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Traditional theories of decision-making assume that utilities are based on the intrinsic value
of outcomes; in turn, these values depend on associations between expected outcomes
and the current motivational state of the decision-maker. This view disregards the fact that
humans (and possibly other animals) have prospection abilities, which permit anticipating future
mental processes and motivational and emotional states. For instance, we can evaluate future
outcomes in light of the motivational state we expect to have when the outcome is collected,
not (only) when we make a decision. Consequently, we can plan for the future and choose
to store food to be consumed when we expect to be hungry, not immediately. Furthermore,
similarly to any expected outcome, we can assign a value to our anticipated mental processes
and emotions. It has been reported that (in some circumstances) human subjects prefer to
receive an unavoidable punishment immediately, probably because they are anticipating the

e-mail: giovanni pezzulo@cnr.it dread associated with the time spent waiting for the punishment. This article offers a formal

framework to guide neuroeconomic research on how prospection affects decision-making.
The model has two characteristics. First, it uses model-based Bayesian inference to describe
anticipation of cognitive and motivational processes. Second, the utility-maximization process
considers these anticipations in two ways: to evaluate outcomes (e.g., the pleasure of eating
apie is evaluated differently at the beginning of a dinner, when one is hungry, and at the end of
the dinner, when one is satiated), and as outcomes having a value themselves (e.g., the case of
dread as a cost of waiting for punishment). By explicitly accounting for the relationship between
prospection and value, our model provides a framework to reconcile the utility-maximization
approach with psychological phenomena such as planning for the future and dread.

Keywords: prospection, model-based, Bayesian, goal-directed, anticipatory planning, dread, anticipation, forward model

1 INTRODUGIN linked to planning, which requires the mental generation and
In line with the expected utility theory (EUT), most economic agxploration of possible alternative courses of actions (or more
neuroeconomic models view decision-making as aimed at generally future events).

maximization of expected utility (von Neumann and Morgenstern, It has been reported that the brain (e.g., the orbitofrontal
1944). With regard to the computational processes involved in utiprtex) represents subjective reward values during goal-directed
ity assignment and choice, it has been proposed that the braindggision-making (Padoa-Schioppa and Assad, 2006, 2008; Kable
use at least two instrumental controllers: a habitual mechanigig Glimcher, 2007). However, why values are assigned to certain
which retrieves the cached values of actions that have succesefiittpmes remains unclear. Recent computational models suggest
led to reward in similar contexts, and a goal-directed mechanighat animals’ motivations are responsible for assigning specic
which explicitly calculates and compares the costs of actions wfiltlies to outcomes. It follows that different motivational states
the values of their outcomes. Both mechanisms have been sty correspond to different utility functions. In this regard, Niv
ied within the reinforcement learning (RL) framework (Suttogtal. (2006) de ne motivation as the mapping between outcomes
and Barto, 1998). Habitual and goal-directed controllers haad their utilities, and refer to “motivational states” (e.g., hunger
been described with model-free and model-based RL methaughirst) as indices of such different mappings, as one in which
respectively (Daw at., 2005). Both controllers (aim to) maximizdoods are mapped to high utilities, and another in which liquids
reward, but the former (learns and) uses action—value assoglg&-mapped to high utilities. This means that valuation is in u-
tions, whereas the latter (learns and) uses action—outcome @nged by both external factors, such as outcomes and their prob-
outcome—value associations. Although these two systems co-8kility of occurrence, and the internal context (i.e., the motivational,
and compete, the former tends to be selected only in simple eg@iotional, and cognitive state) of the decision-maker. However,
ronments and after suf cient experience is acquired, whereasith#his framework, only the external factors are explicitly repre-
latter is mostly selected in novel or more dynamic environmesgnted by the decision-maker during planning; internal context
(Daw efal., 2005). Because they represent action—outcome traitsi#ences utility assignment only indirectly, as it determines the
tions explicitly, goal-directed controllers have beaditionally utility function.
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This approach is successful in the case of outcomes collectethe aforementioned phenomena are surprising from the
immediately after choice, since the internal (e.g., motivationpBrspective of economic theories that consider the utility of pros-
context usually remains the same during the time between chgieets as depending only on the intrinsic value of outcomes. In this
and delivery of reward. However, in the case of choices that invaltiele, we propose a computational model that extends utility-
delayed outcomes, the decision-maker’s motivation may changgximizaton theories of decision-making to the case of agents
during the interval between choice and delivery, hence the valugrofided with prospection abilities. Our key proposal is that the
outcomes may in turn change drastically when they are colle@atcipation of future motivations, emotions, and, more generally,
compared to when the choice is made. If an agent does not considgnitive processes in uences the “utility assignment” process, in
how contextual factors change, it risks obtaining less reward thao ways. First, anticipated future cognitive processes can affect
expected (Loewensteinadt, 2003). For example, consider the fothe values of future outcomes (e.qg., food will be rewarding only if
lowing case: when you order a piece of pie at the beginning wleaare hungry). Second, anticipated cognitive processes can have
dinner, you are evaluating the pleasure you will receive on the basiglue in themselves (e.g., dread has a negative value). In other
of your current hunger, disregarding the fact that at the end of therds, on the one hand the ability of anticipating motivations
meal you will be satiated. Eating the pie risks being far less rewzgdnits evaluating future outcomes in relation to future internal
ing than expected before, because there is an asymmetry bete@@exts. On the other hand, anticipated emotions associated with
the value of the pie when you make the choice and when you eptaspects, such as fear, dread, and regret, can be treated by the
To correctly evaluate future events, an agent must simulate futigeision-maker as “outcomes” themselves.
internal (motivational and cognitive) context as well as the future We explore these two aspects of the theory from a computa-
external environment (future outcomes). tional viewpoint, starting from the computational (Bayesian)

Numerous researchers have investigated how humans (and pusdel of decision-making proposed by Botvinick and collabora-
sibly even some non-human animals) anticipate future interriats Botvinick and An, 2008; Solway and Botvinick, submitted; see
contexts, speci cally those related to future mental processes, Settion 2) and extending it with two critical features. In Section 3, we
as motivational and emotional states. These abilities have maend the model with a component for anticipating motivational
related to various concepts, including “mental time travel,” “epilynamics (called motivational forward model), and test it in three
sodic time travel,”“self-projection,” “prospection,” and “foresight3cenarios in which utility related to future motivations has to be
For instance, prospection has been described as the ability to pogjesidered in the maximization of reward. This model highlights
the self into the future, connected to the episodic memory abilitgw the same utility-maximization framework can explain present-
(Buckner and Carroll, 2007; Schactealet2007); see also (Gilberdirected and future-directed choices as dependent on considerations
and Wilson, 2009) for a taxonomy of potential aws in decisioabout current and expected motivations, respectively. In Section
making associated with prospection abilities. In a similar vednwe extend the model by including the ability to assign a value
Suddendorf and Corballis (1997) describe mental time travetoaanticipated emotional states, and test it in a scenario in which
combining prediction and episodic memory; see alsiddendorf choice has future negative emotional effects (dread) that have to be
(2006). This ability underlies prospective planning, or planning favoided in order to maximize reward. This model shows that, for an
future needs and circumstances that are independent of the curegy@nt provided with prospection abilities, the in uence of antici-
motivational and perceptual context. For example, we go to fheted emotional factors on decision-making can be incorporated
supermarket even when we are not hungry, because we anticipate utility-maximization framework, rather than considered as an
that we will be hungry at a later stage. irrational phenomenon. In Section 5, we discuss the implications of

A second way prospection abilities affect decision-makingis theory for neuroeconomics, and how our computational models
through anticipation of emotions. First, humans seem able dan guide the study of the brain mechanisms implied in prospection
anticipate pleasure or displeasure associated with a future abilities and associated decision-making processes.
come just by imagining it. This ability has been called pre-feeling
(Gilbert and Wilson, 2007). Second, not only pre-feeling is trig7THE “BASEHNE MODEL": BAYE$AN MODEL OF GOAL-
gered by imagining future outcomes; emotions are also generddtECTED DEBION-MAKNG
by imagining future cognitive processes associated to prosp&bescomputational models we present extend the Bayesian model of
that are unrelated to outcomes. For instance, we can choosegnat-directed decision-making proposed by Botvinick and collabo-
to achieve a desired goal because we anticipate that it will makatass (Botvinick and An, 2008; Solway and Botvinick, submitted;
feel guilty, or that we will regret it. Recent neuroscienti ¢ reseatwdreafter, the baseline model; see Figuwehich we will introduce
has focused on how anticipated emotions unrelated to outcorhese. The authors use the formalism of Dynamic Bayesian Networks
change the utility of prospects. Coricellaét(2005) have stud- (Murphy, 2002) to represent the goal-directed computational pro-
ied how anticipating regret in uences choice. Along similar linessses involved in solving Markov Decision Problems. In particular,
Berns etl. (2006) reported that subjects preferred to receive ey adopt a model-based approach, in which (stochastic) action—
electric shock immediately rather than after a given amountaftcome and outcome-—utility transitions are represented explicitly.
time; in some cases, subjects preferred a stronger electric shoBlach node represents a discrete random variable and each arrow
immediately rather than waiting for a weaker one. Accordingrepresents the conditional dependence between two random vari-
the experimenters, the subjects assigned negative utility to waitiggs. The model shown in Taldleand Figurel represents the
because they anticipated their negative emotional state duringuth®lding of three time slices (time indexes are omitted), but the
waiting time. Dynamic Bayesian Networks formalism can be used to design
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models of arbitrary length. The variables adopted by the basetiwge details). For instance, in a double T-maze, which has the
model are presented in Tallestate (s) variables represent the skighest reward in its upper right corner, the selected policy will
of world states; action (a) variables represent the set of avaikabtede “go right twice.”
actions;policy (p) variables represent the set of actions associThe baseline model successfully replicates data from many ani-
ated with a speci c state; nally, utility (u) variables represent theal experiments, including devaluation (Balleine and Dickinson,
utility function corresponding to a given state. Rather than vied398), labyrinth navigation, latent learning, and detour behavior
ing utility as a continuous variable, the baseline model adoptganman, 1948), all of which are hallmarks of goal-directed behav-
approach introduced by Cooper (1988) in which utility is représr. The authors of the model discuss how each of its components
sented through the probability of a binary variable. The followicgn be related to a brain subsystem. They propose that the policy
linear transformation maps from scalar reward values to p(u/ssystem is implemented by the dorsolateral prefrontal cortex, the
action system is implemented by the premotor cortex and the sup-
1 R(9 1 r max; R(s) (1) Pplementary motor area, the state system by the medial temporal
2 T e : cortex, the medial frontal/parietal cortex and the caudate nucleus,

L ) . . ) . and, nally, the reward system is associated with the orbitofrontal
In situations involving sequential actions, this model useg 8oy and the basolateral amygdala

technique proposed by Shachter and Peot (1992) which allowg:,joing an approach that is typical of RL architectures, the

integrating all rewards in a single representation. This is achigygdsjine model assigns values to outcomes based on the current
by introducing a global utility (i variable: motivational state of the agent. When the motivational state
changes, the utility function changes accordingly and new utility

p u/s

P U N . Py (2)  values are assigned; see also Ndilv @006)However, the agent is
' unable to anticipate its future motivational states. In the next sec-
where N is the number of u nodes. tion, we describe an extension of the baseline model that can take

Within this model, the utility of alternative courses of actiobnoth present and future motivational states into account during
(e.g., a navigation episode in a labyrinth with different rewairtie utility-maximization process.
in its branches) can be calculated and maximized by a form of
probabilistic inference called reward query. In short, the aggregdt@TICPATNG MOTVATONS
utility node y, is set to one (its maximum value). Then, a standalm order to describe how anticipating motivation in uences
probabilistic inference algorithm (belief propagation, Pearl, 20G@8cision-making, our proposal extends the baseline model (see
is used to compute the posterior probabilities of the policy nodeslpble2; Figure2) by considering both future and current motiva-
This process is iterated by replacing the prior probability of p witienal states. To do this, our model includes a novel component, a
the posterior probability and repeating the inference procedure.
The result of reward query is that the optimal policy is comput@ghie 2 | List of variables used in Figure 2.
(seeBotvinick and An, 2008; Solway and Botvinick, submitted for

Node Variable Values
p Policy [P, P, (state action)
a Actions [left, right, straight]
s Spatial states [S1, ,S5]
d Detection st ates [0, ,4](noreward, ,max.reward)
i Internal states [0, ,4](nodrive, , max.drive)
u Utilities [0,1]
Ug Aggregated utility [0,1]
FIGURE 1 | The Bayesian model of goal-directed decision-making
proposed by Botvinick and An (2008); Solway and Botvinick (submitted),
which we use as our “baseline model” See main text for explanation.
Table 1 | List of variables used in Figure 1.
Node Variable Values
p Policy P, .pJ
a Actions [al, , a"]
S States [s;, .s]
u Utilities [0, 1] FIGURE 2 | Bayesian model of anticipated motivation. The motivational
» ' forward model is inside the box. See main text for explanation.
Ug Aggregated utility [0, 1]
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motivational forward model that represents explicitly motivatiorialile 3 | List of variables used in Figure 3.

dynamics, which permits an agent to anticipate its motivational
states. Node Variable Value

In short, the agent is provided with a simpli ed homeostatic sys-

B A . S Policy [p,, ,p(state action)]

tem (or a system that monitors internal variables that are signi cant Actions lleft, right, straight]
for the survival of the agent), which includes one or more drives, Spatial states [S1, .S5]
such as hunger, thirst, or sex (Hull, 1943). The motivational forward Food detection states 0, .4](nofood, . max. food)
model explicitly represents the dynamics of the agent’s homeostatic Hunger internal states [0, .4](nohunger. ,max. hunger)
system. Speci cally, future motivational states depend jointly on the Water detection states [0, 4] (nowater, ,max. water)
previous motivational state and on whether (and to what exteqt) Thirst internal states [0, 4] (nothirst, ,max. thirst)
the agent has been satiated or not at the previous time steps. Utility for hunger 0,1]

In the model of anticipated motivation, state nodes are brok Utility for thirst [0,1]

[

down into sub-nodes: spatial states (s), which represent the spda{tial
position,internal states (i) which represent the motivational staté,
and detection states (d), which record the presence of potential
rewards. Different motivations, such as hunger and thirst, have
separate motivational state nodes and detection state nodes| For
each motivation, the spatial state in uences the detection state. In
other words, if the food is in a given place, the agent must be in that
place (spatial state) to detect it (detection state). The detection state,
together with the internal state, in uences the internal state at the
following time step. For example, dite agent is hungry (internal
state) and is in the food place (spatial state). Once the agent detects
(detection state) and eats the food, dt ts less hungry (inter
nal state at time, is lowered). The motivational forward models
explicitly represent these transitions, permitting us to infer that,
for instance, if at i am hungry (internal state) and | see and e@aFIGURES3 |The model of anticipated motivations adopted in the
a certain amount of food (detection state), thanx ?_n am going simulatit')nsl, which includes two drives, that is, hunger and thirst, and
. two motivational forward models.

to be less hungry (proportionally to the amount of food eaten)

Compared to standard RL models, in the model of anticipated
motivation the ability to anticipate motivations changes the wagdes for each time step; and y, for hunger and thirst, respec-
utility is assigned. At each time step, utiligeppends jointly on the tively. All utility nodes at all time steps are summed in the global
motivational state i and on the potential reward detected d. Eaditity node (u,), as in the baseline model.
motivation has its own associated utility node u. As in the baseline€onsidering hunger as a paradigmatic example, “internal state
model, utility is represented as the conditional probability of tledes” can assume ve values: 0, 1, 2, 3, 4 (0 indicates no hunger
binary variable p(u/i,d). and 4 maximum hunger). Similarly “detection nodes” can assume

It is worth noting that although the baseline model could ine values: 0, 1, 2, 3, 4 (0 indicates no food detected and 4 maximum
principle account for motivational dynamics by adding motivdeod detected). Spatial state values represent positions in a maze
tional variables to the state s, the substantial difference in factoaing can assume ve values in the experiment$o(S). Action
the graph in the way we propose is that it results in different impligdues are: “left,”“right,” and “straight.” Policy values correspond to
conditional dependence relationships between the parts of the (fae-combination between action and state values. The conditional
torized) state: spatial state versus detection and internal statespigiiabilities of all nodes are deterministic, except p(u/i,d). This
only does this factorization in uence how inference is performedimplies that if the agent is in a certain position in the maze and
the graphical model, it also makes explicit claims about the mutunalkes a certain action, it will go deterministically to another given
dependencies among components, which is essential for mappiogjtion. Similarly, if the agent is in a certain position and follows a

Aggregated utility 0, 1]

formal models into psychological and neural hypotheses. given policy, it will always make a certain action. The relationship
between spatial states and actions depends on the maze con gura-
3.1EXPERVENTS: METHODS AND RESULTS tion (see below).

We tested the model of anticipated motivation in three simu- The value of the nodes in the motivational forward model
lated scenarios. Because we considered the case of an ager(biigdch motivation) are calculated as follows: the value of a
two motivations (hunger and thirst), the model includes twdetection state depends deterministically on the associated spa-
separate sets of nodes for internal states [huhyang thirst tial state at that time step (i.e., speci cally on the amount of
()] and detection states [foqf) and water(w)]; see Table potential reward present in the corresponding position of the
andFigure3. maze, see below). The value of the internal state is the difference
At every time step, the internal node and the detection ndsetween the value of the internal state at the previous time-step
of each motivation jointly in uence the corresponding utility, aminus the value of the detection state at the previous time step
described in the general model. Thus, the model has two uti{ifthe former is greater than the latter; otherwise it is zero). This
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accounts for the fact that hunger is decreased by eating (to2hel Experiment 1: strategic planning
same degree as the value of the food eaten). When the valifumfans and other animals can act impulsively or strategically. In
the internal state at the previous time step is zero, the succesise&/ormer case, they assign outcome values only according to their
value is raised by 2; this represents the increased hunger asaatént preponderant motivational state. In the latter case, they
ated with the passage of time. Finally, the value of internal statesider a complex prospect of future motivational states and cor
and detection state jointly determine the conditional probabilesponding future rewards. The ability to choose “re exive” strate-
ity of the utility corresponding to that motivation. Because vges might be more advantageous in complex environments. We
model potential rewards that have only positive values in argue that a motivational forward model might underlie the ability
experiments, utilities range from neutra(fio= 1/i,d) = 0] and to assign values according to future motivations, which in turn
maximally positive [fu = 1/i,d) = 1]. Nevertheless, it is possiblenight lead to selecting courses of actions that maximize reward
to model a continuum of negative and positive utilities, as in timethe long run.
baseline model, in which negative utilities range between 0 ando test this idea, we designed a simulated experiment in which
0.5, and positive utilities between 0.5 and 1. In our experimeatsagent has to choose between two alternatives: a smaller reward,
the probability fu = 1/i,d) is the lowest one between the detegvhich satis es its immediate preponderant motivation (e.g., hun-
tion state and the internal state, over 4. For example, if potengat), and a larger reward, which also satis es the weaker motivation
reward detected is 2 and motivation is 0, thenpl/i,d) = 0/4; (e.g., thirst) by postponing the satisfaction of the preponderant
if motivation is 1, then u = 1/i,d) = 1/4; if motivation is 2 and one. We hypothesized that in this condition an agent provided
potential reward is 4, ther(yp= 1/i,d) = 2/4. with the motivational forward model would be able to maximize
Anticipating motivations provides several advantages to ireward, whereas an agent without such a mechanism would
agent. Below we describe three simulated experiments thatsaetect less rewarding, impulsive behavior aimed at satisfying only
intended to test three abilities: (1) strategic planning, or disregattte preponderant motivation.
ing currently available rewards in favor of higher future ones; (2)The experimental design is illustrated by the T-maze shown in
considering future motivational switches in the planning procesigure4A. We considered three time steps; tié agent is in,S
(3) planning for the future, such as storing food in view of futuegt, it can go left to Sor right to §; at t, it goes from Sto § and
needs. from S, to S. In each of the ve positions of the T-maze, a certain

A B Results: agent with anticipated motivations
The T-maze o
F o === prob of going right
2.\
@ CYY Yo T\
0s4 S5 4\
Ny
> T > B ? “ a;cllgorit;lﬂm trials ? ’
W W@
(] Results: baseline agent
000 0O 0000 i ——
00 oo S
S2 S1 S3 iy
7 food O hunger @ satisfied hunger /

=== prob of going left
0s === prob of going right

probability

| 7 water

O thirst B satisfied thirst

5 0 3 E £ )
algorithm trials

FIGURE4 | Experiment 1. (A) T-maze. Symbols represent values of detection
states and internal states that are computed during the inference process by the
agent that anticipates motivation. Potential reward pattern (corresponding to
potential reward in each position of the maze) and initial motivational states
(corresponding to motivational states in S2 and S3) are set by the experimenter, all
further information is computed by reward query. Red forms indicate motivational

values that are satiated by consumption of potential rewards in the corresponding
position of the maze. Graphically, optimal behavior corresponds with choosing the
path with the largest number of red forms. (B,C) Results of the rst experiment

(B) agent with anticipated motivations; (C) baseline model. The graph represents
the probability assigned to the policy associated to “going right” (red) and “going
left” (green), respectively, at each iteration of the reward query.
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amount of food, water, or both can be found. The con guratioour model, because we modeled only the goal-directed aspects of
chosen in our simulation is the following: fdbith S,water2 in S,  choice. However, they would be necessary in more sophisticated
food3 in §, and food in . Then we set the initial internal statemodels that include multiple cognitive controllers that interact and
as follows: H=4, T = 2. compete (Daw edl., 2005; Rigoli etl., 2011).
The agent provided with anticipatory motivations is imple-
mented using the graphical model shown in T&uded Figure8. 3.1.2 Experiment 2: considering future motivational switches
In the experiment, it is compared with the baseline model (showhe ability to predict future motivations permits taking future
in Tablel and Figurel) in which utility is assigned only to rewardshanges of motivations into account during the planning process.
that are congruent with the highest of the actual motivational stalteturn, this permits predicting that a future outcome will be more
of the agent (hunger in this case). or less rewarding, depending on the future motivational context. In
Figures4B,C, shows the results of the experiment (FigtBe keeping with our previous assumptions, we argue that the motiva-
agent with anticipated motivations; Figu4€ baseline model). tional forward model could be a key mechanism for maximizing
The two graphs show that, for the agent provided with anticipatesvard in situations in which the internal motivational context can
motivations, the probability of selecting the “going right” policghange before the outcome is delivered.
increases monotonically toward one at every iteration of the rewardo test this idea, we designed a simulated experiment in which
query. By going right, the agent satis es both thirst (at the secandagent has to choose between two alternatives: a path in which
step) and hunger (at the third step). On the contrary, the bafee cumulative reward is higher given the current motivation, and
line model, which takes into account only its present motivatioreapath in which the cumulative reward is higher if one considers
state (in this case hunger is higher than thirst), selects an impulst® its motivations will change. We hypothesized that an agent
behavior and goes left toward the immediate maximum amounfwébvided with the motivational forward model would be able to
reward corresponding to its actual motivation. maximize its reward, whereas an agent without such mechanism
Our rst simulation describes the motivational forward modelould tend to choose the path associated with higher rewards for
as an essential element for the goal-directed ability of shiftitsgcurrent motivation.
from impulsive strategies to more “re exive” ones. Note however The T-maze in Figur, left, illustrates the set-up. Here poten-
that strategic planning plausibly requires additional mechanistiz reward has the following pattern: faddn S and § food4
to exert cognitive control and inhibit prepotent responses (dic S; water2 in S. The initial internal states were; #4; T, = 0.
tated by habitual or Pavlovian mechanisms) before the gostcording to our hypothesis, if a hungry agenf £H) predicts
directed utility-maximization process is completed (Barkley, 20€Hat in the near fure it will be satiated (i.e., it will collect foe8),
Botvinick etal., 2001). These mechanisms are not implementedtican choose future potential rewards that at the moment seem

A B Results: agent with anticipated motivations
The T-maze o7
gns
9 > 9 > ] i’ § “‘k‘ === prob of going right
|- S 2 N
AN
T\
O N
0 -
® (] . N
S4 S5 ——t Tﬁ :
algoriti;m trials .
] A ] ] ] .
c Results: baseline agent
‘ 4;9""”11%7‘54
I J@ " " J@) " ~
o) /
S2 S1 S3 A S
— gfi
] . gnaff ===prob of going left
" food O hunger @ satisfied hunger g
2.
= . . o . o
., Wwater [ thirst M satisfied thirst
’ N 2aulgorit:m tria)is ‘ )
FIGURES | Experiment 2. (A) -maze. (B,C) Results [(A) agent with anticipated motivations; (B) baseline model], “going right” = red; “going left” = green.
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lower (water 2 rather than fooe 4) but that will be higher when suggesting that they are able to exibly account for their future
the agent is satiated (remember that in our model if a motivatiomadtivational states (although it is unclear if they use the same
state value is 0 atit will be 2 at t ). Our results show that the mechanisms as humans, see below).
agent provided with anticipatory motivations maximizes utility. ~ Our third simulation is conceptually similar to the study of Raby
Note that our set-up is conceptually similar to the experimeatal. (2007), which aimed to assess the ability of scrub-jays to store
conducted by Nagshbandi and Roberts (2006), in which squipetential rewards in view of future motivational states. The authors
monkeys could eat either four dates or one date. Given that egport that scrub-jays cached food only when they expected future
ing dates makes monkeys thirsty, experimenters manipulateddbprivation, suggesting that they consider their future motivations
delay between the meal and the availability of water. In the ane plan for the future.
date case, water was available sooner with respect to the four dafBise scenario is illustrated in the T-maze of Fidurat § the
case. Although the monkeys chose four dates at the beginning,dlgeyt is in $at t it can go left (to Jor right (to §); at t, it goes
gradually shifted their preference toward one date. It shouldften S to § and from Sto S. Once a potential reward is detected,
noted, however, that the interpretation of this experiment is contritie agent has two options: to consume it immediately or to consume
versial, as it is still unclear whether the choice was goal-directdtllater, that is, at the following time steps. Crucially, in our model
induced by simpler mechanisms (Suddendorf and Corballis, 20@8)anticipated motivation, once the agent detects potential rewards
but is not motivated, and at the same time it anticipates that it will
3.1.3 Experiment 3: planning for the future be motivated in the future, it stores them (as represented by the
According to the Bischof-Kohler's hypothesis (Suddendorf apddlock symbol in Figuré). We positioned the following potential
Corballis, 1997), only humans act in a complex and exible wayéwardsfood3 in S and wated in S, and set the initial internal
achieve rewards in view of future motivations, even if not motivatgdte values to H 0 and T = 1 (as shown in Figuré, left). By
at the present moment (e.g., going to the supermarket even wjgng right, an agent can collect a small reward immediately (water).
not hungry). Contrary to this idea, Rabyatt(2007) argued that Instead, by going left and storing food (which is automatic in our
even some other animals such as western scrub-jays (Aphelogmdal if the agent is not currently motivated and anticipates its
californica) have this ability. In this work, experimenters taudhture hunger) it can collect a higher reward at the next time step,
scrub-jays to foresee conditions in which they would receivewloen it will be hungry (note that in our model if a motivational
food and thus be hungry; after this learning phase, experimengtage value is 0 atitbecomes 2 at,f).
unexpectedly gave the scrub-jays the chance to cache food. AdParformance of our model of anticipated motivation is shown
result, scrub-jays cached a larger amount of food when they foréealtigure 6B. According to our prediction, the agent chooses
a future condition of deprivation compared to other conditiongp go left, storing a large amount of food and eating it later,

A B Results: agent with anticipated motivations
o f
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FIGURE®6 | Experiment 3. (A) -maze. (B,C) Results [(A) agent with anticipated motivations; (B) baseline model], “going right” = red; “going left” = green.
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instead of immediately drinking a bit of water. In other words, In relation to this debate, our proposed model of anticipated
rather than selecting the prepotent response of consuming thetivation describes both human and animal foresight abilities in
immediate reward (water, because it is a little thirsty), it is abdems of a motivational forward model. This mechanism, which
to choose the action sequence that leads to higher reward irptfogects only some internal states (motivation variables) in the
future. On the contrary, the baseline agent (Figi€¢ behaves future, could be a rudimental ability of “mental time travel” shared
impulsively. The fact that the probability of going right increasieg some animals. Nevertheless, unlike the animal brain the human
toward one indicates that the baseline agent is attracted dargin might project other internal variables and possibly episodic
by the immediate reward, and is unable to plan instrumentaformation into the future and, thus, obtain a more accurate esti-
actions leading to the future consumption of a larger amoumtate of the self in the future. Enhanced prospection abilities could

of reward. then determine qualitative (and perhaps phenomenological)-differ
ences between humans and animals, and at the same time maintain
3.2DISCUSEN continuity from the simpler control architectures of our remote

In this section, we have presented a Bayesian model of goal-diregtedstors to our more sophisticated cognitive abilities (Pezzulo and
behavior that accounts for future motivations during planningastelfranchi, 2007, 2009; Cisek and Kalaska, 2010).
Our model includes a motivational forward model that permits Regarding the neural mechanisms involved in foresight, we
evaluating outcomes as related to future rather than only currégpothesize that variables in the model of anticipated motivation
motivations, as is common in RL models (Sutton and Barto, 199f)ght be related to two distinct brain processes. The former process
Indeed, within the RL framework, it has been proposed that matiay be related to more abstract mechanisms of generating future
vations change the utility function (Niv aft, 2006). By contrast, prospects (linked to sensorimotor and motivational forward model
in our model motivations are explicitly represented and in uene®des) and inhibiting preponderant responses triggered by reac-
the value of future potential rewards. Speci cally, utility valuestofe systems (not implemented in our model), and might be con-
outcomes depend jointly on potential reward amount and on motiected to areas such as dorsolateral prefrontal cortex and cingulate
vation at the corresponding time, rather than only on the formenrtex. The latter process (associated with utility nodes) might be
Another aspect that distinguishes our model from most RL moditged to the activation of “as-if” motivations (Damasio, 1994)
is the consideration of multiple motivational dynamics integratethd hence may involve cortico-limbic structures directly related to
in a unitary utility-maximization process. motivations themselves, such as the amygdala, orbitofrontal cortex,
In three simulated scenarios, in which choices had distal implarahippocampal gyrus, and anterior fusiform gyrus (LaBar,et
cations, we show that an agent that anticipates its motivationpab1). These two processes may be connected as follows: cortical
dynamics is able to gain more reward than an agent that only camterior structures may modulate the activation of cortico-limbic
siders its current motivational state. We propose that the comtructures related to simulated motivations. In other words, antici-
tational mechanism responsible for the prediction of motivationgation of future needs might partially activate brain structures
dynamics, the motivational forward model, could be an essengéissociated to those needs and motivations. For instance, even if
(though not suf cient) element for the implementation of complexny homeostatic system does not currently require food intake,
prospection abilities such as planning for the future. thinking about the next Christmas dinner triggers my hunger. As
The debate on how human and non-human brains represené ability to imagine future hunger may be similar to hunger itself,
future motivations during planning is still controversial. Both Ralitymight activate the same brain areas activated when desiring food
etal. (2007) and Osvath and Osvath (2008) report evidence sug@est-hungry state.
ing that animals have foresight abilities (butSeedendorf and
Corballis, 2008 for concerns relative to these results). The fordh@NTIOPATNG COGINIVE AND EMOQONAL PROCESSES
study shows that scrub-jays cached food only when they expectedsadition to motivational processes, cognitive, and emotional
future condition of deprivation. The latter study shows that chinprocesses in general can be anticipated during decision-making.
panzees and orangutans exibly chose a tool for future use takimiped, a central point of theories of prospection and mental time
future needs into account. travel is that an agent can project itself into the future, possibly
Despite these demonstrations that, at least in some circumith the same level of detail as episodic memory. Therefore, not
stances, some animals plan in view of future needs, whethewsrdy it can simulate future events, but also what it will think, pay
not they adopt the same mechanisms as humans is still cattention to and feel in these future events. In turn, the value of
troversial.Suddendorf and Corballis (1997, 2007) proposed theese simulated cognitive and emotional states can be considered
“mental time travel hypothesis” to interpret the human abilitin the reward-maximization process of decision-making.
to anticipate motivations. According to that hypothesis, only Although itis still unclear how the evaluation of simulated cog-
humans can mentally simulate past and future circumstancéts’e and emotional states is implemented in the brain, recent
from a subjective perspective in a vivid and exible manneesearch suggests that the simulation of future events elicits at least
other animals might use simpler methods, which include sotwe kinds of affective processes. First, just imagining a reward or
anticipation of motivations but lack the vividness and richneganishment is suf cient to elicit a feeling congruent to the one elic-
of human experience. While mental time travel might be linkéedd by the occurrence of that reward or punishment, a so called pre
to episodic memory, animals rudimental ability to anticipatieeling (Breiter etl., 2001; Gilbert and Wilson, 2007). For instance,
future motivations might be linked to semantic memory (Ralwhen one imagines the joy associated with a future event (e.g.,
and Clayton, 2009). winning a match) it can pre-feel joy. Rick and Loewenstein (2008)
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argued that the reason why pre-feelings are elicited automatigaibcesses connected to pain modulation, the authors hypothesized
is that they can be used as proxies when making decisions in vilwéthdread involves attentional phenomena as well as emotional
it is impossible to calculate action outcomes or associated rewarsgss. Nevertheless, how attentional and emotional processes are
exactly. When action effects are dif cult to predict or “intangintegrated in planning processes related to utility-maximization
ble,” people can, instead, use more tangible anticipated emotisrstill unknown.
to decide among alternative options (see also Damasio, 1994 fdn keeping with (Loewenstein, 1987), we argue that subjects
a similar view on how pre-feelings are used as proxies to evalusgeprospection abilities to anticipate their cognitive and emo-
an imagined situation). tional processes while they wait for the punishment (see Caplin
Second, anticipating prospects can trigger different emotiansl Leahy, 2001 for a related view). The effects of dread on choice
from those elicited by outcomes, but strictly related to them. Fan be explained by two processes: the anticipation of directing
instance, the anticipation of a future loss can elicit frustration, disture attention toward punishment and the emotional reaction
appointment or regret, and the anticipation of pain can elicit fetarthis anticipation (dread), which in turn may in uence the util-
or ragé. The adaptive value of such anticipatory emotions couldibevalues of prospects. The in uence of these two processes may
related to preparatory processes aimed at approaching or avoiti@groportional to delay, namely to how long the agent believes it
salient outcomes; for instance, fear could help in preparing to de#ll pay attention to the outcome and pre-feel dfe&dllowing
with future dangers (e.g., predators). this logic, in Berns &ll’s (2006) experiment, subjects might not
As prospection elicits pre-feelings and anticipatory emotiosly pre-feel dread, but also anticipate that they will pre-feel the
the value of the latter becomes part of the decision-making psame way until they receive the shock, because they will be aware
cess. The fact that anticipation of emotions in uences decisi@nd pay attention to the feared outcome (the incoming pain) for
making is incompatible with economic theories that disregattte entire time preceding punishment. Considering a prospect
psychological variables in modeling value assignment. This &hetracterized by these future cognitive and emotional states, all of
has recently been acknowledged by different areas of researchwtiiah are negative, the cost of waiting sums up to the shock pre-
aim to develop novel theories of decision-making that incorpordézling, proportionally to delay of its occurrence. This is where a
the role of anticipated emotions within EUT (see e.g., Caplin acast for waiting comes from. This anticipation of future attention
Leahy, 2001; Mellers and McGraw, 2001; Coricelli,e2007). processes might activate areas of posterior pain matrix linked to
One condition in which anticipated emotions in uenceattention modulation, such as caudal cingulate cortex and posterior
decision-making is intertemporal choices. Traditional interteninsula, which in turn might increase pre-feeling (dread), possibly
poral choice models (such as discounted utility theory, an extensiansing the activation of areas associated with the perception of
of EUT) assume that human and non-human animals expongyain, namely Sl and SlI.
tially discount the utility assigned to outcomes as a function of As we have discussed, dread is just one of the many examples of
their delayed presentation. As a consequence, agents shouldhprg-anticipated cognitive and emotional processes affect decision-
fer immediate rewards to delayed ones and vice versa in the roagéng. Indeed, the anticipation of cognitive and emotional states
of punishment. Contrary to this hypothesisiewenstein (1987) is a multifaceted process, which plausibly involves several brain
found that, at least in some circumstances, participants preferaeglas. However, we argue that it is possible to identify common
to receive shock immediately rather than wait a few more secqedsnputational-level) principles for studying how anticipated
for a postponed shock of the same voltage. Furthermore, the nuagnitive and emotional states are elicited and how in turn they
participants were asked to wait, the more they were affectedffigct choice. In particular, the projection of the self in the future,
the (negative) pre-feelings, suggesting that they were assignihg anticipation of cognitive and emotional factors and the focus
(negative) value to the passage of time. on salient events might also play a role besides dread when behav-
The same scenario was studied in an fMRI experiment (Bdords in uenced by anticipated emotion. For example, we tend to
etal., 2006). This study reveals the existence of neural baseserEstimate the happiness or sadness caused by a future event, say
dread, or the anticipated neural representation of punishmewinning a lottery or becoming parapleditog! etal., 2003; Gilbert
which might be located in the posterior elements of the cortieald \Wilson, 2009). The fact that we overestimate the time we will
pain matrix (Sl, Sll, the posterior insula, and the caudal cingulafgend in a positive or negative emotional state might be one cause
cortex). The activity of these brain areas is proportional to tiraethis phenomenon. A third example is that of anticipated regret
delay of the shock. Furthermore, “extreme dreaders,” or participaiisricelli etal., 2007). It has been reported that subjects can decide
whose subjective feeling of dread was particularly signi cant, pre-
ferred receiving a h_|gher V0|tage rather than waiting, WhI.Ch ShQXYt ough here we assume that self-projection is relative to all future states preceding
that the cost of waiting was higher than the cost associated Wihectric shock, in general simulations of future events need not be complete, but
the difference in voltage. As the posterior pain matrix, that is, th@e likely focus on selected, salient events. This aspect is captured in our model in

brain area associated with dread, is usua"y involved in attentidwWaMmways: rst, the granularity of states can be arbitrary; second, not all states are
considered in the computation of utility, only those having higher valence. Although
simulating only salient events is more parsimonious, at the same time it could de-
termine biases about how the imagined situation is evaluated, causing misbehavior
1A third potential mechanism could be a “cold” anticipation that an emotion wi{lGilbert and Wilson, 2009). In addition, it can produce different evaluations depen-
result from a choice; for instance, one can anticipate that it will regret a decisliimg on when the future event is simulated. For instance, the effects of dread can be
without actually feeling regret. We do not discuss this issue here; (see Castelfranitigated in the case of outcomes that are far away in time, because the imagined
and Miceli, 2011) for a more detailed analysis of the relations between anticipagigant is not judged as salient, and increase when it approaches; for example, this
and emotional processes. could be true for exam fear, which increases as the exam date approaches.
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not to pursue a given course of actions because they anticipate th€nce imagined states are introduced, they can be associated
will regret it if it results in a loss. In this case, they might anticipafiéh utilities (as real states are). At every time step, both real state
ruminating on the decision-making process itself, being attentivedes and imagined state nodes have a corresponding utility
to the alternative choices they discarded, which might also ehcitle, respectively called (utility of) feeling$ and (utility of)
an uncomfortable emotional state (regret). pre-feelingsuf). Both can range between 0 and 1, as in baseline

In the rest of this section, we will propose a computational modebdel (values between 0 and 0.5 correspond to punishments).
that extends the baseline model by incorporating the anticipationmfother words, anticipating both real and ctitious experience
cognitive and emotional processes along the lines we have sketoheshces the estimated values of prospects. All utility nodes are
here; then, we will test it in the paradigmatic case of dread. summed up by u

Similarly to baseline model, this model maximizes expected

4.100MPUTAIDNAL MODEL utility by computing the optimal policy through reward query.
In order to account for the ability to project oneself into the future,
S0 as to anticipate cognitive and emotional processes, we have ads8bERIENTS: METHODS AND RESULTS
an additional set of nodes to the baseline model: imaginedisateg 6 1 Experiment 4: dread
The resulting model is shown in Tadlend Figurer. Imagined 1o test our model, we designed an experimental scenario that is
states represent salient information the agent expects to focug8Reeptually similar to that in Berns ats (2006) study. These
In other words, the agent anticipates that at time t it will focus df§thors found that people prefer immediate electric shock rather
cognitive and attentive resources on the state of the world repfgm a postponed shock at the same (or even minor) level of inten-
sented by the imagined staie is sity, and linked this preference to the anticipation of pain. The

Imagined states depend on the value of one or more real si@gfario is schematized in Fig@re
(), speci cally the ones associated with the higher reward or punsimilar to the previous experiments, we represented the deci-
ishment value. In this way, we implicitly assume that people antighn-making scenario as a T-maze in which punishment is posi-
pate paying attention to states having strong emotional value. TRgSfad in one branch at the beginning and in the other branch at
can be future states, as in the case of dread or anticipation of fufys€and (see Figu@A). Like in previous simulations, all transi-
punishment, meaning tha isorresponds to a future real stgfe  tions are deterministic except for utility assignment. We consider
Or they can be past states, as in the case of regret, meaning t)gis time steps: atthe agent is in Safter 5s (t) it can go left

corresponds to a past real stafe s to S, or right to §; after 20s (t) it goes to Sfrom S and to $
from S, We positioned two punishments with the same felt value

Table 4 | List of variables used in Figure 7. F= 5,onein $(att = 5) the other in S(at t, = 20). As stated
above, at every time step, the imagined state value is equal to the

Node Variable Value following real state value associated to the maximum absolute
value of punishment compared to all other future states. Indeed,

Policy [L.... 15(statexaction] 4t if the agent imagines going left,issin uenced by snode

2 Actions flet,right, straigh] because punishment is found atthe value of sis in uenced

S Spatial states [S1...., S5] by the position in the maze)Sif the agent imagines going right,

is Imagined state [ISL,.... 1S9] is, is in uenced by snode because punishment is found, §the

f Feeling [0.1] value of igis in uenced by the position in the mazg.Finally,

P Pre-feeling [0.1] att, is, node is in uenced by, sgoing left, the value of, is

Ug Aggregated utility [0, 1]

in uenced by the position in the ma#&; going right, the value
ofis is in uenced by the position in the maze Bre-felt values
associated to every imagined state are a functioraoflRime

to punishment [P= f(F,t)]. We adopted_oewenstein’'s (1987)
model to calculate the pre-felt values. Given the instantaneous
intensity of dread (& 0.05) as constant, the pre-felt value during
the interval tt, | is:

P Rt t, ®)

Gaing left, during f t, P, 500535 0 125 during
t, t,P, 0005 (20 5 C Goingright,duringt t,P, is the
same as going left; but during tt,,P, 5 005 (20 5 375
Total dread (D= P) is respectively D, = 1,25, D=4
Results of the simulation are showrFigure8B. In accordance
with Berns etl’s (2006) ndings, the agent chooses to go left and
to receive the shock as early as possible, in order to avoid the “costs
of waiting” (i.e., the pre-feelings associated to the states in which

FIGURE 7 | Bayesian model of anticipated emotions. . .
it self-projects).
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FIGURE 8 | Experiment 4. (A) -maze. (B) Results, “going right” = red; “going left” = green.

4.3DISCUSE®ON of dread. Finally, because dread requires the ability to project com-
In this section, we have presented a theoretical and computatiqguéek information about the self into the future (e.g., anticipation
model of how the ability to anticipate emotions and cognitive prof the focus of cognitive and attention resources) in our model,
cesses in uences choice. Speci cally, we have focused on avpaexpect that non-human animals will not be prone to dread.
ticular case that has been widely studied, namely, dread. Differerwe have suggested that our model captures common compu-
from previous mathematical characterizations aimed at behavidetional mechanisms across several anticipatory emotional phe-
description (Loewenstein, 1987), we have focused on the possibieena, such as dread, the anticipation of regret, and the (mis)
computational mechanisms behind this phenomenon, and hgudgment of how happy or sad we will be in the future. The core
related them to neural processes. In particular, we have arguedrtteathanism is the anticipation of internal, cognitive, and emo-
dread depends on anticipation of future cognitive and emotiortanal states, in particular those associated with the more salient
processes, such as continuous attention to the future shock (assad-states that one expects to face in the future. In turn, these
ciated with the posterior cingulate cortex and posterior insulapticipations assume a value themselves, and elicit associated pre-
which — once anticipated — produces a prospect of negative fufaeings. However, anticipatory emotions can be extremely variable,
pre-feelings (connected to Sl and SlI). Both processes are-pro@orging from fear associated with a future punishment to complex
tional to time delay of the shock. emotions involving personality and social and cultural aspects, such
Our model permits advancing some speci ¢ hypotheses abaatfrustration over being unable to pursue a goal, the shame of
dread. First, because we described the anticipation of cognitemg exposed in public, and the sense of impotence in the face of
processes, such as attention, as an important feature of the mdeéelth; in this case, anticipation involves a constellation of cognitive
we hypothesize that the effect of dread should not be present war@hhedonic states, (see, e.g., Castelfranchi and Miceli, 2011). For
an agent cannot anticipate those cognitive processes, or whémstreason, applying our model to all these circumstances requires
thinks that attention will be focused on other information. Seconehaking speci ¢ assumptions about which environmental, cogni-
we hypothesize that both lesions of the posterior cingulate cotie®, and emotional states are represented and anticipated during
and the posterior insula, on one hand, and Sl and SlI, on the otblanning and their associated valence.
hand, may impair dread effects. However, as we believe that thieurthermore, it is still unclear in which circumstances and to
activation of the former causes the activation of the latter, we expétit extent the ability to anticipate emotional, motivational, and
that during anticipation of punishment lesioning of the posteriarognitive processes affects decision-making. In this regard, it is
cingulate cortex and the posterior insula may prevent the activatieorth noting that our model accounts for anticipation of both
of Sl and SlI, but not vice versa. Third, we argue that the-difieegative and positive emotions. However, although clear results
ence between extreme and mild dreaders might be linked tohihee emerged for dread, it is currently unclear whether symmetrical
ability to modulate perception through attention, connected withffects exist in the case of anticipated rewards. In this regard, some
the functioning of the posterior cingulate cortex. Indeed, subjestadies have detected anticipatory activity in the ventral striatum
that are more able to enhance or attenuate perceptive stimuliand the orbitofrontal cortex during expectancy of rewards; nev-
attention might be more prone to dread, because they anticipattheless, it is dif cult to ascertain whether this activity depends
paying more attention to outcomes, increasing activation of tbe time delays (Breiter at., 2001). Furthermore, it is still unclear
posterior cingulate cortex/(llemure and Bushnell, 2002). In thiswhether dread is present during the anticipation of punishments
case, having weaker prospection abilities might mitigate the effésare more complex than electric shocks, such as monetary losses.
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5C0ONCLU®N 5.1 IMPICATONS FONEUROECONOMY
In this article, we have presented a theoretical and computatioh¢ possibility to use computational models to connect formal
proposal on how prospection abilities in human and (at lea®ethods in economics and machine learning with neural descrip-
partially) non-human animals affect decision-making, focusifgns, and to use the former to derive predictions for the latter, is one
on the role of anticipation of cognitive processes, motivatio®$ the strengths of the new eld of neuroeconomy (Glimcher and
and emotions. It is still not clear which computational mech&ustichini, 2004; Glimcher &k, 2009), which is also connected to a
nisms the brain exploits in these processes. We have propéage body of studies in computational motor control (Kording and
that, in general, the anticipation of future cognitive processé&slpert, 2006; TrommershSer, 2009; Diedrichsenett, 2010). So
in uences decision-making via two processes: rst, the valuefaf, however, most studies in neuroeconomy have focused on tasks
future outcomes is weighted in relation to the internal contetkat involve model-free controllers associated with habitual com-
at the time of the occurrence of those outcomes; second, fug@aents of behavior, leveraging on the striking similarities between
internal states are treated as outcomes, hence a value is difeetlging signals in the brain and formal methods used in machine
assigned to them. learning. For instance, it has been noted that temporal difference
We have investigated the general issue of prospection algining signals used in model-free methods of RL (Sutton and
ties in two specific problems, namely, the anticipation of motsarto, 1998) have characteristics that are similar to the burst pattern
vation and dread. In our model of anticipated motivatiorgf striatal dopamine neurons (Schultzaét 1997).
we propose a mechanism that represents future motivationalt has been proposed, however, that although model-free
states and future potential rewards and permits determinimgthods adequately describe habitual behavior, the more exible
the latter based on prediction of the former. In our model éfechanisms underlying goal-directed choice are better formalized
dread, we propose that anticipating future attention towatgsing model-based methods. This analysis suggests the importance
an unavoidable shock and associated pre-feelings may Rfgalirsuing a new perspective in neuroeconomic experiments that
people to choose to receive punishment as soon as possidteses on goal-directed decision-making and aims at formally
However, the framework we have proposed is more generadéscribing its neural mechanisms. Indeed, the neural underpin-
that it describes how the anticipation of contextual factors anigs of model-based methods (associated with goal-directed con-
of internal variables can influence decision-making. For ttifsllers) are not completely known (but see Glaschel.g2010;
reason, we believe that the mechanisms we have describédrsen and Daw, 2011). A key element distinguishing model-based
far apply to a wide range of phenomena linked to prospectits@m model-free methods is that the former learn and use explicit
abilities, such as the anticipation (and evaluation) of ongfate predictions; however, it is still unknown which tasks require
own emotional states following a decision. In this respect, ®xplicit state predictions and which can be accomplished also with
model can be considered as an extension of EUT that takeslel-free methods. We believe that studying the more exible,
psychological considerations into account and uses themgal-directed forms of decision-making is an important goal for
the utility-maximization process. future research and that this research initiative could bene t from
Assigning utility in view of future cognitive processes is a coineross-fertilization of neuroscience and model-based machine
plex ability, which has been linked to concepts such as prospearning methods, as in studies using model-free methods.
tion and mental time travel. Further investigations are necessary té keeping with this view, the models we have proposed extend
identify the circumstances in which the complex decision-makitite model-based computational framework of Botvinick and collab-
strategies we have discussed (as opposed to simpler, myopic altei@i@rs Botvinick and An, 2008; Solway and Botvinsakmitted;
tives suggested in earlier RL studies) are really used. Furthermdhe haseline model) with future-directed actions, such as the ability
is still unclear whether or not non-human animals have prospecti@ranticipate future cognitive processes during planning. In particu-
abilities, and if they do use similar brain mechanisms (Raty etar, we have added two components, a motivational forward model
2007; Clayton el., 2009). and a mechanism for generating and evaluating imaginary states,
Regarding which brain mechanisms underlie prospection abflioth of which explicitly represent future states, that is, internal and
ties, we propose a common neural implementation of anticipatgeagined states and associated utilities. In other words, prospec-
motivational, cognitive, and emotional processes. This mechantign abilities are represented as model-based processes. We hypoth-
has two components: the former one related to prospect exggize that a model-based implementation of prospection abilities
ration, and the other related to value assignment. First, durisgadvantageous for agents that act in complex environments in
planning, frontal areas, such as the dorsolateral prefrontal corwxich rewards are volatile. Although model-free models are also
the cingulate cortex, and the hippocampus may be responsigipable of learning future-oriented actions, they produce rigid out-
for the anticipation of future cognitive processes related to pr¢sits and exploit a slow trial-and-error learning procedure, which
pects. In turn, these areas may activate cortico-limbic and sensegyiires a stable environment. Furthermore, during the learning
structures, such as the amygdala, the orbitofrontal cortex, andah#iture-oriented actions, model-free models collect the learning
somatosensory cortex (Sl and Sl in the case of dread), relategigaal (reward or punishment) with a delay with respect to when the
imagined feelings and emotions associated with the anticipatioa@iion is executed, and it is unclear how the brain solves the credit
future cognitive processes, thus assigning utility to those procegsstgnment problem necessary to reinforce remote actions. For this
Although this view is speculative, it has generated some spgéiason, we argue that future-oriented actions that are so exible,
testable hypotheses and, indeed, some ndings are in accord&@piglly learned, and ready for use in volatile environments are likely
with it (Breiter etal., 2001; Berns at., 2006; van der Meer anco depend on model-based computations (see Pezzulo, 2007, 2011
Redish, 2010). for a discussion of implicit and explicit predictions).
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Overall, we have proposed a formal framework for studyiogreplaced by Pavlovian processes, which drive innate responses
prospection abilities and their in uence on decision-making withithat can produce undesired effects (Dawalet2005; Niv edl.,
amodel-based approach. Speci cally, in this study decision-makiig6; Rangel ei., 2008; Dayan, 2009). Furthermore, the condi-
is framed as a (computational and neural) process aimed at magis in which the competition of multiple controllers is adaptive
mizing the probability of expected utility using model-based metfi-ivnat and Pippenger, 2006) or maladaptive (Dayaih £2006)
ods. The rstimplication of this view is that phenomena such as @re still unknown. Elucidating the interactions between multi-
choice to receive punishments as early as possible (Barj20€6) ple controllers, and the resulting effects for (optimal) behavior,
should not be considered as violations of the utility-maximizatisamains as an open objective for future research.
process, but should be considered within a formal framework that
extends EUT with the effects of prospection. 6 THE MODEL OF ANNIPATED MQVATON ANCEUT

Besides a computational-level description of how optimizati@vtvinick and An (2008) demonstrated that the inferential method
of reward can incorporate prospection abilities, the use of prolbaopted in the baseline model guarantees maximization of expected
bilistic models permits making explicit claims about their mechatility. In this section, we show how EUT concepts and procedures
nistic implementation in the brain. In this sense, our models haopted to maximize expected utility are translated in our model of
implications at the psychological and neural levels, which maiahticipated motivation, which introduces additional elements with
concern the factorization of the state space, the causal relatiespect to the baseline model (This is unnecessary for our second
among variables, the use of explicit representations of (intermabdel, in which the way utilities are assigned and maximized is
imagined) states and associated values to implement prospedcimrsubstantially different from the baseline model). Speci cally, we
abilities, as well as the nature of dynamics of the computatians going to explain how scalar rewards are assigned and mapped
performed (e.g., the reward query). Although our knowledge is stito conditional probability distributions in our model and how
incomplete regarding the neural underpinnings of the processesning the policy that maximizes expected utility corresponds to
have described, our model could help in formulating hypothesesyard query, the method adopted in the baseline model and our
as in the work of Botvinick and An, (2008), Solway and Botviniglodel to infer the optimal policy.

(submitted). Consideri, node as a stochastic variable representing the moti-

Another assumption, which is common of Bayesian systemsaiional state at time Ot  T. Each value ofis X X, such that
that the brain encodes relevant variables, such as state and a(ctioq X, e Where X 0 is the maximum motivational need.
variables, probabilistically (Doyaet 2007). All these assumptionThe corresponding detection node represents the variaBedh
deserve rigorous empirical validation through novel experimentallue of gy, V, suchthat0y, X __, represents the value of
paradigms that explore anticipatory dynamics during choice. the potential reward detected. Given all combinations of values (i

In keeping with the baseline model, we have adopted a “rewdjit is possible to compute the scalar reward vegtasRie ned
query” and exact Bayesian inference to describe how computhin the EUT framework. It is also possible to compute-pl
tions are performed. As discussed in Botvinick and An's (200), the conditional probability distribution of binary nodg as
study, this method guarantees maximization of expected utgpresented in our model. Thus, j Jand k K:
ity (see Section 6 for a discussion of how our extensions of the .
model maintain the same characteristics). Although this prop-Ys  %i» Ry bt X P U i Xd Yo X/ X
erty is appealing and has the advantage of linking our model to ()
mathematical descriptions of EUT, which are more common in
neuroeconomy, prudence is necessary to apply this normatj ; ;
model to real-world economic scenarios. Indeed, many factE)‘:\r/sﬁk % Rt Yoo P T Xl Yo Yad Xoa
could limit optimality in these situations. First, the quality of (5)
choice depends on the knowledge available to the decision-maketyom the previous equation it is easy to see that:
Uncertain or limited knowledge potentially leads to sub-maxi- B
mal decisions or choosing exploration rather than exploitatiod 4 1/i,d, R, 0 t T (6)

(Cohen etal., 2007). Furthermore, it is likely that prospection h . b ‘ L |
involves the simulation of few salient events or the elicitation of /PPOS€ that a certain number of motivational systems are

incomplete and erroneous simulations, and this limits the amoufiP'emented, hence there are M nodearid ¢ at each time step.

of (future) knowledge incorporated in decision-making. Secorfd>° ml th'ls ca(tjse, scalar rewargs afnd conﬂltlongl DI’.Oba:)IlltI(;nS of l\JN
the need to use bounded computational and cognitive resourdes ¢ ;,u ated as in E,qu and 5 OLefiC rr:]otlvatlona system. We
can lead to sub-optimal use of available knowledge. Note tHAW that, in sequential decisions, being the present sjaig) (i

this does not necessarily mean that the Bayesian scheme is fifap-0: EUT de nes expected utility at time T, given policy p, as

plicable: a possible alternative, which is currently pursued?fPending on future Rewards:

many studies, is to explain these phenomena using approximate T oM

rather than exact Bayesian inferences (Chatat.€2006; Daw Y' | E R oy @)

and Courville, 2008; Sanborn @t, 2010; Dindo eal., 2011). trmt

Finally, a recent view is that decision-making and behavior resuiereE is the expectancy, or the probability of obtaining rewards.
from the interaction between different controllers. In some cilNote that in the previous equation the discounting factorsslg
cumstances goal-directed and habitual controllers, which tendftom EUT, we know that maximizing expected utility corresponds
optimize performance (using different methods), are in uenceslith choosing the optimal policy, which we ca]l p;

0~0
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P o arg:na>U P iy, ®) Given Eqg. 6, we can also demonstrate that

/ 1 UPi,d 11
At the same time, with regard to the probabilistic framework © € oo (1)

adopted by the baseline model and our model, the probability dis4t follows that once scalar rewards have been assigned, as

tribution of node 1 can be computed as follows: described in Egs 4 and 5, our model of anticipated motivation is
17T able to represent the EUT scenario and compute the policy associ-
p U N P Uy, (9) ated with maximum expected utility.
t1l mi1
whereN is the total number of u nodes. Within this probabilisti€ CKNOWLEDGMENTS
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