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Fluctuation relations establish rigorous identities for the nonequilibrium averages of observables.
Starting from a general transport master equation with time-dependent rates, we employ the stochas-
tic path integral approach to study statistical fluctuations around such averages. We show how under
nonequilibrium conditions, rare realizations of transport observables are crucial and imply massive
fluctuations that may completely mask such identities. Quantitative estimates for these fluctuations
are provided. We illustrate our results on the paradigmatic example of a mesoscopic RC circuit.

In the past decade, the concept of fluctuation rela-
tions has become a powerful new paradigm in statis-
tical physics. Generalizing the celebrated fluctuation-
dissipation theorem, fluctuation relations establish con-
nections between the nonequilibrium stochastic fluctu-
ations of a system and its dissipative properties. The
ensuing theoretical and experimental perspectives have
sparked a wave of research activity [1–5].

Fluctuation relations generally relate to observables
carrying thermodynamic significance, such as work, heat,
entropy, or currents. By way of example, consider the
Jarzynski relation [6]〈

e−βW
〉

= e−β∆F , (1)

where W is the work done on a system during a nonequi-
librium process in which driving forces act according to
some prescribed ’protocol’. The averaging 〈. . . 〉 is over
all realizations of the process, ∆F is the free energy dif-
ference between equilibrium states with forces fixed at
the initial and final value, and β = T−1 is the inverse
temperature (kB = e = 1 throughout). Relations (’theo-
rems’) of this type are usually proven with an incentive to
establish rigorous bounds on thermodynamic quantities.

However, considerably less efforts [7, 8] have been put
into quantitatively exploring the fluctuations of observ-
ables around the constraints imposed by fluctuation rela-
tions. For example, for protocols returning to the initial
configuration, ∆F = 0, the Jarzynski relation has the
status of a sum rule, 〈X〉 = 1, for the average of the sta-
tistical variable X = e−βW . Since the average growth of
entropy demands 〈W 〉 ≥ 0, the sum rule quantifies the
presence of exceptional process realizations with W < 0
[6, 9]. The exponential dependence of the variable X on
W implies that this variable acts as a ’filter’ whose fluc-
tuations around the unit average contain specific infor-
mation on rare processes. The statistics of X is also vital
to the applied relevance of Eq. (1): as we demonstrate
below, even modest departures off thermal equilibrium
tend to amplify fluctuations to the extent that the aver-
age 〈X〉 = 1 cannot be resolved in practice. Conversely,
observables like X may serve as diagnostic tool detect-
ing how far away from equilibrium the system has been

driven, and what physical processes are responsible.
In this work, we provide a theoretical approach to the

rare event statistics of fluctuation relations in transport.
The motivation for emphasizing transport lies in the ap-
plied importance of ’particle current flow’ to the nonequi-
librium dynamics of stochastic systems. (To give just two
examples, let us mention charge currents in electronic
circuits and the migration of species in biological sys-
tems.) Conceptually, the current flow through a system
acts as a source of noise on account of the discrete nature
of particle exchange. Off equilibrium, this ’shot noise’,
rather than thermal noise, is often the dominant source
of stochasticity, and a consistent theory must account for
the ensuing feedback cycle of current into noise and back.
To this end, we will employ Markovian transport mas-
ter equations [10–12] as a minimal framework resolving
the statistics of individual particle transmission events.
We analyze the master equation in terms of a stochas-
tic path integral [12, 13], an approach tailor-made to the
description of rare events in analytic terms. In applica-
tions to ’mesoscopic’ systems, the path integral affords
an interpretation as the semiclassical limit of a quantum
nonequilibrium Keldysh theory [12, 14], thus establishing
connections between classical and quantum fluctuations.

FIG. 1. (Color online) Left panel: Schematic illustration of a
generic system exchanging particles with M reservoirs. Right
panel: Realization in terms of an electric RC circuit.

Generally speaking, we are interested in the statistical
properties of particle currents, Iν=1,...,M , flowing from
some ‘system’ to M connected ‘reservoirs’, see Fig. 1. As-
suming particle number conservation, the instantaneous
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number of particles in the system n is subject to a conti-
nuity equation, 〈ṅ〉+

∑
ν〈Iν〉 = 0. The system exchanges

particles with the νth reservoir at time-dependent rates
g±ν,t, see Fig. 1. We require a detailed balance condition
to hold,

g+
ν,t

g−ν,t
= e−βκν,t(n), κν,t(n) = ∂nU(n)− fν,t, (2)

stating that the logarithmic ratio of rates is governed
by a cost function measuring the difference in ’ener-
gies’ Eν(n) = U(n) − nfν before and after a parti-
cle has entered the system through the νth terminal,
T ln(g+

ν /g
−
ν ) = −[Eν(n + 1) − Eν(n)]. Here, fν is a

time-dependent driving force due to reservoir ν, and U(n)
measures the system’s internal energy, where nonlineari-
ties in U(n) describe particle interactions and ∂nU(n) ≡
U(n + 1) − U(n). The probability Pt(n) to find n par-
ticles at time t is then governed by the one-step master
equation [10–12]

∂tPt(n) = −ĤgPt(n), (3)

with ’Hamiltonian’ Ĥg(n, p̂) =
∑
ν,±
(
1− e∓p̂

)
g±ν (n),

where ep̂ (e−p̂) raises (lowers) n by one unit. At the
initial time t = −τ , the system is assumed to be in equi-
librium, fν,−τ = 0 and P−τ (n) = ρ(n) = e−β(U(n)−F )

with free energy F = −T ln
∑
n exp(−βU). During the

time interval [−τ, τ ], the external forces fν,t then evolve
according to a prescribed cyclic protocol, returning to
fν,τ = 0 at the final time t = τ . Equations (2) and (3)
describe a large spectrum of transport processes in and
outside physics [15]. Examples include charge transport
in mesoscopic devices [11], molecular motors [16], chem-
ical reaction networks [17], and evolution in biological
quasispecies models [18].

The master equation (3) deliberately emphasizes the
analogy to an imaginary-time Schrödinger equation with
Hamiltonian Ĥg. This formal correspondence implies
that the time evolution of Pt(n) can be represented in
terms of a path integral [12, 13]. Applying a stan-
dard Trotter decomposition to the unit-normalized ’par-
tition function’, Z ≡

∑
n Pτ (n) = 1, one obtains

Z =
∫
D(n, p) e

∫ τ
−τ dt(pṅ−Hg(n,p))ρ(n−τ ), where the in-

tegration is over smooth paths {(nt, pt)} and the ’mo-
mentum’ pt ∈ iR conjugate to the particle number is
integrated over the imaginary axis. For technical details
concerning discretization and normalization issues, see
also Ref. [19]. To extract information on the current pro-
files {Iν,t}, we introduce sources, Z → Z[χ], by coupling
Hg to ’vector potentials’ (counting fields) χ = {χν,t},

Hg(n, p)→ Hg(n, p, χ) ≡
∑
ν,±

(
1− e∓(p−iχν)

)
g±ν (n).

Much like in ordinary quantum mechanics, moments of
the currents can then be generated by functional differ-

entiation,

〈Iν1,t1Iν2,t2 . . . 〉 =
iδ

δχν1,t1

iδ

δχν2,t2
. . .
∣∣∣
χ=0

Z[χ]

⇔ Z[χ] =
〈
e−i

∑
ν

∫ τ
−τ dt χνIν

〉
. (4)

This identifies the sourceful partition function

Z[χ] =

∫
D(n, p) e−Sg[n,p,χ]ρ(n−τ ), (5)

Sg[n, p, χ] = −
∫ τ

−τ
dt (pṅ−Hg(n, p, χ))

as generating functional. The current probability distri-
bution function, P [I] ≡ P [I1, . . . , IM ], follows by func-
tional integration,

P [I] =

∫
Dχ ei

∑
ν

∫ τ
−τ dt χνIνZ[χ]. (6)

Following general principles [20], we now aim to relate
the functional Z, describing evolution governed by rates
g = {gν,t}, to the functional Zb computed for time-

reversed rates (T̂ g)t = g−t, i.e., Zb = Z
∣∣
g↔T̂ g. Here we

have defined a time reversal operator T̂ acting on ’scalar’
functions x = (n, g, f) as (T̂ x)t = x−t, while ’vectorial’
functions v = (I, p, χ) transform as (T̂ v)t = −v−t. Using
Eq. (2), it is straightforward to verify that the action in
Eq. (5) exhibits the invariance property

Sg[n, p, χ] = ST̂ g[T̂ n, T̂ (p− β∂nU), T̂ (χ+ iβf)] +

+ β[U(nτ )− U(n−τ )]. (7)

Inserting Eq. (7) into Eq. (5), and changing the integra-
tion variables (n, p) → (T̂ n, T̂ p), we obtain the symme-
try relation Z[χ] = Zb[T̂ (χ+ iβf)]. Substituting this into
Eq. (6), we arrive at a variant of the Crooks relation [21],

P [I]

Pb[T̂ I]
= e−β

∫ τ
−τ dt

∑
ν fνIν , (8)

where Pb is the current probability distribution computed
for time-inverted rates T̂ g. Equation (8) was first derived
in Ref. [20] by considering the symmetry of the operator
Ĥg generating the system’s Markovian dynamics. Our
present derivation has the advantage that it is based on
a path integral representation. This gives us the option
to explore the fluctuation statistics of currents beyond
the rigorous bound imposed by Eq. (8). To elucidate
this point, let us integrate Eq. (8) over I and use nor-
malization,

∫
DIPb[T̂ I] = 1, to obtain a variant of the

Jarzynski relation

〈X〉 = 1, X = eβ
∫ τ
−τ dt

∑
ν fνIν . (9)

On average, the currents 〈Iν〉 ∼ −βgνfν follow
the driving forces, which means that typically X ∼
e−2τβ2 ∑

ν gνf
2
ν is an exponentially small quantity. The
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FIG. 2. (Color online) Fluctuations of the variable X, Eq. (9),
in the RC circuit over 1000 simulated process runs. For
tV /tT = 100 (upper panel), the average 〈X〉 = 1 remains
visible. However, for tV /tT = 1 (lower panel), fluctuations
dominate and conceal the unit average.

average value 〈X〉 = 1 is due to exceptional processes
where currents fluctuate against the driving forces [9]. In
this sense, X acts as a selective observable filtering rare
events. Note that the exponent in X has a clear physical
meaning: it refers to the work done on the system during
the process.

Before discussing the statistics of the variableX in gen-
eral terms, let us consider the example of a mesoscopic
RC circuit biased by an external voltage, f1/2,t = ±Vt/2,
see Fig. 1. While in earlier theoretical [22] and exper-
imental [23] studies, fluctuation relations for circuits of
this type have been discussed for the thermal-noise dom-
inated regime, we here consider the more general case of
noise self-generated by transport out of equilibrium. The
circuit’s stochastic evolution is described by the path in-
tegral (5) with M = 2 and sequential tunneling rates
[11],

g±ν,t(n) =
1

Rν

±κν,t(n)

e±βκν,t(n) − 1
, κν,t = ∂nU + (−)ν

Vt
2
,

(10)

where U(n) = e2

2C (n − 1/2)2 is the charging energy (as-
suming Coulomb blockade peak conditions). We have
performed numerical simulations of Eq. (3) to compare
with the analytical estimates described below. Assum-
ing R1 = R2 = R, the dynamics is characterized by
a number of time scales, including the RC relaxation
time tRC = RC/2, the inverse of the mean rate at which
charges enter the central island tV = R/V , the scale at
which thermal fluctuations lead to system-reservoir par-
ticle exchange, tT = R/T , and the typical scale tγ of vari-
ation of the external voltage protocol. For tV /tT � 1,
we are in a thermal regime where noise is of Johnson-
Nyquist type and fluctuations are comparatively benign.
However, the opposite shot noise regime, tV /tT . 1, is
governed by much more aggressive fluctuations, as illus-
trated by the simulation results in Fig. 2. Figure 3 shows
results for the ensuing changes in the probability distri-
bution P (X). Comparing the two profiles, one notices
the massive broadening of P (X) upon entering the shot-
noise dominated regime. The near linearity of P (X) on a
double-logarithmic scale suggests a crossover to a power-

law distribution. This indicates a divergence of all mo-
ments of X except for the first, 〈X l=1〉 = 1.
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FIG. 3. (Color online) Main panel: Probability distribu-
tion of X in Eq. (9) obtained from 2 × 106 simulation runs
for the asymmetric voltage pulse Vt = V0tγt/(t

2 + t2γ), with
tγ = 0.01τ, V0τ = 250, τ/tRC = 2 × 104. The solid black
curve (V0/T = 0.5) and the dashed red curve (V0/T = 3)
probe the thermal and the near shot-noise regime, respec-
tively. Lower inset: Simulation results for 〈X2〉 vs V 2

0 τ/T for
tγ = 0.01τ, V0τ = 5, τ/tRC = 2× 104. The straight black line
is a fit to Eq. (11) with l = 2. Upper inset: The black curve
gives a typical current profile for tγ = 0.04τ , V0τ = 500,
τ/tRC = 2 × 103, Ḡ = (2R)−1, and V0/T = 103. The red
curve denotes the averaged profile.

To make these observations more quantitative, we next
consider the moments 〈X l≥1〉 within the path integral
approach. While details of the discussion are adjusted
to the above circuit example with M = 2 terminals, the
overall strategy is general and can readily be adapted.
Equations (4) and (9) imply that 〈X l〉 = Z[iβlf ]. The in-
troduction of sources renders the minimum of the action
Sg[n, p, iβlf ] non-vanishing. For sufficiently large obser-
vation time 2τ , the action is large and stationary-phase
methods apply. We solve the corresponding Hamilton
equations, ṅ = ∂pHg and ṗ = −∂nHg, under the as-
sumption that the driving forces vary over time scales
tγ larger than the intrinsic relaxation times. Again, we
start from an equilibrium state and assume a cyclic force
protocol, f±τ = 0. Under these conditions, there ex-
ist quasistationary solutions ṅ, ṗ ' 0, and the equations
become algebraic. The further procedure sensitively de-
pends on whether we are in the thermal regime defined
by βf̃ < 1 for all times, where f̃t = |f1 − f2|, or in the
off-equilibrium case realized otherwise.

In the thermal regime, fluctuations around the av-
erages 〈n〉 and 〈Iν〉 are moderate, and the path inte-
gral can be expanded to second order in the variables
p + βlfν . This expansion, equivalent to the Kramers-
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Moyal expansion of the master equation [10], reduces the
path integral to the Martin-Siggia-Rose functional cor-
responding to the Fokker-Planck equation [12]. In this
regime, we may employ the high-temperature expansion
of Eq. (2), g±ν ≈ gν(1 ∓ βκν

2 ). While the ensuing equa-
tions, quadratic in p, afford straightforward solutions,
details depend on the n-dependence of the rates. We
here consider the prototypical situation of n-independent
equilibrium rates gν . It is then straightforward to show
that p = −lβ

∑
ν fνgν/

∑
ν gν , while n is determined

implicitly by the condition ṅ = −〈I1〉 − 〈I2〉 = 0 ⇒∑
ν gνκν = 0. Substituting this configuration into the

action, we obtain

〈X l〉 ∼ exp

[
l(l − 1)β

∫
dt 〈I〉f̃

]
, (11)

where 〈I〉 = −〈I1〉 = β g1g2
g1+g2

f̃ is the average time-

dependent linear-response current (we assume f1 > f2).

In the nonequilibrium regime, however, the shift χ =
iβlf represents a massive (exponential) intrusion into the
action. The stationary phase equations are then solved

by the optimal p-configuration p = 1
2 ln

(∑
ν e

−lβfν g+ν∑
ν e

+lβfν g−ν

)
,

while the sub-exponential action dependence on n is less
important. Substitution of (n, p) into the action leads to
a super-exponential scaling with the driving force [24],

〈X l〉 ∼ exp

[
2

∫
dt〈I〉

(
−1 + e

β
2 (l−1)f̃

)]
. (12)

This result shows that the moments do not diverge but
become extraordinarily large upon entering the nonequi-
librium regime. Once the condition βf̃t � 1 is violated,
the unit average 〈X〉 = 1 is completely masked and the
fluctuation relation (9) looses its practical meaning.

Equations (11) and (12) exemplify how the fluctuation
statistics of X changes dramatically upon departing from
equilibrium and how these changes contain telling infor-
mation on the relevant nonequilibrium processes. For ex-
ample, Eqs. (11) and (12) have been derived for the rates
(10), which in turn rely on the assumption of a uniform
temperature T (generally established by external cool-
ing.) In the complementary case of thermal isolation,
the system will heat up by the very currents the FRs are
probing. In this case, the statistics of X – which should
be straightforward to measure experimentally – couples
to the effective particle distributions building up in the
system. Comparison to analytic results may then probe
the validity of models for nonequilibrium transport and
the ensuing theoretical descriptions. It is in this sense
that we believe the fluctuations of X (and other vari-
ables entering FRs) to contain far-reaching information
beyond the rigorous FRs themselves.

This work was supported by the SFB TR 12 of the
DFG and by the Humboldt foundation.
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