cosh2 θ

cosh 2θ + cos 2B
and K̂α

i (θ) =
2i sinB sinh θ

sinB − cosh θ
. (4.53)

Therefore, in this case the amplitude K̂α

i (θ) is non-vanishing. However, we find that K̂α

i (θ) =
−K̂α

i (−θ). This means that the integral of this function (or its complex conjugated) is
vanishing. Consequently, only the transmission part contributes non-trivially to (4.43). In
order to evaluate (4.26) in the massless limit, we are interested in this limit of (4.53) which
enters equation (4.43). We obtain

w
α|RR
īı (θ1,θ2) = 4π2 cos2B, (4.54)

which, together with (4.39) leads to the result

〈J(r)ZαJ(0)〉T=m=0 =
cos2B

r2
=⇒ Gα(0) =

cos2B

2π
, (4.55)

again in agreement with the corresponding result (3.35) from the Landauer formula.
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Let us now proceed to the study of the conductance in the presence of a double defect.
Again, we consider first the case T = m = 0 and two defects of the energy operator type
located at the origin and at a distance y from the origin, respectively. Expression (4.42)
again holds for that situation with n = 2. As explained in the paragraph after equation
(2.22), the Greek indices in the defect operator encode also the space dependence. The
reflection and transmission amplitudes are computed according to (2.21) and (2.22) with
(4.53). These functions can thereafter be substituted into equation (4.26) in order to determine

the explicit form of the functions w
α1α2|RR
īı and k

α1α2|RR
ii in (4.26) for the double defect system,

which depend now on the distance y between the defects and their expressions become very
cumbersome. Once more, it is possible to show that the contribution to the conductance

depending on k
α1α2|RR
ii is vanishing and therefore only the function w

α1α2|RR
īı will be of further

interest to us. However, it is relatively easy to show that in the massless limit we find

w
α1α2|RR
īı (θ1,θ2) = 4π2 cos4B

[

1 + cos(2m̂yeθ1) sin2B

1 + 2 cos(2m̂yeθ1) sin2B + sin4B

]

×
[

1 + cos(2m̂yeθ2) sin2B)

1 + 2 cos(2m̂yeθ2) sin2B + sin4B

]

, (4.56)

such that we obtain

〈J(r)Zα1Zα2J(0)〉T=m=0 =
w

α1α2|RR
īı (θ1,θ2)

4π2r2
=

4
[

1 + sin4B
]

r2 [cos2(2B) − 3]2
, (4.57)

Gα1α2(0) =
2

π

1 + sin4B

[3 − cos2(2B)]2
, (4.58)

which precisely agrees with the corresponding result (3.38) obtained from the Landauer for-
mula. The overbar denotes as before the mean value of the corresponding function.

As explained above, we can also predict the precise position of the second plateau obtained
within the TBA analysis given in equation (3.36). This is achieved by considering previously
to the UV-limit, the limit when the distance between the defects y → 0. By doing so we find

lim
y→0

w
α1α2|RR
īı (θ1,θ2) =

4π2 cos4B

(1 + sin2B)2
, (4.59)

which gives

lim
y→0

〈J(r)Zα1Zα2J(0)〉T=m=0 =
1

r2
cos4B

(1 + sin2B)2
, (4.60)

lim
y→0

Gα1α2(0) =
1

2π

cos4B

(1 + sin2B)2
, (4.61)

in agreement with the value (3.36).
Finally, in order to match all the results in subsection 3.6, we would like to address also

the case ℓ = 4 in (4.6), that is, we consider now a complex free Fermion theory with four
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equidistant defects of the type Dα(ψ̄, ψ) = gψ̄ψ. As usual, we denote their mutual distances
by y. For the first region in (4.45), that is the UV-limit, we find

w
α1α2α3α4|RR
īı (θ1,θ2) =

f1(θ1)f1(θ2)

(f2(θ1) − f3(θ1))(f2(θ2) − f3(θ2))
, (4.62)

with

f1(θ) = (5 − cos 2B) cos(4m̂yeθ) + 2 cos(6m̂yeθ)) sin2B) − 128π2 cos4B(2 + (6 cos(2m̂yeθ)

f2(θ) = 1192 cos 2B − 348 cos 4B + 24 cos 6B − cos 8B − 995 − 256 sin2B cos(6m̂yeθ))

f3(θ) = 128 sin2B((17 − 12 cos 2B + cos 4B) cos(2m̂yeθ) − 4(cos 2B − 2) cos(4m̂yeθ) .

This expression appears somewhat messy, but when proceeding as indicated in (4.45) it will
simplify considerably. Computing the mean value of this function we find

〈J(r)Zα1Zα2Zα3Zα4J(0)〉T=m=0 =
wα1α2α3α4

RR (θ1,θ2)

4π2r2

=
1

2r2

[

1 +
cos8B

[cos4B − 2(1 + sin2B)2]2

]

, (4.63)

Gα1α2α3α4(0) =
1

4π

(

1 +
cos8B

[cos4B − 2(1 + sin2B)2]2

)

, (4.64)

in complete agreement with the corresponding TBA value (3.39). We can also predict the
precise position of the second plateau which, according to (4.45) is expected for the conduc-
tance. Once more we find complete agreement with the outcome of our TBA analysis, since
in this case

lim
y→0

wα1α2α3α4
īı (θ1,θ2) =

(

2π cos4B

cos4B − 2(1 + sin2B)2

)2

, (4.65)

which gives

lim
y→0

〈J(r)Zα1Zα2Zα3Zα4J(0)〉T=m=0 =
1

r2

(

cos4B

cos4B − 2(1 + sin2B)2

)2

, (4.66)

lim
y→0

Gα1α2α3α4(0) =
1

2π

(

cos4B

cos4B − 2(1 + sin2B)2

)2

, (4.67)

that is, the same expression as (3.37).

5 Conclusions

We have exploited the special features of 1+1 dimensional integrable quantum field theories
in order to compute the DC conductance in an impurity system. For this purpose several non-
perturbative techniques have been used. As the main tools we employed the thermodynamic
Bethe ansatz in a Landauer transport theory computation and the form factor expansion in
the Kubo formula.
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The comparison between the Landauer formula (1.1) and the Kubo formula (1.2) yields in
particular an identical plateau structure for the DC conductance in the ultraviolet limit.

We have explained to what extend integrability can be exploited in order to determine the
reflection and transmission amplitudes through a defect. Unfortunately, for the most interest-
ing situation in this context, namely when R/R̃ and T/T̃ are simultaneously non-vanishing,
the Yang-Baxter-bootstrap equations narrow down the possible bulk theories to those which
possess rapidity independent scattering matrices [25, 26]. By means of a relativistic potential
scattering theory we compute for several types of defects the R/R̃s and T/T̃ s, thus enlarging
the set of examples available at present. We confirm that for real potentials parity is pre-
served, but otherwise essentially all possible combinations of parity breaking can occur. From
the knowledge of the single defect amplitudes the multiple defect amplitudes, which exhibit
the most interesting physical behaviours, can be computed in a standard fashion [33, 34].

We newly formulate the TBA equations for a defect with simultaneously non-vanishing
reflection and transmission amplitudes. We indicate how these equations can be used to
compute various thermodynamic quantities, which are, however, most interesting only when
considered per unit length. By means of the TBA we compute the density distribution
functions and use them to evaluate the Landauer conductance formula (1.1) for various defects
in a complex free fermionic theory. We predict analytically the most prominent features in
the conductance as a function of the temperature, i.e. the plateaux.

We formulate the Kubo formula [3] for a situation in which defects are present (1.2).
We evaluate the current-current correlation functions occurring in there by means of another
non-perturbative method based on integrability, namely the bootstrap form factor approach
[11, 12]. We provide closed formulae which solve explicitly the defect recursive equations
involving any arbitrary number of particles. As for the Landauer formula, we also predict in
this case the plateaux in the conductance as a function of the temperature analytically.

There are several interesting open issues. Most challenging is to treat in full generality
the massive and temperature dependent case of (1.2). Unfortunately, the formulation of non-
perturbative methods do not yet cover that situation [51] and it remains to be clarified how
the form factor bootstrap program for the computation of two-point functions can be extended
to that case. It would be further interesting to compute thermodynamic quantities per unit
length by means of the TBA formulated in section 3.3. To classify possible defects more
systematically is desirable even for free theories.

Acknowledgments: We are grateful to the Deutsche Forschungsgemeinschaft (Sfb288), for
financial support. We thank F. Göhmann for discussions.
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