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Understanding the general principles underlying strongly interacting quantum states out of equilibrium
is one of the most important tasks of current theoretical physics. With experiments accessing the intricate
dynamics of many-body quantum systems, it is paramount to develop powerful methods that encode the
emergent physics. Up to now, the strong dichotomy observed between integrable and nonintegrable
evolutions made an overarching theory difficult to build, especially for transport phenomena where space-
time profiles are drastically different. We present a novel framework for studying transport in integrable
systems: hydrodynamics with infinitely many conservation laws. This bridges the conceptual gap between
integrable and nonintegrable quantum dynamics, and gives powerful tools for accurate studies of space-
time profiles. We apply it to the description of energy transport between heat baths, and provide a full
description of the current-carrying nonequilibrium steady state and the transition regions in a family of
models including the Lieb-Liniger model of interacting Bose gases, realized in experiments.

DOI: 10.1103/PhysRevX.6.041065 Subject Areas: Nonlinear Dynamics,
Quantum Physics, Statistical Physics

I. INTRODUCTION

Many-body quantum systems out of equilibrium give
rise to some of the most important challenges of modern
physics [1]. They have received a lot of attention recently,
with experiments on quantum heat flows [2,3], generalized
thermalization [4,5], and light-cone effects [6]. The leading
principle underlying nonequilibrium dynamics is that of
local transport carried by conserved currents. Deeper
understanding can be gained from studying nonequili-
brium, current-carrying steady states, especially those
emerging from unitary dynamics [7]. This principle gives
rise to two seemingly disconnected paradigms for many-
body quantum dynamics. On the one hand, taking into
account only few conservation laws, emergent hydrody-
namics [8–12] offers a powerful description where the
physics of fluids dominates [13–18]. On the other hand, in
integrable systems, the infinite number of conservation
laws is known to lead to generalized thermalization [19–21]
(there are many fundamental works on the subject; see the
review [22]), and the presence of quasilocal charges has
been shown to influence transport [23,24] (see the review
[25]). However, except at criticality [26,27] (see the review
[28]), no general many-body emergent dynamics has been
proposed in the integrable case; with the available frame-
works, these two paradigms seem difficult to bridge. The

study of prethermalization or prerelaxation under small
integrability breaking [22,28–30], the elusive quantum
Kolmogorov-Arnold-Moser theorem [31,32], the develop-
ment of perturbation theory for nonequilibrium states, and
the exact treatment of nonequilibrium steady states and of
nonhomogeneous quantum dynamics in unitary interacting
integrable models remain difficult problems.
In this paper, using the recent advances on generalized

thermalization and developing further aspects of integrabil-
ity, we propose a solution to such problems by deriving a
general theory of hydrodynamics with infinitely many
conservation laws. The theory, applicable to a large integra-
bility class, is derived solely from the fundamental tenet of
emerging hydrodynamic: local entropy maximization (often
referred to as local thermodynamic equilibrium) [33–37].
Focusing on quantum field theory (QFT) in one space
dimension, we then study a family of models that include
the paradigmatic Lieb-Liniger (LL) model [38] for interact-
ing Bose gases, explicitly realized in experiments [4,5,39–
41].We concentrate on far-from-equilibrium states driven by
heat baths in the partitioning protocol [7,26,27,42] (see
Fig. 1). We provide currents and full space-time profiles
which are in principle experimentally accessible, beyond
linear response and for arbitrary interaction strengths. We
make contact with the physics of rarefaction waves, and with
the concept of quasiparticle underlying integrable dynamics.

II. SETUP

Let two semi-infinite halves (which we refer to as the
left and right reservoirs) of a homogeneous, short-range
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one-dimensional quantum system be independently ther-
malized, say, at temperatures TL and TR. Let this initial
state h� � �iini be evolved unitarily with the Hamiltonian H
representing the full homogeneous system. One may then
investigate the steady state that occurs at large times (see,
e.g., Ref. [28]),

Osta ≔ lim
t→∞

heiHtOe−iHtiini; O local observable: ð1Þ

If the limit exists, it is a maximal-entropy steady state
involving, in principle, all (quasi)local conserved charges
of the dynamics H [see Eq. (4)]. Generically, the dynamics
only admits a single conserved quantity, H itself: this
means that, due to diffusive processes, ordinary Gibbs
thermalization occurs. However, when conserved charges
exist that are odd under time reversal, the steady state may
admit nonzero stationary currents. This indicates the
presence of ballistic transport, and the emergence of a
current-carrying state that is far from equilibrium (breaking
time-reversal symmetry). This is the partitioning protocol
for building nonequilibrium steady states. See Fig. 1.
The study of such nonequilibrium steady states has

received a large amount of attention recently (see
Ref. [28] and references therein). They form a uniquely
interesting set of states: they are simple enough to be
theoretically described, yet encode nontrivial aspects of
nonequilibrium physics. They naturally occur in the uni-
versal region near criticality described by QFT, where
ballistic transport emerges thanks to continuous translation
invariance, and in integrable systems, where it often arises
thanks to the infinite family of conservation laws.
The works in Refs. [26,27] open the door to the study of

nonequilibrium steady states at strong-coupling critical
points with unit dynamical exponent, obtaining, in par-
ticular, the full universal time evolution. The steady state
was found to be homogeneous within a light cone, with the
energy current being

jsta ¼ πck2B
12ℏ

ðT2
L − T2

RÞ; ð2Þ

where c is the central charge of the conformal field theory
(CFT) (below, we set kB ¼ ℏ ¼ 1). This result arises from
the independent thermalization of emerging left- and
right-moving energy carriers (chiral separation). It was
numerically verified [43] and agrees with recent heat-flow
experiments [2]. It was generalized using hydrodynamic
methods to higher-dimensional critical points [13,14,17,18]
and to deviations from criticality [15,16,18]. Under con-
ditions that are fulfilled in universal near-critical regions,
inequalities that generalize Eq. (2) can be derived [28,44]
(here with unit Lieb-Robinson velocity [45]):

eL −eR

2
≥ jsta ≥

kL − kR

2
; ð3Þ

whereeL;R and kL;R are, respectively, the energy densities
and the pressures in the left and right reservoirs [46].
Many further results exist in free-particle models (see

Ref. [28] and references therein), where independent
thermalization of right and left movers still holds. In
contrast, however, only conjectures and approximations
are available for interacting integrable models [47–49]. In
addition, a striking dichotomy is observed between inte-
grable situations and hydrodynamic-based results: for
instance, conformal hydrodynamics is expected to emerge
in strong-coupling CFT [13,14], leading to shock struc-
tures, but generically fails in free-particle conformal mod-
els [50], where transition regions are smooth. This points to
the stark effect of integrability on nonequilibrium quantum
dynamics, still insufficiently understood with available
techniques.

III. EMERGING HYDRODYNAMICS
IN QUANTUM SYSTEMS

Let us recall the basic concepts underlying the hydro-
dynamic description of many-body quantum systems, and
its use in the setup described above (similar concepts exist
in many-body classical systems).
LetQi, i ∈ f1; 2;…; Ng, be local conserved quantities in

involution. These are integrals of local densities qiðx; tÞ,
and the conservation laws take the form ∂tqiðx; tÞþ∂xjiðx; tÞ ¼ 0, where ji are the associated local currents.
A Gibbs ensemble is a maximal-entropy ensemble under
conditions fixing all averaged local conserved densities. It
is described by a density matrix

ρ ¼ e−
P

i
βiQi=Tr½e−

P
i
βiQi �; ð4Þ

where βi are the associated potentials. For instance, Q1 is
taken as the Hamiltonian, and β1 is the inverse temperature.
We denote β ¼ ðβ1; β2;…; βNÞ the vector representing this
state, and h� � �iβ the averages.

Clearly, the Gibbs averages of local densities qi ¼ hqiiβ
(these are independent of space and time by homogeneity

FIG. 1. The partitioning protocol. With ballistic transport, a
current emerges after a transient period. Dotted lines represent
different values of ξ ¼ x=t. If a maximal velocity exists (e.g., due
to the Lieb-Robinson bound), initial reservoirs are unaffected
beyond it (light-cone effect). The steady state lies at ξ ¼ 0.

CASTRO-ALVAREDO, DOYON, and YOSHIMURA PHYS. REV. X 6, 041065 (2016)

041065-2



and stationarity) may be seen as defining a map from states
to averages, β ↦ q. This is expected to be a bijection: the
set of averages fully determines the set of potentials.
Therefore, the current averages ji ¼ hjiiβ are functions

of the density averages:

j ¼ F ðqÞ: ð5Þ

These are the equations of state, and are model dependent.
The averages q can be generated by differentiation of the
(specific, dimensionless) free energy fβ. Similarly, one can

show [28] (see Appendix A) that there exists a function gβ
that, likewise, generates the currents,

q ¼ ∇βfβ; j ¼ ∇βgβ: ð6Þ

A hydrodynamics description of quantum dynamics is
expected to emerge at large space-time scales. This has been
exploited, in the present setup, in Refs. [13–18]. The
emergence of hydrodynamics is solely based on the
assumption of local entropy maximization (or local thermo-
dynamic equilibrium) [51]. Technically, this is the
assumption that averages of local quantities hOðx; tÞi tend
uniformly enough, at large times, to averages evaluated in
local Gibbs ensembles hOiβðx;tÞ with space-time dependent

potentials βðx; tÞ. Physically, this is a consequence of
separation of scales, as follows (see, for instance, Ref. [37]).
Assume that, after some time, physical properties vary

only on space-time scales that are much larger than
microscopic scales. This may be referred to as the “local
relaxation time.” From that time on, microscopic processes
such as particle collisions or intersite interactions give rise
to fast, local relaxation: the reaching of a (approximate)
steady state on space-time scales small compared to
variations but large enough for thermodynamics to be
applicable. By Boltzmann’s phase-space argument, these
local steady states are obtained from entropy maximization,
and as usual maximization is under the conditions provided
by conservation laws (properties of the microscopic
dynamics). That is, on each space-time “fluid cell” a
Gibbs state is (very nearly) reached. Neighboring Gibbs
states are different, but their variations are small. This is
local entropy maximization.
Assume local entropy maximization. On each fluid cell,

the Gibbs state is initially characterized by the values
of the conserved densities at the local-relaxation time.
The large-scale dynamics is thereon obtained from con-
servation laws, as follows. Consider microscopic conser-
vation in integral form,

R
x2
x1
dx½qiðx; t2Þ − qiðx; t1Þ�þR t2

t1 dt½jiðx2; tÞ − jiðx1; tÞ� ¼ 0. Since averages of densities
and currents, after the local relaxation time, take the form
hqiðx; tÞi ¼ hqiiβðx;tÞ and hjiðx; tÞi ¼ hjiiβðx;tÞ uniformly

enough, we have

Z
x2

x1

dx½qðx;t2Þ−qðx;t1Þ�þ
Z

t2

t1

dt½jðx2;tÞ−jðx1;tÞ�¼0;

ð7Þ

where qðx; tÞ ¼ hqiβðx;tÞ and jðx; tÞ ¼ hjiβðx;tÞ. Here, inte-
grals may be taken to cover a macroscopic number of fluid
cells: these become macroscopic conservation equations.
Macroscopic conservation equations can be rewritten in
differential form, with differentials representing small
variations amongst fluid cells:

∂tqðx; tÞ þ ∂xjðx; tÞ ¼ 0: ð8Þ

These are the pure hydrodynamic (Euler-type) equations,
representing the slow, large-scale quantum dynamics of
conserved densities and currents flowing amongst neigh-
boring cells.
The problem of emergence of hydrodynamics in many-

body systems is one of the most important unsolved
problems of modern mathematical physics. Although there
are few proofs of emergence of hydrodynamics, there is
strong evidence for the validity of emerging Euler equa-
tions in many situations; see Refs. [33–37] and the recent
paper Ref. [52] for a study of emerging Euler equations in
classical anharmonic chains.
Combined with the equations of state Eq. (5), Euler

equations (8) give

∂tqðx; tÞ þ J(qðx; tÞ)∂xqðx; tÞ ¼ 0; ð9Þ

where JðqÞ ≔ ∇qj is an N by N matrix, the Jacobian
matrix of the transformation from densities to currents:

JðqÞij ¼ ∂F iðqÞ=∂qj: ð10Þ

Equation (9) is the emergent pure hydrodynamic equation
in quasilinear (or characteristic) form [12]. The complete
model dependence, including all quantum effects, is
encoded, besides the number N of conserved quantities,
in the Jacobian JðqÞ.
The density averagesq, like the potentials β, correspond

to a set of state coordinates. One may choose any other set
of state coordinates n, with q ¼ FqðnÞ and j ¼ FjðnÞ.
A similar equation is obtained,

∂tnðx; tÞ þ J(nðx; tÞ)∂xnðx; tÞ ¼ 0; ð11Þ

where JðnÞ ¼ ð∇nqÞ−1∇nj. Observe that JðnÞ and JðqÞ
are related to each other by a similarity transformation:
JðnÞ ¼ ð∇njÞ−1JðqÞjq¼FqðnÞ∇nj. Therefore, the spec-

trum of JðnÞ is independent of the choice of coordinates,
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and is a fundamental property of the model. We denote this
spectrum by fveffi ðnÞ; i ¼ 1;…; Ng.
Choosing coordinates n that diagonalize JðnÞ, one

obtains

∂tniðx; tÞ þ veffi (nðx; tÞ)∂xniðx; tÞ ¼ 0: ð12Þ

These express the vanishing of the convective derivatives,
representing the constancy of each fluid mode niðx; tÞ on
fluid cells. The eigenvalues veffi (nðx; tÞ) are, therefore,
interpreted as the propagation velocities of these normal
modes. The normal modes interact with each other only
through the propagation velocities, which is generically a
function of all state coordinates.
Let us now apply the above to the solution of the

partitioning problem. For clarity of the following discus-
sion, we come back to the q coordinates (but it is easy to
generalize to any coordinates n). Consider the large-scale
limit ðx; tÞ ↦ ðax; atÞ; a → ∞. Because Eq. (12) is invari-
ant under this scaling, in the limit, if it exists, the solution is
also invariant. Thus, we may assume self-similar solutions
βðx; tÞ ¼ βðξÞ, where ξ ¼ x=t, and Eq. (12) becomes an
eigenvalue equation:

½JðqÞ − ξ1�∂ξq ¼ 0: ð13Þ

The initial condition is determined by the state at the local
relaxation time (at which the fluid-dynamics description
starts to be valid). This state is unknown, as it depends on
the full quantum dynamics, but its asymptotic at large jxj is
identical to that of the original state. In the large-scale
solution, the initial condition t → 0þ is implemented as
asymptotic conditions as ξ → �∞. Therefore, it depends
only on the asymptotic form of the initial state, and we
impose

lim
ξ→�∞

qðξÞ ¼ lim
x→�∞

hqðx; 0Þiini: ð14Þ

In the present setup, these involve Gibbs states at potentials
βR;L:

lim
x→�∞

hqðx; 0Þiini ¼ hqiβR;L ; ð15Þ

and the steady-state averages are given by

qsta ≔ qðξ ¼ 0Þ; jsta ≔ jðξ ¼ 0Þ: ð16Þ

The solution to the eigenvalue equation (13) and initial
conditions Eq. (14) provides the exact large-scale asymp-
totic form of the full quantum solution, along any ray x ¼
ξt (see Fig. 1). The eigenvalue equation (13) represents the
small changes of averages along various rays, due to the
exchange of conserved charges amongst fluid cells. The set
of eigenvalues of JðqÞ—the available propagation

velocities in the state characterized by the averages q—
form a finite, discrete set for finite N.
Solutions to Eqs. (13) and (14) are typically composed of

regions of constantq values separated by transition regions
[12]. Transition regions may be of two types: either shocks
(weak solutions), where q values display finite jumps, or
rarefaction waves, where they form a smooth solution to
Eq. (13). Rarefaction waves, the most natural type of
solution, cannot, generically, cover the full space between
two reservoirs. Indeed, Eq. (13) specifies that the curve
traced by the solution in the q plane must at all points be
tangent to an eigenvector of JðqÞ. Since eigenvectors—and
available propagation velocities—form a discrete set,
smooth variations of q along the curve imply a unique
choice of eigenvector at each point (except possibly at
points where eigenvalues cross). Thus, the curve is com-
pletely determined by its initial point, and cannot join two
arbitrary reservoir values. That is, in ordinary pure hydro-
dynamics, shocks are often required.

IV. HYDRODYNAMICS WITH INFINITELY
MANY CURRENTS

In integrable systems, there are infinitely many local
conservation laws. In fact, this space is enlarged to that of
“pseudolocal” conservation laws, where the densities
qiðx; tÞ and currents jiðx; tÞ are supported on extended
spacial regions with weight decaying fast enough away
from x. This enlargement plays an important role in
nonequilibrium quantum dynamics [20,21,23–25]. Under
maximal-entropy principles, Gibbs states are then replaced
by generalized Gibbs ensembles (GGE) [19,21,22]: for-
mally, the limit N → ∞ of the density matrix Eq. (4),
involving all basis elements in the space of conserved
pseudolocal charges. We chooseQ1 ¼ H (the Hamiltonian)
and Q2 ¼ P (the momentum operator).
Under the influence of infinitely many conservation

laws, the picture of local entropy maximization is still
expected to hold: all physical principles underlying it stay
unchanged, the only difference being the use of GGEs
instead of Gibbs ensembles. This, along with the emer-
gence of self-similar solutions in the partitioning protocol,
are our working hypotheses; see Appendix B for a
discussion. The emergence of a generalized type of
hydrodynamics was proven in the classical hard-rod prob-
lem [37,53], whose relation with the present quantum
problem we will study in a future work. The emergence
of self-similar solutions was observed numerically in the
quantum XXZ chain in Ref. [54]. In free-particle quantum
models, hydrodynamic ideas and related semiclassical
approximations, as well as ray-dependent local entropy
maximization, were studied in various works; see
Refs. [55–60].
Looking for a full solution to the infinity of Eqs. (9),

(13), and (14), an appropriate choice of state variables is
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crucial. A powerful way is to recast them into the
quasiparticle language underlying the thermodynamic
Bethe ansatz (TBA) method for integrable systems [61].
Using this language, we derive the exact GGE equations of
state and the ensuing generalized hydrodynamics equation.
We determine the exact normal modes and propagation
velocities, and obtain full ray-dependent solutions.

A. GGE equations of state

We assume that the spectrum of stable quasiparticles is
composed of a single quasiparticle species of mass m (see
Appendix C for a many-particle generalization). The
dispersion relation is encoded via a parametrization EðθÞ,
pðθÞ of the energy and momentum: in the relativistic case, θ
is the rapidity,EðθÞ ≔ m coshðθÞ, pðθÞ ≔ m sinhðθÞ, and in
the Galilean case, θ is the velocity, EðθÞ ≔ mθ2=2,
pðθÞ ≔ mθ. In integrable models, scattering is elastic and
factorizes into two-particle processes, and a model is fully
specified by giving the elastic two-particle scattering ampli-
tude Sðθ1 − θ2Þ. The differential scattering phase is defined
as φðθÞ ¼ −id log SðθÞ=dθ. We denote by hiðθÞ the one-
particle eigenvalue of the conserved chargeQi; in particular,
h1ðθÞ ¼ EðθÞ and h2ðθÞ ¼ pðθÞ.
Let us first recall the basic ingredients of TBA. Three

related quantities play important roles: the quasiparticle
density ρpðθÞ, the state density ρsðθÞ, and the quasiparticle
occupation number nðθÞ ≔ ρpðθÞ=ρsðθÞ. The functions
ρpðθÞ and nðθÞ are two different sets of state coordinates;
each can be used to fully characterize the GGE. The former
specifies all average densities in a simple way:

qi ¼
Z

dθρpðθÞhiðθÞ: ð17Þ

This can, in fact, be seen as a definition of ρpðθÞ. Here and
below, integrations are over R.
As a consequence of interactions, quasiparticle and state

densities are related to each other. Using the Bethe ansatz,
one finds the following constitutive relation [61]:

2πρsðθÞ ¼ p0ðθÞ þ
Z

dαφðθ − αÞρpðαÞ; ð18Þ

where p0ðθÞ ¼ dpðθÞ=dθ. This relation gives rise to a
nonlinear relation between the state coordinates ρpðθÞ and
nðθÞ. The transformation from the former to the latter is
direct from the above definitions. In the opposite direction,
the transformation is effected by

2πρpðθÞ ¼ nðθÞðp0ÞdrðθÞ; ð19Þ

where the “dressing” operation h ↦ hdr is defined by the
solution to the linear integral equation:

hdrðθÞ ¼ hðθÞ þ
Z

dγ
2π

φðθ − γÞnðγÞhdrðγÞ: ð20Þ

The potentials β can be recovered: the occupation
number is related to the one-particle eigenvalue wðθÞ ¼P

iβihiðθÞ of the charge
P

iβiQi in the GGE Eq. (4) via the
so-called pseudoenergy ϵwðθÞ [61,62]:

nðθÞ ¼ 1

1þ exp½ϵwðθÞ�
;

ϵwðθÞ ¼ wðθÞ −
Z

dγ
2π

φðθ − γÞ logð1þ e−ϵwðγÞÞ: ð21Þ

The above ingredients give exact average densities as
functions of GGE states. However, they do not provide
expressions for average currents as functions of state coor-
dinates, and for equations of states. Hence, they are not
sufficient in order to develop generalized hydrodynamics.
We solve this problem by obtaining the following

expressions:

qi ¼
Z

dpðθÞ
2π

nðθÞhdri ðθÞ; ji ¼
Z

dEðθÞ
2π

nðθÞhdri ðθÞ;

ð22Þ

where hdri ðθÞ is the dressed one-particle eigenvalue. These
expressions emphasize the role of relativistic or Galilean
symmetry: the sole difference between GGE averages of
charge densities and currents is the integration measure,
determined by the dispersion relation.
The first equation in Eq. (22) is well known and is a

consequence of Eqs. (17) and (19). In integral-operator
notation [with measure dθ=ð2πÞ], the dressing operation is

hdr ¼ ð1 − φN Þ−1h; ð23Þ

whereN is diagonal with kernel 2πnðθÞδðθ − αÞ, and φ has
kernel φðθ − αÞ. Therefore, introducing the symmetric
operator U ¼ N ð1 − φN Þ−1 and the bilinear form
a · b ¼ R

dθ=ð2πÞaðθÞbðθÞ, we have

qi ¼ hi · Up0 ¼ p0 · Uhi; ð24Þ

which leads to the first equation of Eq. (22).
The second equation in Eq. (22) is new. It may be

proven, in the relativistic case, using relativistic crossing
symmetry, and then obtained by the nonrelativistic limit in
the Galilean case. In the relativistic case, crossing sym-
metry says that local currents ji, in the cross channel, are
local densities qi; therefore, the current expression in
Eq. (22) is obtained from that of the density under an
appropriate exchange of energy and momentum. Let C be
the crossing transformation ðx; tÞ ↦ ðit;−ixÞ, implemented
on rapidities by θ ↦ iπ=2 − θ. Note that it squares to the
identityC2 ¼ 1. Let us denote byq½h� and j½h� the density and
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current operators, respectively, associated to a one-particle
eigenvalue hðθÞ. Then, the statement that local currents ji, in
the cross channel, are local densities qi translates into
Cðj½h�Þ ¼ iq½hC�, where hCðθÞ ¼ hðiπ=2 − θÞ. Let us also
denote by hOiw the average of observables O in the state
characterized by wðθÞ. Then, hCðOÞiw ¼ hOiwC , where
wCðθÞ ¼ wðiπ=2 − θÞ. Using hj½h�iw ¼ hC(Cðj½h�Þ)iw ¼
ihq½hc�iwC and the expression for qi ¼ q½hi� in Eq. (22),
we obtain the expression for ji ¼ j½hi�. An alternative
proof, using the machinery of integrable systems, is pre-
sented in Appendix D.
Expressions (22) have interesting consequences. First,

using ji ¼ hi · UE0, where E0ðθÞ ¼ dEðθÞ=dθ, in Eq. (22),
the average current may also be written in terms of a current
spectral density ρcðθÞ:

ji ¼
Z

dθρcðθÞhiðθÞ; ð25Þ

which takes the forms

2πρcðθÞ ¼ nðθÞðE0ÞdrðθÞ ¼ 2πveffðθÞρpðθÞ: ð26Þ

Here, veffðθÞ is the effective velocity, defined by

veffðθÞ ≔ ðE0ÞdrðθÞ
ðp0ÞdrðθÞ : ð27Þ

The effective velocity depends on the state via the occu-
pation number entering the dressing operation, and brings
out the quasiparticle interpretation of the current expres-
sion: since ρcðθÞ ¼ veffðθÞρpðθÞ, quasiparticles are seen as
moving at effective velocities veffðθÞ, influenced by the
state in which they move.
Second, one may extract explicit GGE equations of state

from expressions (22). The equations of states are neces-
sary and sufficient relations between densities and currents,
guaranteeing the existence of nðθÞ such that both relations
in Eq. (22) hold for all hiðθÞ. Assume that qi and ji are
averages in a state, not necessarily a GGE. In complete
generality, both are linear functionals of hðθÞ; hence, we
may still write Eqs. (17) and (25) for some quasiparticle
density ρpðθÞ and current spectral density ρcðθÞ. GGE
equations of states can, therefore, be written as relations
between ρpðθÞ and ρcðθÞ, necessary and sufficient for the
existence of nðθÞ such that Eqs. (22) hold. One can show
that these relations are

ρcðθÞ
ρpðθÞ

¼ E0ðθÞ þ R
dαφðθ − αÞρcðαÞ

p0ðθÞ þ R
dαφðθ − αÞρpðαÞ

: ð28Þ

These relations are independent of the state: they hold in
any GGE, in the model described by the differential
scattering phase φðθ − αÞ. They characterize the set of
doublets of functions ðρp; ρcÞ describing available GGEs

for this integrable model. The proof of Eq. (28) is obtained
by isolating nðθÞ in both Eqs. (19) and (26), in the
forms 2πðN −1 − φÞρp ¼ p0 and 2πðN −1 − φÞρc ¼ E0, and
equating the resulting expressions.
Finally, recalling Eq. (26), the left-hand side of Eq. (28)

is veffðθÞ. Simple manipulations of Eq. (28) then give a
linear integral equation for the effective velocity veffðθÞ in
terms of quasiparticle densities:

veffðθÞ ¼ vgrðθÞ þ
Z

dα
φðθ − αÞρpðαÞ

p0ðθÞ ½veffðαÞ − veffðθÞ�;

ð29Þ

where vgrðθÞ ¼ E0ðθÞ=p0ðθÞ is the group velocity. In this
form, the equations of state of integrable systems are seen
as equations specifying an effective velocity of quasipar-
ticles, as a modification of the group velocity.
We note that the effective velocity we derive here agrees

with that proposed inRef. [63]. [Note that in Ref. [63] veffðθÞ
is written in a form similar to, but different from, Eq. (27),
using a different definition of dressing.] This is interesting, as
our derivation is based on comparing current spectral density
to quasiparticle density, while the concept proposed in
Ref. [63] is based on stationary-phase arguments.

B. Generalized hydrodynamics

The basic equation of generalized pure hydrodynamics is
derived from Eq. (8) along with the quasiparticle expres-
sions Eqs. (17) and (25). The fact that the space of
pseudolocal charges is complete [21] suggests that these
hold for a complete set of functions hiðθÞ, and, thus (here
and below we suppress explicit x, t dependences for
lightness of notation),

∂tρpðθÞ þ ∂xρcðθÞ ¼ 0: ð30Þ

Using the equations of state Eq. (28), this is an integro-
differential system for the space-time-dependent state
characterized by the particle densities ρpðθÞ.
Alternatively, using the effective-velocity formulation

Eqs. (26) and (29), Eq. (30) may be written as

∂tρpðθÞ þ ∂x½veffðθÞρpðθÞ� ¼ 0: ð31Þ

This is the conservation form of generalized hydrodynam-
ics. It is a density-type conservation equation, and it
identifies ρpðθÞ as a conserved fluid density.
The state coordinates ρpðθÞ are, however, not the most

convenient. We show that the occupation numbers nðθÞ
diagonalize the Jacobian JðnÞ in the quasilinear form
Eq. (11): the space-time-dependent occupation number
nðθÞ satisfies the following integro-differential system,
the vanishing of the convective derivative of nðθÞ:
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∂tnðθÞ þ veffðθÞ∂xnðθÞ ¼ 0: ð32Þ

Here, Eq. (27) may be used to express the effective velocity
in terms of nðθÞ. Hence, nðθÞ are the normal modes of
generalized hydrodynamics, and further, the eigenvalues—
the propagation velocities—are exactly the effective veloc-
ities veffðθÞ.
The proof of Eq. (32) is as follows. Using the integral-

operator relations 2πρp ¼ Up0 and 2πρc ¼ UE0, we
have ð∂tUÞp0 þ ð∂xUÞE0 ¼ 0. Taking derivatives, ∂x;tU ¼
ð1 −NφÞ−1ð∂x;tN Þð1 − φN Þ−1, and we obtain

∂tN ð1 − φN Þ−1p0 þ ∂xN ð1 − φN Þ−1E0 ¼ 0; ð33Þ

which gives Eq. (32) using Eq. (23).
Observe that, using Eqs. (31) and (32), it is simple to

show that the state density ρsðθÞ as well as the hole density
ρhðθÞ ≔ ρsðθÞ − ρpðθÞ also satisfy the same density-type
conservation equation (31) (this was noted in Ref. [64]).
Further, as a consequence, the entropy density [61],

sðθÞ≔ ρsðθÞ logρsðθÞ− ρpðθÞ logρpðθÞ− ρhðθÞ logρhðθÞ;
ð34Þ

also satisfies this conservation equation, ∂tsðθÞ þ
∂x½veffðθÞsðθÞ� ¼ 0. Conservation of entropy density is a
fundamental property of perfect fluids, as noviscosity effects
are taken into account.
In the large-scale limit, the equation for the ray-

dependent (ξ-dependent) occupation number nðθÞ
simplifies to

½veffðθÞ − ξ�∂ξnðθÞ ¼ 0:

This is the eigenvalue equation (13) in the occupation-
number coordinates (which diagonalize the Jacobian), and
its solution gives qðξÞ and jðξÞ via Eqs. (22) and (20).
One can show that the solution for the nonequilibrium,

ray-dependent occupation number nðθÞ is the discontinu-
ous function

nðθÞ ¼ nLðθÞΘðθ − θ⋆Þ þ nRðθÞΘðθ⋆ − θÞ; ð35Þ

where Θð� � �Þ is Heavyside’s step function. The position of
the discontinuity θ⋆ depends on ξ and is self-consistently
determined by veffðθ⋆Þ ¼ ξ; equivalently, it is the zero of
the dressed, boosted momentum pξðθÞ ≔ pðθ − ηÞ, where
ξ ¼ tanh η (relativistic case) or ξ ¼ η (Galilean case),

pdr
ξ ðθ⋆Þ ¼ 0: ð36Þ

The GGE occupation numbers nL;RðθÞ entering Eq. (35)
guarantee that the asymptotic conditions on ξ correctly

represent the asymptotic baths as per Eq. (14). They are
obtained using Eq. (21) with w ¼ wL;RðθÞ the one-particle
eigenvalues characterizing the GGE of the left and right
asymptotic reservoirs; for instance, with reservoirs at
temperatures TL;R, we have wL;RðθÞ ¼ T−1

L;REðθÞ.
Indeed, the solution Eq. (35) of the scaled problem holds

since veffðθÞ is monotonic and covers the full range of θ
(which is ½−1; 1� in the relativistic case and R in the
Galilean case); therefore, there is a unique solution to
veffðθÞ ¼ ξ, and, thus, a unique jump, and θ⋆ is monotonic
with ξ; hence, the asymptotic conditions are correctly
implemented.
The system of integral equations (22), (20), (35),

and (36) can be solved numerically using Mathematica,
yielding extremely accurate results. Integral equations in
Eqs. (21) and (20) can be solved iteratively, a procedure
that converges fast [61]. The hydrodynamic solution is
obtained by first constructing the thermal occupation
numbers nL;RðθÞ [Eq. (21)]. Then, the nonequilibrium
occupation number is evaluated by solving the system
equations (35) and (36): one first chooses θ⋆ ¼ η in order to
construct nðθÞ, and then evaluates pdr

ξ ðθÞ. The zero of
pdr
ξ ðθÞ is numerically found—we observe that pdr

ξ ðθÞ
always has a single zero. The process is repeated until
the zero is stable—we observe that this is a convergent
procedure. Finally, the nonequilibrium occupation number
is used in Eqs. (22) and (20). The solving time increases
slowly with the numerical precision demanded; thus, this
allows arbitrary-precision results.
The solution we present may be interpreted as a single

space-covering rarefaction wave, in the sense that it is a
solution to the eigenvalue equation (13) where all physical
observables qi, ji are continuous and interpolate between
the two reservoirs. With relativistic dispersion relation, the
solution is smooth within the light cone, beyond which the
states are constant and equal to the initial baths’ states;
while in the Galilean case, the solution is generically
smooth on the whole space. In this solution, every normal
mode nðθÞ, seen as a function of ξ for fixed θ, is
discontinuous exactly at its propagation velocity. Every
normal mode therefore displays a “contact discontinuity” (a
discontinuity without entropy production) [12]. Hence, the
rarefaction wave may be seen as being composed of
infinitely many contact discontinuities. In contrast to the
finite-dimensional case, this single rarefaction wave can
account for generic reservoirs, and no shocks need to
develop. This is because in the infinite-dimensional case,
the eigenvalues of JðnÞ form a continuum: all propagation
velocities veffðθÞ are available as conserved charges guar-
antee a large number of stable excitations, providing an
additional continuous parameter tuning the smooth state
trajectory and guaranteeing its correct asymptotic-reservoir
values. Since weak solutions (shocks) are not necessary to
connect the asymptotic reservoirs, they do not appear.
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V. ANALYSIS AND DISCUSSION

Concentrating on pure thermal transport, we analyze the
above general system of equations for two related models:
the relativistic integrable sinh-Gordon model and its non-
relativistic limit [65,66], the (repulsive) Lieb-Liniger
model. We also verify that our hydrodynamic equations
reproduce the known results for the case of free particles.

A. Relativistic sinh-Gordon model

One of the simplest integrable relativistic QFTs with
nontrivial interactions is the sinh-Gordon model. It is
defined by the Lagrangian [67,68]

LshG ¼ 1

2
ð∂μϕÞ2 −

m2

β2
coshðβϕÞ; ð37Þ

where ϕ is the sinh-Gordon field and m is the mass of the
single particle in the spectrum. The model is integrable and,
therefore, the only nontrivial scattering matrix is that
associated to two-particle scattering. It is given by [69–71]

SðθÞ ¼ tanh 1
2
ðθ − iπB

2
Þ

tanh 1
2
ðθ þ iπB

2
Þ : ð38Þ

The parameter B ∈ ½0; 2� is the effective coupling constant,
which is related to the coupling constant β in the
Lagrangian by

BðβÞ ¼ 2β2

8π þ β2
; ð39Þ

under CFT normalization [72]. The S matrix is obviously
invariant under the transformation B → 2 − B, a symmetry
that is also referred to as weak-strong coupling duality, as
it corresponds to BðβÞ → Bðβ−1Þ in Eq. (39). The point
B ¼ 1 is known as the self-dual point. At the self-dual point
the TBA differential scattering phase is simply

φshGðθÞ ¼ −i
d
dθ

logSðθÞ ¼ 2

cosh θ
: ð40Þ

Contrary to the Lieb-Liniger model, which we discuss
later, the general features of any quantities of interest in the
sinh-Gordon model are very similar for any values of the
coupling B. For this reason, in this paper we concentrate
our analysis solely on the self-dual point in the under-
standing that similar results hold for other values of B.
We evaluate the energy density e ≔ q1, energy current

j ≔ j1, and pressure k ≔ j2. Typical profiles are shown
in Figs. 2 and 3. Figure 2 shows smooth interpolation
within the light cone between the asymptotic baths at
ξ ¼ −1 and ξ ¼ 1 (the speed of light is set to 1). Figure 3
shows how, as temperatures rise, the current approaches the
plateau [Eq. (2)] predicted by CFT [26,27]. Further, in

Fig. 4, the relative deviation of the steady-state current from
its bounds [Eq. (3)] is shown. The bounds are extremely
tight, pointing to the strength of this constraint and
confirming that the proposed solution is correct. The
bounds are indeed so tight that it is difficult to distinguish
some points in parts of Fig. 4. To better appreciate this, we
present the numerical values of the points displayed in
Fig. 4 (divided by β2L) in Table I.
The numerical data are obtained by solving the integral

equations recursively until convergence is reached. Sources
of error are the discretization and finite range of θ for
numerical integration. Adjusting the number of divisions
and the range, we estimate the error to be less than 0.1%.

B. Lieb-Liniger model

The Lieb-Liniger model, in the repulsive regime (λ > 0),
can be regarded as a nonrelativistic limit of the sinh-Gordon
model, as shown in Refs. [65,66]. The Hamiltonian of the
model is given by

HLL ¼
Z

dx
�

1

2m
∂xψ

†∂xψ þ λψ†ψ†ψψ

�
: ð41Þ
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FIG. 2. The functions jðξÞ (dots) and eðξÞ (squares) for
βL ¼ 1 and βR ¼ 30 in the sinh-Gordon model.
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FIG. 3. The functions β2Ljðξ > 0Þ for βR ¼ 30βL and
βL ¼ 10−p, with p ¼ 0 (stars), 1 (triangles), 2 (inverted trian-
gles), 3 (squares), and 4 (circles). The continuous bold line
represents the conformal value β2LjðξÞ ¼ π

12
ð1 − 1

900
Þ which, as

expected, is reached at high temperatures. Dashed curves are
interpolations.
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This is obtained from the Hamiltonian of the sinh-Gordon
model by a double limit,

c → ∞; β → 0; βc ¼ 4
ffiffiffi
λ

p
; ð42Þ

where c is the speed of light [which is implicit in Eq. (37)].
(This is the only equation in the present paper where the
speed of light c appears explicitly. Everywhere else c denotes
the central charge. As both are standard notations, we choose
to use the notation c for both.) This limit can be performed
within the TBA formalism [66], and accordingly, the density
and current averages qi, ji are given by Eq. (22), with the
nonrelativistic dispersion relation. There, the occupation
number is given by nLLðθÞ ¼ 1=ð1þ eϵwðθÞÞ, and the pseu-
doenergy ϵwðθÞ and the dressed one-particle eigenvalues
hdri ðθÞ are defined in the samemanner as inEqs. (21) and (20)
(where θ ¼ p=m is the velocity), with the scattering matrix
given by

SLLðθÞ ¼
θ − 2λi
θ þ 2λi

; ð43Þ

and corresponding differential scattering phase

φLLðθÞ ¼
4λ

θ2 þ 4λ2
: ð44Þ

A uniform chemical potential μ is introduced, associated to
the conserved charge Q0 that counts the number of quasi-
particles [withh0ðθÞ ¼ 1]. The energy current is chosen to be
the current associated to the charge H − μQ0,

j ≔ j1 − μj0 ðLL modelÞ: ð45Þ

Below, we present some numerical results for several values
of the coupling λ and for m ¼ 1.
Current profiles obtained for λ ¼ 3 and various values of

μ are displayed in Fig. 5. The main difference between the
relativistic and nonrelativistic cases is the lack, in the latter,
of any sharp light-cone effect. Nevertheless, at low temper-
atures TL;R ≪ μ, Luttinger liquid physics emerges [73],
including an emerging light cone due to the Fermi velocity.
This can be seen in Fig. 5: a plateau forms whose height is
again in agreement with the general CFT result Eq. (2). The
plateau lies between nearly symmetric values ξ=vF ≈�1
fixed by the Fermi velocity vF. Thermal occupation
numbers nL;RðθÞ are very sharply supported between
Fermi points �θL;RF , with θL;R ≳ ffiffiffiffiffiffiffiffiffiffiffiffi

2μ=m
p

, and the Fermi
velocity, which depends on ξ very weakly, is the effective
velocity veffðθRFÞ associated to the lowest temperature
(TR < TL in the present example). In agreement with
general CFT results [26,27], a light cone thus builds up
(despite the model having no intrinsic maximal velocity),
and the full state is, in fact, homogeneous between the
Fermi velocities.
In the LL model the coupling constant may take any

values between 0 and ∞ and the limits λ → 0 and λ → ∞
are of particular interest.
For λ → 0, the differential scattering phase Eq. (44)

becomes heavily peaked around θ ¼ 0. Formally,
limλ→0φLLðθÞ ¼ 2πδðθÞ. The resulting TBA equations,

10 5 10 4 0.001 0.01 0.1 1
0.10

0.15

0.20

0.25

L

R 30 L

FIG. 4. Verification of the inequalities Eq. (3) in the sinh-
Gordon model. Displayed are the functions β2Lj

sta (circles),
β2LðeL −eRÞ=2 (triangles), and β2LðkL − kRÞ=2 (squares).

TABLE I. The functions jsta, ½ðeL −eRÞ=2�, and
½ðkL − kRÞ=2� over a wide range of values of βL. The bounds
[Eq. (3)] are always met.

βL jsta ½ðeL −eRÞ=2� ½ðkL − kRÞ=2�
10−5 2.5661 × 109 2.5701 × 109 2.5624 × 109

10−4 2.5450 × 107 2.5522 × 107 2.5386 × 107

10−3 250 665.6 252 117.9 249 421.1
10−2 2424.9 2461.8 2396.4
10−1 22.0 23.3 21.1
1 0.126 0.181 0.101
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FIG. 5. Energy current in the Lieb-Liniger model for low
temperatures λ ¼ 3 and chemical potentials μ ¼ 3 (circles),
μ ¼ 6 (squares), and μ ¼ 10 (triangles). The CFT value
π
12
ð1 − 1

25
Þ (bold horizontal line) is reached for high values of

μ. By plotting the currents against ξ=vF, we observe the collapse
of the various curves, which becomes better as μ increases. The
regions where plateaus emerge are roughly ξ=vF ∈ ½−1; 1� with
vF ≈ 2.5, 2.9, 3.6.
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with this differential scattering phase, admit no solution for
the pseudoenergy if μ > 0, but for μ < 0, they can be
solved exactly and reproduce the free boson solution (for
which μ > 0 would make no physical sense). In particular,
the energy current takes the free boson form,

lim
λ→0

jðξÞ ¼ 1

β2R

Z
∞

αR

dθ
θ

eθ − 1
−

1

β2L

Z
∞

αL

dθ
θ

eθ − 1
; ð46Þ

where αL;R ¼ βL;R½ðξ2=2Þ − μ�. In Fig. 6, we compare
numerical values for λ ¼ 0.05 and μ ¼ −1 to this analytical
expression. The agreement is very good, confirming that a
free boson theory is smoothly recovered in this limit. With
μ > 0, as λ becomes small, the TBA equations gradually
break down. How this occurs is subtle, and will be
discussed in Ref. [74].
The qualitative change in behavior of the TBA solutions

as λ → 0 is related to the two distinct regimes observed at
small values of λ [75]. Consider the dimensionless coupling
γ ≔ 2mλ=q0 (where we recall that q0 is the gas density,
which may be taken in the initial baths, for instance) and
the reduced temperature τ ≔ 2mT=q2

0. The “decoherent
regime,” with large phase and density fluctuations, occurs
for γ ≲minðτ2; ffiffiffi

τ
p Þ. In this regime, ideal Bose gas physics

is recovered, and we indeed verify that the inequality is
satisfied in the parameter space where good agreement with
Eq. (46) is observed (small λ, negative μ). On the other
hand, the “Gross-Pitaevskii regime” occurs for τ2 ≲ γ ≲ 1,
a quasicondensate with large phase fluctuations but sup-
pressed density fluctuations. It is such quasicondensate
physics that strongly affects TBA solutions as λ → 0
with μ > 0.
The other interesting limit is limλ→∞φLLðθÞ ¼ 0. In this

case, we can also find an analytical expression for the
current:

lim
λ→∞

jðξÞ ¼ 1

β2R

Z
∞

αR

dθ
θ

eθ þ 1
−

1

β2L

Z
∞

αL

dθ
θ

eθ þ 1
: ð47Þ

This corresponds to a free Fermion, in agreement with the
expected Tonks-Girardeau physics occurring in the regime
γ ≳maxð1; ffiffiffi

τ
p Þ [75]. For ξ ≈ 0 and μβL;R ≫ 1, it is easy to

show that the integral above gives π
12
ðβ−2L − β−2R Þ, so that we

recover the CFT result for the current with c ¼ 1 (Dirac
fermion). Figure 7 shows a comparison between numerical
values of the current for λ ¼ 50 and the formula above.
Let us now consider the particle current. Naturally, in the

LL model, equilibrium states at higher temperatures have
lower particle densities. Therefore, although the energy
current flows from the left to the right in the present setup
(with TL > TR), the initial particle density imbalance
would naively suggest a particle flow from the right (higher
density) to the left (lower density). The opposite occurs:
Figure 9 shows that the particle current is positive, hence,
flows form the left to the right. This means that the fluid
flow produced by the temperature difference drags particles
with enough force to counteract the particle imbalance and
bring particles towards the higher-density bath. The fact
that heat carries particles along its motion is a thermoelec-
tric effect. It has been experimentally demonstrated in a
quasi-two-dimensional fermionic cold atoms channel [3],
and theoretically shown in CFT in dimensions higher than 1
[17]. It is nontrivial in integrable models, as the large
amount of conservation laws allows for independent
currents to coexist, and our result gives the first theoretical
prediction of this effect in the integrable one-dimensional
Bose gas.
An additional consequence of the thermoelectric effect is

that the particle density q0ðξÞ shows particle accumulation
around vF and depletion around −vF (see Fig. 8). For
instance, the start of the dip can be explained by the fact
that, in any local spacial region originally in the left
reservoir, the first particles to start moving towards the
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FIG. 6. Energy current in the Lieb-Liniger model for low
temperatures, small coupling, and negative chemical potential
(circles). The dashed curve represents the current [Eq. (46)] for
the same temperatures and chemical potential.
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FIG. 7. Energy current in the Lieb-Liniger model for low
temperatures, large coupling, and chemical potential μ ¼ 6
(circles). Local stationary points occur at αL;R ¼ 0, that is,
ξ ¼ � ffiffiffiffiffi

2μ
p ¼ �3.46 (the Fermi velocity). The dashed curve

represents the current [Eq. (47)] for the same temperatures and
chemical potential, whose profile is not dissimilar to the plots
shown in Fig. 5. As before, the bold horizontal line is the CFT
value π

12
ð1 − 1

25
Þ. The agreement is extremely good.
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right are those on the right of the region, escaping and thus
depleting it. Since time evolution at fixed position is
obtained by scanning Fig. 8 from left to right, this explains
the initial dip on the left. This depleting effect continues as
long as the outgoing current on the right of the region is
higher then the incoming current on its left—that is, until
the region lies in the steady state. However, as time goes on,
the effective local temperature decreases, and this tends to
increase the particle density. This effect eventually over-
takes the depleting effect, accounting for the rebounce to
the higher steady-state value. The behavior of the current
j0 in Fig. 9 is then a consequence of the continuity
equation ξ∂ξq0 ¼ ∂ξj0.
This is a nonuniversal effect, not present in the density

q1ðξÞ − μq0ðξÞ controlled by low-energy processes, where
the physics of chiral separation dominates and monotonic
transition regions occur.

C. General features

The form of the nonequilibrium occupation number
indicates that quasiparticles are thermalized according to

the initial GGEs, in a way that depends on the rapidity. It
connects with the picture, proposed in Refs. [26,47],
according to which, in the steady state (ξ ¼ 0), quasipar-
ticles traveling towards the right (left) are thermalized
according to the left (right) reservoir. However, in the
present solution, what determines the traveling direction is
the effective velocity in the steady state: quasiparticles with
positive (negative) dressed velocities, reaching the point
x ¼ 0 at large times, will have traveled mostly towards the
right (left) (after a relatively small transient). In the sinh-
Gordon model with TL > TR, the effective velocity
behaves as in Fig. 10. We observe that it is greater than
the bare velocity tanh θ for small or negative rapidities, and
smaller for large positive rapidities. This is in agreement
with the intuition according to which the quasiparticles are
effectively carried by the flow, which transports them
towards the right, for small enough rapidities, but slowed
down by dominant “friction” effects of thermal fluctua-
tions at large rapidities. A similar effect occur in the
Lieb-Liniger model.
The generalized hydrodynamic result differs from pre-

vious proposals in interacting integrable models [47–49]
(while all results agree in noninteracting cases). The
original proposal [47] was later shown [44] to break the
second inequality in Eq. (3), while the second proposal
[48], based on similar ideas, gave slight disagreements with
numerical simulations. The conjecture [49], which corre-
sponds to taking θ⋆ ¼ 0 in our framework, seems to give
good agreement with numerical simulations. This may be
due to the fact that taking θ⋆ ¼ 0, gives very small errors in
wide temperature ranges, of the order of 0.5%–1% (we
confirm this numerically).

VI. CONCLUSIONS

In this paper, we develop a hydrodynamic theory for
infinitely many conservation laws and apply it to the study
of heat flows in experimentally relevant integrable models.
It would be interesting to study further the nonequilibrium
physics of the Lieb-Liniger model, including the effects of
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FIG. 8. A characteristic profile of the Lieb-Liniger particle
density for TL;R ≪ μ, λ ¼ 3, and μ ¼ 6. The local maxima and
minima are located around ξ ¼ �vF. The dashed curve is an
interpolation.
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FIG. 9. A characteristic profile of the Lieb-Liniger particle
current for TL;R ≪ μ, λ ¼ 3, and μ ¼ 6. The local maxima and
minima are located around ξ ¼ �vF. The dashed curve is an
interpolation.
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FIG. 10. Effective velocity in the sinh-Gordon model for ξ ¼ 0.
Displayed are the effective velocity veffðθÞ (blue line) and the
bare relativistic velocity tanh θ (red line).
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the Gross-Pitaevskii quasicondensate and transport
between different regimes. The emerging physical picture
and solution we give can be applied to any Bethe ansatz
integrable model, where infinitely many conservation laws
exist and a quasiparticle description is available. This
includes quantum chains (see Ref. [64]), as continuity of
space on which the microscopic theory lies is not needed
for emerging hydrodynamics. It also includes relativistic
models with nondiagonal scattering, such as the sine-
Gordon model, where, for instance, our TBA construction
may be generalized along the lines of the famous approach
of Destri and De Vega [76,77]. Of course, the hydro-
dynamic ideas do not require a quasiparticle description,
and it might be possible to develop generalized hydro-
dynamics using a variety of techniques from integrability.
We note that it is remarkable that independent quasiparticle
mode thermalization agrees, in integrable models, with
local entropy maximization. The dynamical equations
derived can be used to describe more general situations
in ultracold gases, such as the release from a trap (see, e.g.,
Ref. [78]). This new theory and its extensions, including
viscosity effects and forcing, should also allow for efficient
studies of integrability breaking and related problems in
any dimensionality, as well as for exact descriptions of
dynamics in smooth trapping potentials [4] at arbitrary
coupling strength.
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Note added.—Recently, similar dynamical equations as
those derived here were independently obtained in the
integrable XXZ Heisenberg chain by assuming, in addition
to local entropy maximization, an underlying kinetic theory
[64]. Solutions to these equations of the same type as those
considered here were constructed and confirmed by
numerical simulations.

APPENDIX A: CURRENT GENERATORS

Let h� � �iβ be the state given by Eq. (4), and
haðxÞbðyÞic ≔ haðxÞbðyÞiβ − haðxÞiβhbðyÞiβ the con-

nected correlation functions. These are time independent
and functions of the difference x-y only. Let us assume that
connected correlation functions of conserved densities and
currents vanish faster than the inverse distance jx-yj. Then,

Z
dxhqmðxÞjnð0Þic ¼

Z
dxhjnð0ÞqmðxÞic

¼
Z

dxhjnðxÞqmð0Þic

¼ −
Z

dxxh∂xjnðxÞqmð0Þic

¼
Z

dxxh∂tqnðxÞqmð0Þic

¼ −
Z

dxxhqnðxÞ∂tqmð0Þic

¼
Z

dxxhqnðxÞ∂yjmðyÞicjy¼0

¼ −
Z

dxx∂xhqnðxÞjmð0Þic

¼
Z

dxhqnðxÞjmð0Þic: ðA1Þ

In the first line, we use the fact that
R
dxqmðxÞ is a

conserved quantity and thus commutes with the density
matrix ρ; in the second line, we use space translation
invariance; in the third, integration by parts and the fast-
enough vanishing of correlation functions; in the fourth,
current conservation; in the fifth, time-translation invari-
ance; in the sixth, current conservation; in the seventh,
space-translation invariance; and in the eighth, integration
by parts. Therefore,

∂
∂βmjn ¼

∂
∂βn jm; ðA2Þ

and, thus,

jm ¼ ∂
∂βm gβ; ðA3Þ

showing Eq. (6).
In the TBA context, we note that expressions (22) show

the existence of appropriate free energies fw and gw
generating densities and currents, respectively, as in
Eq. (6). Indeed, they may be rewritten as

qi ¼
Z

dθhiðθÞ
δfw
δwðθÞ ;

fw ¼ −
Z

dpðαÞ
2π

logð1þ e−ϵwðαÞÞ ðA4Þ

and

ji ¼
Z

dθhiðθÞ
δgw
δwðθÞ ;

gw ¼ −
Z

dEðαÞ
2π

logð1þ e−ϵwðαÞÞ: ðA5Þ
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It then follows that that functional wðθÞ derivatives of these
free energies give the quasiparticle and current densities,
ρpðθÞ ¼ δfw=δwðθÞ and ρcðθÞ ¼ δgw=δwðθÞ.

APPENDIX B: EMERGENCE OF GENERALIZED
HYDRODYDNAMICS

The only principle at the basis of hydrodynamics, and of
the derivation we provide, is that of the emergence of local
generalized thermalization (local entropy maximization).
Technically, this is the assumption that averages of local
quantities hOðx; tÞi tend uniformly enough, at large x and t,
to averages evaluated in GGEs (infinite-volume, maximal-
entropy states, under conditions on infinitely many con-
servation laws), with space-time-dependent potentials. This
assumption is sufficient to derive the explicit dynamics for
all single-point averages of local conserved densities and
currents: no ad hoc kinetic principle is needed.
In the case of infinitely many conservation laws, one

delicate point is the consideration of quasilocal densities
and currents, which are involved in generalized thermal-
ization. Such a quantity is not supported on a finite region,
but on an extended region, with a weight (as measured by,
for instance, the overlap with any other local observable)
that decays away from a point. However, since hydro-
dynamics is concerned with large-scale space-time regions
(the fluid cells), it is natural to consider them on the same
footing. This is implicitly done in the derivation we present
in this paper by assuming a completeness property of
conservation laws.
Another delicate point concerns the definition of GGEs.

In finite systems, such states depend on the boundary
conditions imposed, and, in general, these boundary con-
ditions may still have an effect in the infinite-volume limit.
For instance, walls simply preclude any nonzero potential
associated to the momentum operator, as they break
translation invariance. Nevertheless, given a set of allowed
conserved charges, at large volumes, boundary conditions
have little effect on local averages of conserved currents
and densities (as they do not affect specific free energies).
Further, periodic boundary conditions, at the basis of the
TBA formalism, appear to provide the maximal set of
conserved charges. It is, in fact, possible to construct GGEs
directly in infinite volumes [21]. We expect local thermal-
ization, and the full set of available conserved charges, to be
correctly described by such constructions, and we expect
these to agree with the TBA formalism we use here.
We finally mention that the classical hard-rod problem,

proven to give rise to a form of hydrodynamics [37,53], has
strong connections with the integrable systems we inves-
tigate here, which we will investigate in a future work.

APPENDIX C: MANY-PARTICLE SPECTRUM

The theory we develop here is directly applicable to any
integrable model whose two-particle scattering is diagonal

in the internal space. Let the spectrum be composed of l
particles, of masses ma, a ¼ 1;…;l, and assume that their
scattering is diagonal. In this case, the TBA equations can
still be applied [61,79]: the differential scattering phase is
replaced by a matrix of functions φabðθ − γÞ, and the one-
particle eigenvalue of Qi is denoted by hiðθ; aÞ. The
solution qðξÞ, jðξÞ of the generalized hydrodynamic
problem is

qiðξÞ ¼
X
a

Z
dpðθ; aÞ

2π
nðθ; aÞhdri ðθ; aÞ;

jiðξÞ ¼
X
a

Z
dEðθ;aÞ

2π
nðθ; aÞhdri ðθ; aÞ; ðC1Þ

where pðθ; aÞ ¼ ma sinh θ, Eðθ; aÞ ¼ ma cosh θ, and

hdri ðθ;aÞ ¼ hiðθ;aÞ þ
Z

dγ
2π

X
b

φa;bðθ− γÞnðγ;bÞhdri ðγ;bÞ:

ðC2Þ

The nonequilibrium occupation number nðθ; aÞ is given by
the discontinuous function

nðθ; aÞ ¼ nLðθ; aÞΘ(θ − θ⋆ðaÞ)þ nRðθ; aÞΘ(θ⋆ðaÞ − θ);

ðC3Þ

where each particle a is associated to a different dis-
continuity at position θ⋆ðaÞ. These positions are self-
consistently determined by the zeros of the dressed,
boosted momenta of particles a; with pξðθ; aÞ ≔
ma sinhðθ − ηÞ (relativistic) or maθ (nonrelativistic):

pdr
ξ (θ⋆ðaÞ;a) ¼ 0; a ¼ 1;…;l: ðC4Þ

Again, the thermal occupation numbers nL;Rðθ; aÞ entering
Eq. (C3) guarantee that the asymptotic conditions on ξ
correctly represent the asymptotic baths, as per Eq. (14).
They are obtained using the TBA equations in terms of the
pseudoenergies ϵwðθ; aÞ [61,79],

nL;Rðθ; aÞ ¼ 1

1þ exp½ϵwL;Rðθ; aÞ� ;

ϵwðθ; aÞ ¼ wðθ; aÞ−

−
Z

dγ
2π

X
b

φa;bðθ − γÞ logð1þ e−ϵwðγ;bÞÞ:

ðC5Þ

Here, wL;Rðθ; aÞ ¼ P
iβ

L;R
i hiðθ; aÞ are the one-particle

eigenvalues of the charge
P

iβ
L;R
i Qi characterizing the

GGE of the left and right asymptotic reservoirs.
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APPENDIX D: CURRENT AVERAGES

An alternative proof of Eq. (22) may be given using the
technology of integrable systems, which has the advantage
of generalizing to flows generated by any conserved charge
instead of just the Hamiltonian. For completeness, we
present here the main arguments. The idea is to prove
expression (22) for current averages ji given the expres-
sion for density averages qi. This is akin to extending the
LeClair-Mussardo (LM) formula [80] so that it incorporates
the infinite number of conserved charges, and applying it to
the current with the aid of form factors (FFs). We use the
notation introduced in Ref. [81]. Following the derivation
in Ref. [81], we generalize the LM formula for a one-point
function of a generic local operator Oðx; tÞ:

hOðx; tÞi ¼
X∞
l¼0

1

l!

�Yl
k¼1

dθk
2π

nðθkÞ
�
hθ⃖jOð0Þj~θic; ðD1Þ

where j~θi ¼ jθ1;…; θli (and hθ⃖j ¼ hθl;…; θ1j is its
Hermitian conjugate) and diagonal matrix elements
(DMEs) in the sum are connected (the meaning of being
“connected” is described below). Here, nðθÞ is the same
occupation number as that involved in Eqs. (20), (21), and
(22). It is then immediate to see that an expression for the
density average qi with the one-particle eigenvalue hiðθÞ
proved by Saleur [82] is modified to

qi ¼ m
X∞
l¼0

�Yl
k¼1

dθk
2π

nðθkÞ
�

× φðθ12Þ…φðθl−1;lÞhiðθ1Þ cosh θl; ðD2Þ

where φðθijÞ ¼ φðθi − θjÞ. Observe that this is indeed in
agreement with the expression in Eq. (22). The expression
(D2) can be derived using the DMEs of qiðx; tÞ given by

hθ⃖jqij~θic ¼ mφðθ12Þφðθ23Þ…φðθl−1;lÞ
× hiðθ1Þ cosh θl þ permutations: ðD3Þ

Similarly, once we evaluate DMEs for the current jiðx; tÞ,
we can construct its average ji. The expression in Eq. (22),
that we want to show, will then follow if the DMEs of the
currents are obtained from those of the densities by the
replacement of cosh θn with sinh θn:

hθ⃖jjij~θic ¼ mφðθ12Þφðθ23Þ � � �φðθl−1;lÞ
× hiðθ1Þ sinh θl þ permutations: ðD4Þ

Before embarking upon showing it, we elaborate on the
definitions of connected and symmetric DMEs. Formally,
they are given by, respectively [83],

hθ⃖jOj~θic ≔ Fc
2lðO; ~θÞ

≔ FP lim
δk→0

F2lðO; ~θ þ iπ þ ~δ; θ⃖Þ; ðD5Þ

hθ⃖jOj~θis ≔ Fs
2lðO; ~θÞ

≔ lim
δ→0

F2lðO; ~θ þ iπ þ δ; θ⃖Þ; ðD6Þ

where FP means “finite part” [81], ~δ ¼ ðδ1;…; δlÞ, and the
FF FlðO; ~θÞ is defined by

FlðO; ~θÞ ¼ hvacjOð0Þj~θi: ðD7Þ

Notice that with a limit such as in Eq. (D5), where the
parameters δk differ in each component, different orders of
limits lead to different results which may be singular; this is
because when δk → 0, the FF [Eq. (D5)] becomes singular
due to kinematic poles. It is in order to circumvent this
ambiguity that one defines connected and symmetric FFs.
The connected FF is a finite part, which simply prescribes
to set to zero terms with singularities in δk [81], whereas the
symmetric FF is defined by sending all parameters to zero
simultaneously.
It was pointed out in Ref. [83] that any multiparticle

symmetric FF can be written solely in terms of the
connected FFs. For instance, for a two-particle state, the
connected FF Fc

4ðO; θ1; θ2Þ and the symmetric FF
Fs
4ðO; θ1; θ2Þ satisfy

Fc
4ðO; θ1; θ2Þ ¼ Fs

4ðO; θ1; θ2Þ − φðθ12ÞF2ðO; θ1Þ
− φðθ21ÞF2ðO; θ2Þ; ðD8Þ

where F2ðO; θÞ ¼ Fc
2ðO; θÞ ¼ Fs

2ðO; θÞ (in the case of a
single parameter δ1, there is no singularity, hence, no
ambiguity). Applying this relation to ji, we have

Fc
4ðji; θ1; θ2Þ ¼ Fs

4ðji; θ1; θ2Þ − φðθ12ÞF2ðji; θ1Þ
− φðθ21ÞF2ðji; θ2Þ: ðD9Þ

This can be expressed in terms of FFs of the density qi
thanks to the conservation law ∂tqi þ ∂xji ¼ 0, which
entails

Fs
2lðji; ~θÞ ¼

Pl
k¼1 sinh θkP
l
k¼1 cosh θk

Fs
2lðqi; ~θÞ: ðD10Þ

Hence, putting Eq. (D10) into Eq. (D9) yields

Fc
4ðji; θ1; θ2Þ ¼ mφðθ12Þhiðθ1Þ sinh θ2 þ fθ1 ↔ θ2g;

ðD11Þ

which is consistent with Eq. (D4). It is readily seen that for
multiparticle states, similar arguments hold, and, thus, we
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obtain Eq. (D4). Finally, the generalized LM formula for
the current gives

ji ¼ m
X∞
l¼0

�Yl
k¼1

dθk
2π

nðθkÞ
�

× φðθ12Þ � � �φðθl−1;lÞhiðθ1Þ sinh θl: ðD12Þ

This exactly coincides with Eq. (22). Similar arguments

give rise to current averages associated to flows i½Qk; qi� þ
∂xj

ðkÞ
i ¼ 0 with respect to any local conserved quantity Qk

(with odd spin):

jðkÞ
i ¼

Z
dhkðθÞ
2π

nðθÞhdri ðθÞ: ðD13Þ

A full derivation will be given in Ref. [74].
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