
              

City, University of London Institutional Repository

Citation: Caudrelier, V., Mintchev, M. & Ragoucy, E. (2005). Solving the quantum nonlinear

Schrodinger equation with delta-type impurity. Journal of Mathematical Physics, 46(4), 
042703. doi: 10.1063/1.1842353 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/166/

Link to published version: https://doi.org/10.1063/1.1842353

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Solving the quantum nonlinear Schrödinger equation
with d-type impurity

V. Caudreliera!

Laboratoire de Physique Théorique LAPTH,bd LAPP, BP 110, F-74941 Annecy-le-Vieux
Cedex, France

M. Mintchevc!

INFN and Dipartimento di Fisica, Universitá di Pisa, Via Buonarroti 2,
56127 Pisa, Italy

E. Ragoucyd!

Laboratoire de Physique Théorique LAPTH,bd LAPP, BP 110, F-74941 Annecy-le-Vieux
Cedex, France

sReceived 3 July 2004; accepted 13 October 2004; published online 18 March 2005d

We establish the exact solution of the nonlinear Schrödinger equation with a delta-
function impurity, representing a pointlike defect which reflects and transmits. We
solve the problem both at the classical and the second quantized levels. In the
quantum case the Zamolodchikov–Faddeev algebra, familiar from the case without
impurities, is substituted by the recently discovered reflection-transmissionsRTd
algebra, which captures both particle–particle and particle–impurity interactions.
The off-shell quantum solution is expressed in terms of the generators of the RT
algebra and the exact scattering matrix of the theory is derived. ©2005 American
Institute of Physics.fDOI: 10.1063/1.1842353g

I. INTRODUCTION

Impurity problems arise in different areas of quantum field theory and are essential for un-
derstanding a number of phenomena in condensed matter physics. At the experimental side, the
recent interest in pointlike impuritiessdefectsd is triggered by the great progress in building
nanoscale devices.

The interaction of quantum fields with impurities represents in general a hard and yet un-
solved problem, but there are relevant achievements1–11 in the case of integable systems in 1+1
space–time dimensions. The study12–19 of the special case of purely reflecting impuritiessbound-
ariesd indicates factorized scattering theory20–24as the most efficient method for dealing with this
kind of problem. The method provides on-shell information about the system and allows to derive
the exact scattering matrix. The goal of the present paper is to extend this framework, exploring
the possibility to recover off-shell information and to reconstruct the quantum fields, generating
the above scattering matrix. We test this possibility on one of the most extensively studied inte-
grable systems—the nonlinear SchrödingersNLSd model.25–32 More precisely, we are concerned
below with the NLS model coupled to a delta-function impurity. The basic tool of our investiga-
tion is a specific exchange algebra,6,7 called reflection-transmissionsRTd algebra. The RT algebra
is a generalization of the Zamolodchikov–FaddeevsZFd21,23 algebra used in the case without
defects. The RT algebra is originally designed for the construction of the total scattering operator
from the fundamental scattering data, namely the two-body bulk scattering matrix and the reflec-
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tion and transmission amplitudes of a single particle interacting with the defect. In what follows
we demonstrate that in the NLS model the same algebra allows to reconstruct the corresponding
off-shell quantum field as well. Being the first exactly solvable example with nontrivial bulk
scattering matrix, the NLS model sheds some light on the interplay between pointlike impurities,
integrability, and symmetries. In this respect our solution clarifies a debated question about the
Galilean invariance of the bulk scattering matrix.

After introducing the model in Sec. II, we establish the solution, both at the classicalsSec.
II B d and second-quantizedsSec. IIId levels. We do this in detail, clarifying the basic properties of
the solution. In Sec. IV we derive from the off-shell quantum field the total scattering matrix of the
model, showing that it coincides with the one obtained directly from factorized scattering. In Sec.
V we indicate some generalizations. Our conclusions and ideas about further developments are
also collected there. Appendixes A and B are devoted to the proofs of some technical results.

We present below the analysis of the so-calledd-type impurity. A wider class of defects,
interacting with the NLS model and preserving its integrability, can be treated in a similar way.33

We have chosen to focus here on the particulard-type defect in order to keep the length of the
proofs reasonable, referring to Ref. 33 for a more physically oriented treatment of the general case
swithout detailed proofsd.

II. INTRODUCING AN IMPURITY IN THE NLS MODEL

We start by recalling some well-known results about the NLS model without impurity. The
reason for this is twofold: first, because this is a good guide to tackle the problem with impurity
and second, because the central piece of the solution of the NLS model, the Rosales
expansion,34,35 can be adapted to the impurity case.

A. The model to solve

The field theoretic version of NLS is described by a classical complex fieldFst ,xd whose
equation of motion reads

si]t + ]x
2dFst,xd = 2guFst,xdu2Fst,xd. s2.1d

The corresponding action takes the form

ANLS =E
R

dtE
R

dxsiF̄st,xd]tFst,xd − u]xFst,xdu2 − guFst,xdu4d, s2.2d

and, being in particular invariant under time translation, ensures the conservation of the energy

ENLS =E
R

dxsu]xFst,xdu2 + guFst,xdu4d. s2.3d

The latter is non-negative forgù0.
It is well-known that this is a nonrelativistic integrable model36 ssee also Ref. 30 for a reviewd

and an explicit solution for the field was given by Rosales in Ref. 34,

Fst,xd = o
n=0

`

s− gdnFsndst,xd, s2.4d

where
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Fsndst,xd =E
R2n+1

p
i=1

j=0

n
dpi

2p

dqj

2p
l̄sp1d ¯ l̄spndlsqnd ¯ lsq0d

eio j=0
n sqjx−qj

2td−ioi=1
n spix−pi

2td

p
i=1

n

spi − qi−1dspi − qid

s2.5d

and the overbar denotes complex conjugation.
The leveln=0 is the linear part of the field corresponding to the free Schrödinger equation. It

was argued in Ref. 32 that this solution is well-defined for a large class of functionsl fcontaining
the Schwarz spaceSsRdg and an upper bound forg was given for the seriess2.4d to converge
uniformly in x. It also represents a physical field since it vanishes asx→ ±`. In the same paper,
the authors considered NLS on the half-lineR+, which can be seen as the model on the whole line
in the presence of a purely reflecting impurity sitting at the origin. Therefore, the latter represents
a particular case of the model with transmitting and reflecting impurity atx=0 we wish to
contemplate in this paper. They gave the following action:

AR =E
R

dtE
R+

dxsiF̄st,xd]tFst,xd − u]xFst,xdu2 − guFst,xdu4d − hE
R

dtuFst,0du2,

wherehPR is the parameter controlling the boundary condition

lim
x→0+

s]x − hdFst,xd = 0. s2.6d

In our case, since the impurity is allowed to reflect and transmit, we must take theR− part into
account and we are led to work with the following action:

ART = A+ + A− + A0, s2.7d

where

A± =E
R

dtE
R±

dxsiF̄st,xd]tFst,xd − u]xFst,xdu2 − guFst,xdu4d, s2.8d

A0 = − 2hE
R

dtuFst,0du2. s2.9d

The form ofART shows the particular status of the originx=0 where the impurity sits. Again, the
invariance of the action under time translations ensures the conservation of the energy,

ERT =E
R−

%R+
dxsu]xFst,xdu2 + guFst,xdu4d + 2huFst,0du2. s2.10d

It is positive forgù0,hù0, which is what we assume in the rest of this paper. We will see that
h characterizes the transmission and reflection properties of the impurity. Using the variational
principle, one deduces the equation of motion and the boundary conditions for the field:Fst ,xd
must be the solution of NLS onR− andR+, continuous atx=0 and satisfy a “jump condition” at
the origin. It must also vanish at infinity as a physical field.

Definition 2.1: The nonlinear Schrödinger model with a transmitting and reflecting impurity at
the origin is described by the following boundary problem for the fieldFst ,xd:

si]t + ]x
2dFst,xd − 2guFst,xdu2Fst,xd = 0, x Þ 0, s2.11d

lim
x→0+

hFst,xd − Fst,− xdj = 0, s2.12d
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lim
x→0+

hs]xFdst,xd − s]xFdst,− xdj − 2hFst,0d = 0, s2.13d

lim
x→±`

Fst,xd = 0. s2.14d

B. Explicit solution

As announced, the Rosales solution34 can be adapted suitably to solve the problem of defini-
tion 2.1. Sinces2.4d is a solution of NLS onR, it is easy to devise a solution fors2.11d. Starting
from two copies ofs2.4d and s2.5d, one based on a functionl+ and the other on a functionl−,
denotedF+st ,xd andF−st ,xd, respectively, we define

Fst,xd = 5F+st,xd, x . 0,

F−st,xd, x , 0,
1
2sF+st,0d + F−st,0dd, x = 0.

6 s2.15d

It is clearly solution ofs2.11d for xÞ0 and from the vanishing ofF±st ,xd asx→ ±`, s2.14d is also
satisfied. However, there is no reason why, in general,Fst ,xd so defined should satisfy the bound-
ary conditionss2.12d and s2.13d. In order to satisfy these conditions, we parametrizel+, l− as
follows:

Sl+spd
l−spd

D = S 1 Tspd
Ts− pd 1

DSm+spd
m−spd

D + SRspd 0

0 Rs− pd
DSm+s− pd

m−s− pd
D , s2.16d

where

Tspd =
p

p + ih
, Rspd =

− ih

p + ih
, p P R, s2.17d

andm±spd are arbitrary Schwarz test functions. Then, the functionsl±spd satisfy

l±spd = Ts±pdl7spd + Rs±pdl±s− pd, ∀ p P R s2.18d

which follows from the identities

RspdRs− pd + TspdTs− pd = 1 and TspdRs− pd + RspdTs− pd = 0, ∀ p P R. s2.19d

These relations plus a particular choice for the form ofm± will be essential in the proof of the
theorem 2.2 below.

Anticipating the quantum case, if we interpretl+ srespectively,l−d as a wave packet,s2.18d
shows that each wave packet inR+ srespectively,R−d is equivalent to the superimposition of a
transmitting part coming fromR− srespectively,R+d and a reflected part inR+ srespectively,R−d.
This physical interpretation will show up in the next section when we construct a Fock represen-
tation of the creation and annihilation operators.

We are now in position to state the main result of this section whose lengthy proof we defer
until Appendix A.

Theorem 2.2:Let m+, m− be given by

m±skd = ±
m0s±kd + sk 7 ihdm1skd

k 7 ih + 1
, s2.20d

wherem0, m1 are arbitrary Schwartz functions,m1 being even and letF+st ,xd, F−st ,xd be given by
the Rosales expansion (2.4) and (2.5) withl replaced byl+ andl−, respectively. Then,Fst ,xd as
defined in (2.15) satisfies the boundary conditions (2.12) and (2.13), i.e.,
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lim
x→0+

hFst,xd − Fst,− xdj = 0,

lim
x→0+

hs]xFdst,xd − s]xFdst,− xdj − 2hFst,0d = 0.

With this result, we can say thatFst ,xd rewritten as

Fst,xd = usxdF+st,xd + us− xdF−st,xd, s2.21d

whereusxd is the Heaviside function defined here to be1
2 at x=0, is the classical solution of the

nonlinear Schrödinger model with impurity as given in definition 2.1.
We want to emphasize that these boundary conditions decouple for the nonlinear part of the

field sas shown in Appendix Ad and this is due to the reflection-transmission propertys2.18d
satisfied byl+ andl−. This already gives a good hint that the construction of a local field from the
quantum counterparts ofl+, l− is achievable, as we now explain.

III. QUANTIZATION OF THE SYSTEM

In this section, we move on to the construction and resolution of the quantized version of NLS
with impurity. As we mentioned earlier, the crucial ingredient is the RT algebra which encodes the
properties of the impurity.

A. Reflection-transmission algebra

Here we rely on the constructions developed in Ref. 7 and recast them in the particular context
of the scalar nonlinear Schrödinger modelsno internal degrees of freedom, special form of the
exchange matrix and of the generators, see also Ref. 11d.

We consider the associative algebra with identity element1 and two sets of generators,
haaspd ,aa

†spd ;pPR ,a= ± j andhrspd ,tspd ;pPRj, called the bulk and defectsreflection and trans-
missiond generators. The labela=± refers to the half-lineR± with respect to the impuritysin
practice it will indicate where the particle is created or annihilatedd. Introducing the measurable
function S:R3R→C defined by

Sspd =
p − ig

p + ig
s3.1d

the S-matrix is defined in our context by

S = o
a1,a2=±

Sa1a2
sp1,p2dEa1a1

^ Ea2a2
, s3.2d

whereSa1a2
sp1,p2d=Ssa1p1−a2p2d and sEabdsg=dasdbg. It is easy to check thatS satisfies the

unitarity condition and the quantum Yang–Baxter equation

S12sp1,p2dS21sp2,p1d = 1 ^ 1, s3.3d

S12sp1,p2dS13sp1,p3dS23sp2,p3d = S23sp2,p3dS13sp1,p3dS12sp1,p2d. s3.4d

Our defect generatorsrspd, tspd are related tora
bspd, ta

bspd defined in Ref. 7 by

ra
bspd = da

brsapd and ta
bspd = ea

btsapd with e = S0 1

1 0
D . s3.5d

All this setup gives rise to a particular RT algebra whose defining relations then read as follows.

sid Bulk exchange relations,
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aa1
sp1daa2

sp2d − Ssa2p2 − a1p1daa2
sp2daa1

sp1d = 0, s3.6d

aa1

† sp1daa2

† sp2d − Ssa2p2 − a1p1daa2

† sp2daa1

† sp1d = 0, s3.7d

aa1
sp1daa2

† sp2d − Ssa1p1 − a2p2daa2

† sp2daa1
sp1d = 2pdsp1 − p2dfda1

a21 + ea1

a2tsa1p1dg

+ 2pdsp1 + p2dda1

a2rsa1p1d. s3.8d

sii d Defect exchange relations,

frsp1d,rsp2dg = 0, s3.9d

ftsp1d,tsp2dg = 0, s3.10d

ftsp1d,rsp2dg = 0. s3.11d

siii d Mixed exchange relations,

aa1
sp1drsp2d = Ssp2 − p1dSsp2 + p1drsp2daa1

sp1d, s3.12d

rsp1daa2

† sp2d = Ssp1 − p2dSsp1 + p2daa2

† sp2drsp1d, s3.13d

aa1
sp1dtsp2d = Ssp2 − p1dSsp2 + p1dtsp2daa1

sp1d, s3.14d

tsp1daa2

† sp2d = Ssp1 − p2dSsp1 + p2daa2

† sp2dtsp1d. s3.15d

sivd Finally, the defect generators are required to satisfy unitarity conditions,

tspdts− pd + rspdrs− pd = 1, s3.16d

tspdrs− pd + rspdts− pd = 0, s3.17d

which amount to implement the physical energy conservation when reflection and trans-
mission occur.

Since we aim at second quantize a physical system, we now turn to the Fock representation of this
algebraic setup as it is presented in Ref. 7. What we need is to represent the generators
haaspd ,aa

†spd ,rspd ,tspd ,pPRj as operator-valued distributions acting on a common invariant sub-
space of a Hilbert space,F, to be defined. We should also identify a normalizable vacuum stateV
annihilated byaa and cyclic with respect toaa

†. Applying the general construction of Ref. 7, we
know that each such Fock representation is characterized by two numerical matricesTspd and
Rspd. Here we take

Tspd = S 0 Tspd
Ts− pd 0

D, Rspd = SRspd 0

0 Rs− pd
D s3.18d

with T, R given in s2.17d. Now consider

L = %
a=±

L2sRd s3.19d

endowed with the usual scalar product
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kw,cl =E
R

dpo
a=±

w̄aspdcaspd, s3.20d

which makes it a Hilbert space for the associated norm denotedi·i. Then, then-particle subspace
Hsnd is the subspace of then-fold tensor productL^n defined as follows. IfwsndPL^n, we identify
it with the column whose entries arewa1,. . .,an

snd . Then explicitly,Hs0d=C and fornù1, wsndPHsnd if
and only if

wsnd P L^n,

wa1¯an

snd sp1, . . . ,pnd = Tsanpndwa1¯an−1,−an

snd sp1, . . . ,pn−1,pnd + Rsanpndwa1¯an−1an

snd sp1, . . . ,pn−1,− pnd,

s3.21d

n . 1, wa1¯aiai+1¯an

snd sp1, . . . ,pi,pi+1, . . . ,pnd = Ssaipi − ai+1pi+1d

3 wa1¯ai+1ai¯an

snd sp1, . . . ,pi+1,pi, . . . ,pnd, 1 , i , n − 1. s3.22d

The Fock space isF= %n=0
` Hsnd and the common invariant subspace is the finite particle spaceD

spanned by the linear combination of sequencesw=sws0d ,ws1d , . . . ,wsnd , . . .d with wsndPHsnd and
wsnd=0 for n large enough.D is dense inF. We extend the scalar product, again denoted byk· , ·l,
to F,

∀w,c P F, kw,cl = o
n=0

`

kwsnd,csndl

= o
n=0

` E
Rn

dp1 ¯ dpn o
a1,. . .,an=±

w̄a1¯an
sp1, . . . ,pndca1¯an

sp1, . . . ,pnd.

The unit norm vacuum state isV=s1,0, . . . ,0 , . . .d and belongs toD.
Now, we can define the action of the smeared bulk operatorshasfd ,a†sfd ; fP %a=±C0

`sRdj onD
as follows:

asfdV = 0, s3.23d

and for anywsndPHsnd,

fasfdwga1¯an−1

sn−1d sp1, . . . ,pn−1d = ÎnE
−`

` dp

2p
o
a=±

f̄aspdwaa1¯an−1

snd sp,p1, . . . ,pn−1d, s3.24d

fa†sfdwga1¯an+1

sn+1d sp1, . . . ,pn+1d = În + 1fPsn+1df ^ wsndga1¯an+1
sp1, . . . ,pn+1d, s3.25d

wherePsnd is the orthogonal projector inL^n defined in Ref. 7. For completeness, the explicit form
of s3.25d is given in Appendix B. These operators are bounded on eachHsnd,

∀w P Hsnd, iasfdwi ø Înifi iwi, ia†sfdwi ø În + 1ifi iwi. s3.26d

In particular, they are continuous in the smearing functionf. Finally, they satisfy

∀w,c P D, kw,asfdcl = ka†sfdw,cl. s3.27d

The defect generators are represented as multiplicative operators onD, preserving the bulk par-
ticle number,
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frspdwga1¯an

snd sp1, . . . ,pnd = Ssp − a1p1d ¯ Ssp − anpndRspdSsanpn + pd ¯ Ssa1p1 + pd

3wa1¯an

snd sp1, . . . ,pnd, s3.28d

ftspdwga1¯an

snd sp1, . . . ,pnd = Ssp − a1p1d ¯ Ssp − anpndTspdSsanpn + pd ¯ Ssa1p1 + pd

3wa1¯an

snd sp1, . . . ,pnd. s3.29d

It follows then thatr and t have nonvanishing vacuum expectation values

kV,rspdVl = Rspd, kV,tspdVl = Tspd. s3.30d

Introducing finally the operator-valued distributionsaaspd, aa
†spd as

asfd =E
R

dp

2p
o
a=±

f̄aspdaaspd, a†sfd =E
R

dp

2p
o
a=±

aa
†spdfaspd s3.31d

one can check that the defining relations of the RT algebra are satisfied onD. The operatorsa,a†

will be referred to as annihilation and creation operators, respectively. Implementing the automor-
phism% defined in Ref. 7 for which we know that it is realized by the identity operator for any
Fock representation, we get the quantum analog of the reflection-transmission propertys2.18d

aaspd = ea
btsapdabspd + da

brsapdabs− pd, s3.32d

aa
†spd = eb

aab
†spdtsbpd + db

aab
†s− pdrs− bpd. s3.33d

B. The question of operator domains

From the above it appears that the natural domain to start with isD. Actually, it is much too
big for practical calculations and we would like to work on a dense subspace ofD which would
play the role of the standard formal “state space,” a basis of which is usually denoted by
uk1, . . . ,knl, k1. ¯ .kn. As a first step, we define

D0
0 = C,

D0
n = haa1

† sf1d ¯ aan

† sfndV;fi P C0
`sRd, ai = ± ,i = 1, . . . ,nj, n ù 1. s3.34d

One can check thatD0
n is dense inHsnd, i.e., V is cyclic with respect toaa

†. The corresponding
domain D0, dense inD, is the linear space of sequencesw=sws0d ,ws1d , . . . ,wsnd , . . .d with wsnd

PD0
n andwsnd=0 for n large enough.D0 is stable under the action ofaasfd andaa

†sfd. Finally, since
T, R, and S are bounded,C`-functions, D0

n,C0
`sRnd. Now in order to formulate the desired

properties of the quantum field in the next paragraph, we introduce a partial ordering relation on
C0

`sRd by

f s g ⇔ ∀ x P suppsfd, ∀ y P suppsgd, uxu . uyu, s3.35d

which extends naturally toC0
`sRad, a=±. Let us introduce

ãa
†st,xd =E

R

dp

2p
aa

†spde−ipx+ip2t, st,xd P R2,
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ãa
†st, fd =E

R
dx ãa

†st,xdfsxd, f P C0
`sRd. s3.36d

Now, fix tPR and a1, . . . ,an and definesvect standing for “linear span of”d D̃0
0=C and for n

ù1,

D̃0,a1¯an

n = vecthãa1

† st, f1,a1
d ¯ ãan

† st, fn,an
dV; f1,a1

s ¯ s fn,an
, f i,ai

P C0
`sRaid,

0 ¹ suppsf i,ai
d, i = 1, . . . ,nj s3.37d

then the following theorem holds.

Theorem 3.1: ∀tPR, ∀a1, . . . ,an=±, D̃0,a1¯an

n is dense inHsnd.
Proof: We only need to considernù1. The proof relies on two known results of standard

analysis. First, the Fourier transform of aC`-function with compact support is real analyticsi.e.,
a Gevrey class 1 functiond. Second, a real analytic function vanishing on a given open subsetU of
an open connected setO, vanishes on the whole ofO ssee, e.g., Ref. 37d.

Here, it suffices to show thatD̃0,a1¯an

n is dense inD0
n for any tPR so let us consider the

matrix element

Ãt,w,a1¯an
sx1, . . . ,xnd = kwsnd,ãa1

† st,x1d ¯ ãan

† st,xndVl, s3.38d

wherewsndPD0
n is arbitrary. To prove the statement, we now have to show that

Ãt,w,a1¯an
sx1, . . . ,xnd = 0, ∀ ux1u . ¯ . uxnu . 0, xi P Rai, i = 1, . . . ,n s3.39d

implies wsnd=0. Froms3.36d, we get

Ãt,w,a1¯an
sx1, . . . ,xnd =E

Rn
p
j=1

n
dpj

2p
e−ipjxj+itpj

2
kwsnd,aa1

† sp1d ¯ aan

† spndVl, s3.40d

which shows thatÃt,w,a1¯an
is the Fourier transform of aC`-function with compact support and is

therefore real analytic. Conditions3.39d amounts to saying thatÃt,w,a1¯an
vanishes on the set

Ua1¯an
= hx P Rn s . t . ux1u . ¯ . uxnu . 0, xi P Rai, i = 1, . . . ,nj. s3.41d

Ua1¯an
being an open subset ofsthe open and connected spaced Rn, we conclude thatÃt,w,a1¯an

vanishes onRn. This gives in turn that

kwsnd,aa1

† sp1d ¯ aan

† spndVl = 0, ∀ pj P R, j = 1, . . . ,n, s3.42d

or, equivalently, from the cyclicity ofV with respect toa†

wa1¯an

snd sp1, . . . ,pnd = 0, ∀ pj P R, j = 1, . . . ,n. s3.43d

Now using the propertiess3.21d and s3.22d satisfied bywsnd, we get

wa1¯an

snd sp1, . . . ,pnd = 0, ∀ pj P R, ∀ a j = ± , j = 1, . . . ,n s3.44d

that iswsnd=0. j

This theorem will prove to be fundamental in the sequel to derive the required properties of
the quantum field operator. Indeed, it will be enough to perform all calculations only on states in
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s3.45d

and conclude for the whole domainD by a continuity argument.
Lemma 3.2: Let f1,a1

s ¯ s fn,an
and h1,b1

s ¯ shn,bn
, then

kãa1

† st, f1,a1
d ¯ ãan

† st, fn,an
dV,ãb1

† st,h1,b1
d ¯ ãbn

† st,hn,bn
dVl = p

j=1

n

da jb j
kf j ,a j

,hj ,b j
l. s3.46d

In particular, for wP D̃0,a1¯an

n represented as

w = o
bPB

ãa1

† st, f1,a1

b d ¯ ãan

† st, fn,an

b d, f1,a1

b s ¯ s fn,an

b , ∀ b P B, s3.47d

whereB is a finite set, one hasiwi=iobPBf1,a1

b
^ ¯ ^ fn,an

b i.
Proof: To gets3.46d, one uses an induction onn and combiness3.36d, s3.27d, s3.8d, ands3.23d

together with the support conditions on the smearing functions. Using a contour integral argument,
these support conditions imply that all the contributions arising from the RT algebra vanish except
for the usuald- term producing the right-hand side. Equations3.47d is a mere consequence of
s3.46d. j

Remark:It is important to realize that then particle spaceHsnd is the central piece in this
construction and that, on this space, any operation we have consideredsscalar product, creation
operator, Fourier transformd is continuous in the smearing functions. SinceC0

`sRd is dense in
SsRd, the Schwarz space, we can extend the abovesespecially the definition ofD0

nd to smearing
functions inSsRd.

C. Quantum field

We start by definingFst , fd as

Fst, fd =E
R

dxo
a=±

f̄asxdFast,xd, f P C whereC = %
a=±

C0
`sRad. s3.48d

f is viewed as a column vectorf =s f+

f−
d with faPC0

`sRad and 0¹suppsfad. Following the standard

argument of Ref. 29, we replacelaspd ,l̄aspd in the Rosales expansion of the classical fields2.4d
and s2.5d by the operatorsaaspd ,aa

†spd in order to define

Fast,xd = o
n=0

`

s− gdnFa
sndst,xd, g . 0 s3.49d

and

Fa
sndst,xd =E

R2n+1
p
i=1

j=0

n
dpi

2p

dqj

2p
aa

†sp1d ¯ aa
†spndaasqnd ¯ aasq0d

eio j=0
n sqjx−qj

2td−ioi=1
n spix−pi

2td

p
i=1

n

spi − qi−1 − ia«dspi − qi − ia«d

,

s3.50d

where we used ani« prescription depending ona=±.
We now have several requirements to meet for our quantum theory to be well defined. We

must give a precise meaning toFast ,xd, show that the canonical commutation relations as well as
the boundary conditionss2.12d ands2.13d hold in a sense we shall make precise and thatFast ,xd
is indeed the quantum solution we look for.

We start by associatingFast ,xd with the quadratic form defined onD3D by
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sw,cd ° kw,Fast,xdcl, s3.51d

D containing only finite particle vectors, it is enough to investigatekw ,Fa
sndst ,xdcl for arbitraryn.

Proposition 3.3:∀ nù0, ∀ w ,cPD, st ,xd° kw ,Fa
sndst ,xdcl is a C` function.

Proof: The proof is the same as in Ref. 32. j

We define the conjugateFa
†st ,xd again as a quadratic form onD3D by

kw,Fa
†st,xdcl = kFast,xdw,cl. s3.52d

It has the same smoothness properties and froms3.27d, we get

Fa
†sndst,xd =E

R2n+1
p
i=1

j=0

n
dpi

2p

dqj

2p
aa

†sq0d ¯ aa
†sqndaaspnd ¯ aasp1d

3
e−io j=0

n sqjx−qj
2td+ioi=1

n spix−pi
2td

pi=1

n
spi − qi−1 + ia«dspi − qi + ia«d

. s3.53d

Defining the smeared version

F†st, fd =E
R

dxo
a=±

Fa
†st,xdfasxd, f P C s3.54d

we conclude thatFst , fd andF†st , fd are understood as quadratic forms on the domainD and are
related by

kw,Fa
†st, fdcl = kFast, fdw,cl. s3.55d

To get true quantum fields, we need to show that these quadratic forms give rise to operators on
D. This requires the following two lemmas.

Lemma 3.4:∀ w ,cPD,

sid For h1,as ¯ shn,a,

kw,Fast, fadãa
†st,h1,ad ¯ ãa

†st,hn,adVl = o
j=1

n

kfa,hj ,al

3kw,ãa
†st,h1,ad ¯ ãa

†st,hj ,ad̂ ¯ ãa
†st,hn,adVl,

s3.56d

where the hatted symbol is omitted.
sii d For has fa,

kw,Fa
†st, fadãa

†st,hadcl = kw,ãa
†st,hadFa

†st, fadcl. s3.57d

siii d For fashj ,a, j =1, . . . ,n,

kw,Fa
†st, fadãa

†st,h1,ad ¯ ãa
†st,hn,adVl = kw,ãa

†st, fadãa
†st,h1,ad ¯ ãa

†st,hn,adVl.

s3.58d

Proof: One just has to apply the order by order technique developed in Ref. 29. The latter
heavily relied on the ZF algebra satisfied by the creation and annihilation operators. Here, one
must take care in addition of the many contributions of the defect generators but it is remarkable
that the RT algebra satisfied by the bulk and defect operators leads to the same resultssusing the
support requirements of the smearing functions and the conditionsg.0, h.0, all the defect
contributions vanishd. One realizes in these manipulations, especially ins3.58d, that the contribu-
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tions ofF, F† on D̃0
n,a are carried by the zeroth order corresponding to the linear problemsit is the

Fourier transform ofa, a†d. j

Lemma 3.5: GivenwaPD̃0
n,a, caPD̃0

n+1,a and faPC0
`sRad, the quadratic form (3.51) satisfies

the following boundedness condition:

ukwa,Fast, fadcalu ø sn + 1difai iwai icai. s3.59d

Proof: The proof is similar to that given in Ref. 32 and uses lemmas 3.2 and 3.4sid. j

From the Riesz lemma and theorem 3.1, we conclude thatFast , fad :Hsn+1d→Hsnd is a
bounded operator for anynù0. Thus, it defines an operator on the common invariant domainD.
The same holds forFa

†st , fad, Hsnd→Hsn+1d by s3.55d. We can therefore collect our results in the
following theorem.

Theorem 3.6: Fst , fd, F†st , fd :D→D are Hermitian conjugate, linear operators and satisfy

Fst, fdV = 0, F†st, fdV = ã†st, fdV. s3.60d

Finally, we will have anonrelativistic quantum fieldif we prove the canonical commutation
relations forF, F†.

Theorem 3.7:hFst , fd ,F†st , fd , f PCj realize a Fock representation of the equal time canoni-
cal commutation relations onD,

fFst, f1d,Fst, f2dg = 0 = fF†st, f1d,F†st, f2dg, s3.61d

fFst, f1d,F†st, f2dg = kf1, f2l. s3.62d

Proof: We know that it suffices to compute the commutators onD̃0
n,+ or D̃0

n,− for arbitraryn
and then extend the results by continuity toHsnd and by linearity toD. From theorem 3.6, we get
that sid–siii d of lemma 3.4 hold as operator equalities. Let us start with the first commutator. It is
made out of four parts,

fFst, f1d,Fst, f2dg = fF+st, f1,+d,F+st, f2,+dg + fF+st, f1,+d,F−st, f2,−dg + fF−st, f1,−d,F+st, f2,+dg

+ fF−st, f1,−d,F−st, f2,−dg. s3.63d

The first and fourth parts of the right-hand side are easily seen to be zero fromsid of lemma 3.4
One has fora=±,

Fast, f1,adFast, f2,adãa
†st,h1,ad ¯ ãa

†st,hn,adV = o
j=1

n

o
k=1

kÞ j

n

kf2,a,hj ,alkf1,a,hk,alãa
†st,h1,ad ¯

3ãa
†st,hj ,ad̂ ¯ ãa

†st,hk,ad̂ ¯ ãa
†st,hn,adV,

s3.64d

which is symmetric under the exchange off1 and f2 implying the vanishing of the commutators.
As for the mixed terms, one can check that

Fast, f i,adã−a
† st,h1,−ad ¯ ã−a

† st,hn,−adV = 0, i = 1,2 s3.65d

implying the vanishing of the second and third commutators onD̃0
n,−a and hence onD. Now the

vanishing offF†st , f1d ,F†st , f2dg on D is obtained by Hermitian conjugation. This provess3.61d.
Equations3.62d is obtained as follows. Again, we split the commutator into four parts. Now

given a state inD̃0
n,a, we assumehk,as f2,ashk+1,a for somek and using lemma 3.4, we compute

for a=±,
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Fast, f1,adFa
†st, f2,adãa

†st,h1,ad ¯ ãa
†st,hn,adV = kf1,a, f2,alãa

†st,h1,ad ¯ ãa
†st,hn,adV + S

s3.66d

and

Fa
†st, f2,adFast, f1,adãa

†st,h1,ad ¯ ãa
†st,hn,adV = S, s3.67d

whereS is

o
j=1

n

kf1,a,hj ,alãa
†st,h1,ad ¯ ãa

†st,hj ,ad̂ ¯ ãa
†st,hk,adãa

†st, f2,adãa
†st,hk+1,ad ¯ ãa

†st,hn,adV.

This gives

fF+st, f1,+d,F+
†st, f2,+dg + fF−st, f1,−d,F−

†st, f2,−dg = kf1,+, f2,+l + kf1,−, f2,−l = kf1, f2l, s3.68d

i.e., the desired contribution. It is then straightforward usings3.65d to verify that the mixed terms
do not contribute

fF+st, f1,+d,F−
†st, f2,−dg = fF−st, f1,−d,F+

†st, f2,+dg = 0.

j

Now we prove thatV is cyclic with respect toF† and thatFst ,xd is the solution of the
quantum nonlinear Schrödinger equation with impurity. Extending the partial orderings to func-
tions in C as follows:

for f,g P C, f s g ⇔ fa s ga, a = ± , s3.69d

one can prove the following theorems.
Theorem 3.8:The space

H0
snd = vecthF†st, f1d ¯ F†st, fndV; f i P C, i = 1, . . . ,n, fn s . . . s f1j s3.70d

is dense inHsnd.
Proof: Let wsndPHsnd and suppose

kwsnd,F†st, f1d ¯ F†st, fndVl = 0, ∀ fn s ¯ s f1.

Then, it is true in particular forf i,−=0, i =1, . . . ,n but in that case, we have

F†st, f1d ¯ F†st, fndV = ã+
†st, fn,+d ¯ ã+

†st, f1,+dV

which implieswsnd=0 sinceD̃0
n,+ is dense inHsnd. j

Theorem 3.9: The quantum fieldF is solution of the quantum nonlinear Schrödinger equa-
tion with impurity, i.e., it satisfies

si]t + ]x
2dkw,Fst,xdcl = 2gkw,:FF†F:st,xdcl s3.71d

and the following boundary conditions:

lim
x→0+

kw,hF+st,xd − F−st,− xdjcl = 0, s3.72d

lim
x→0+

]xkw,hF+st,xd + F−st,− xdjcl = 2h lim
x→0

kw,Fst,xdcl, s3.73d

lim
x→±`

kw,Fst,xdcl = 0, s3.74d
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for any w, cPD.
Proof: Inspired by the classical case, we split the field as follows:

Fst,xd = usxdF+st,xd + us− xdF−st,xd. s3.75d

The main difficulty here is to specify a normal ordering prescription for the analog of the cubic
term. We adopt the prescription detailed in Ref. 32 for the normal ordering denoted :¯: and apply
it to Fa, a=±. Then following Ref. 32stheorem 5d, one gets that the quantum fieldFa is solution
of the nonlinear Schrödinger equation on the half-lineRa: for all w ,cPD,

si]t + ]x
2dkw,Fast,xdcl = 2gkw,:FaFa

†Fa:st,xdcl. s3.76d

The situation is now similar to the classical case and we have to check the quantum analog of
s2.12d–s2.14d. The idea lies again in realizing that Eqs.s3.72d–s3.74d can be cast into a zeroth-
order/linear problem. Following the line of argument of Ref. 32stheorem 6d, one shows that given
w ,cPD, there existsxPHs1d such thatkw ,Fst , fdcl=kV ,Fst , fdxl and x is independent off.
This gives in particularkw ,Fast , fadcl=kV ,Fast , fadxl, a=± and we can compute

kw,Fast,xdcl = kãa
†st,xdV,xl =E

R

dp

2p
eipx−ip2txaspd. s3.77d

Then, Eqs.s3.72d and s3.73d are easily obtained using the propertys3.21d satisfied byx. Finally,
since xaPL2sRd, kw ,Fast ,xdcl as a function ofx is also in L2sRd and therefore vanishes at
infinity. Noting that limx→±`kw ,Fst ,xdcl=limx→±`kw ,F±st ,xdcl, we gets3.74d. j

We have finally achieved the goal of this section: we have explicitly constructed off-shell local
fields for the quantum nonlinear Schrödinger system on the line in the presence of a transmitting
and reflecting impurity. As mentioned in Ref. 7, this remained a challenging open problem for
which we brought an answer here. In other words, the quantum inverse scattering method remains
valid in the presence of an impurity provided that the ZF algebra is replaced by the RT algebra.

IV. SCATTERING THEORY

Scattering theory in the presence of an impurity was studied on general grounds in Ref. 7 by
introducing the RT algebra which, being a generalization of the ZF and boundary algebras, is
believed to prove fundamental also in the study of off-shell correlations functions and symmetries
for 1+1-dimensional integrable systems with impurity.

In this section, we aim at giving some credit to this in the context of the nonlinear Schrödinger
model. Indeed from the above results, we can get some insight in the correlations functions of the
theory. The correlations functions vanish unless they involve the same number ofF andF† and
for a given 2n-point function, we need at most the firstsn−1d-order terms in the Rosales expan-
sion of the field. This reads

kV,Fst1,x1d ¯ Fstn,xndF†stn+1,xn+1d ¯ F†st2n,x2ndVl

= o
Køn−1

Løn−1

gK+LkV,Fsk1dst1,x1d ¯ Fskndstn,xndF†sl1dstn+1,xn+1d ¯ F†slndst2n,x2ndVl, s4.1d

whereK=oi=1
n ki andL=oi=1

n l i and the sum runs over alln-upletssk1, . . . ,knd, sl1, . . . ,lndPZ+
n such

that K ,Løn−1.
One has, for exampleswith t12= t1− t2, x12=x1−x2, and x̃12=x1+x2d,
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kV,Fst1,x1dF*st2,x2dVl =E
−`

+` dp

2p
e−ip2t12husx1dusx2dfeipx12 + Rspdeipx̃12g + us− x1dus− x2dfeipx12

+ R̄spdeipx̃12g + usx1dus− x2dTspdeipx12 + us− x1dusx2dT̄spdeipx12j.

s4.2d

More importantly, using the Haag–Ruelle approach suitably, we can relate off-shell and
asymptotic theories and, doing so, fill the gap of our quantum field theory. Indeed, on the one
hand, we know from Ref. 7 that the Fock representation of the RT algebra generates the
asymptotic states of a general integrable theory with impurity with correspondingS-matrix. On the
other hand, in this paper we constructed off-shell local time-dependent fields whose behavior as
t→ ±` we would like to know.

A. Asymptotic theory

The first step is to characterize wave packets for the free Schrödinger equation which take into
account the presence of the impurity atx=0. We adopt the following setup. ForfPC0

`sRd, we
define

f tsxd =E
R

dp

2p
fspdeipx−ip2t. s4.3d

We transpose the partial orderings3.35d to functions of the variablep.
Definition 4.1: Given n,mù1, consider two sets of functions

Hn = hhi,ai
P C0

`sRaid, i = 1, . . . ,nj andGm = hgi,bi
P C0

`sR−bid, i = 1, . . . ,mj, s4.4d

where the functions obey the following order prescriptions:

h1,a1
s ¯ s hn,an

, gm,bm
s ¯ s g1,b1

. s4.5d

We also define

hi,ai

u sxd = usaixdhi,ai

t sxd, gi,bi

u sxd = usbixdgi,bi

t sxd. s4.6d

By construction,hi,ai

u sxd represent wave packets inRai moving away from the impurity towards
ai` while gi,bi

u sxd represent wave packets inRbi moving towards the impurity. One already un-
derstands that they will be relevant for the so-called “out” and “in” states, respectively. In fact, this
is the main theorem of this section for which we need some preliminary results.

From the preceding section, we know the exchange and commutation properties ofF† andã†

smeared with ordered functions in the variablex. Here, our wave packets were constructed from
ordered functions inp but we made no assumption as to their ordering inx. Therefore, we must
include all the possibilities and this requires the use of the permutation group ofn elementsSn.
For sPSn, pPSm, n,mù2, we introduce

uh
ssa1x1, . . . ,anxnd = p

i,j=1

i, j

n

usasi
xsi

− as j
xs j

d, s4.7d

ug
psb1x1, . . . ,bmxmd = p

i,j=1

i. j

m

usbpi
xpi

− bp j
xp j

d, s4.8d

satisfying
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o
sPSn

uh
ssa1x1, . . . ,anxnd = 1 = o

pPSm

ug
psb1x1, . . . ,bmxmd. s4.9d

Lemma 4.2: Given any two sets of functions inHn and Gm,

sid The following limits hold:

lim
t→+`

ih1,a1

u
^ ¯ ^ hn,an

u − h1,a1

t
^ ¯ ^ hn,an

t i = 0,

lim
t→−`

ig1,b1

u
^ ¯ ^ gm,bm

u − g1,b1

t
^ ¯ ^ gm,bm

t i = 0. s4.10d

sii d Let en be the identity ofSn and let us define

Ha1¯an

s sx1, . . . ,xnd = h1,a1

u sx1d ¯ hn,an

u sxnduh
ssa1x1, . . . ,anxnd,

Gb1¯bm

p sx1, . . . ,xmd = g1,b1

u sx1d ¯ gm,bm

u sxmdug
psb1x1, . . . ,bmxmd. s4.11d

Then

lim
t→+`

iHa1¯an

s i = 0, lim
t→−`

iGb1¯bm

p i = 0 for all s Þ en, p Þ em. s4.12d

siii d The following estimate is valid for any FPL2sRnd,

IE
Rn

dx1 ¯ dxnFsx1, . . . ,xndãa1

† st,x1d ¯ ãan

† st,xndI ø În!iFi. s4.13d

Proof: The ideas are the same as those detailed in Ref. 32 from theorem 7 onwards and rest
especially on the use of the weak limit

lim
t→±`

eitk

k ± i«
= 0. s4.14d

We just stress again that in our case all the above holds thanks to the use of the RT algebra and by
paying careful attention to the support conditions encoded ins4.5d. j

We are now in position to identify the asymptotic behavior of the field ast→ ±`.
Theorem 4.3:The following limits hold in the strong sense in the Fock spaceF:

lim
t→+`

F†st,h1,a1

u d ¯ F†st,hn,an

u dV = aa1

† sh1,a1
d ¯ aan

† shn,an
dV, s4.15d

lim
t→−`

F†st,g1,b1

u d ¯ F†st,gm,bm

u dV = ab1

† sg1,b1
d ¯ abm

† sgm,bm
dV. s4.16d

Proof: We note first that froms3.75d one getsF†st ,hi,ai

u d=Fai

† st ,hi,ai

u d and F†st ,gi,bi

u d
=Fbi

† st ,gi,bi

u d so that

F†st,hi,ai

u dV = ãai

† st,hi,ai

u dV andF†st,gi,bi

u dV = ãbi

† st,gi,bi

u dV. s4.17d

Moreover, forfaPC0
`sRad, one has

aa
†sfad = ãa

†st, fa
td. s4.18d

Collecting all this, theorem 4.3 is proved forn=m=1 usingsid, andsiii d of lemmas4.2d,
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iF†st, fa
udV − aa

†sfadVi = iãa
†st, fa

udV − ãa
†st, fa

tdVi ø ifa
u − fa

ti, s4.19d

f playing the role ofh or g. Now we want to compute the left-hand sides of Eqs.s4.15d ands4.16d
for n,mù2. We give details for Eq.s4.15d,

F†st,h1,a1

u d ¯ F†st,hn,an

u dV = o
sPSn

E
Rn

dx1 ¯ dxn Ha1¯an

s sx1, . . . ,xndFa1

† st,x1d ¯ Fan

† st,xndV

= o
sPSn

E
Rn

dx1 ¯ dxn Ha1¯an

s sx1, . . . ,xndãas1

† st,xas1
d ¯ ãasn

† st,xasn
dV

= ãa1

† st,h1,a1

u d ¯ ãan

† st,hn,an

u dV + o
sPSn

sÞen

E
Rn

dx1 ¯ dxn Ha1¯an

s sx1, . . . ,xnd

3hãas1

† st,xas1
d ¯ ãasn

† st,xasn
dV − ãa1

† st,h1,a1

u d ¯ ãan

† st,hn,an

u dVj,

s4.20d

where we used pointsiii d of lemma 3.4 ands3.61d for F† in the second equality. Applyings4.13d
then gives

iF†st,h1,a1

u d ¯ F†st,hn,an

u dV − aa1

† sh1,a1
d ¯ aan

† shn,an
dVi ø În!ih1,a1

u
^ ¯ ^ hn,an

u − h1,a1

t
^ ¯

^ hn,an

t i + 2În! o
sPSn

sÞen

iHa1¯an

s i, s4.21d

implying s4.15d by pointssid–sii d of lemma 4.2 Similar computations give

iF†st,g1,b1

u d ¯ F†st,gm,bm

u dV − ab1

† sg1,b1
d ¯ abm

† sgm,bm
dVi ø Îm!ig1,b1

u
^ ¯ ^ gm,bm

u − g1,b1

t

^ ¯ ^ gm,bm

t i + 2Îm! o
pPSm

Þem

iGb1¯bm

p i, s4.22d

proving s4.16d. j

B. Scattering matrix

Now that we have identified the natural “free” dynamics approached by our interacting field as
t→ ±`, we are left with the verification of asymptotic completeness allowing the construction of
a unitaryS-matrix. We emphasize here that our “in” and “out” spaces are slightly different from
those exhibited in Ref. 7 because of our ordering involving absolute values, so that we must
recheck their properties.

Proposition 4.4: Let

F in = vecthV,ab1

† sg1,b1
d ¯ abm

† sgm,bm
dV, bi = ± , i = 1, . . . ,m, mù 1j, s4.23d

Fout = vecthV,aa1

† sh1,a1
d ¯ aan

† shn,an
dV, ai = ± , i = 1, . . . ,n, n ù 1j, s4.24d

wherehi,ai
and g j ,b j

run overHn and Gm.
Then, F in and Fout are separately dense inF.
Proof: We deal withF in. Again, it is sufficient to consider the matrix element,
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At,w,b1¯bp
sp1, . . . ,pmd = kwsnd,ab1

† st,p1d ¯ abm

† st,pmdVl, s4.25d

wherewsndPHsnd is arbitrary and to show that

At,w,b1¯bp
sp1, . . . ,pmd = 0, ∀ up1u , ¯ , upmu, pi P R−bi, bi = ± , i = 1, . . . ,m

s4.26d

implies wsnd=0. From the cyclicity ofV with respect toa†, s4.26d gives

wb1¯bp

snd sp1, . . . ,pmd = 0, ∀ up1u , ¯ , upmu, pi P R−bi, bi = ± , i = 1, . . . ,m

s4.27d

and in view of the properties ofwsndPHsnd, this implies in turn

wb1¯bp

snd sp1, . . . ,pmd = 0, ∀ pi P R, bi = ± , i = 1, . . . ,m, s4.28d

i.e., wsnd=0. The case ofFout is similar. j

We turn to the definition of the scattering operatorS of our theory.
Proposition 4.5: Take functions inHn and letS: Fout→F in act as follows:

SV = V and S:aa1

† sh1,a1
d ¯ aan

† shn,an
dV ° aan

† sĥn,an
d ¯ aa1

† sĥ1,a1
dV s4.29d

where ĥi,ai
spd = hi,ai

s− pd P Gn. s4.30d

ThenS is invertible andS, S−1 are unitary operators acting onF.
Proof: From the definitionss4.29d and s4.30d, one deduces immediately thatS−1 is well

defined. Then, it is straightforward, albeit lengthy, to check that

kSaa1

† sh1,a1
d ¯ aan

† shn,an
dV,Sag1

† sf1,g1
d ¯ agn

† sfn,gn
dVl

= kaa1

† sh1,a1
d ¯ aan

† shn,an
dV,ag1

† sf1,g1
d ¯ agn

† sfn,gn
dVl. s4.31d

In evaluating the left-hand side, one just has to notice that all the contributions coming from the
defect generators vanish due to the support properties of the smearing functions and one is left
with what would be obtained by using the ZF algebra. Then, it is just a matter of changing the
variables into their opposite to get the right-hand side.

Next, following the line of argument given in Ref. 19, one extendsS to Fout by linearity,
preserving unitarity. This gives rise to bounded linear operators which one can uniquely extend by
continuity to the whole ofF. We note that this last step is allowed by the asymptotic completeness
property satisfied byFout andF in scf. Proposition 4.4d. The case ofS−1 is similar. j

Refering now to Ref. 7 we finish the description of our scattering theory by defining the
correspondence between in and out states and the asymptotic states identified in theorem 4.3
scorrespondence already anticipated in our callingFout andF in the “in” and “out” spacesd,

ug1,b1
; . . . ;gm,bm

lin = ab1

† sg1,b1
d ¯ abm

† sgm,bm
dV, s4.32d

uh1,a1
; . . . ;hn,an

lout = aa1

† sh1,a1
d ¯ aan

† shn,an
dV. s4.33d

Transition amplitudes are therefore easily computable from
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outkh1,a1
; . . . ;hn,an

ug1,b1
; . . . ;gm,bm

lin = kaa1

† sh1,a1
d ¯ aan

† shn,an
dV,ab1

† sg1,b1
d ¯ abm

† sgm,bm
dVl

s4.34d

and usings3.27d, s3.8d, s3.13d, s3.15d, ands3.23d. One recovers for transition amplitudes that they
vanish unlessn=m as expected for an integrable system where particle production does not occur.
As an example, we derive in our context the one and two particle transition amplitudes obtained
in Ref. 6. We start with the computation of the correlators,

kaa
†spdV,ab

†sqdVl = da
bdsp − qd + ea

bdsp − qdTsapd + da
bdsp + qdRsapd s4.35d

and

kaa1

† sp1daa2

† sp2dV,ab1

† sq1dab2

† sq2dVl

= Ssa1p1 − b1q1dfda2

b1 + ea2

b1Tsa2p2dgfda1

b2 + ea1

b2Tsa1p1dg

3 dsp2 − q1ddsp1 − q2d + Ssa1p1 − b1q1dfda2

b1Rsa2p2dgfda1

b2 + ea1

b2Tsa1p1dg

3 dsp2 + q1ddsp1 − q2d + Ssa1p1 − b1q1dfda2

b1 + ea2

b1Tsa2p2dgfda1

b2Rsa1p1dgdsp2 − q1ddsp1 + q2d

+ Ssa1p1 − b1q1dfda2

b1Rsa2p2dgfda1

b2Rsa1p1dgdsp2 + q1ddsp1 + q2d

+ fda1

b1 + Ssa1p1 − b2q2dSsa1p1 + b2q2dea1

b1Tsa1p1dgfda2

b2 + ea2

b2Tsa2p2dgdsp1 − q1ddsp2 − q2d

+ Ssa1p1 − b2q2dSsa1p1 + b2q2dfda1

b1Rsa1p1dgfda2

b2 + ea2

b2Tsa2p2dgdsp1 + q1ddsp2 − q2d

+ fda1

b1 + Ssa1p1 − b2q2dSsa1p1 + b2q2dea1

b1Tsa1p1dgfda2

b2Rsa2p2dgdsp1 − q1ddsp2 + q2d

+ Ssa1p1 − b2q2dSsa1p1 + b2q2dfda1

b1Rsa1p1dgfda2

b2Rsa2p2dgdsp1 + q1ddsp2 + q2d s4.36d

We note that the result for the two-particle correlator differs from that obtained in Ref. 6 by the
appearance of twoS coefficients in the four last terms. This is due to the fact that we started with
a more general RT algebra where the defect generators do not necessarily obey the linear relations
used in Ref. 6. For the one-particle amplitudes, there are two possibilities according to the relative
signs of the in and out states

outkh±,g±lin =5 E
0

` dp

2p
h̄+spdRspdg+s− pd,

E
−`

0 dp

2p
h̄−spdRs− pdg−s− pd,6 s4.37d

outkh±ug7lin =5 E
0

` dp

2p
h̄+spdTspdg−spd,

E
−`

0 dp

2p
h̄−spdTs− pdg+spd.6 s4.38d

One clearly sees the particle-impurity interaction through the reflection coefficientR for a final
and an initial state on the same half-line and through the transmission coefficientT otherwise, as
expected. The particle–particle interaction through the bulk interaction coefficientS shows up in
the 24 different two-particle amplitudes. As an illustration, we compute four such amplitudes
gathered into two generic expressions:
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outkh1,±;h2,±ug1,±;g2,±l
in =E

R±

dp1

2p
E

R±

dp2

2p
sh̄1,±sp1dh̄2,±sp2dRs±p2dSs±p1 ± p2dRs±p1dg1,±s− p2d

3g2,±s− p1d + h̄1,±sp1dh̄2,±sp2dRs±p1dSs±p1 ± p2dSs±p1 7 p2dRs±p2d

3g1,±s− p1dg2,±s− p2dd s4.39d

and

outkh1,±;h2,±ug1,±;g2,7lin =E
R±

dp1

2p
E

R±

dp2

2p
sh̄1,±sp1dh̄2,±sp2dRs±p2dSs±p1 ± p2dTs±p1d

3g1,±s− p2dg2,7sp1d + h̄1,±sp1dh̄2,±sp2dRs±p1d

3Ss±p1 ± p2dSs±p1 7 p2dTs±p2dg1,±s− p1dg2,7sp2dd. s4.40d

More complex transition amplitudes contain the same building blocks namelyR, T, andS, which
shows that the corresponding processes involve a succession of particle-impurity and particle–
particle interactions as expected from the factorized scattering occurring in this integrable model.

V. DISCUSSION AND CONCLUSIONS

We have analyzed above the NLS model interacting with ad-type impurity, establising the
exact classical and quantum solutions. We have shown that an appropriate RT algebra and its Fock
representation allow to construct not only the scattering operator, but also the off-shell quantum
field Fst ,xd. As already mentioned in the introduction, these results can be extended33 to a whole
class of point-like defects, substitutings3.72d and s3.73d by the impurity boundary conditions

lim
x↓0

S kw,Fst,xdcl
]xkw,Fst,xdcl

D = aSa b

c d
Dlim

x↑0
S kw,Fst,xdcl

]xkw,Fst,xdcl
D , s5.1d

where

ha, . . . ,d P R, a P C:ad− bc= 1, āa = 1,j. s5.2d

In absence of impurity bound states, namely in the domain

a + d + Îsa − dd2 + 4 ø 0, b , 0,

csa + dd−1 ù 0, b = 0, s5.3d

a + d − Îsa − dd2 + 4 ù 0, b . 0,

one can treat the model closely following thed-impurity case, because the corresponding reflec-
tion and transmission matricesR andT have the same analytic properties ass3.18d.

We would like to comment finally on the symmetry content of the solution derived in the
paper. It is quite obvious that impurities break down GalileansLorentzd invariance of thetotal
scattering matrixS. However, since thebulk scattering matrixS describes the scattering away
from the impurity, some authors1–5 have assumed thatS preserves these symmetries and that the
breaking inS is generated exclusively by the reflection and transmission coefficientsR and T.
This assumption however, combined with the conditions of factorized scattering, implies1,5 thatS
is constant, which is too restrictive. In fact, one is left with a few systems of limited physical
interest. In order to avoid this negative result, a consistent factorized scattering theory was devel-
oped in Refs. 6 and 7, which does not necessarily assume thatS is GalileansLorentzd invariant.
Since the impurity NLS model considered above is the first concrete application of this framework
with nontrivial bulk scattering, the lesson from it is quite instructive. Focusing onS s3.2d, we see
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that Galilean invariance is broken by the entries which describe the scattering of two incoming
particles localized fort→−` on the different half-linesR− and R+ respectively. Indeed, these
entries depend onk1+k2 and not onk1−k2. An intuitive explanation for this breaking is that before
such particles scatter, one of them must necessarily cross the impurity. The nontrivial transmission
is therefore the origin of the symmetry breaking inS. This conclusion agrees with the observation
that in systems which allow only reflectionse.g., models on the half-lined, one can have14–19both
GalileansLorentzd invariant and nonconstant bulk scattering matrices.

The issue of internal symmetries in the presence of impurities has been partially addressed in
Refs. 8 and 11. In particular, the role of the reflection and transmission elements of the RT algebra
as symmetry generators has been established. However, this question deserves further investiga-
tion. It will be interesting in this respect to extend the analysis38 of the SUsNd–NLS model on the
half-line to the impurity case. Work is in progress on this aspect.

Let us conclude by observing that the concept of RT algebra indeed represents a powerful tool
for solving the NLS model with impurities. We are currently exploring the possibility to apply this
algebraic framework also to the quantization of other integrable systems with defects.

APPENDIX A: PROOF OF THEOREM 2.2

First, notice thats2.12d and s2.13d translate into

lim
x→0+

hF+st,xd − F−st,− xdj = 0, sA1d

lim
x→0+

hs]xF+dst,xd − s]xF−dst,− xdj − 2hFst,0d = 0, sA2d

which we are going to check order by order in the Rosales expansion. The idea is to introduce the
one-to-one correspondence

b±spd = 1
2hl+spd ± l−s− pdj, p P R sA3d

and it is not difficult to check that

baspd = Baspdbas− pd, with Baspd = a
p − iah

p + ih
, a = ± . sA4d

Taken=0 corresponding to the linear problem. One gets

lim
x→0+

hF+
s0dst,xd − F−

s0dst,− xdj =E
R

dp

2p
b−spde−ip2t,

lim
x→0+

hs]xF+
s0ddst,xd − s]xF−

s0ddst,− xdj − 2hFs0dst,0d =E
R

dp

2p
sip − hdb+spde−ip2t,

which vanish using the propertiessA4d. It is interesting to note that the time-dependent phase
e−ip2t, being even inp, does not play any role in the vanishing of the previous expressions. It will
be the same in the following as we shall see.

For nù1, we start by changing variables in the Rosales expansion according to
sp1, . . . ,pn,qn, . . . ,q0d→ sk1, . . . ,k2n−1,−k2n. . . ,−k0d and we use the one-to-one correspondence
sA3d to rewrite the left-hand side ofsA1d as
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lim
x→0+

hF+
snds0,xd − F−

snds0,−xdj = o
a0,. . .,a2n=±

S1 − p
i=0

2n

aiDE
R2n+1

p
i=0

2n
dki

2p
b̄a1

sk1d ¯ b̄a2n−1
sk2n−1d

3ba2n
s− k2nd ¯ ba0

s− k0d
e−io j=0

2n kj
2t

p
j=1

2n

skj + kj−1d

. sA5d

In view of the linear case, we “Ba-symmetrize” the integrand of the previous integral for eachki.
Introducing

Ba
sspd = H1 for s = + ,

Baspd for s = − ,
h sA6d

this reads

1

22n+1 o
s0,. . .,s2n=±

Ba1

s1sk1d ¯ Ba2n−1

s2n−1sk2n−1dBa2n

s2ns− k2nd ¯ Ba0

s0s− k0d

p
j=1

2n

ss jkj + s j−1kj−1d

b̄a1
sk1d ¯ b̄a2n−1

sk2n−1d

3 ba2n
s− k2nd ¯ ba0

s− k0de−io j=0
2n kj

2t

which we rewrite as

1

22n+1 o
s0,. . .,s2n=±

Ba1

s1sk1d ¯ Ba2n−1

s2n−1sk2n−1dBa2n

s2ns− k2nd ¯ Ba0

s0s− k0dp
j=1

2n

ss j−1kj−1 − s jkjd

3
b̄a1

sk1d ¯ b̄a2n−1
sk2n−1dba2n

s− k2nd ¯ ba0
s− k0d

p
j=1

2n

skj−1
2n − kj

2d

e−io j=0
2n kj

2t.

Let us concentrate on the part depending on thes’s. Developing explicitly the sum overs2n, one
gets

1

22n+1 o
s0,. . .,s2n−1=±

Ba1

s1sk1d ¯ Ba2n−1

s2n−1sk2n−1dBa2n−2

s2n−2s− k2n−2d ¯ Ba0

s0s− k0d p
j=1

2n−1

ss j−1kj−1 − s jkjd

3 Sda2n,+
2k2n

k2n + ih
− da2n,−2k2nD

Collecting all the pieces depending onk2n, one gets a function proportional to

k2n

k2n−2
2 − k2n

2 Sb+s− k2nd
k2n + ih

− b−s− k2ndD . sA7d

Now taking m+,m− as in s2.20d it is not hard to see that the function in parentheses insA7d is
identically zero, implying the vanishing ofsA5d.

The case of the jump condition is treated in complete analogy. Indeed, in evaluating the term
proportional toh in sA2d in terms ofb±, all one must do is to replaces1−pi=0

2n aid in sA5d by
s1+pi=0

2n aid. The rest of the argument implies therefore that
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Fsnds0,0d = 0, n ù 1. sA8d

As for the term involving derivatives of the field, an analogous treatment produces the following
integrand:

1

22n+1 o
s0,. . .,s2n=±

Ba1

s1sk1d ¯ Ba2n−1

s2n−1sk2n−1dBa2n

s2ns− k2nd ¯ Ba0

s0s− k0dp
j=1

2n

ss j−1kj−1 − s jkjd

3 So
j=0

2n

is jkjD b̄a1
sk1d ¯ b̄a2n−1

sk2n−1dba2n
s− k2nd ¯ ba0

s− k0d

p
j=1

2n

skj−1
2 − kj

2d

e−io j=0
2n kj

2t.

This time, one must develop the sum fors2n ands2n−1. This produces the functionsA7d but in the
variablek2n−1 and we know it vanishes. This leads to

lim
x→0+

hs]xF+
sndds0,xd − s]xF−

sndds0,−xdj = 0, n ù 1. sA9d

As already mentioned, we see that the continuity and the jump condition of the field hold for
any timet. Put another way, they are conserved in time and this is due to the dispersion relation
of the free Schrödinger equationsbeing quadratic inkj, it is not affected by all the symmetrizations
kj →−kj involved in the proofd.

It is remarkable that the jump condition actually decouples for the nonlinear termssnù1d as
seen fromsA8d and sA9d. This is also true for the continuity which, combined withsA8d shows
that

F−
snds0,0d = F+

snds0,0d = 0, n ù 1.

j

APPENDIX B: EXPLICIT FORM OF THE ACTION OF THE CREATION OPERATOR

The projectorPsnd is constructed in Ref. 7 in terms of the generators of the Weyl group
associated to the root system of the classical Lie algebraBn and of their representation onL^n. In
our context, we get forf PC andwsn−1dPHsn−1d,

fa†sfdwga1¯an

snd sp1, . . . ,pnd =
1

2În
o
k=1

n

Ssak−1pk−1 − akpkd ¯ Ssa1p1 − akpkdsfak
spkd

+ Cksa1p1, . . . ,anpndfTsakpkdf−ak
spkd + Rsakpkdfak

s− pkdgd

3 w
a1¯ak

ˆ
¯an

sn−1d sp1, . . . ,pnd, sB1d

where we have defined

Cksp1, . . . ,pnd = Sspk − p1d ¯ Sspk − pk̂d ¯ Sspk − pndSspn + pkd ¯ Sspk + pk̂d ¯ Ssp1 + pkd.

All the hatted symbols must be omitted.
One recognizes the reflected and transmitted structure inside the square brackets ofsB1d

which, combined with all theS matrices, ensures the propertiess3.21d ands3.22d required for the
functions ofHsnd.
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